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Chapter 8

Fundamental Limits of Coding and
Sequences

Chapters 1-5 studied the construction of modulated signals for transmission, where each symbol gener-
ated for transmission was independent of all other symbols. Volume II of this book addresses the situation
where transmitted signals are generalized to sequences of symbols. Sequences of more than one symbol
can be constructed with dependencies between constituent symbols that enlarge the minimum distance.
Equivalently, the use of sequences allows higher rates of transmission at the same reliability and with
no increase in transmit energy/power. The generation of sequences is usually called channel coding
or just coding, and is studied in this second volume.

Chapter 8 begins in Section 8.1 with a definition of the sequential encoder, generalizing the encoder
of Chapter 1. The remainder of the chapter then introduces and interprets fundamental performance
limits or bounds on digital data transmission with channel coding. In particular, the maximum possible
reliable data transmission rate for any particular channel, called the channel capacity, is found. The
capacity concept was introduced by Shannon in a famous 1948 paper, “The Mathematical Theory of
Communication,” a paper many credit with introducing the information age. Some of the concepts
introduced by Shannon were foreign to intuition, but called for achievable data rates that were well
beyond those that could be implemented in practice. Unfortunately, Shannon gave no means by which
to achieve the limits. By the late 1990’s, communication engineers were able to design systems that
essentially achieve the rates promised by Shannon.

Section 8.2 introduces the fundamental information-theory concepts of entropy and mutual infor-
mation in deriving heuristically Shannon’s capacity. Chapter 8 focuses more on intuition and developing
capacity bounds than on the rich and extensive rigorous theory of capacity derivations, to which entire
alternative texts have been devoted. Section 8.3 computes capacity for several types of channels and
discusses again the AWGN-channel concept of the “gap” from Volume 1. Section 8.4 discusses capacity
for a set of parallel channels, a concept used heavily with the gap approximation in Chapter 4, but
related to fundamental limits directly. This area of overlap between Volume 1’s Chapter 4 and Chapter
8 leads to Section 8.5 on waveform-channel capacity, allowing computation of capacity in bits/second for
continuous-time channels, which does not appear in Chapter 4. The appendix for this chapter attempts
to provide additional background on the mathematics behind capacity, while providing direction to other
work in the area of rigorous development of capacity.

Chapters 9-11 of this Volume II examine specific decoding and coding methods for a single user, es-
sentially illustrating how the bounds established in this Chapter 8 can be very nearly achieved. Chapters
12-15 finish the text with decoding and coding methods for the multi-user channel.
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8.1 Encoding into Sequences

The concept of an encoder first appeared in Chapter 1, which emphasized modulators and simple signal
sets. An encoder translates the incoming message at time index k, mk = 0, ...,M − 1, into the symbol
vector xk that a modulator subsequently converts into a modulated waveform. Most encoders of Chapter
1 had simple “memory-less” data-bits to one- or two-dimensional-symbol translations, e.g., the xk =
2mk − (M −1) rule for PAM with d = 2. The sequential encoder of Figure 8.1 generalizes the encoder
so that more formal study of channel coding can ensue. The more general sequential encoder may map
message bits into larger dimensionality symbols that can also depend on previous message bits through
the state of the encoder. The encoder is designed so that the sequence of transmitted symbols has some
improved properties with respect to simple independent symbol transmission. The set of sequences that
can be output by the encoder for all possible input messages bits is known as a code and the individual
sequences are known as codewords.

8.1.1 The code and sequence

The concept of a code and the constituent sequences or codewords are fundamental to coding:

Definition 8.1.1 (Code) A code C is a set of one or more indexed (usually time-indexed
is presumed but not required) sequences or codewords xk formed by concatenating symbols
from an encoder output. Each codeword in the code is uniquely associated with a sequence of
encoder-input messages that exist over the same range of indices as the codeword.

There is thus a one-to-one relationship between the strings of messages on the encoder input and
the corresponding codewords on the encoder output in Figure 8.1. The codewords are converted into
modulated waveforms by a modulator that is typically not of direct interest in coding theory – rather
the designer attempts to design the encoder and consequent code to have some desirable improvement
in transmission performance. Codewords are presumed to start at some index 0, and may be finite (and
thus called a block code) or semi-infinite (and thus called a tree or sliding block code). Each codeword
could be associated with a D transform x(D) =

∑
k xk · Dk and the input message bit stream could

have correspondingly m(D) =
∑

k mk ·Dk where the addition in the transform for the input message
is modulo-M , and D is consequently viewed only as a variable indicating a delay of one symbol period.
The entire code is then the set of codewords {x(D)} that corresponds to all possible input message
sequences {m(D)}.

An example of a simple code would be the majority repetition code for binary transmission that
maps a zero bit into the sequence -1 -1 -1 and maps the one bit into the sequence +1 +1 +1 with binary
PAM modulation tacitly assumed to translate the 3 successive symbols in a codeword into modulated
waveforms as if each successive dimension were a separate symbol for transmission. An ML decoder on
the AWGN for this code essentially computes the majority polarity of the received signal. For such a
code b̄ = 1/3 and the minimum distance is dmin = 2

√
3. This is an example of a block code. A simple

tree code might instead transmit -1 -1 -1 if the input message bit at time k had changed with respect
to time k − 1 and +1 +1 +1 if there was no change in the input message bit with respect to the last
bit. Decoding of such a tree code is addressed in Chapter 9. The tree code has essentially semi-infinite
length codewords, while the closely related block code has length-3-symbol codewords. Description of
the encoding function can sometimes be written simply and sometimes not so simply, depending on the
code. The next subsection formalizes the general concept of a sequential encoder.

8.1.2 The Sequential Encoder

Figure 8.1 illustrates the sequential encoder. The sequential encoder has ν bits that determine its
“state,” sk at symbol time k. There are 2ν states, and the encoding of bits into symbols can vary
with the encoder state. For each of the 2ν possible states, the encoder accepts b bits of input (mk),
corresponding to M = 2b possible inputs, and outputs a corresponding N -dimensional output vector,
xk. This process is repeated once every symbol period, T . The data rate of the encoder is

R
∆=

log2(M )
T

=
b

T
, (8.1)
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Figure 8.1: The Sequence Encoder.

where T is the symbol period. The number of bits per dimension is

b̄
∆=

b

N
. (8.2)

The output symbol value at symbol time k is xk and is a function of the input message mk and the
channel state sk:

xk = f(mk , sk) (8.3)

and the next state sk+1 is also a function of mk and sk:

sk+1 = g(mk, sk) . (8.4)

The functions f and g are usually considered to be time-invariant, but it is possible that they are
time-varying (but this text will not consider time-varying codes).

When there is only one state (ν=0 and sk = 0 ∀k), the code is a block code. When there are multiple
states (ν ≥ 1), the code is a tree code. An encoder description for any given code C may not be unique,
although for time-invariant encoders an association of each codeword with each possible input sequence
necessarily defines a unique encoder and associated mapping.

EXAMPLE 8.1.1 (QAM) There is only one state in QAM. Let 1/T = 2400 Hz, and
ν = 0

• For 4 QAM, R = 2/T = 2 · 2400 = 4800bps. b̄ is then 2/2 = 1 bit/dimension.

• For 16 QAM, R = 4/T = 4 · 2400 = 9600bps. b̄ is then 4/2 = 2 bits/dimension.

• For 256 QAM, R = 8/T = 8 · 2400 = 19200bps. b̄ is then 8/2 = 4 bits/dimension.

4, 16, and 256 QAM are all examples of block codes.
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Figure 8.2: A binary PAM differential encoder.

