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Abstract—Learning the Markov network structure from to encode more complex structures than those encoded by
data is a problem that has received considerable attention graphs. Algorithms that follow this approach encode the
in machine learning, and in many other application fields.  gir,cture in the features of a log-linear model. Unfortehat

This work focuses on a particular approach for this purpose . .
called independence-based learning. Such approach guarantees current algorithms based on learning features are not an

the learning of the correct structure efficiently, whenever  €fficient alternative, due to the multiple user defined hyper
data is sufficient for representing the underlying distribution. parameters, and the need of performing parameters learning

However, an important issue of such approach is that the The parameters learning step is often intractable, ragyiri

learned structures are encoded in an undirected graph. The = 5 jterative optimization that runs an inference step over t
problem with graphs is that they cannot encode some types of . .
model at each iteration.

independence relations, such as the context-specific indap : . o
dences. They are a particular case of conditional independees In many practical cases the underlying distribution of a
that is true only for a certain assignment of its conditionig ~ problem presentontext-specific independend€Sis) [10],

set, in contrast to conditional independences that must hdl  that are conditional independences that only hold for a
for all its assignments. In this work we present CSPC, an  ¢ertain assignment of the conditioning set, but not hold
mdependence-based_ _algonthm for learning structures tha ~ for the remaining assignments. In that case, encoding the
encode context-specific independences, and encoding them i . ! : v =

a log-linear model, instead of a graph. The central idea of Structure in an undirected graph leads to excessively dense
CSPC is combining the theoretical guarantees provided by ta  graphs, obscuring the CSls present in the distribution, and
independence-based approach with the benefits of represém  resulting in computationally more expensive computatibn o
complex structures by using features in a log-linear modelWe  interence algorithms11].1.2]. For this reason, encodirey
present experiments in a synthetic case, showing that CSPC CSils in a log-linear model does not obscure them achieving
is more accurate than the state-of-the-art 1B algorithms wten e . ' :
the underlying distribution contains CSls. sparser models and therefore significant improvements in
time, space and sample complexities [8],|[13]+[15].

This work presents CSPC, an independence-based algo-
rithm for learning a set of features instead of a graph, in
order to encode CSls. The algorithm is designed as an
adaptation for this purpose of the well-known PC algo-

Nowadays, a powerful representation of joint probabil-rithm [16]. CSPC proceeds by first generating an initial
ity distributions are Markov networks. The structure of aset of features from the dataset, and then searches over the
Markov network can encode complex probabilistic rela-space of possible contexts for learning the CSIs present in
tionships among the variables of the domain, improvingthe underlying distribution. For each context the alganith
the efficiency in the procedures for probabilistic inferenc elicits a set of CSls using statistical tests, and genesliz
An important problem is learning the structure from sam-the current set of features in order to encode the elicited
ples drawn from an unknown distribution. A number of CSls. The central idea of CSPC is combining the theoretical
alternative algorithms for this purpose have been develguarantees provided by the independence-based approach
oped in recent years. One approach is th@ependence- with the benefits of representing complex structures bygusin
based (IB) approach [[1]-[5]. Algorithms that follow this features. To our knowledge, the only algorithm near to CSPC
approach proceed by using statistical tests to learn assefie is the LEM algorithm [[8], since it uses statistical tests to
conditional independences from data, encoding them in akearn CSls. However, LEM restricts the attention to learn-
undirected graph. An important advantage of this approacing distributions that can be represented by decomposable
is that it provides theoretical guarantees for learning theMarkov networks. For the latter, we omit it as competitor in
correct structure, together with the efficiency gained ggis our experiments.
statistical tests. Other recent approaches [6]-[9] prddse We conducted an empirical evaluation on synthetic data
inducing a set of features from data, instead of an undidectegenerated from known distributions that contains CSils. In
graph. The features are real-valued functions of partiabur experiments we prove that CSPC is significantly more
variable assignments, and using these functions it is plessi accurate than the state-of-the-art 1B algorithms when the
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learning Markov networks. . _
Figure 1: An example of an induced graph from a set of
A. Markov networks features.

