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Abstract—Learning the Markov network structure from
data is a problem that has received considerable attention
in machine learning, and in many other application fields.
This work focuses on a particular approach for this purpose
called independence-based learning. Such approach guarantees
the learning of the correct structure efficiently, whenever
data is sufficient for representing the underlying distribution.
However, an important issue of such approach is that the
learned structures are encoded in an undirected graph. The
problem with graphs is that they cannot encode some types of
independence relations, such as the context-specific indepen-
dences. They are a particular case of conditional independences
that is true only for a certain assignment of its conditioning
set, in contrast to conditional independences that must hold
for all its assignments. In this work we present CSPC, an
independence-based algorithm for learning structures that
encode context-specific independences, and encoding them in
a log-linear model, instead of a graph. The central idea of
CSPC is combining the theoretical guarantees provided by the
independence-based approach with the benefits of representing
complex structures by using features in a log-linear model.We
present experiments in a synthetic case, showing that CSPC
is more accurate than the state-of-the-art IB algorithms when
the underlying distribution contains CSIs.

Keywords-Markov networks, structure learning;
independence-based; context-specific independences;

I. I NTRODUCTION

Nowadays, a powerful representation of joint probabil-
ity distributions are Markov networks. The structure of a
Markov network can encode complex probabilistic rela-
tionships among the variables of the domain, improving
the efficiency in the procedures for probabilistic inference.
An important problem is learning the structure from sam-
ples drawn from an unknown distribution. A number of
alternative algorithms for this purpose have been devel-
oped in recent years. One approach is theindependence-
based (IB) approach [1]–[5]. Algorithms that follow this
approach proceed by using statistical tests to learn a series of
conditional independences from data, encoding them in an
undirected graph. An important advantage of this approach
is that it provides theoretical guarantees for learning the
correct structure, together with the efficiency gained by using
statistical tests. Other recent approaches [6]–[9] proceed by
inducing a set of features from data, instead of an undirected
graph. The features are real-valued functions of partial
variable assignments, and using these functions it is possible

to encode more complex structures than those encoded by
graphs. Algorithms that follow this approach encode the
structure in the features of a log-linear model. Unfortunately,
current algorithms based on learning features are not an
efficient alternative, due to the multiple user defined hyper-
parameters, and the need of performing parameters learning.
The parameters learning step is often intractable, requiring
an iterative optimization that runs an inference step over the
model at each iteration.

In many practical cases the underlying distribution of a
problem presentcontext-specific independences(CSIs) [10],
that are conditional independences that only hold for a
certain assignment of the conditioning set, but not hold
for the remaining assignments. In that case, encoding the
structure in an undirected graph leads to excessively dense
graphs, obscuring the CSIs present in the distribution, and
resulting in computationally more expensive computation of
inference algorithms [11], [12]. For this reason, encodingthe
CSIs in a log-linear model does not obscure them, achieving
sparser models and therefore significant improvements in
time, space and sample complexities [8], [13]–[15].

This work presents CSPC, an independence-based algo-
rithm for learning a set of features instead of a graph, in
order to encode CSIs. The algorithm is designed as an
adaptation for this purpose of the well-known PC algo-
rithm [16]. CSPC proceeds by first generating an initial
set of features from the dataset, and then searches over the
space of possible contexts for learning the CSIs present in
the underlying distribution. For each context the algorithm
elicits a set of CSIs using statistical tests, and generalizes
the current set of features in order to encode the elicited
CSIs. The central idea of CSPC is combining the theoretical
guarantees provided by the independence-based approach
with the benefits of representing complex structures by using
features. To our knowledge, the only algorithm near to CSPC
is the LEM algorithm [8], since it uses statistical tests to
learn CSIs. However, LEM restricts the attention to learn-
ing distributions that can be represented by decomposable
Markov networks. For the latter, we omit it as competitor in
our experiments.

We conducted an empirical evaluation on synthetic data
generated from known distributions that contains CSIs. In
our experiments we prove that CSPC is significantly more
accurate than the state-of-the-art IB algorithms when the
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underlying distribution contains CSIs.