EXAMPLE 8.1.2 (Differential Encoder) The differential encoder of Figure 8.2 has 2
states corresponding to the possible values for the previous single-bit message,

m̄k = mk ⊕ m̄k−1 , (8.5)

in combination with the encoding rule 0 → −1 and 1 → +1. A differential encoder is an
example of a sequential encoder with ν = 1, N = 1, b̄ = b = 1, mk = 0, 1, sk = 0, 1 and
xk = ±1. This combination is a tree code. More generally, the differential encoder for M -ary
PAM replaces the binary adder with a modulo-M adder in Figure 8.2 and the mapping on
the right is a conventional 2m− (M − 1) PAM encoder.

The binary differential encoder maps input bit sequences into output sequences where a change in the
sequence at the current symbol time index corresponds to a message of “1” while no change corresponds
to a message of “0”. The state is simply the last message transmitted sk = m̄k−1. The function f is
xk = 2 · (mk ⊕ sk) − 1. Thus, assuming the D to be initialized to 0, a string of message input bits of
1 1 0 1 0 1 leads to the output sequence or codeword +1 -1 -1 +1 +1 -1. Differential encoding allows
a receiver to ignore the sign of the received signal. More generally, the differential encoder encodes the
difference modulo-M between successive message inputs to the sequential encoder.

This book imposes the source constraint that there exists some stationary distribution for the N -
dimensional output, px(i). This is usually possible with systems in practice.

Several definitions are repeated here for convenience: the average energy per dimension is

Ēx =
Ex
N

, (8.6)

(which is not necessarily equal to the energy in any particular dimension). The energy-per-bit is

Eb
∆=

Ex
b

=
Ēx
b̄

(8.7)

Therefore,

Ēx =
b

N
Eb = b̄Eb . (8.8)

The power is

Px
∆=

Ex
T

, (8.9)

and thus the energy per bit can be written as

Eb =
Px

R
. (8.10)
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Figure 8.3: Binary PAM differential encoder trellis.

8.1.3 The Trellis

The “trellis” is a heavily used diagram in coding theory that describes the progression of symbols within
a code. It is best illustrated by an example, and we choose the binary differential encoder trellis in Figure
8.3. At each time index k, the possible states of the trellis are indicated in a vertical array of dots, each
dot corresponding to one potential value of the state. In the example, there are two states at each time
corresponding to the value of sk = m̄k−1. Time-invariant encoder description requires illustration in the
trellis of only times k and k+ 1, because the set of states and possible transitions among the states does
not change from time to time. A trellis branch connects two states and corresponds to a possible input
– there are always 2b branches emanating from any state.

Each branch in the trellis is labeled with the channel symbol and the corresponding input xk/mk.
Because there are only two states in the example, it is possible to reach any state from any other
state, but this is not necessarily true in all trellis diagrams as will be evident in later examples. Any
codeword sequence is obtained by following a connected set of branches through the trellis. For example,
Figure 8.4 illustrates some possible individual sequences that could occur based on selecting a connected
sequence of branches through the trellis. The upper sequence corresponds to a codeword transmitted
over 3 successive times k =0, 1, and 2. Nothing is transmitted at or after time 3 in the example, but of
course the codeword could be extended to any length by simply following more branches at later times.
The upper sequence corresponds to the output x(D) = −1 +D −D2 and the encoder was presumed in
state m̄−1 = 0. The corresponding input bit sequence is m(D) = D + D2. The lower sequence is an
alternative of x(D) = 1−D−D2 and corresponds to the input m(D) = D and a different starting state
of m̄−1 = 1. Usually, the encoder is initialized in one state that is known to both encoder and decoder,
but the example here simply illustrates the process of translating the sequence of branches or transitions
in the trellis into a codeword. A semi-infinite series of branches that correspond to the system starting
in state zero and then always alternating would have transform x(D) = 1/(1 +D).

For the binary differential encoder example, it is possible to see that to determine dmin, the designer
need only find the two sequences through the trellis that have minimum separation. Those sequences
would necessarily be the same for a long period before and after some period of time where the two
sequences in the trellis diverged from a common state and then merged later into a common state. For
the example, this corresponds to d2

min = 4 = (+1 − (−1))2. The binary differential encoder provides
no increase in dmin with respect to uncoded PAM transmission – its purpose is to make the decoder
insensitive to a sign ambiguity in transmission because changes decode to 1 and no change decodes to
0, without reference to the polarity of the received signal.
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Figure 8.4: Example sequences for the differential encoder.

Figure 8.5: An example convolutional code with 4 states and b̄ = .5.
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Figure 8.6: Trellis for convolutional code example.

8.1.4 Examples

EXAMPLE 8.1.3 (A simple convolutional code) The convolutional code in Figure 8.5
is based upon a modulo-2 linear combination of current and past input bits. This code’s
sequential encoder has one input bit and two output bits. The transformation shown is
often written with u(D) = m(D) and a “generator” matrix transformation [v2(D) v1(D)] =
u(D) · [1 ⊕D ⊕D2 1 ⊕D2] where the matrix on the right, G(D) = [1 ⊕D ⊕D2 1 ⊕D2],
is often called the “generator matrix.” The two output bits are successively transmitted
through the channel, which in this example is the binary symmetric channel with parameter
p. The parameter p is the probability that isolated and independent bits transmitted through
the BSC are in error.

The encoder has 4 states represented by the 4 possible values of the ordered pair (uk−2, uk−1).
The number of dimensions on the output symbol is N = 2 and thus b̄ = 1/2 because there is
only one input bit per symbol period T .1

The trellis diagram for this code is shown in Figure 8.6. The branches are not labeled, and
instead the convention is that the upper branch emanating from each state corresponds to
an input bit of zero, while the lower branch corresponds to an input bit of one. The outputs
transmitted for each state are listed in modulo-4 notation to the left of each starting state,
with the leftmost corresponding to the upper branch and the rightmost corresponding to the
lower branch. This code can be initialized to start in state 0 at time k = 0. Any sequence of
input bits corresponds to a connected set of branches through the trellis.

For decoding of sequences on the BSC channel, a little thought reveals that the ML detector
simply chooses that sequence of transitions through the trellis that differ least in the trellis-
path bits [v2(D), v1(D)] from the received two-dimensional output sequence bits y(D). The

1Convolutional code theorists often call r = b̄ the rate of the code.
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Figure 8.7: Minimum Hamming distance illustration for convolutional code example.

number of bit positions in which two sequences differ is often called the “Hamming distance.”
The two sequences that differ in the least number of positions (5) through the trellis can be
seen in Figure 8.7. That means that at least 3 bit errors must occur in the BSC before those
two sequences could be confused. Thus the probability of detecting an erroneous sequence
will have a probability on the order of p3, which for p < .5 means the convolutional code
has improved the probability of error significantly (albeit at effectively half the bit rate of
uncoded transmission).

EXAMPLE 8.1.4 (4-State Trellis Code Example) Trellis codes also use sequential en-
coding. A trellis for a 4-state encoder is shown in Figure 8.8 along with the 16 QAM signal
constellation. This code has b = 3 bits per symbol so there are redundant or extra points
in the constellation over the minimum needed for transmission. In fact, 16 points is double
the 8 points of 8SQ QAM2 that would be sufficient for “uncoded” QAM transmission. These
points are exploited to improve the distance between possible sequences or codewords for this
trellis code. The labels Λi, i = 0, 1, 2, 3 correspond to subsets, each with 4 points, of the 16
QAM constellation. Within each subset of points, the intra-subset minimum distance is large
– in fact 3 dB larger than would be the distance for simple 8SQ transmission with b = 3.
The lines shown in the trellis actually represent 4 parallel transitions between states, with
one of the points in the indicated subset for the branch being chosen. Thus, the two lines
diverging from each state really correspond to 8 branches, 2 sets of 4 parallel transitions. The
particular point in a subset, or equivalently the symbol to be transmitted on each branch,
is chosen by 2 input bits, while the 3rd bit specifies which of the two branch/sets to chose.
This trellis is very similar to the earlier convolutional code, except that there are now parallel
transitions and the interpretation of which point to transmit is different from simple binary
PAM modulation of each bit in convolutional encoders.