A Markov network over a domainX of n random
variablesXy ... X,,_1 is represented by an undirected graph
G with n nodes and a set of numerical parameters R.
This representation can be used to factorize the distabuti

with the Hammersley-Clifford theorem [17], by using the g,y that variablesY, and X;, are contextually independent
completely co_nnecte(_j sub-graphs@f(a.k.a.',cl|que$ into given Xy and a contextXy = zy, denotedl(X,, X, |
a set ofpotential functiond ¢ (X¢) : C € cliques(G)} of Xu, xw), iff

lower dimension thap(X ), parameterized bg, as follows:

{X., Xy} be pairwise disjoint sets of variables that does
not containX,, X;; and xy, some assignment ofy,. We

px=n=— [ el (2) P(Xal X, Xvyow) = p(XalXvsow), ()

Cecliques(Q) h
. . . whenevenp(X,, Xy, > 0.
wherex is a complete assignment of the domainzo is p(Xp, Xv, 2w)

the projection of the assignmeantover the variables of the Example 2. Figure [2(a) shows the graph of Examgle 1,
C'th clique, andZ is a normalization constant. An often used induced from a log-linear model. Notice that the features
alternative representation islag-linear model, with each  of Example[lL encode the C3(X,, X, | X; = 1), but
clique potential represented as an exponentiated weightetlis obscured in the graph. Alternatively, such CSI can be
sum of features of the assignment, as follows: graphically represented if we use two graphs, one for each
value of X ;. For this, Figure[2(b) shows the graph induced
from the features withX; = 1 which encoded (X,, X} |
p(X =2z)= 1 exp Z9jfj(£6) , (2) Xy =1), and Figure[2(c) shows the graph induced from the
Z features withX ; = 0 which encodesI(X,, X; | X; = 0).
In these figures, gray nodes correspond to an assignment of

where each featurg; is a partial assignment over a subset :
a variable.

of the domainV/( f;). Given an assignment, a featuref; is
said to be satisfied iff for each single variatle = z,, € f;
it also holds thatz, € = [8]. One can associate a indicator ° @ @

function to f; and an assignment by associating a value ‘ ‘
1 when f; is satisfied inz, or 0 otherwise.

A Marjkov network can be induced from a log-linear e ° e e e @
model by adding an edge in the graph between every pair (a) (b) (c)
of variablesX,, X; that appear together in some subset of
a featuref;, that is {X,, X} C V(f;). Then, the clique
potentials are constructed from the log-linear featurethén
obvious way [[18].

Figure 2: (a) The graph induced from the features in Exam-
ple[d. (b) graph induced from the features wiXty = 1 in
Exampldl. (c) graph induced from the features with= 0

in Example[1. Gray nodes correspond to an assignment of
Example 1. Figure I shows the features of a log-linear a variable.

model ovemn = 3 binary variablesX¢, X, and X;, and its

respective induced graph.

B. Context-specific independences Notice that the graph in Figuie 2(a) cannot encode the CSI

The CSls are a finer-grained type of independences. Thedd X Xb | Xy = 1), because it occurs only for a specific

. i » . context and is absent in all the others. This is because
independences are similar to conditional independences, b . : .

e ) L the edges connect pairs of variables that are conditionally
hold for a specific assignment of the conditioning set, dalle

the contextof the independence. Formally, we define a CSIdependent even for a _smgle_ choice of valggs of the other
as follows: variables. Since a CSl is defined for a specific context, a set

of CSls cannot be encoded all together in a single undirected
Definition 1 (Context-specific independencé [10]bet  graph [19]. Nonetheless, both structures are encoded in the
X4, Xy € X be two random variablesXy, Xy C X \ set of features of the example.



C. Independence-based approach for structure learning encodes the CSls by generalizing iteratively a set of featur

The task of IB algorithms is learning a graph that encode§0r this, CSPC decomposes the search space of CSls in
the independences from i.i.d. samp®s= {z,...,2P)} of WO nested spaces: the space of the poss!ble contexts, and
an unknown underlying distribution X) [1]. For that, these for each context the_ space of all its possible CSls. First,
algorithms perform a succession of statistical indepeoelen CSPC generates an initial set of features, and then searches
tests overD to determine the truth value of a conditional Over both spaces with two nested loops: an outer loop that
independence (e.g. Mutual Informatidn [20], Pearsogs explores tht_a space of the contexts; and for eac_h one, an inner
andg? [21]), discarding all graphs that are inconsistent withloop that elicits fro_m data a set of CSls by.usmg staust_lc_al
the test. The decision of what test to perform is based on thi€sts, and generalizes the features according to theeelicit
independences learned so far, and varying with each specifESlS-
algorithm. The three key elements of CSPC are:the generation