II. BACKGROUND

This section reviews the basics about Markov networks
representation, the concept of CSIs, and the IB approach for
learning Markov networks.

A. Markov networks

A Markov network over a domainX of n random
variablesX0 . . . Xn−1 is represented by an undirected graph
G with n nodes and a set of numerical parametersθ ∈ R.
This representation can be used to factorize the distribution
with the Hammersley-Clifford theorem [17], by using the
completely connected sub-graphs ofG (a.k.a.,cliques) into
a set ofpotential functions{φC(XC) : C ∈ cliques(G)} of
lower dimension thanp(X), parameterized byθ, as follows:

p(X = x) =
1

Z

∏

C∈cliques(G)

φC(xC), (1)

wherex is a complete assignment of the domainX , xC is
the projection of the assignmentx over the variables of the
Cth clique, andZ is a normalization constant. An often used
alternative representation is alog-linear model, with each
clique potential represented as an exponentiated weighted
sum of features of the assignment, as follows:

p(X = x) =
1

Z
exp







∑

j

θjfj(x)







, (2)

where each featurefj is a partial assignment over a subset
of the domainV (fj). Given an assignmentx, a featurefj is
said to be satisfied iff for each single variableXa = xa ∈ fj
it also holds thatxa ∈ x [8]. One can associate a indicator
function to fj and an assignmentx by associating a value
1 whenfj is satisfied inx, or 0 otherwise.

A Markov network can be induced from a log-linear
model by adding an edge in the graph between every pair
of variablesXa, Xb that appear together in some subset of
a featurefj, that is {Xa, Xb} ⊆ V (fj). Then, the clique
potentials are constructed from the log-linear features inthe
obvious way [18].

Example 1. Figure 1 shows the features of a log-linear
model overn = 3 binary variablesXf , Xa andXb, and its
respective induced graph.

B. Context-specific independences

The CSIs are a finer-grained type of independences. These
independences are similar to conditional independences, but
hold for a specific assignment of the conditioning set, called
the contextof the independence. Formally, we define a CSI
as follows:

Definition 1 (Context-specific independence [10]). Let
Xa, Xb ∈ X be two random variables,XU , XW ⊆ X \

f1 (Xa = 0 Xb = 0 Xf = 0)
f2 (Xa = 1 Xb = 0 Xf = 0)
f3 (Xa = 0 Xb = 1 Xf = 0)
f4 (Xa = 1 Xb = 1 Xf = 0)
f5 (Xa = 0 Xf = 1)
f6 (Xa = 1 Xf = 1)
f7 (Xb = 0 Xf = 1)
f8 (Xb = 1 Xf = 1)

⇒

Figure 1: An example of an induced graph from a set of
features.

{Xa, Xb} be pairwise disjoint sets of variables that does
not containXa, Xb; and xW some assignment ofXW . We
say that variablesXa andXb are contextually independent
givenXU and a contextXW = xW , denotedI(Xa, Xb |
XU , xW ), iff

p(Xa|Xb, XU , xW ) = p(Xa|XU , xW ), (3)

wheneverp(Xb, XU , xW ) > 0.

Example 2. Figure 2(a) shows the graph of Example 1,
induced from a log-linear model. Notice that the features
of Example 1 encode the CSII(Xa, Xb | Xf = 1), but
it is obscured in the graph. Alternatively, such CSI can be
graphically represented if we use two graphs, one for each
value ofXf . For this, Figure 2(b) shows the graph induced
from the features withXf = 1 which encodesI(Xa, Xb |
Xf = 1), and Figure 2(c) shows the graph induced from the
features withXf = 0 which encodes¬I(Xa, Xb | Xf = 0).
In these figures, gray nodes correspond to an assignment of
a variable.

Figure 2: (a) The graph induced from the features in Exam-
ple 1. (b) graph induced from the features withXf = 1 in
Example 1. (c) graph induced from the features withXf = 0
in Example 1. Gray nodes correspond to an assignment of
a variable.