The parallel transitions represent possible closest sequences that differ in only one symbol
period. The corresponding minimum squared distance for these parallel-transition-closest

28SQ is another name for 8AMPM.
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Figure 8.8: 4-State Ungerboeck Trellis Code.

sequences is 2 times greater than uncoded or 8SQ transmission. Another minimum-distance-
separation possibility is for two sequences to differ in more than one symbol period. In this
latter case, symbol points in different subsets diverging from or merging into any state are
either chosen from the even subsets (Λ0 and Λ2) or the odd subsets (Λ1 and Λ3). Within
the odds or the evens, the distance is the same as uncoded 8SQ. Thus diverging at one state
and merging at another state forces the squared distance to be d2

8SQ + d2
8SQ = 2d2

8SQ, which
is also twice the squared distance of uncoded 8SQ transmission with the same transmitted
energy.

This code is thus 3 dB better than uncoded 8SQ transmission! It is possible to implement a
decoder with finite complexity for this code, as in Chapter 9. The extra 3 dB can be used to
improve reliability (reduce probability of error) or increase the data rate. A little reflection
suggests that this same code could be used with larger (and smaller) constellations with only
the number of parallel transitions changing and no change in the 3 dB basic improvement
of the code. While seemingly trivial, this 3 dB improvement escaped the notice of many
researchers who were pursuing it after Shannon’s work for over 30 years until Gottfried
Ungerboeck of IBM found it in 1983. Trellis and the clearly related convolutional codes are
studied further in Chapter 10.

EXAMPLE 8.1.5 (Duobinary Partial Response) The partial-response channels of Sec-
tion 3.7 can be viewed as sequential encoders if the H(D) is viewed as part of the encoder.
Figure 8.9 illustrates the trellis for the H(D) = 1+D channel with binary PAM inputs of ±1
over 3 successive symbol periods beginning with time k. Possible sequences again correspond
to connected paths through the trellis. In all such possible duobinary sequences a +2 can
never follow immediately a −2, but rather at least one 0 must intervene. Thus, not all 3-level
sequences are possible, which is not surprising because the input is binary. The ZF-DFE
or precoding approach to a partial-response channel does not achieve the maximum perfor-
mance level because the decoder acts in a symbol-by-symbol sub-optimum manner. Rather,
a maximum-likelihood decoder could instead wait and compare all sequences. The closest
two sequences are actually d2

min = 8 apart, not d2
min = 4 as with the precoder or DFE, a 3

dB improvement that achieves the matched-filter-bound performance level.
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Figure 8.9: Trellis for a duobinary Partial Response Channel

Chapter 9 will introduce the maximum-likelihood sequence detector (MLSD) via the Viterbi
Algorithm, which can be implemented with finite complexity on any trellis. For this duobi-
nary partial-response channel, the matched-filter bound performance level can be attained
with MLSD, nearly 3 dB better than the best receivers of Chapter 3 for binary transmission.
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8.2 Measures of Information and Capacity

This section develops measures of information and bounds on the highest possible data rate that can be
reliably transmitted over a channel.

8.2.1 Information Measures

A concept generalizing the number of input bits to an encoder, b, is the entropy. We re-emphasize the
presumption that a stationary distribution for x, px(i), exists in N -dimensions. Information measures
in this book use a base-2 logarithm and are measured in bits per symbol.3

Definition 8.2.1 (Entropy) The entropy for an N -dimensional sequential encoder with
stationary probability distribution px(i) i = 0, ...,M − 1 is:

Hx
∆= −

M−1∑

i=0

px(i) · log2 [px(i)] bits/symbol (8.11)

= E {log2 [1/px]} , (8.12)

The entropy Hy of the channel output is also similarly defined for discrete channel-output distributions.
The entropy of a random variable can be interpreted as the “information content” of that random

variable, in a sense a measure of its “randomness” or “uncertainty.” It can be easily shown that a
discrete uniform distribution has the largest entropy, or information – or uncertainty over all discrete
distributions. That is, all values are just as likely to occur. A deterministic quantity (px(i) = 1 for
one value of i and px(j) = 0 ∀ j 6= i) has no information, nor uncertainty. For instance, a uniform
distribution on 4 discrete values has entropy Hx = 2 bits/symbol. This is the same as b for 4-level PAM
or 4 SQ QAM with uniform input distributions. The entropy of a source is the essential bit rate of
information coming from that source. If the source distribution is not uniform, the source does not have
maximum entropy and more information could have been transmitted (or equivalently transmitted with
fewer messages M ) with a different representation of the source’s message set. Prior to this chapter,
most of the message sets considered were uniform in distribution, so that the information carried was
essentially b, the base-2 log of the number of messages. In general, Hx ≤ log2(M ), where M is the
number of values in the discrete distribution. When the input is uniform, the upper bound is attained.
Entropy for a discrete distribution is the same even if all the points are scaled in size as long as their
probabilities of occurrence remain the same.

In the case of a continuous distribution, the differential entropy becomes:

Hy
∆= −

∫ ∞

−∞
py(u) · log2

[
py(u)

]
du . (8.13)

Theorem 8.2.1 (Maximum Entropy of a Gaussian Distribution) The distribution with
maximum differential entropy for a fixed variance σ2

y is Gaussian.

Proof: Let gy(v) denote the Gaussian distribution, then

log2 gy(v) = − log2

(√
2πσ2

y

)
−

(
v√
2σy

)2

• (ln(2))−1
. (8.14)

For any other distribution py(v) with mean zero and the same variance,

−
∫ ∞

−∞
py(v) log2 (gy(v)) dv = log2

(√
2πσ2

y

)
+

1
2 ln(2)

, (8.15)

3Any other base, p, could be used for the logarithm, and then the measures would be in the pits/symbol!
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which depends only on σ2
y. Then, letting the distribution for y be an argument for the

entropy,

Hy(gy) −Hy(py) = (8.16)

= −
∫ ∞

−∞
gy(v) log2(gy(v))dv +

∫ ∞

−∞
py(v) log2(py(v))dv (8.17)

= −
∫ ∞

−∞
py(v) log2(gy(v))dv +

∫ ∞

−∞
py(v) log2(py(v))dv (8.18)

= −
∫ ∞

−∞
py(v) log2

(
gy(v)
py(v)

)
dv (8.19)

≥ 1
ln2

∫ ∞

−∞
py(v)

(
1 − gy(v)

py(v)

)
dv (8.20)

≥ 1
ln2

(1 − 1) = 0 , (8.21)

or4

Hy(gy) ≥ Hy(py) . (8.22)

QED.

With simple algebra,

H(gy) =
1
2

log2(2eπσ
2
y) . (8.23)

For baseband complex signals, Hy, in bits per complex (two-dimensional) symbol is often written Hy =
log2

(
πeσ2

y

)
where σ2

y becomes the variance of the complex random variable (which is twice the variance
of the variance of the real part of the complex variable, when real and imaginary parts have the same
variance, as is almost always the case in data transmission). The entropy per real dimension of complex
and real Gaussian processes is the same if one recognizes in the formula that the variance of the complex
process is double that of the real process.

8.2.2 Conditional Entropy and Mutual Information

Most of the uses of entropy in this text are associated with either the encoder distribution px, or with
the channel output distributions py or py/x. The normalization of the number of bits per dimension to
b̄ = b

N
tacitly assumes that the successively transmitted dimensions were independent of one another.

