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Abstract: Multistage interconnection networks are frequently proposed as connections in multiprocessor systems or
network switches. In this paper, a new tool for stochastic simulation of such networks is presented. Simple crossbars
can be simulated as well as multistage interconnection networks that are arranged in multiple layers.
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1 Introduction

Multistage interconnection networks (MINs) with the
banyan property are proposed to connect a large num-
ber of processors to establish a multiprocessor system [1].
They are also used as interconnection networks in Gigabit
Ethernet [2] and ATM switches [3]. Such systems require
high performance of the network. MINs were first intro-
duced for circuit switching networks. To increase the per-
formance of a MIN, buffered MINs were established as
packet switching networks. For instance, Dias and Jump
[4] inserted a buffer at each input of the switching ele-
ments (SE). Patel [5] defined delta networks. Delta net-
works are a subset of banyan networks (MINs with just
one path between a given input and output). It is addition-
ally required that packets can use the same routing tag to
reach a certain network output independently of the input
at which they enter the network.

Many variations of delta networks were introduced.
Most of them result in MINs that lose the unique path
property (and therefore the delta property) in order to re-
duce blocking. Clos [6] presented a MIN consisting of
three stages and non-quadratic SEs. Turnaround MINs
[7] are established by bidirectional links between the SEs.
Network inputs and SE inputs operate also as outputs. Di-
lated banyan networks [8] arise by multiplying the links
between the SEs: the link bandwidth is enhanced. Repli-
cated banyan networks [8] originate from multiplying the
whole banyan network. Multilayer multistage intercon-
nection networks (MLMINs) are introduced to apply espe-
cially to multicast traffic. Those networks are established
similarly to replicated MINs but a new replication starts at
every network stage [9]. The network results in a grow-
ing number of layers from sources to destinations. Many
other kinds of MINs are known. A detailed description
can be found for instance in [3].

In this paper, a simulation tool for performance eval-
uation of MINs is presented. The tool is designed to in-
vestigate MINs with the delta property or with multiple
layers. Various design parameters can be examined con-
cerning network performance in terms of throughput and

delay. Network traffic and resource scheduling is mod-
elled by stochastic simulation.

The paper is organized as follows. The architecture of
MINs is described in Section 2. Section 3 applies to the
simulator features and shows how the simulator operates.
Some examples of results are given in Section 4. Section
5 summarizes and gives conclusions.

2 Architecture of MIN

Various architectures of multistage interconnection net-
works exist. This section presents those architectures that
can be modeled by the new simulator (called MINSimu-
late).

2.1 MIN with Banyan Property

Multistage interconnection networks with the banyan
property are networks where a unique path from an in-
put to an output exists. Such MINs of size N×N consist
of c×c switching elements with n = logc N stages. An
8×8 MIN consisting of 2×2 SEs is represented by Figure
1.

To achieve synchronously operating switches, the net-
work is internally clocked. In each stage k (0 ≤ k ≤ n−1)
of non-shared buffer networks, there is a FIFO buffer of
size mmax(k) in front of each switch input. The pack-
ets are routed by store and forward routing or cut-through
switching from a stage to its succeeding one by backpres-
sure mechanism.

Networks consisting of shared buffers are established
by replacing the c FIFO input buffers of size mmax(k) of
a c×c switch with one common buffer of size c · mmax(k)

[10]. This shared buffer is organized as follows: Each
switch input reserves sufficient buffer space to store at
least one packet in order to avoid the isolation of inputs
(see below). The remaining buffer space of c ·mmax(k)−c
packets is available to all inputs. Each input forms a FIFO
input queue of packets. If an input receives a new packet
from the previous stage that has to be stored, the input al-



locates buffer space of the commonly used buffer part if
available. If there is no further buffer available the packet
is blocked at the previous stage.

An input with a queue of more than one packet deallo-
cates buffer space if it sends a packet to the next network
stage. This space is returned to the pool of the commonly
available buffer space.