Notice that the graph in Figure 2(a) cannot encode the CSI
I(Xa, Xb | Xf = 1), because it occurs only for a specific
context and is absent in all the others. This is because
the edges connect pairs of variables that are conditionally
dependent even for a single choice of values of the other
variables. Since a CSI is defined for a specific context, a set
of CSIs cannot be encoded all together in a single undirected
graph [19]. Nonetheless, both structures are encoded in the
set of features of the example.



C. Independence-based approach for structure learning

The task of IB algorithms is learning a graph that encodes
the independences from i.i.d. samplesD = {x1, . . . , xD} of
an unknown underlying distributionp(X) [1]. For that, these
algorithms perform a succession of statistical independence
tests overD to determine the truth value of a conditional
independence (e.g. Mutual Information [20], Pearson’sχ2

andG2 [21]), discarding all graphs that are inconsistent with
the test. The decision of what test to perform is based on the
independences learned so far, and varying with each specific
algorithm.

A key advantage of these algorithms is that they guaran-
tees to learn the correct underlying structure under three as-
sumptions: (i) the underlying distribution isgraph-isomorph,
that is, the independences inp(X) can be encoded by a
graph; (ii ) the underlying distribution is positive, that is
p(x) > 0 for all X = x; and (iii ) the outcomes of statistical
independence tests are correct, that is the independences
learned are a subset of the independences present inp(X).
Another advantage of using IB algorithms is its computa-
tional efficiency, due to its polynomial running time [1],
and also due to the avoiding of the need of performing
parameters learning. The efficiency is gained because the
computational cost of a test is proportional to the number
of rows in D, and the number of variables involved in the
tests.

Perhaps the best known algorithm that follows this ap-
proach is PC [16], which was created for learning the
structure of Bayesian networks. PC is correct under the
assumptions described above, but when the tests are not
correct produce errors in removing edges, because the al-
gorithm only tests for independence among two variables
conditioning in subsets of the adjacencies of one of these
variables. For learning Markov networks, the first algorithm
that follows the IB approach is GSMN [22], an efficient
algorithm that computes onlyO(n2) tests, constructing the
structure by learning the adjacencies of each variable; using
the Grow-Shrinkalgorithm [23]. A more recent algorithm
that improves over GSMN is IBMAP-HC [24], which learns
the structure by performing a hill-climbing search over the
space of graphs looking for the one which maximizes the
IB-score, a score of the posterior probabilities of graphs
p(G | D). The hill-climbing search starts from the empty
structure, adding edges until reaching a local maxima of
p(G | D). IBMAP-HC relaxes the assumption about the
correctness of the statistical tests, improving over GSMN
in sample complexity by reducing the cascade effect of
incorrect tests.

III. C ONTEXT-SPECIFIC PARENT AND CHILDREN

ALGORITHM

This section presents the CSPC (Context-specific Par-
ent and Children) algorithm for learning Markov networks
structures that encodes the CSIs present in data. CSPC

encodes the CSIs by generalizing iteratively a set of features.
For this, CSPC decomposes the search space of CSIs in
two nested spaces: the space of the possible contexts, and
for each context the space of all its possible CSIs. First,
CSPC generates an initial set of features, and then searches
over both spaces with two nested loops: an outer loop that
explores the space of the contexts; and for each one, an inner
loop that elicits from data a set of CSIs by using statistical
tests, and generalizes the features according to the elicited
CSIs.

The three key elements of CSPC are:A) the generation
of the initial features,B) the elicitation of CSIs from data,
andC) the features generalization for encoding the elicited
CSIs.

A. The generation of the initial features

An initial set of featuresF must be generated as a starting
point of the whole algorithm. One alternative is to generate
the features that correspond with the initial fully connected
graph in a similar fashion than PC, that is adding a feature
for each possible complete assignmentx of the variable
X . In this case, the size of such initial set is exponential
with respect to the number of variables. For this reason,
CSPC uses a more optimal initial set of features, adding one
feature for each unique example inD. This is an often used
alternative [6], [9], because it guarantees that the generalized
features at the end of the algorithm match at least one
training example.