A key advantage of these a|gorithm5 is that they guaranOf the initial featUFESB) the elicitation of CSls from data.,
tees to learn the correct underlying structure under thsee a@ndC) the features generalization for encoding the elicited
sumptions: i) the underlying distribution igraph-isomorph ~ CSls.
that is, the independences ii{X) can be encoded by a
graph; (i) the underlying distribution is positive, that is A. The generation of the initial features

p(x) > 0 forall X = z; and (i) the outcomes of statistical  an intial set of features™ must be generated as a starting
independence tests are correct, that is the independencgsint of the whole algorithm. One alternative is to generate
learned are a subset of the independences pres@iitii.  the features that correspond with the initial fully conreit
Another advantage of using IB algorithms is its computa-graph in a similar fashion than PC, that is adding a feature
tional efficiency, due to its polynomial running time! [1], for each possible complete assignmenbf the variable
and also due to the avoiding of the need of performingx |n this case, the size of such initial set is exponential
parameters learning. The efficiency is gained because thgith respect to the number of variables. For this reason,
computational cost of a test is proportional to the numbeicspc uses a more optimal initial set of features, adding one
of rows in D, and the number of variables involved in the feature for each unique exampleZh This is an often used
tests. alternative[[6],[[9], because it guarantees that the gdimech

Perhaps the best known algorithm that follows this apfeatyres at the end of the algorithm match at least one
proach is PC[[16], which was created for learning theyaining example.

structure of Bayesian networks. PC is correct under the

assumptions described_above, but when the tests are ngt Eliciting context-specific independences

correct produce errors in removing edges, because the al- ] ) ]

gorithm only tests for independence among two variables For discovering all the CSls present in the data, CSPC
conditioning in subsets of the adjacencies of one of thes&xPlores the set of complete contextéound in the dataset,
variables. For learning Markov networks, the first algarith that is, one for each unique training example. Given a
that follows the IB approach is GSMN [22], an efficient contextz € D and a set of features’, CSPC decides
algorithm that computes onl§)(n?) tests, constructing the whgt CSils to elicit in a S|m|Iar_fa_sh|on than PC. For each
structure by learning the adjacencies of each variablegusi Variable X, a Markov network is induced from the subset
the Grow-Shrinkalgorithm [23]. A more recent algorithm ©f features that satisfies with the context, x, . Then, for
that improves over GSMN is IBMAP-HG [24], which learns €achX, adjacent taX,, in the induced graph a subs&ty

the structure by performing a hill-climbing search over the_Of the adjacencies is taken in order to def_me the conditional
space of graphs looking for the one which maximizes thdndependenceé(X,, X | Xy ). From such independence, a
IB-score, a score of the posterior probabilities of graph<CS! is obtained by contextualizing the conditioning &&f

p(G | D). The hill-climbing search starts from the empty USing the context, that is (X, X, | Xw = z,,). Finally,
structure, adding edges until reaching a local maxima off the CSl is present in data then it is encoded in the current
»(G | D). IBMAP-HC relaxes the assumption about the Set Of features. _ _
correctness of the statistical tests, improving over GSMN For eliciting the CSls in data, we propose a straight-
in sample complexity by reducing the cascade effect oforward adaptation of a traditional (non-contextualized)

incorrect tests. dependence test. A similar adaptation is proposed_lin [8].
The central idea of the adaptation is that an arbitrary
IIl. CONTEXT-SPECIFICPARENT AND CHILDREN CSl I(X4, X, | Xy, zw) can be seen as a conditional
ALGORITHM independencé(X,, X; | Xy ) in the conditional distribution

This section presents the CSPC (Context-specific Pap(X\{Xw} | zw ). In this way, the CSI can be tested by us-
ent and Children) algorithm for learning Markov networks ing a non-contextualized test over a sample drawn from the
structures that encodes the CSIs present in data. CSP&@nditional distributiorp(X\{Xw} | zw ). In practice, such