In the case of independent successive dimensions, Hx = NHx. Hx is equal to b̄, if the distribution on
each dimension is also uniform (as well as independent of the other dimensions). Equivalently in (8.12),
Hx = N ·Hx if each of the dimensions of x is independent.

For instance, 16QAM has entropy Hx = b = 4 bits/symbol and normalized entropy H̄x = b̄ = 2
bits/dimension. However, 32CR has entropy Hx = b = 5 bits/symbol, but since p(±x = 1) = p(±x =
3) = 6/32 and p(±5) = 4/32, the entropy Hx = 2.56 bits/dimension 6= H̄x = b̄ = 2.5 bits/dimension.
Note also that the number of one-dimensional distribution values is 6, so Hx = 2.56 < log2(6) = 2.58.

The differential entropy of a (real) Gaussian random variable with variance σ̄2 is

Hx =
1
2

log2

(
2πeσ̄2

)
bits/symbol. (8.24)

A complex Gaussian variable with variance σ2 has differential entropy

Hx = log2

(
πeσ2

)
bits/symbol. (8.25)

4Equation (8.21) uses the bound ln(x) ≥ x − 1.
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The conditional entropy of one random variable given another is defined according to

Hx/y
∆=

∑

v

M−1∑

i=0

px(i) ·py/x(v, i) · log2

1
px/y(v, i)

(8.26)

Hy/x
∆=

∑

v

M−1∑

i=0

px(i) ·py/x(v, i) · log2

1
py/x(v, i)

, (8.27)

with integrals replacing summations when random variables/vectors have continuous distributions. The
definition of conditional entropy averages the entropy of the conditional distribution over all possibilities
in some given input distribution. Thus, the conditional entropy is a function of both py/x and px.
Conditional entropy measures the residual information or uncertainty in the random variable given
the value of another random variable on average. This can never be more than the entropy of the
unconditioned random variable, and is only the same when the two random variables are independent.
For a communication channel, the conditional entropy, Hy/x, is basically the uncertainty or information
of the “noise.” If the conditional distribution is Gaussian, as is often the case in transmission, the
conditional entropy of a scalar x becomes

Hx/y =
{

1
2

log2

(
2πeσ2

mmse

)
real x

log2

(
πeσ2

mmse

)
complex x (8.28)

The MMSE in the above equations is that arising from minimum-mean-square-error estimation of x,
given y. Thus, the conditional entropy then measures the information remaining after the effect of the
y has been removed. That is in some sense measuring useless information that a receiver might not be
expected to use successfully in estimating x.

The information of the “noise,” or more generically, the “useless part” of the channel output given
a certain input distribution, is not of value to a receiver. Thus, while the entropy of the source is a
meaningful measure of the data transmitted, the entropy of the channel output has extra constituents
that are caused by the randomness of noise (or other useless effects). Given that it is the output of a
channel, y, that a receiver observes, only that part of the output that bears the information of the input
is of value in recovering the transmitted messages. Thus, the entropy Hy −Hy/x measures the useful
information in the channel output. This information is called the mutual information.

Definition 8.2.2 (Mutual Information) The mutual information for any N -dimensional
signal set with probability distribution px(i) i = 0, ...,M − 1, and a corresponding channel
description py/x(v, i), is:

Iy,x
∆= Hy −Hy/x . (8.29)

The identity,
Iy,x = Hy −Hy/x = Hx −Hx/y , (8.30)

easily follows from transposing x and y. Using probability distributions directly:

Iy,x
∆=

∑

v

M−1∑

i=0

px(i)py/x(v, i) log2

[
py/x(v, i)

∑M−1
m=0 py/x(v,m)px(m)

]
bits/symbol (8.31)

= E log2

[
py/x

py

]
(8.32)

= E log2

[
py,x

px · py

]
(8.33)

= E log2

[
px/y

px

]
, (8.34)

In the case of a continuous distribution on y and/or x, the summation(s) is (are) replaced by the
appropriate integral(s).
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Figure 8.10: Illustration of sequence space and set of equal probability.

8.2.3 Asymptotic Equipartition

The concept of asymptotic equipartition addresses the selection of symbols in a sequence of length n
from a stationary distribution. As the sequence length grows, there exists a set of “typical” sequences, An

ε

that has probability approaching 1. Each sequence within this set is equally likely and has probability
close to 2−nHx , meaning there are approximately 2nHx sequences in this set. Other sequences are
essentially not important in that their probability tends to zero.

More formally,

Definition 8.2.3 (typical set) A typical set of length-n sequences for a stationary (over
time index n) sequential encoder with symbols x and entropy Hx is defined by

An
ε

∆=
{
x | 2−nHx−ε ≤ p(x0,x1, ...,xn−1) ≤ 2−nHx+ε

}
(8.35)

for any ε > 0.

A famous lemma given without proof here is the AEP Lemma:

Lemma 8.2.1 (AEP Lemma) For a typical set with n → ∞, the following are true:

• Pr{An
ε } → 1

• for any sequence x(D) ∈ An
ε , Pr{x(D)} → 2−nHx

The proof of this lemma follows the argument of this paragraph. Figure 8.10 illustrates the concept
with a Venn diagram where the rectangle represents the space of all possible sequences, and the circle
within represents a typical set. This typical set tends to dominate the probability as the sequences get
longer and longer, and each sequence within this set is equally likely. Trivially if the sequence values
are independent and uniform, then each length-n sequence has a probability of 2−nHx . However, when
independent but non uniform, for instance a binary random variable with p1 = .9 and p0 = .1, then
Hx = .469 bits/dimension, then all sequences have a probability that is the product of n terms of either
.1 or .9. Since this decays exponentially to zero, as does also 2−nHx = .722n, one can always pick n
sufficiently large that any sequence is typical. Sequence probabilities that would not decay exponentially
would be difficult to envision. In effect, the stationary presumption of entropy Hx for each successive
symbol forces the exponential decay and for sufficiently large n all sequences (with increasingly small
probabilities) will be close to the almost zero 2−nHx . Thus, the AEP essentially is a trivial statement
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Figure 8.11: Illustration of sets corresponding to x and x conditioned on y.

of the stationarity and the exponential decay of any set of encoder symbol values that have probabilities
between 0 and 1. If one x value had probability 1 so that Hx = 0, then its repeated-value sequence
would trivially be typical. Sequences having a symbol with zero probability somewhere within would be
an example of a non-typical sequence.

Figure 8.11 illustrates that on average the typical set for x given y is smaller (because the entropy is
less). Points within the smaller set can be viewed as indistinguishable from one another given y – they
are all equally likely to occur given y. Thus a MAP receiver would not be able to avoid error well if two
possible code sequences were in this smaller set, essentially being forced to resolve a tie by randomly
picking any of the multiple points in the set. Good code design then attempts to avoid having more
than one codeword in any independent set of size 2nHx/y . Since there are 2nHx sequences as n gets
large, the code designer would like to pick code sequences from this larger set so that there is only one
in each possible subset of size 2nHx/y . Thus, if well done, the largest number of distinguishable code
sequences is

2nI(x;y) =
2nHx

2nHx/y
. (8.36)

Furthermore, sequences that fall in different sets of size 2nHx/y can be distinguished from sequences
outside this set with probability tending to one since the AEP Lemma establishes that sequences within
the set have probability tending to one. Thus for any given value of y, on average, any point outside the
set would be eliminated by a decoder from further consideration. This essentially means that a decoder
would have a probability of sequence-decision error that tends to zero as long as no two codewords come
from the same set. Thus, as n → ∞, I(x; y) represents the maximum number of bits per symbol that
can be reliably transmitted over the communication channel. That is,

b ≤ I(x; y) . (8.37)

8.2.4 The Channel Capacity Theorem

The channel capacity is a measure of the maximum data rate that can be transmitted over any given
channel reliably. The mutual information essentially measures this data rate (in bits/symbol) for any
given input distribution, presuming that an engineer could design a transmitter and receiver that allows
the information in the channel output about the channel input to be mapped into the corresponding
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transmitted messages with sufficiently small probability of error, which is possible given the AEP inter-
pretation. Different input distributions can lead to different mutual information. The best input would
then be that which maximizes the mutual information, a concept first introduced by Shannon in his
1948 paper:

Definition 8.2.4 (Channel Capacity) The channel capacity for a channel described by
py/x is defined by

C
∆= max

px
I(y,x) , (8.38)

which is measured in bits per N -dimensional channel input symbol.