B. Eliciting context-specific independences

For discovering all the CSIs present in the data, CSPC
explores the set of complete contextsx found in the dataset,
that is, one for each unique training example. Given a
context x ∈ D and a set of featuresF , CSPC decides
what CSIs to elicit in a similar fashion than PC. For each
variableXa a Markov network is induced from the subset
of features that satisfies with the contextxX\Xa

. Then, for
eachXb adjacent toXa in the induced graph a subsetXW

of the adjacencies is taken in order to define the conditional
independenceI(Xa, Xb | XW ). From such independence, a
CSI is obtained by contextualizing the conditioning setXW

using the contextx, that isI(Xa, Xb | XW = xw). Finally,
if the CSI is present in data then it is encoded in the current
set of features.

For eliciting the CSIs in data, we propose a straight-
forward adaptation of a traditional (non-contextualized)in-
dependence test. A similar adaptation is proposed in [8].
The central idea of the adaptation is that an arbitrary
CSI I(Xa, Xb | XU , xW ) can be seen as a conditional
independenceI(Xa, Xb | XU ) in the conditional distribution
p(X\{XW} | xW ). In this way, the CSI can be tested by us-
ing a non-contextualized test over a sample drawn from the
conditional distributionp(X\{XW } | xW ). In practice, such



sample can be obtained fromD as {xj ∈ D : xj
W = xW },

namely, the subset of datapoints whereXW = xW .

C. Features generalization

The generalization of features is used by CSPC to en-
code the CSIs that are present in data. A specific CSI
I(Xa, Xb | xW ) can be encoded in the featuresF of a log-
linear ofp(X) by factorizing those features that correspond
with the conditional distributionp(X \ {XW } | xW ). Such
factorization is done by using a recently proposed adaptation
of the well known Hammersley-Clifford theorem for CSIs
called the Context-Specific Hammersley-Clifford theorem
[25]. The features that correspond withp(X \ {XW } | xW )
are the subset of features inF that satisfy the context
xW , denoted byF [xW ] ⊆ F . In this way, given the CSI
I(Xa, Xb | xW ) the featuresF [xW ] are factorized into
two new sets of features:F ′[xW ], obtained fromF [xW ]
but removing the variableXa; andF ′′[xW ], obtained from
F [xW ] but removing the variableXb. Formally, for all
f ′
j ∈ F ′[xW ], {Xa} /∈ V (f ′

j); and for all f ′′
j ∈ F ′′[xW ],

{Xb} /∈ V (f ′′
j ).

Example 3. Figure 3a shows an initial set of featuresF to
be generalized in order to encode the CSII(Xa, Xb | Xf =
1). The generalization consists in factorizing the features
F [Xf = 1], that is the set of features that are satisfied
with the contextXf = 1 (Figure 3b). The factorization of
these features results in two new sets of features:F ′[Xf =
1] and F ′′[Xf = 1], shown in Figure 3c. The features in
F ′[Xf = 1] are obtained fromF [Xf = 1] but removing
Xb, and the features inF ′′[Xf = 1] are obtained from
F [Xf = 1] but removingXa Finally, the set of features
which correctly encodes the CSII(Xa, Xb | Xf = 1) are
shown in Figure 3d. Notice that the features in Figure 3d
are the same set of features shown in Example 1.

D. Overview

This section presents an explanation of CSPC that puts
all the pieces together. The pseudocode is shown in Algo-
rithm 1. As input, the algorithm receives the set of domain
variablesX , and a datasetD. The algorithm starts by
generating the initial set of features. Then, the space of
the contexts is explored. For each context, the current set
of features is generalized by using a generalization of the
PC algorithm as a subroutine. This subroutine, described
in Algorithm 2, consists in the elicitation of CSIs and
the features generalization steps. As input, this subroutine
receives the current set of featuresF , the contextx, the set
of domain variablesX , and the datasetD. At the end, the
features of a log-linear model are returned.