Guaranteeing at least one buffer space to each input
avoids that an input without any buffer cannot participate
in the switch routing process because it is not able to re-
ceive a packet that has to be forwarded. For instance, let
us assume that one of the inputs (hot spot input) receives
much more packets than the other ones. This input would
allocate up to all of the buffers. Packets of the previous
stage that are directed to the other inputs would be blocked
at the previous stage even if their final destination is differ-
ent from the first packet queued at the hot spot input. Only
the hot spot input would contribute to the switch traffic
and all other inputs would remain idle.

Multicasting is performed by copying the packets
within the c×c switches. In ATM context, this scheme
is called cell replication while routing (CRWR). Figure 1
shows such a scenario for an 8×8 MIN consisting of 2×2
SEs. A packet is received by Input 3 and destined to Out-
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Figure 1: Multicast while routing

put 5 and Output 7. The packet enters the network and
is not copied until it reaches the middle stage. Then, two
copies of the packet proceed on their way through the re-
maining stages.

Packet replication before routing in the above exam-
ple would copy the packet and send it twice into the net-
work. Therefore, packet replication while routing reduces
the amount of packets in the first stages.

Comparing the packet density in the stages in case of
replication while routing shows that the greater the stage
number, the higher is the amount of packets. In other
words: there are much more packets in the last stages due
to replication than in the first stages. The only exception
is if the traffic pattern results in such a destination distri-
bution that packet replication has to take place at the first
stage. Then, the amount of packets is equal in all stages.
But such a distribution is very unlikely, in general.

To set up multistage interconnection networks that are

appropriate for multicasting, the previously mentioned
different traffic densities of the stages must be considered.
MLMINs, which are described later in this section, be-
long to this kind of networks. Their roots are in replicated
MINs.

2.2 Replicated MIN

Replicated MINs enlarge regular multistage interconnec-
tion networks by replicating them L times. The resulting
MINs are arranged in L layers. Corresponding input ports
are connected as well as corresponding output ports. Fig-
ure 2 shows the architecture of an 8 × 8 replicated MIN
consisting of two layers in a three-dimensional view. Such
a concept was introduced by Kruskal and Snir [8]. Packets
are received by the inputs of the network and distributed
to the layers. Layers may be chosen at random, by round
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Figure 2: Replicated multistage interconnection network
(L = 2, 3D view)

robin, dependent on layer loads, or any other scheduling
algorithm. The distribution is performed by a 1:L demul-
tiplexer.

At each network output, an L:1 multiplexer collects
the packets from the corresponding layer outputs and for-
wards them to the network output. Two different output
schemes are distinguished: single acceptance (SA) and
multiple acceptance (MA). Single acceptance means that
just one packet is accepted by the network output per clock
cycle. If there are packets in more than one correspond-
ing layer output, one of them is chosen. All others are
blocked at the last stage of their layer. The multiplexer de-
cides according to its scheduling algorithm which packet
to choose.

Multiple acceptance means that more than one packet
may be accepted by the network output per clock cycle.
Either all packets are accepted or just an upper limit R.
If an upper limit is given, R packets are chosen to be for-
warded to the network output and all others are blocked at
the last stage of their layer. As a result, single acceptance
is a special case of multiple acceptance with R = 1.

In contrast to regular multistage interconnection net-
works, replicated MINs may cause out of order packet se-
quences. Sending packets belonging to the same connec-
tion to the same layer avoids destruction of packet order.

2.3 Multilayer MIN

Multilayer multistage interconnection networks
(MLMINs) consider the multicast traffic character-



istics. As mentioned above, the amount of packets
increases from stage to stage due to packet replication.
Thus, more switching power is needed in the last stages
compared to the first stages of a network.

To supply the network with the required switching
power, MLMIN structure increases the number of layers
in each stage. The factor with which the number of lay-
ers is increased is called growth factor G F (GF ∈

�
\{0}).