It is sometimes convenient to normalize C to one dimension, by dividing C by N ,

C̄
∆=
C

N
, (8.39)

which is in bits/dimension. The evaluation of the expression in (8.38) can be difficult in some cases, and
one may have to resort to numerical techniques to approximate the value for C. Any input constraints
are tacitly presumed in the choice of the input vectors x and affect the value computed for capacity.
Given the definition of mutual information, Shannon’s [1948 BSTJ] famed channel coding theorem is:

Theorem 8.2.2 (The Channel Capacity Theorem) Given a channel with capacity C,
then there exists a code with b̄ < C̄ such that Pe ≤ δ for any δ > 0. Further, if b̄ > C̄, then
Pe ≥ positive constant, which is typically large even for b slightly greater than C̄.
proof: See the discussion surrounding Equations (8.36) and (8.37).

The desired interpretation of this theorem is that reliable transmission can only be achieved when
b̄ < C̄, or equivalently b < C.

The capacity for the complex AWGN is probably the best known and most studied. It is determined
from

I(x; y) = Hx −Hx/y = Hx − log2(πeσ2
mmse) (8.40)

which is maximized when Hx is maximum, which means a Gaussian distribution. Thus,

Cawgn = log2(πeEx) − log2(πeσ2
mmse) = log2(1 + SNRunbiased) = log2(1 + SNR) = max

(
Hy −Hy/x

)
.

(8.41)
Or, for any AWGN (with no ISI), the capacity in bits/dimension is

C̄ =
1
2

log2(1 + SNR) . (8.42)

8.2.5 Random Coding

A second result that follows the AEP Lemma is that almost any code chosen at random from the
best probability distribution will be a capacity achieving code. The random-code construction process
assumes that some probability distribution px is being used (if it is the distribution that achieves capacity,
then the data rate is highest; otherwise the highest data rate is the mutual information corresponding to
the selected probability distiribution). Each element of a sequence x(D) is selected at random from this
distribution to construct the successive values in a sequence. All codewords are so selected at random.
If the codeword length n goes to infinity, then the probability tends to one that the code is a good code
that achieves zero error probability at the mutual-information data rate that corresponds to the px used
to generate the random code.

The proof of this stunning result again evokes the AEP Lemma: Each selected codeword (sequence)
is typically as the block length increases. Furthermore, each of the sets corresponding to the density
px/y has equal size (2nHx/y ). Thus, any codeword generated at random is thus equally likely to be in
any of the 2nI(x;y)sets of size 2nHx/y . Applying the AEP now at a higher level to the random variable
associated with “which set is the random codeword/sequence in?” suggests that with probability tending
to one, this process of random codeword generated will produce codes or groups of sequences that have
one and only codeword in each of the sets.

17



Figure 8.12: The Binary Symmetric Channel, BSC.

8.3 Capacity Calculation for Discrete Channels

This section focuses on a few commonly encountered channel types and the computation of the capacity.
Only vector channels are considered, with continuous waveform channels being deferred to the next
section.

8.3.1 Discrete Memoryless Channels (DMC)

The discrete memoryless channel was introduced earlier in Chapter 1; both the inputs and the outputs of
the DMC are members of discrete finite sets. There are M inputs, x0, ... , xM−1 and J outputs y0 ,...,
yJ−1. The term “memoryless” means that the outputs on the next use of the channel are independent
of any previous inputs.

The binary symmetric channel (BSC) is probably the most widely cited DMC, and has the
probability transition diagram in Figure 8.12. While appearances are similar, this diagram is not a
trellis diagram, but rather describes the probability that a certain output is received, given any particular
input. Coding theorists interested in error-control codes use this channel to characterize a system such
as the equalized systems of Chapter 3, where the engineer focusing on the outer error-control codes
would simply view the modulation, equalization, and detection process as an entity from a higher level
and just assign (for the BSC)

p
∆= P̄b =

Nb

b
·Q(

dmin
2σ

) . (8.43)

Such a system is sometimes said to use “hard” decoding, meaning that a decision is made on each symbol
before any outer decoding is applied.

The capacity of the BSC can be computed in a straightforward manner by substitution into the
mutual information formula:

Ix,y =
1∑

m=0

1∑

j=0

px(m)py/x(j,m) log2

(
py/x(j,m)
py(j)

)
(8.44)

= px(0)(1 − p) log2

(
1 − p

px(0)(1 − p) + px(1)p

)
(8.45)

+ px(0)(p) log2

(
p

px(0)p+ px(1)(1 − p)

)
(8.46)

+ px(1)(p) log2

(
p

px(0)(1 − p) + px(1)p

)
(8.47)

+ px(1)(1 − p) log2

(
1 − p

px(0)p+ px(1)(1 − p)

)
(8.48)
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Figure 8.13: The Binary Erasure Channel, BEC.

The input probabilities px(0) and px(1) are interchangeable in the above expression. Thus, the maximum
must occur when they are equal; px(0) = px(1) = .5. Then,

C = (1 − p) log2 [2(1 − p)] + p log2(2p) (8.49)
= 1−H(p) , (8.50)

where
H(p) ∆= −p log2(p) − (1 − p) log2(1 − p) , (8.51)

the entropy of a binary distribution with probabilities p and 1 − p. As p → 0, there are no errors made
and C = C̄ → 1 bit/symbol (or bit/dimension), otherwise C ≤ 1 for the BSC.

A second commonly encountered channel is the binary erasure channel (BEC), shown in Figure
8.13. The channel is again symmetric in px, so that the maximizing input distribution for the mutual
information is px(0) = px(1) = .5. The capacity is then

C =
[
1
2
(1 − p) log2

1 − p
1
2(1 − p)

]
2 +

[
1
2
p log2

p

2p1
2

]
2 (8.52)

= 1 − p (8.53)

Again, as p → 0, there are no errors made and C → 1 bit/symbol, otherwise C ≤ 1 for the BEC. When
p ≤ 0.5, then CBEC ≥ CBSC , which is explored more in Problem 8.11.

More generally, the symmetric DMC may have an M ×J matrix of transition probabilities such that
every row is just a permutation of the first row and every column is a permutation of the first column.
For instance, the BSC has [

1 − p p
p 1 − p

]
(8.54)

For the symmetric DMC, the maximizing distribution can be easily shown to be uniform for both C.
A special case of interest is the Universal Discrete Symmetric Channel has 2b discrete inputs and
the same set of 2b outputs. The probability of the output being the same as the input is (1 − ps) while
the probability of being any of the other possible values is equally likely at ps/(2b − 1). Because of the
symmetry, the maximizing input distribution is again uniform amound the 2b possible discrete messages.
The capacity is

C = b− ps · log2

2b − 1
ps

+ (1 − ps) · log2 (1− ps) ≤ b bits. (8.55)

A typical use of this channel is when b = 8 or the transmission system is organized to carry an integer
number of bytes of information. If the UDSC is constructed from 8 successive uses of the BSC, then

ps = 1 − (1 − p)b ≈ b · p = 8p for small p . (8.56)

Outer codes may be then organized in terms of byte symbols or modulo-256 arithmetic (or more generally
modulo-2b arithmetic).
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Figure 8.14: Illustration of capacity and gap to uncoded transmission with Γ = 8.8 dB.