In Algorithm 2, the step of elicitation of CSIs follows the
same strategy than PC, trying to find the independences on
the smallest number of variables in the conditioning set. For
this, the conditioning set for each variableXa consists on
subset of sizek of the adjacenciesadj(a), terminating when

f1 (Xa = 0 Xb = 0 Xf = 0)
f2 (Xa = 1 Xb = 0 Xf = 0)
f3 (Xa = 0 Xb = 1 Xf = 0)
f4 (Xa = 1 Xb = 1 Xf = 0)
f5 (Xa = 0 Xb = 0 Xf = 1)
f6 (Xa = 1 Xb = 0 Xf = 1)
f7 (Xa = 0 Xb = 1 Xf = 1)
f8 (Xa = 1 Xb = 1 Xf = 1)

(a) Initial set of features

F [Xf = 1] = {

f5(Xa = 0Xb = 0Xf = 1),

f6(Xa = 1Xb = 0Xf = 1),

f7(Xa = 0Xb = 1Xf = 1),

f8(Xa = 1Xb = 1Xf = 1)}

(b) The features that satisfy
with the contextXf = 1

F ′[Xf = 1] = {

f
′

5
(Xb = 0Xf = 1),

f
′

6
(Xb = 0Xf = 1),

f
′

7
(Xb = 1Xf = 1),

f
′

8
(Xb = 1Xf = 1)}

F ′′[Xf = 1] = {

f
′′

5
(Xa = 0Xf = 1),

f
′′

6
(Xa = 1Xf = 1),

f
′′

7
(Xa = 0Xf = 1),

f
′′

8
(Xa = 1Xf = 1)}

(c) Factorization of the fea-
turesF [Xf = 1]

f1 (Xa = 0 Xb = 0 Xf = 0)
f2 (Xa = 1 Xb = 0 Xf = 0)
f3 (Xa = 0 Xb = 1 Xf = 0)
f4 (Xa = 1 Xb = 1 Xf = 0)
f ′

5
(Xa = 0 Xf = 1)

f ′

7
(Xa = 1 Xf = 1)

f ′′

5
(Xb = 0 Xf = 1)

f ′′

7
(Xb = 1 Xf = 1)

(d) Features generalized en-
coding I(Xa, Xb | xW )

Figure 3: Example of feature factorization according to CSIs.

Algorithm 1: Context space exploration
Input : domain variablesX, datasetD
Output : featuresF generalized according to the CSIs learned

1 F ← Generate one feature for each unique example inD
x ∈ Val(X)

2 foreach contextx ∈ Val(X) do
3 F ← PC (F , x, X, D)
4 Add atomic feature for each variable toF
5 return F

for all subsetsW , |W | is smaller thank. This is a strategy for
avoiding the effect of incorrect tests, because in the practice
the quality of statistical tests decreases exponentially with
the number of variables that are involved [21].

In Algorithm 3, the step of features generalization is
made once the CSI has been elicited. In such step, for the
input CSI I(Xa, Xb | xW ) the current set of featuresF is
partitioned in two sets: the setF ′ that are the features that
satisfy with xW , and the setF ′′ that are the features that
does not satisfy withxW . Then, the satisfied features are
factorized according to the Context-Specific Hammersley-
Clifford theorem. Finally, a new set of featuresF is defined
by joining F ′ andF ′′.

IV. EXPERIMENTAL EVALUATION

To allow a proper experimental design with a range of
well-understood conditions, we evaluated our approach on
artificially generated datasets. For testing the effectiveness of
our approach, we propose a specific class of deterministic



Algorithm 2: PC extended for features
Input : featuresF , contextx, domain variablesX, datasetD
Output : generalized featuresF

1 k ← 0
2 repeat
3 foreach Xa ∈ X do
4 adj(a) ← compute adjacencies from features that

satisfyxX\Xa

5 foreach Xb ∈ adj(a) do
6 foreach W subset of adj(a) \{Xb} s.t. |W | = k

do
7 if I(Xa, Xb | xW ) is true then
8 F ← GeneralizeF for the CSI

I(Xa, Xb | xW )
9 k ← k + 1

10 until | adj(a) \ {Xb}| < k;
11 return F

Algorithm 3: Feature generalization
Input : featuresF , a CSII(Xa, Xb | xW )
Output : generalized featuresF