Figure 3 shows an 8 × 8 MLMIN (3 stages) with growth
factor G F = 2 in lateral view. That means the number of
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Figure 3: Multilayer multistage interconnection network
(GF = 2)

layers is doubled each stage and each switching element
has twice as much outputs as inputs. Consider for instance
that 2 × 2 SEs are used. Such an architecture ensures
that even in case of two broadcast packets at the inputs all
packets can be sent to the outputs (if there is buffer space
available at the succeeding stage). On the other hand, un-
necessary layer replications in the first stages are avoided.

Choosing G F = c ensures that no internal blocking
occurs in an SE, even if all SE inputs broadcast their pack-
ets to all SE outputs. Nevertheless, blocking may still oc-
cur at the network output depending on R.

A drawback of MLMIN architecture arises from the
exponentially growing number of layers for each further
stage. The more network inputs are established, the more
stages and the more layers result. To limit the number of
layers and therefore the amount of hardware, two options
are available: starting the replication in a more rear stage
and/or stopping further layer replication if a given number
of layers is reached.

The first option is demonstrated in Figure 4 in lateral
view. The example presents an 8 × 8 MLMIN in which
replication does not start before Stage 2 (last stage) with
GF = 2. A 3D view is given in Figure 5. The stage num-
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Figure 4: MLMIN in which replication starts at Stage 2
(lateral view)

ber in which replication starts is defined by G S (GS ∈
�

).
Figures 4 and 5 introduce a MLMIN with G S = 2. Of
course, moving the start of layer replications some stages

Input 6

Input 2

Input 4

Input 0
Input 1

Input 3

Input 5

Input 7

Output 5
Output 4

Output 3
Output 2

Output 1
Output 0

Output 6
Output 7

Figure 5: MLMIN in which replication starts at Stage 2
(3D view)

to the rear not just reduces the number of layers. It also re-
duces the network performance due to less SEs and there-
fore less paths through the network.

Stopping further layer replication if a given number
GL of layers is reached also reduces the network complex-
ity (G L ∈

�
\{0}). It prevents exponential growth beyond

resonable limits in case of large networks. Figure 6 shows
such an MLMIN with limited number of layers in lateral
view. 3D view is presented in Figure 7. The number of
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Figure 6: MLMIN with limited number of layers (lateral
view)
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Figure 7: MLMIN with limited number of layers (3D
view)

layers of this 8×8 MLMIN is limited to an upper number
of G L = 2. Layers are replicated with a growth factor of
GF = 2. As in the previous option, the reduced amount
of SEs decreases network performance as well.

Both presented options can be combined to reduce net-
work complexity further. Such a network is determined by
parameters GS (start of replication), G F (growth factor),
and G L (layer limit). For instance, Figure 7 shows an
MLMIN with GS = 1, G F = 2, and G L = 2.

Regular MINs and replicated MINs can be considered
as special cases of MLMINs. Regular MINs are equiv-
alent to MLMINs with G F = 1. In this case, GS and
GL have no effect. Replicated MINs are equivalent to
MLMINs with GS = 0, G F = L, and G L = L.



3 Simulator MINSimulate

The new simulator presented in this paper is called MIN-
Simulate. It is designed to model MINs with the banyan
property, replicated MINs, and MLMINs, as well as sim-
ple crossbar switches.

3.1 Features

Stochastic simulation is performed by C++ code. Accord-
ing to the network parameters given by the user, the net-
work is first established. It is represented as a directed
graph starting at the sources (network inputs) and end-
ing at the destinations (network outputs). The simulator is
packet based. Packets are generated at the sources. Each
packet is provided with a tag determining its destination.
Due to multicasting this tag is modeled by a vector of N
binary elements, each representing a network output. The
elements of the desired outputs are set to “true”. If the
packet arrives at a c×c switch, the tag is divided into c
subtags of equal size. Each subtag belongs to one switch
output, the first (lower indices) subtag to the first output,
etc. If a subtag contains at least one “true” value a copy of
the packet is sent to the corresponding output containing
the subtag as the new tag.