8.3.2 Capacity, Coding, and the Gap

The capacity for the AWGN has been previously computed as c̄ = .5·log2(1+SNR) and appears in Figure
8.14. Note this semi-log plot shows that as SNR becomes reasonably large (say 20 dB or more), that
increase of capacity by 1 bit per dimension requires and additional 6 dB of SNR. Since QAM is the most
heavily used transmission format footnoteWithin most coded systems including multicarrier systems like
the DMT or GDFE of Chapters 4 and 5, QAM is a consitituent of the codes used so this statement is
not an endorsement of wideband QAM use on an ISI channel with notches., a bit per dimension of QAM
corresponds to two bits per symbol or an often quoted rule of “3 dB per bit”. At low SNR (below 10
dB), this rule no longer applies and for very low SNR (below 0 dB), capacity essentially scales linearly
with SNR (instead of logarithmically). This is evident in that

lim
SNR→0

c̄ =
.5

ln 2
SNR . (8.57)

since (log(1 + x) ≈ x for small x).
Recall that for b̄ ≥ 1 in Chapter 1, data rates for PAM and QAM transmission were found experi-

mentally with heuristic theoretical justification to satisfy the formula:

b̄ = .5 log(1 +
SNR

Γ
) = c̄(

SNR

Γ
) . (8.58)

That is the gap approximation used heavily for uncoded transmission is exactly the capacity formula
with the SNR reduced by Γ ≥ 1. For uncoded PAM and QAM transmission and a P̄e ≈ 10−6, the gap is
a constant 8.8 dB. The gap formula is also plotted in Figure 8.14 where the constant gap is illustrated,
and the constant bit/dimension gap of 1.5 bits/dimension is also illustrated.

This formula resemblence suggests that at least at a probability of error of 10−6, and reasonably
good SNR, the uncoded designs of Volume 1 are about 9 dB of SNR short of capacity. In terms of coded
performance, capacity relates that good codes exist over infinite-length sequences (or very long symbol
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blocks) that can provide up to 9 dB more coding gain at 10−6. Capacity suggests there may be many
such codes – Chapters 10 and 11 will find some. Codes that are constructed from PAM and QAM like
constellations can recover this lost 9 dB of uncoded transmission. The price will not be a higher error
rate (and indeed the probability of error can be driven to zero from the capacity theorem), nor transmit
energy increase, but rather a signficantly more complex encoder, and especially, a more complex decoder.
The use of 10−6 and the corresponding gap of 8.8 dB may seem somewhat arbitrary – one could argue
why not 10−7 or smaller, where the corresponding larger gaps would suggest yet even higher than 9 dB
improvement in SNR is possible. As this text proceeds, it will become increasingly clear that once the
probability of error is less than 10−6, an outer concatenated code working on the presumption that the
inner AWGN has been well handled and converted to a BSC with probability p = 10−6, can easily drive
overall probability of bit error close to zero with little data rate loss, so 10−6 is an often used design
figure for the inner channel and the first decoder.

The concept of coding gain, first addressed in Chapter 1 becomes more important in this second
volume, so we repeat concepts of Section 1.6.3 with minor modification here.

Coding Gain

Of fundamental importance to the comparison of two systems that transmit the same number of bits
per dimension is the coding gain, which specifies the improvement of one constellation over another
when used to transmit the same information.

Definition 8.3.1 (Coding Gain) The coding gain (or loss), γ, of a particular constella-
tion with data symbols {xi}i=0,...,M−1 with respect to another constellation with data symbols
{x̃i}i=0,...,M−1 is defined as

γ
∆=

(
d2
min(x)/Ēx

)

(
d2
min(x̃)/Ēx̃

) , (8.59)

where both constellations are used to transmit b̄ bits of information per dimension.

A coding gain of γ = 1 (0dB) implies that the two systems perform equally. A positive gain (in dB)
means that the constellation with data symbols x outperforms the constellation with data symbols x̃.

Signal constellations are often based on N -dimensional structures known as lattices. (A more com-
plete discussion of lattices appears in Chapter 10.) A lattice is a set of vectors in N -dimensional space
that is closed under vector addition – that is, the sum of any two vectors is another vector in the set.
A translation of a lattice produces a coset of the lattice. Most good signal constellations are chosen
as subsets of cosets of lattices. The fundamental volume for a lattice measures the region around a
point:

Definition 8.3.2 (Fundamental Volume) The fundamental volume V(Λ) of a lattice Λ
(from which a signal constellation is constructed) is the volume of the decision region for
any single point in the lattice. This decision region is also called a Voronoi Region of
the lattice. The Voronoi Region of a lattice, V(Λ), is to be distinguished from the Voronoi
Region of the constellation, Vx the latter being the union of M of the former.

For example, an M -QAM constellation as M → ∞ is a translated subset (coset) of the two-
dimensional rectangular lattice Z2, so M-QAM is a translation of Z2 as M → ∞. Similarly as M → ∞,
the M -PAM constellation becomes a coset of the one dimensional lattice Z. M will be viewed as the
number of points in the constellation, which may now with coding exceed 2b.

The coding gain, γ of one constellation based on x with lattice λ and volume V(Λ) with respect to
another constellation with x̃, Λ̃, and ˜V(Λ) can be rewritten as

γ =

(
d2

min(x)

Vx2/N

)

(
d2

min(x̃)

Vx̃
2/N

) ·

(
Vx

2/N

Ēx

)

(
V2/N

x̃
Ēx̃

) (8.60)

= γf + γs (dB) (8.61)
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The two quantities on the right in (8.61) are called the fundamental gain γf and the shaping
gain γs respectively.

Definition 8.3.3 (Fundamental Gain) The fundamental gain γf of a lattice, upon which
a signal constellation is based, is

γf
∆=

(
d2

min(x)

V2/N

x

)

(
d2

min(x̃)

V2/N

x̃

) . (8.62)

The fundamental gain measures the efficiency of the spacing of the points within a particular
constellation per unit of fundamental volume surrounding each point.

Definition 8.3.4 (Shaping Gain) The shaping gain γs of a signal constellation is defined
as

γs =

(
V2/N

x
Ēx

)

(
V2/N

x̃
Ēx̃

) . (8.63)

The shaping gain measures the efficiency of the shape of the boundary of a particular con-
stellation in relation to the average energy per dimension required for the constellation.