1 F ′ ← F [xW ]
2 F ′′ ← F \ F ′

3 F ′ ← factorizeF ′ according to the Context-Specific
Hammersley-Clifford

4 return F ′ ∪ F ′′

models which presents a controlled number of CSIs. The
evaluation consists in two parts. In the first part we show
the potential of improvements that can be obtained in our
experiment. In the second part we compare CSPC to two
state-of-the-art IB algorithms: GSMN [22] and IBMAP-HC
[24]. Additionally we also compare with PC [16] in order
to highlight the improvements resulting from contextualizing
it. Since PC was originally designed for learning Bayesian
networks (directed graphs), we use PC omitting the step of
edges orientation [26].

A. Datasets

We generated artificial data through Gibbs sampling on
a class of models similar to Example 2, generalized to
distributions withn discrete binary variables. We chose such
models since they are a representative case of a distribution
with a controlled number of CSIs. The aim is to demonstrate
that learning such CSIs represents an important improvement
in the quality of learned distributions, when compared with
the alternative representation in graphs. In this scenario,
the IB algorithms lead to excessively dense graphs (the
fully connected ones), which obscures the underlying CSIs.
We considered models withn ∈ {6, 7, 8} variables and
maximum cliques of the same size. Since the complexity
of structure learning grows exponentially with the size of
its maximum clique (a.k.a. treewidth), in the literature the
algorithms are typically tested on models with maximum
cliques of size at most6 [8], [18].

For eachn, the underlying structure is a fully connected
graph with(n−1) nodes, plus a flag nodeXf . In this model,
all pairs between the variablesX\{Xf} are context-specific
independent, given the contextXf = 1. Instead, when
Xf = 0 the variables remain dependent. In this way, for
n variables the underlying structure contains(n−1)×(n−2)

2
contextual independences in the formI(Xa, Xb | Xf = 1),
for all Xa, Xb 6= Xf ∈ X . Given such structure, we defined
a log-linear model that contains two sets of features:i) a set
of pairwisefeatures which encodes the dependence between
Xf and the rest of variablesX\{Xf}, andii) a set oftriplet
features over the variablesXa, Xb, Xf . For the resulting
features we generated10 different models, varying in its
numerical parameters. Such parameters were generated to
satisfy the log-odds ratio, in order to set strong dependencies
in the model [3]–[5], [21]. In this way, the parameters of the
pairwise featuresXa, Xb were forced to satisfy the following
ratio: ε = log

(

w0φ(Xa=0,Xf=0)w1φ(Xa=1,Xf=1)
w2φ(Xa=0,Xf=1)w3φ(Xa=1,Xf=0)

)

, ∀Xa ∈

X \ {Xf}, wherew0, w2 are symmetric tow1, w3, respec-
tively (w0 = w1 and w2 = w3). Since this ratio has2
unknowns we choosew2 sampled fromN (0.5; 0.001), and
w0 is solved. The parameters for the triplet features were
forced to satisfy the CSII(Xa, Xb | Xf = 1). When
Xf = 0 the parameters were generated using the same
procedure used for the pairwise features. WhenXf = 1 the
parameters were forced to satisfy the following factorization:
φ(Xa, Xb, Xf = 1) = w0φ(Xa = 0, Xf = 1) · w1φ(Xa =
1, Xf = 1), wherew0 andw1 are the same than the pairwise
features already defined. In our experiments we setε = 1.0.
The datasets were generated by sampling from the log-linear
models using Rao-Blackwellized Gibbs sampler1 with 10
chains, 100 burn-in and 1000 sampling.

B. Methodology

We used the synthetic datasets explained above to learn
the structure and parameters for all the algorithms. Our syn-
thetic data, together with an executable version of CSPC and
the competitors is publicly available2. For a fair comparison,
we use Pearson’sχ2 as the statistical independent test for
all the algorithms, with a significance level ofα = 0.05.
The IBMAP-HC algorithm alternatively only works by using
the Bayesian test of Margaritis [23]. For each particular
dataset we evaluated the algorithms on training set sizes
varying from500 to 40000, in order to obtain a number of
samples sufficient for satisfying the CSIs of the underlying
distribution proposed.