. . e f1(Xa=0X,=0X;=0)
sample can be obtained from_ as{z’ € D: 2}, = 2w}, £ (Xa =1 X, =0 Xﬁ —0) FlXp=1={
namely, the subset of datapoints whéfg, = zy . f3(Xa=0Xp, =1X;=0) f5(X, =0X, =0X; =1),
L ;4 Eiaiéﬁbié§figg Jo(Xa =1Xp = 0X5 = 1),
C. Features generalization fo(Xa=1X,=0X;=1) (X =0X, = 1X; = 1),
The generalization of features is used by CSPC to en fr (Xa =0X =1X; =1) r(X, = 1X, = 1X; = 1)}
fs (Xa=1X,=1X;=1)

code the CSls that are present in data. A specific CSi*
I(X4, X, | zw) can be encoded in the featur&sof a log- (a) Initial set of features (b) The features that satisfy
linear of p(X) by factorizing those features that correspond With the contextX; = 1

with the conditional distributiom(X \ {Xw} | zw). Such FXp=1]=

factorization is done by using a recently proposed adayptati fo(Xp = 0X5 = 1),

of the well known Hammersley-Clifford theorem for CSls (Xo =0X5 =1)

called the Context-Specific Hammersley-Clifford theorem fr(Xy = 1Xp = 1),

[25]. The features that correspond wighX \ {Xw } | zw) fs(Xp =1X; = 1)}

are the subset of features A that satisfy the context f (Xm0 X, =0 X; = 0)
xw, denoted byF[zw] C F. In this way, given the CSI  F'[X; =1 ={ B (Xe =1 X5 =0 X} =0)
I(X., Xy | zw) the featuresF|xzy| are factorized into f5 (Xa = 0X; = 1), o (Xa=0 X =1 Xy = 8>
two new sets of featuresF’[zy], obtained fromF|[zyy] fo (Xo = 1X;7 = 1), }[;} EXZ “ox;—1 )
but removing the variable,,; and 7”'[zy/], obtained from ff:(Xa =0Xy =1), fr (?;a =1 §f = })
Flzw] but removing the variableX,. Formally, for all fs (Xa =1X5 =1} j“j EXZ — Y X; = 1%

!/ ! AN " 1!
I; €F [CUW1; {Xa} ¢ V(f); and for all fi' € F'[zw], (c) Factorization of the fea-  (d) Features generalized en-
{X} ¢ V(). tures F[X; = 1] coding I(Xa, Xy | zw)
Example 3. Figure[3a shows an initial set of featurésto  Fjgyre 3: Example of feature factorization according to<CS|
be generalized in order to encode the 8K, X; | X; =
1). The generalization consists in factorizing the features : :
F[X; = 1], that is the set of features that are satisfied _Algorithm 1-_ Con.text space exploration
with the contextX; = 1 (Figure[3B). The factorization of ~ Input: domain variables, dataset®
these features results in two new sets of featufésx ; = Output: features’ generalized according to the CSls learned
1] and F’[X; = 1], shown in Figurd_3c. The features in 1 F < Generate one feature for each unique exampl® in
F'[Xy = 1] are obtained fromF[X; = 1] but removing z € Val(X)

Xy, and the features inF”’[X; = 1| are obtained from 2 fore;;:t:_cc;néegxf\;?lg) do
F[Xy = 1] but removingX, Finally, the set of features 4 Add atomic feature for each variable %
which correctly encodes the C$(X,, X, | X; = 1) are 5 return F

shown in Figurd_3d. Notice that the features in Figlré 3d
are the same set of features shown in Exarhple 1.

D. Overview for all subset3V, |W| is smaller thark. This is a strategy for

This section presents an explanation of CSPC that putdveiding the effect of incorrect tests, because in the act
all the pieces together. The pseudocode is shown in Algothe quality of statistical tests decreases exponentiaiti w
rithm . As input, the algorithm receives the set of domainthe number of variables that are involvedI[21].
variables X, and a dataseD. The algorithm starts by [N Algorithm [3, the step of features generalization is
generating the initial set of features. Then, the space oftade once the CSI has been elicited. In such step, for the
the contexts is explored. For each context, the current sdfPut CSII(Xa, X, | zw ) the current set of features is
of features is generalized by using a generalization of th@artitioned in two sets: the set’ that are the features that
PC algorithm as a subroutine. This subroutine, describegatisfy withzy, and the setF” that are the features that
in Algorithm [2, consists in the elicitation of CSls and does not satisfy withey,. Then, the satisfied features are
the features generalization steps. As input, this sutmeuti factorized according to the Context-Specific Hammersley-
receives the current set of featur®s the context, the set  Clifford theorem. Finally, a new set of featur@sis defined
of domain variablesX, and the dataseb. At the end, the by joining 7" and 7.
features of a log-linear model are returned.