To keep the amount of allocated memory as small as
possible, just a representation of the packets, referred to
as containers, is routed along the network paths. These
containers are replaced by the actual packets at the net-
work outputs allowing evaluations. Figure 8 gives a short
sketch of the simulation model. So called Contain-
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Figure 8: Sketch of the simulation model

erMultiputs (CM) receive the containers and store
them in the queues. At the first network stage, First-
ContainerMultiputs (FCM) additionally perform
the replacement of the packets by containers. So called
ContainerOutputs (CO) send the containers to the
next network stage. At the last stage, LastContainer-
Outputs (LCO) additionally replace the containers by
the corresponding packets. Each operation of a switch is
controlled by its Crossbar Manager. The clocks per-
form the sequencing of the parallel actions due to com-
puter simulation.

Confidence level and relative error of simulation re-
sults is observed by the toolkit Akaroa. The simulation is
stopped when those termination criteria are met. Akaroa
is developed at the University of Canterbury, New Zealand
[11].

3.2 Graphical User Interface

The network to be evaluated is determined by the user
via a graphical user interface (GUI). Figure 9 shows the
main tab to settle simulation parameters. A short sketch

Figure 9: Main tab of MINSimulate

of the parameters and their available settings is given be-
low. They are described in more detail in [12].

First, it can be chosen whether to simulate single
crossbars or MINs. If crossbars are chosen the number
of inputs can be defined. If MINs are chosen two of the
three parameters according to equation n = logc N must
be set by the user. The third one is determined by the
GUI. Input buffers can be chosen as shared ones (with a
minimum size and maximum size for each crossbar in-
put, as well as the overall buffer size of a crossbar) or as



non-shared ones (with the size per crossbar input). Tab
Special Buffer Configuration allows individ-
ual buffer settings for each stage.

The global address destination distribution of packets
entering the network can also be varied. The most im-
portant patterns are onl1 (only unicast; all targets are
with equal probability a packet’s destination), N over
K (multicast; all target combinations are with equal proba-
bility a packet’s destination), Ufun (multicast with many
unicasts and many broadcasts), and onlN (only broad-
cast). If single sources are desired to produce deviat-
ing address distributions, tab Non-uniform Traffic
helps.

When choosing the routing algorithm the following
packet switching schemes are available: store and for-
ward routing, cut-through switching, or wormhole rout-
ing. Multicast in case of wormhole routing usually suffers
from deadlocks. The wormhole routing algorithm of MIN-
Simulate avoids deadlocks by grouping appropriate parts
of the network [13]. Wormhole routing requires dividing
the packets into flits. The number of flits per packet is also
a parameter for the simulation.

The kind of multicast can be set to complete multi-
cast, partial multicast, or a two phase version of both. A
further parameter represents the offered load to each net-
work input. The last parameter in the main tab determines
whether to observe measures transiently instead of observ-
ing the steady state. In case of transient simulation, the
number of clock cycles to simulate can be fixed.

Tab Multilayer allows to configure MLMINs as
presented in Section 2.3. Choosing constant number
of layers refers to replicated MINs.

Instead of simulating a particular network configura-
tion, a parameter can be varied to deal with parameter de-
pendent results. In tab Simulation Series, the pa-
rameter to vary is chosen. A start value, end value, and
step size determines the variation. If desired, step size can
be changed once in the parameter interval.

Performance measures are chosen via tab Output.
Most important ones are throughput, delay times, and
queue lengths. A histogram of delay times within an in-
terval is also available. Deadlines can be added to packets
and packets that exceed their deadline are then removed.
In such scenario packet loss results as a measure.

Akaroa parameters to determine confidence level and
relative error of results are set in tab Akaroa.