We report the quality of learned models using the
Kullback-Leibler divergence (KL) [27]. The KL is defined
asKL(p || q) =

∑

x p(x)ln
p(x)
q(x) , measuring the information

1Gibbs sampler is available in the open-source Libra toolkit
http://libra.cs.uoregon.edu/

2http://dharma.frm.utn.edu.ar/papers/cspc

http://libra.cs.uoregon.edu/


lost when the learned distributionq(X) is used to approxi-
mate the underlying distributionp(X). KL is equal to zero
when p(X) = q(X). The better the learned models, the
lower the values of the KL measure. Since these algorithms
only learn the structure of a Markov network, the complete
distribution is obtained by learning its numerical parameters.
For the case of IB algorithms, the features are induced from
the maximum cliques of the graph learned. For learning
its parameters we computed the pseudo-loglikelihood using
the available version in the Libra toolkit. We use pseudo-
loglikelihood without regularization to avoid sparsity inthe
final model, because we are interested in measuring the
quality of the structure learning step.

C. Results

Our first experiment shows the potential improvement that
can be obtained in our generated datasets in terms of KL
over the generated data. For this we measure in Figure 4 the
KLs obtained by learning the parameters for three proposed
structures:i) the empty structure,ii) the fully connected
structure, andiii) the underlying structure. The distribution
learned from the empty structure informs us about the impact
of encoding incorrect independences in the KL measure.
Consequently, the fully connected structure shows the impact
in the KL measure that can be obtained with incorrect
dependences that are obscuring the real CSIs present in data.
The underlying structure contains the features which exactly
encodes the CSIs of the proposed model, as described in
Section IV-A. The figure shows the average and standard
deviation over our10 generated datasets for training set sizes
varying from 500 to 40000 (X-axis), for different domain
sizes6, 7 and8. In order to better show differences among
the KLs we show it in log scale.

In these results, we see empirically that the KL of the
distribution obtained by learning the parameters for the un-
derlying structure is always significantly better than the KL
obtained by using the empty and fully structures. Notice that
the KL is an (expected) logarithmic difference, representing
differences in orders of magnitude in the non-logarithmic
space. For our results, these differences are up to2 orders
of magnitude in the cases ofn ∈ {6, 7}, and 5 orders of
magnitude in the case ofn = 8. However, there is not a
trend of the KL to be zero by varying the size of training
data. This is because Gibbs sampler is not an exact method
for the generation of the training data. In this result also
can be seen that as well asn increases, the KL of the fully
structure is better than the KL of the empty structure.

In our second experiment we compare the KLs obtained
by CSPC, GSMN, IBMAP-HC, and PC. These results are
shown in Figure 5, for the same datasets of the experiment
shown in Figure 4. CSPC is the more accurate algorithm
in all the cases, with lower KL, near to1 (the KL value
of the underlying structure in Figure 4). The differences in
KL between CSPC against its competitors is up to2 orders

of magnitude forn = 6 andn = 7, and up to5 orders of
magnitude against IBMAP-HC forn = 8.