In Algorithm[2, the step of elicitation of CSls follows the
same strategy than PC, trying to find the independences on To allow a proper experimental design with a range of
the smallest number of variables in the conditioning set. Fowell-understood conditions, we evaluated our approach on
this, the conditioning set for each variablg, consists on artificially generated datasets. For testing the effenégs of
subset of sizé of the adjacenciesdj(a), terminating when our approach, we propose a specific class of deterministic

IV. EXPERIMENTAL EVALUATION



Algorithm 2: PC extended for features For eachn, the underlying structure is a fully connected

Input: featuresF, contextz, domain variablesX, datasetD graph with(n—1) nodes, plus a flag nodg;. In this model,
Output: generalized feature® all pairs between the variablé§\ { X s} are context-specific
1 k<0 independent, given the conteX{; = 1. Instead, when
2 repeat Xy = 0 the variables remain dependent. In this way, for
3 | foreach X, € X do _ _ n variables the underlying structure contaifs—1x(n—2)
4 2;1%(;3,;— compute adjacencies from features that contextual independences in the folfiX,, X, | X; = 1),
5 foreach ;{(lxea adj(a) do for all X,, X, # X7 € X. Given such structure, we defined
6 foreach W subset of adif) \{X,} s.t.|W| =k a log-linear model that contains two sets of featuiea: set
do of pairwisefeatures which encodes the dependence between
7 if 1(Xa, Xy | zw) is truethen X and the rest of variableX \ { X}, andii) a set oftriplet
8 ‘ f(; (;enﬁrcal'ier for the CSI features over the variableX,, X;, X¢. For the resulting
9 ke k-1 w e W features we generatetd different models, varying in its
10 until Jadj(a) \ {Xu}| < k; numerical parameters. Such parameters were generated to
11 return F satisfy the log-odds ratio, in order to set strong depenidsnc

in the model([3]-[5], [21]. In this way, the parameters of the
pairwise featureX,, X, were forced to satisfy the following

- _ wo¢(Xa:0,Xf:0)’LU1d)(Xa:l,Xf:l)
ratio: ¢ = log(wm(xa:o,xf:1)w3¢(xa:1,xf:o) VX, €

X\ {X}, wherewy, w, are symmetric tav;, ws, respec-

Algorithm 3: Feature generalization

Input: features¥, a CSII(Xa, X | zw)
Output: generalized featured

1 F' — Flaw) tively (wop = w; and wy = ws). Since this ratio ha®

2 F''«+ F\F unknowns we choose, sampled from\(0.5;0.001), and

3 F' <+ factorize 7' according to the Context-Specific wy is solved. The parameters for the triplet features were
Hammersley-Clifford forced to satisfy the CSI(X,,X, | X; = 1). When

return 7' U F” .
! X; = 0 the parameters were generated using the same

procedure used for the pairwise features. Whgn= 1 the
_ parameters were forced to satisfy the following factoiaat
models which presents a controlled number of CSls. Th@g(Xa,Xth =1) = wop(Xo = 0, Xy = 1) - w1 (X, =
evaluation consists in two parts. In the first part we shovaXf = 1), wherew, andw, are the same than the pairwise
the potential of improvements that can be obtained in oufeatures already defined. In our experiments we:set1.0.
experiment. In the second part we compare CSPC to tWqhe datasets were generated by sampling from the log-linear

state-of-the-art IB algorithms: GSMN_[22] and IBMAP-HC models using Rao-Blackwellized Gibbs samgflewith 10
[24]. Additionally we also compare with PC_[16] in order chains, 100 burn-in and 1000 sampling.

to highlight the improvements resulting from contextuializ
it. Since PC was originally designed for learning Bayesiang Methodology
networks (directed graphs), we use PC omitting the step of

edges orientatiori [26]. We used the synthetic datasets explained above to learn
the structure and parameters for all the algorithms. Our syn
A. Datasets thetic data, together with an executable version of CSPC and