EXAMPLE 8.3.1 (Ungerboeck 4-state revisited) Returning to Example 8.1.4, the fun-
damental and coding gains can both be computed. The coded 16 QAM constellation will be
viewd as the lattice of integer ordered pairs, while the uncoded constellation will be that same
lattice (rotation by 45 degrees does not change the lattice) The funamental gain is then

γf =

(
d2

min(x)

V2/N

x

)

(
d2

min(x̃)

V2/N

x̃

) = γf
∆=

(
4

(16·1)2/2

)

(
1

(8·1)2/2

) = 2 (3 dB) . (8.64)

γs =

(
(16·1)2/2

1
12 (16−1)

)

(
(8·1)2/2

1
12 (16−1)·12

) = 1 (0 dB) . (8.65)

A common uncoded reference is often found for listing of fundamental and coding gains,
which is a PAM (or SQ QAM) system with d = 1 and thus V (Λ) = 1 and presumed energy
1
12

(
22b̄ − 1

)
even for fractional b̄ where this energy formula is not correct. Any system

could be compared against this uncoded reference. Differences between coded systems could
be obtained by subtracting the two fundamental or two shaping (or overall) coding gains with
respect to the common uncoded reference. For the 4-state Ungerboeck code, the gains then
become with respect to the common reference:

γf =

(
d2

min(x)

V2/N

x

)

(
d2

min(x̃)

V2/N

x̃

) = γf
∆=

(
4

(16·1)2/2

)

(
1

(8·1)2/2

) = 2 (3 dB) , (8.66)

but

γs =

(
(16·1)2/2

1
12 (16−1)

)

(
(8·1)2/2

1
12 (8−1)

) = 14/15 (-0.3 dB) . (8.67)

Thus the coding gain with respect to the common reference is 3-0.3=2.7 dB. However, 8SQ
has γf = 0 dB and γs = −0.3 dB versus the common reference, so that the difference of the
two systems, both relative to the common reference becomes 3− 0.3− (0 − 0.3)=3 dB, which
is the correct coding gain as before.
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Interpretting coding gain and gap

The coding gain then essentially is the amount by which the gap has been reduced at any given fixed
probability of error. Once the gain with respect to uncoded transmission for a given coding method is
known, the Gap becomes Γcode = 8.8 − 10 log10(γ).

As an example, consider again the 4-state trellis code of Section 8.1. This code basically gains 3
dB no matter how many points are in the constellation (beyond b̄ ≥ 1). Thus, the gap with use of
this code is now 8.8-3 or 5.8 dB. Trellis codes with gaps as low as about 3.3 dB exist but are complex.
Section 10.6 and also Chapter 1 discussed shaping gain - the gain in coding that comes exclusively from
ensuring that the boundary of points in a large number of dimensions is a hypersphere (and has little to
do with sequences but rather just setting the boundaries of the constellation for any given large number
of points). Shaping gain contributes up to 1.53 dB of the 8.8 dB in the gap. The remaining 7.3 dB
can be attained through sequences and coding. The most powerful turbo and LDPC codes of Chapter
11 can achieve 7 dB of coding gain, or equivalently, their use plus shaping leads to a system that can
operate (with large complexity) at data rates very close to capacity.

The gap in Figure 8.14 can also be interpretted vertically as 1.5 bits/dimension between uncoded
and coded. For QAM symbols, this is 3 bits/symbol. For a relatively simple code with 3 dB of gain,
1 of these 3 bits is gained with the simple trellis code of Section 8.1. The remaining 2 are increasingly
difficult to achieve. Thus, the gap also measures the data rate loss with respect to capacity, as well as
an SNR loss with respect to capacity. The bit gain of the 4-state code with respect to uncoded QAM is
thus 1 bit/symbol.

8.3.3 Energy per bit and low-rate coding

The concept of the gap is inapplicable below 10 dB. In this range of SNR, typical transmission is at
less than b̄ = 1, and codes such as convolutional codes (rather than trellis codes for instance) are used.
There is essentially a varying limit of coding gain at lower SNR with any given type of code.

The capacity formula for the AWGN channel can also be used to derive the minimum energy per bit
that is required for reliable data transmission. This is accomplished by writing the capacity result

b̄ < C̄ =
1
2

log2

(
1 +

Ēx
σ2

)
(8.68)

=
1
2

log2

(
1 +

Ex
Nσ2

)
(8.69)

=
1
2

log2

(
1 +

b̄Ex
bσ2

)
(8.70)

=
1
2

log2

(
1 +

b̄Eb

σ2

)
. (8.71)

Solving for Eb

σ2 in (8.71) yields
Eb

σ2
=

22b̄ − 1
b̄

. (8.72)

Equation (8.72) essentially tells us the minimum required Eb/σ
2 for any given code rate on the AWGN.

Of fundamental interest is the case where b̄ → 0 (that is large redundancy or bandwidth in the code).
Then (8.72) reduces to

Eb

σ2
= 2 ln2 (1.4dB) , (8.73)

meaning that the energy/bit must be above some finite value even if infinite redundancy (or infinite
bandwidth) is used if the designer intends to use a code to improve the use of the AWGN. This result
is sometimes phrased in terms of the quantity Eb/N0= .5(Eb/σ

2), which is equivalent to the statement
that the minimum required Eb/N0 is -1.6dB, a well-known result.
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8.4 Parallel Channels

8.4.1 Parallel WGN Channels and Capacity

A situation that often arises in dealing with channels with linear intersymbol interference is that of
parallel independent channels, which is illustrated in Figure 8.15, repeated from Chapter 4. The noise
on each channel is independent of the noise on any other channel, and the input energy on the ith channel
is Ei. Then,

Ex =
N∑

i=1

Ei . (8.74)

For this situation, the mutual information between the vector of outputs y and the vector of inputs x is
the sum of the individual mutual information between inputs and corresponding outputs:

Ix,y =
N∑

i=1

Ixi,yi , (8.75)

and therefore the sum of the individual capacities is

max
px(i)

I =
N∑

i=1

Ci =
1
2

N∑

i=1

log2

(
1 +

Ei

σ2
i

)
= log2

N∏

i=1

√(
1 +

Ei

σ2
i

)
. (8.76)

The remaining free variable over which the transmitter can optimize is the energy distribution among
the channels, under the constraint that the total energy satisfy (8.74). Thus,

C =max
{Ei}

1
2

N∑

i=1

log2

(
1 +

Ei

σ2
i

)
(8.77)

subject to the constraints

N∑

i=1

Ei = Ex (8.78)

Ei ≥ 0 (8.79)

Maximization then forms the “Lagrangian”

L =
1
2

N∑

i=1

log2

(
1 +

Ei

σ2
i

)
+ λ

(
Ex −

N∑

i=1

Ei

)
(8.80)

and sets the partial derivative with respect to Ei equal to zero to obtain

1
2 (Ei + σ2

i ) ln(2)
= λ =

1
2λ′ ln(2)

(8.81)

Thus, the solution is the set of energies satisfying

Ei + σ2
i = λ′ = constant (8.82)

such that
∑N

i=1 Ei = Ex and Ei ≥ 0. Figure 8.16 illustrates the basic concept. In Figure 8.16, the
fixed energy budget is allocated first to those channels with least noise and successively to channels with
increasing noise variance, as long as the sum of the noise variance and the channel energy is constant
over those channels that are used. Further, the constraint on total symbol energy determines the the
constant level λ′. This method is often referred to as discrete water filling in analogy with filling a
trough with water to a fixed level. The channel with largest noise, σ2

4, is not used because λ′ < σ2
4.
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Figure 8.15: Parallel Independent Channels.
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Figure 8.16: Discrete Water filling Illustration.
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8.5 Capacity of Waveform Channels

Most of the essential concepts of capacity are contained within the formulae of the last section for C̄. In
practice, engineers are usually interested in data rates in units of bits/second. This section investigates
the conversion of the previous results to units of bits/second.

8.5.1 Capacity Conversion for Memoryless Channels

Both the DMC’s discussed previously and the AWGN are instances of memoryless channels in that the
current output only depends on the current channel input. In this case, modulation methods such as
PAM, QAM, PSK, and others use 2W dimensions/second, where W denotes the (positive-frequency-
only) “bandwidth” of the system. For instance, with a memoryless channel, the basis function for PAM,
ϕ(t) = 1√

T
sinc(t/T ), can be used without intersymbol interference effects. This basis function requires

a bandwidth of 1
T = 2( 1

2T ) = 2W dimensions per second. A similar result follows for QAM and PSK.
These waveforms are presumed strictly bandlimited.