4 Example

To present an example of the results obtainable using
MINSimulate the following evaluation will be performed:
Given the task to design a multistage interconnection net-
work of size N = 64, how will the network’s performance
be affected by the choice of the switching element size c?

Simulations are run for MINs composed of 2 × 2 and
4 × 4 SEs. This example’s simulations were performed
using an accuracy of 0.02 and a confidence level of 98%.

The size of the buffer in front of each SE (non-shared

buffering) is set to mmax(k) = 2 for all stages k. Routing
is performed according to a store and forward scheme.

The MINs to be evaluated are being offered multicast
traffic governed by multicast traffic pattern N over K, that
is, all possible combinations of target ports have an equal
probability of being a packet’s destination. Packets are
offered to the network at a constant (time-independent)
rate.

Figure 10 shows the output throughput for both net-
work configurations. There is little to no difference in
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Figure 10: Throughput at the network’s outputs

throughput performance between MINs based on 2 × 2
and 4 × 4 SEs. When the offered load rises above ap-
prox. 0.02 (average number of offered packets per input
and clock cycle) the network begins to saturate: Due to the
multiplication of packets inside the SEs, queues build up
and by the aforementioned backpressure mechanism the
actual input throughput is limited to about 0.02 as well.
I. e., in saturation there are less packets accepted by the
MIN than are being generated and ready to be sent.
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When looking at the average time it takes a packet to
reach its destination, differences between the two network
configurations become apparent (Figure 11). In case of
store and forward routing the minimum amount of time re-
quired to traverse the MIN is equal to the number of stages
in the network (3 and 6, respectively). Of course, this re-
quires that the packet is not being delayed even a single
time. With rising offered load the number of conflicts be-
tween packets increases and buffers in front of the switch-
ing elements fill up. Thus, for an offered load greater than
approx. 0.02 the mean delay time rises considerably. In
case of an unlimited buffer space mmax(k) the delay times
would grow beyond limit, similar to an unstable queuing
system.

The most apparent difference between the two MIN
configurations is the lower mean delay of the 4 × 4-based
one in saturation (offered load > 0.02): 80–90 opposed to
120–140 clock cycles for the 2×2-configuration. Because
of the lower number of stages there occur less conflicts
between packets, resulting in an overall lower delay. In
addition, the slope of the curve in the area of 0.02 to 0.07
is less steep for the MIN consisting of only 3 stages.

To conclude this example, if achieving low packet de-
lay times was an issue in designing a MIN, one would opt
for 4 × 4 switching elements (if the additional cost would
be acceptable), although throughput would not benefit.

5 Conclusion

This paper presents the tool MINSimulate for stochas-
tic simulation of multistage interconnection networks
(MINs). Due to the tool’s GUI support the wide variety
of simulation parameters is easily accessible to the user.

MINSimulate is able to simulate simple (i. e. fully
meshed) crossbars, multistage interconnection networks
(MINs) with the delta property, and MINs that are ar-
ranged in multiple layers. Within each network architec-
ture, simulations can be performed using a wide variety
of input parameters such as offered load, multicast traf-
fic pattern, routing scheme or (internal) buffer configura-
tion. The simulations yield performance measures such as
throughput, mean delay, delay time distributions or mean
buffer queue lengths in individual network stages. During
simulation, all data is evaluated according to pre-set lev-
els of confidence and accuracy using the statistical library
Akaroa[11].

Transient network behavior can also be evaluated with
MINSimulate, this is useful for studies of the fine grain
time-dependent performance, especially when observing
traffic that changes with time.

The presented tool allows for evaluating various net-
work configurations under different traffic conditions.
Therefore, one can easily establish knowledge whether a
particular network design suits a task at hand.

Currently, MINSimulate is extended in the way that
also non-delta networks can be simulated. As a first step,
Clos networks and turnaround MINs are incorporated.
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