We generated artificial data through Gibbs sampling orthe competitors is publicly availaleFor a fair comparison,
a class of models similar to Examplé 2, generalized tove use Pearson’s? as the statistical independent test for
distributions withn. discrete binary variables. We chose suchall the algorithms, with a significance level of = 0.05.
models since they are a representative case of a distributiorThe IBMAP-HC algorithm alternatively only works by using
with a controlled number of CSIs. The aim is to demonstratehe Bayesian test of Margaritis [23]. For each particular
that learning such CSlIs represents an important improvemendataset we evaluated the algorithms on training set sizes
in the quality of learned distributions, when compared withvarying from 500 to 40000, in order to obtain a number of
the alternative representation in graphs. In this scenaricsamples sufficient for satisfying the CSls of the underlying
the IB algorithms lead to excessively dense graphs (théistribution proposed.
fully connected ones), which obscures the underlying CSls. We report the quality of learned models using the
We considered models with € {6,7,8} variables and Kullback-Leibler divergenceKL) [27]. The KL is defined
maximum cliques of the same size. Since the complexitas K L(p || q) =, p(x)ln%’ measuring the information
of structure learning grows exponentially with the size of
its m.aXImum ClquQ (ak.a. treewidth), in the _Ilteratur_ce th 1Gibbs sampler is available in the open-source Libra toolkit
algorithms are typically tested on models with maximumpgis:jibra.cs.uoregon.edu
cliques of size at mogi [8], [18]. 2http://dharma.frm.utn.edu.ar/papers/cspc


http://libra.cs.uoregon.edu/

lost when the learned distributiof{ X) is used to approxi- of magnitude forn = 6 andn = 7, and up to5 orders of
mate the underlying distributiop(X). KL is equal to zero magnitude against IBMAP-HC for = 8.

when p(X) = ¢(X). The better the learned models, the . . .
lower the values of the KL measure. Since these algorithms Since the KL is clearly affected by the quality of the

only learn the structure of a Markov network, the completeStrUCture’ we wanted to determine whether or not their &ctua

distribution is obtained by learning its numerical par t structures are correct. We did this by reporting the average

For the case of IB algorithms, the features are induced fror}‘]eature length of the learned models, since it is a known

the maximum cliaues of the araoh learmned. For learnin value for our underlying model in this experiment. This is a
q grap : "% tatistical measure useful for analyzing the structuraligu

its parameters we computed the pseudo-loglikelihood usin f loa-linear models. as shown in several recent works

the available version in the Libra toolkit. We use pseudo-[7J [g] [28]. Fi ure[i6 reports these values for the same

loglikelihood without regularization to avoid sparsity tine T -9 P . o

final model, because we are interested in measuring thexperlment shown above. The horizontal line n the graphs
uality of th’e structure learning ste Shows the exact feature length of the underlying structure

quality g step. (2.80 for n = 6, 2.83 for n = 7, and2.85 for n = 8). CSPC

C. Results perform better in all the cases, showing always the nearest
Our first experiment shows the potential improvement tha{1umber of average feature length to the horizontal lines Thi

s consistent with the KL results shown in Figlile 5. GSMN

can be obtained in our generated datasets in terms of Kand PC increases in the average number of features length as
over the generated data. For this we measure in Figure 4 the g 9

. . ell as the number of datapoints grows, for all the domain
KLs obtained by learning the parameters for three proposed. . . .

- . sizes. This trend is due because they are learning more
structures:i) the empty structureii) the fully connected

. . ...~ dense structures as well as the number of datapoints grows,
structure, andii) the underlying structure. The distribution reaching the fully structure. For example. in the case of
learned from the empty structure informs us about the impact™™ . tﬁe GSMNyand bC al.orithms shopws' a trend to reach
of encoding incorrect independences in the KL measure. " 9 - e

) the fully structure, and the KLs shown in Figlide 5 are similar
Consequently, the fully connected structure shows the énpa A
in the KL measure that can be obtained with incorrectto the KL Qf the fully struct_ure shown in Figulé 4. Also, as
dependences that are obscuring the real CSls presentin d ae” asn increases, the difference on the average feature

: . ; ength between CSPC and its competitors also increases.
The underlying structure contains the features which éxact This is also consistent with the results shown in Fiddre 4.

encodes the CSis of the proposed model, as described l& surprising result is shown for IBMAP-HC, which does