Since the KL is clearly affected by the quality of the
structure, we wanted to determine whether or not their actual
structures are correct. We did this by reporting the average
feature length of the learned models, since it is a known
value for our underlying model in this experiment. This is a
statistical measure useful for analyzing the structural quality
of log-linear models, as shown in several recent works
[7], [9], [28]. Figure 6 reports these values for the same
experiment shown above. The horizontal line in the graphs
shows the exact feature length of the underlying structure
(2.80 for n = 6, 2.83 for n = 7, and2.85 for n = 8). CSPC
perform better in all the cases, showing always the nearest
number of average feature length to the horizontal line. This
is consistent with the KL results shown in Figure 5. GSMN
and PC increases in the average number of features length as
well as the number of datapoints grows, for all the domain
sizes. This trend is due because they are learning more
dense structures as well as the number of datapoints grows,
reaching the fully structure. For example, in the case of
n = 7, the GSMN and PC algorithms shows a trend to reach
the fully structure, and the KLs shown in Figure 5 are similar
to the KL of the fully structure shown in Figure 4. Also, as
well as n increases, the difference on the average feature
length between CSPC and its competitors also increases.
This is also consistent with the results shown in Figure 4.
A surprising result is shown for IBMAP-HC, which does
not show the same trend than GSMN and PC. It can be
seen that for lower number of datapoints (D < 5000) the
algorithm learns fully structures (the average feature length
is equal ton in the three cases). However, for higher number
of datapoints (D ≥ 5000) the algorithm learns the empty
structure, with average feature length equal to1 (the empty
structure contains the atomic features). We argue this is
due to the Bayesian nature of IBMAP-HC, which works by
optimizing the posterior probability of structuresp(G | D)
with a hill-climbing search. When using a large amount of
data, IBMAP-HC seems very prone to getting stuck in the
empty structure as a local minima withp(G | D) = 0
for almost all the structures, except the correct one with
p(G | D) = 1 .

Finally, as an additional result, we show in Table I the
average feature length of the features that are satisfied with
the value of the flag variableXf . This result is shown
for all the algorithms, running for an increasing number of
variables fromn = 4 to 8 with a fixed number of3000
datapoints, and discriminating in different columns the value
of Xf . As expected, the values for CSPC forXf = 0
are more near to3, and more near to2 for Xf = 1, in
comparison with the rest of the competitors. In summary, the
above results support our theoretical claims and demonstrate
the efficiency of CSPC for learning distributions with CSIs.
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Figure 4: Potential improvements in KL obtained by learningparameters for the underlying structure, the fully and the
empty structures. Average and standard deviation over ten repetitions for increasing number of datapoints in the training set
for domain sizes6 (left), 7 (center) and8 (right).
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Figure 5: Comparison of KLs obtained by learning parametersfor CSPC, GSMN, IBMAP-HC and PC. Average and standard
deviation over ten repetitions for increasing number of datapoints in the training set for domain sizes6 (left), 7 (center) and
8 (right).
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Figure 6: Comparison of the average feature length obtainedfor CSPC, GSMN, IBMAP-HC and PC. Average and standard
deviation over ten repetitions for increasing number of datapoints in the training set for domain sizes6 (left), 7 (center) and
8 (right). The average feature length of the solution underlying structure is the horizontal line.

Xf = 0 Xf = 1

n GSMN
IBMAP-
HC PC CPSC GSMN

IBMAP-
HC PC CPSC

4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 1.85
5.00 5.00 4.60 5.00 4.79 5.00 4.60 5.00 1.88
6.00 6.00 5.50 6.00 4.37 6.00 5.50 6.00 1.93
7.00 5.00 7.00 1.10 4.01 5.00 7.00 1.10 1.95
8.00 3.00 8.00 1.00 3.54 3.70 8.00 1.00 1.87

Table I: Number of features learned for increasingn, and
usingD = 3000.

V. CONCLUSIONS

This paper proposed CSPC, an independence-based al-
gorithm for learning a set of features, instead of a graph.
CSPC overcomes some of the inefficiency of traditional
IB algorithms by learning CSIs from data and representing
them in a log-linear model. CSPC proceeds by generalizing
iteratively a set of initial features in order to represent
the CSIs present in data, exploring the possible contexts,
eliciting from data a set of CSIs usings statistical tests,
and generalizing the features according to the elicited CSIs.
Experiments in a synthetic case show that this approach is



more accurate than the state-of-the-art IB algorithms, when
the underlying distribution contains CSIs. Directions of fu-
ture work include: adapting more efficient IB algorithms for
learning CSIs; validation in real world datasets; comparison
against state-of-the-art non-independence-based approaches
[6]–[9]; adding Moore and Lee’s AD-trees [29] for speeding
up the execution of statistical tests, etc.
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