Sec_tlo_nm. The figure shows the average a_md Stan.dar(rj]ot show the same trend than GSMN and PC. It can be
deviation over outt 0 generated datasets for training set sizes

waning frm SO0t 40000 (X, for iferent o 227 131 [ 0%t rumber of ataoon® € 200 e
sizes6,7 and 8. In order to better show differences among 9 y ( g ¢

the KLs we show it in log scale is equal ton in the three cases). However, for higher number
In these results, we sgee embirically that the KL of theOf datapoints D > 5000) the algorithm learns the empty
distribution obtained by learning the parameters for the unstructure, with average feature length equal the empty

derlving structure is alwavs sianificantly better than the K structure contains the atomic features). We argue this is
ying . ys sig y . due to the Bayesian nature of IBMAP-HC, which works by
obtained by using the empty and fully structures. Noticé tha™ "~ "~ . . .
. I . optimizing the posterior probability of structureéG | D)
the KL is an (expected) logarithmic difference, represemti © T :
. . . . > . with a hill-climbing search. When using a large amount of
differences in orders of magnitude in the non-logarithmic : .
. data, IBMAP-HC seems very prone to getting stuck in the
space. For our results, these differences are up eoders - .
empty structure as a local minima wit(G | D) = 0

of magnitude in the cases of € {6,7}, and5 orders of .
) . . for almost all the structures, except the correct one with
magnitude in the case of = 8. However, there is not a p(G D) =1

trend of the KL to be zero by varying the size of training
data. This is because Gibbs sampler is not an exact method Finally, as an additional result, we show in Table | the
for the generation of the training data. In this result alsoaverage feature length of the features that are satisfidd wit
can be seen that as well asincreases, the KL of the fully the value of the flag variableé{;. This result is shown
structure is better than the KL of the empty structure. for all the algorithms, running for an increasing number of
In our second experiment we compare the KLs obtainediariables fromn = 4 to 8 with a fixed number 0f3000
by CSPC, GSMN, IBMAP-HC, and PC. These results aredatapoints, and discriminating in different columns thkiga
shown in Figuréb, for the same datasets of the experimerdf X,. As expected, the values for CSPC faf; = 0
shown in Figurd 4. CSPC is the more accurate algorithnare more near t®, and more near t@ for Xy = 1, in
in all the cases, with lower KL, near tb (the KL value = comparison with the rest of the competitors. In summary, the
of the underlying structure in Figufé 4). The differences inabove results support our theoretical claims and demdastra
KL between CSPC against its competitors is utorders the efficiency of CSPC for learning distributions with CSls.
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Figure 4: Potential improvements in KL obtained by learnpayameters for the underlying structure, the fully and the
empty structures. Average and standard deviation overegetitions for increasing number of datapoints in the irgjrset
for domain size$ (left), 7 (center) and (right).
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Figure 5: Comparison of KLs obtained by learning paramdmr€SPC, GSMN, IBMAP-HC and PC. Average and standard
deviation over ten repetitions for increasing number ofgaints in the training set for domain sizgégleft), 7 (center) and

8 (right).
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Figure 6: Comparison of the average feature length obtaime@SPC, GSMN, IBMAP-HC and PC. Average and standard
deviation over ten repetitions for increasing number ofgaints in the training set for domain sizégleft), 7 (center) and
8 (right). The average feature length of the solution undegystructure is the horizontal line.
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n | GSMN :_?CMAP' PC  cpsd GSMN :_?CMAP' PC  CPSO
Z00] 400 400 400 400 | 400 400 400 185
500 500 460 500 479 | 500 460 500 188
6.00| 600 550 600 437 | 600 550 600 1.93
7.00 500 700 110 401 | 500 7.00 110 195
800 300 800 100 354 | 370 800 100 187

Table I: Number of features learned for increasimgand

usingD = 3000.
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V. CONCLUSIONS

This paper proposed CSPC, an independence-based al-
gorithm for learning a set of features, instead of a graph.
CSPC overcomes some of the inefficiency of traditional
IB algorithms by learning CSls from data and representing
them in a log-linear model. CSPC proceeds by generalizing
iteratively a set of initial features in order to represent
the CSls present in data, exploring the possible contexts,
eliciting from data a set of CSls usings statistical tests,
and generalizing the features according to the elicitedsCSI
Experiments in a synthetic case show that this approach is



more accurate than the state-of-the-art 1B algorithms,nwhe[14] D. Fierens, “Context-specific independence in diréatela-
the underlying distribution contains CSls. Directions of f
ture work include: adapting more efficient IB algorithms for
learning CSils; validation in real world datasets; commaris
against state-of-the-art non-independence-based apiE®a [15)
[6]-[9]; adding Moore and Lee’s AD-trees [29] for speeding
up the execution of statistical tests, etc.
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