The term “bandwidth” is used loosely here, as no system is strictly bandlimitted in practice, and
some definition of bandwidth is then required. This text presumes for coding purposes that the system
engineer has designed the modulation system for a memoryless (or close to memoryless) channel such
that the number of dimensions per second transmitted over the channel is 1/T̄ , where T̄ ∆= T/N .

Thus, the memoryless channel with transmit bandwidth W , and 2W = 1/T̄ output dimensions per
second,

C = 2WC̄ (8.83)

where C is the capacity in bits/unit time. The AWGN channel then has capacity

Cawgn = W · log2

(
1 +

Ēx
σ2

)
bits/unit time , (8.84)

a well-known result.

8.5.2 Waveform Channels with Memory

Most practical channels are not memoryless, so rather than approximate the channel by a memoryless
channel using equalization or some other such means, it is of a great deal of interest to evaluate the
capacity of the channel with impulse response h(t) and additive Gaussian noise with power spectral
density Sn(f). In this case, the symbol interval T becomes arbitrarily large and analysis considers the
channel as a “one-shot” channel with infinite complexity and infinite decoding delay. This generalization
of capacity explicitly includes the symbol energy Ex and the symbol period T as arguments, C → CT (Ex).
Then, the capacity, in bits/second, for a channel with intersymbol interference is

C = lim
T→∞

1
T
CT (PxT ) . (8.85)

CT (PxT ) is still the quantity defined in (8.84), but the notation now emphasizes the dependence upon
the symbol period T .

The equivalent channel model also shown in Figure 8.15, models an equivalent noise, n′(t), at the
impulse response input. As H(f) is one-to-one5, the ISI-free channel at the filter input can be used for

analysis. The power spectral density of the additive Gaussian noise at this point is
N0
2 S̄n(f)

|H(f)|2 .
The approach to capacity involves decomposing the equivalent channel in Figure 8.15 into an infinite

set of parallel independent channels. If the noise n′(t) were white, then this could be accomplished by
just transmitting a set of orthogonal signals, as was discussed in Chapter 1. As the noise is not generally
white, the decomposition requires what is known as a Karhuenen-Loève decomposition of the noise signal
n′(t), which is

n′(t) =
∞∑

i=1

n′
i · ψi(t) , (8.86)

5Unless H(f) = 0 at some frequencies, in which case no energy is transmitted at those frequencies.
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where {ψi(t)}∞i=1 is a set of orthonormal basis functions that satisfy
∫ ∞

−∞
ψi(t) · rn′(s − t)dt = σ2

i · ψi(s) , (8.87)

and

E
[
nin

∗
j

]
=
{
σ2

i i = j
0 i 6= j

. (8.88)

ψi(t) are often also called “eigenfunctions” of the noise autocorrelation function and σ2
i are the “eigen-

values,” and are the noise variances of the parallel channels. The eigenfunctions constitute a complete
set. Thus any waveform satisfying the Paley-Wiener Criterion of Chapter 1 can be represented, so the
channel-input waveform x(t) is

x(t) =
∞∑

i=1

xi · ψi(t) , (8.89)

where
xi =

∫ ∞

−∞
x(t) · ψi(t)dt . (8.90)

The samples at the output of the infinite set of matched filters, {ψi(−t)}i=0,...,∞, constitute a set of
parallel independent channels with noise variances σ2

i .
The application of the parallel channels concepts from Section 8.4 computes a capacity (in bits/dimension)

CT (PxT ) =
∞∑

i=1

max
[
0,

1
2

log2

(
1 +

Ei

σ2
i

)]
(8.91)

with transmit energy

PxT =
∞∑

i=1

max
[
0, λ′ − σ2

i

]
. (8.92)

Dividing both sides by T and taking limits as T → ∞ produces

C = lim
T→∞

1
T

∞∑

i=1

max
[
0,

1
2

log2

(
λ′

σ2
i

)]
, (8.93)

and

Px = lim
T→∞

1
T

∞∑

i=1

max
[
0, λ′ − σ2

i

]
. (8.94)

Both sums above are nonzero over the same range for i, which this text calls ΩE . In the limit,

σ2
i → Sn(f)

|H(f)|2 (8.95)

and
1
T

→ df , (8.96)

leaving the famous “water-filling” scheme of Gallager/Shannon for capacity calculation of the waveform
channel:

C =
1
2

∫

ΩE

log2

λ′|H(f)|2

Sn(f)
df (8.97)

and

Px =
∫

ΩE

(
λ′ − Sn(f)

|H(f)|2

)
df , (8.98)
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Figure 8.17: Continuous Water Filling.

where the transmit spectrum is chosen to satisfy

λ′ =
Sn(f)
|H(f)|2 + E(f) , (8.99)

which results in the equivalent capacity expression

C =
1
2

∫

ΩE

log2

(
1 +

E(f)|H(f)|2

Sn(f)

)
df . (8.100)

The continuous water filling concept is illustrated in Figure 8.17. The designer “pours” energy into
the inverted channel (multiplied by any noise power spectral density) until no energy remains, which
determines both λ′ and ΩE . Then C is computed through (8.97).

8.5.3 Capacity of the infinite bandwidth channel

An interesting interpretation of the AWGN capacity result presumes infinite bandwidth on the part of
the transmitter and a channel that ideally passes all frequencies with equal gain and no phase distortion.
In this case, W → ∞ in C = W log2 (1 + SNR), or

C∞ = lim
W→∞ W

1
ln2

ln
(

1 +
Px

2Wσ2

)
=

1
ln 2

Px

2σ2
. (8.101)
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This result shows that even with infinite bandwidth, if we have a finite-power constraint imposes a finite
data rate.

8.5.4 Example of Water-Pouring Capacity Calculation

An example of the continuous water filling is the flat AWGN channel with H(f) = 1 and Sn(f) = N0
2 .

Then, one orthonormal set of basis functions is 1√
T

sinc
(

t−iT
T

)
∀ i functions and the eigenvalues are the

constant σ2
i = N0

2 . Thus,

Px = (λ′ − N0

2
)2W (8.102)

where W = 1/2T . Then,

λ′ =
Px

2W
+

N0

2
(8.103)

and

C =

(
1
2

log2

[
Px

2W + N0
2

N0
2

])
2W = W log2 (1 + SNR) , (8.104)

a result obtained earlier.

EXAMPLE 8.5.1 (1 + .9D−1 Channel Capacity) A second example is the channel with
impulse response h(t) = sinc(t) + .9sinc(t− 1) from Chapters 3 and 4. Then

Px =
∫ W

−W

(
λ′ − .181

1.81 + 1.8 cos(ω)

)
dω

2π
(8.105)

where W is implicitly in radians/second for this example. If Px = 1 with an SNR of 10dB,
the integral in (8.105) simplifies to

π =
∫ W

0

(
λ′ −

.181
1.81 + 1.8 cos(ω)

)
dω (8.106)

= λ′W − .181

{
2√

1.812 − 1.82
arctan

[√
1.812 − 1.82

1.81 + 1.8
tan

(
W

2

)]}
(8.107)

At the bandedge W ,

λ′ =
.181

1.81 + 1.8 cos(W )
. (8.108)

leaving the following transcendental equation to solve by trial and error:

π =
.181W

1.81 + 1.8 cos(W )
− 1.9053 arctan(.0526 tan(W/2)) (8.109)

W = .88π approximately solves (8.109).

The capacity is then

C =
2
2π

∫ .88π

0

1
2

log2

(
1.33
.181

(1.81 + 1.8 cosω)
)
dω (8.110)

=
1
2π

∫ .88π

0

log2 7.35dω+
1
2π

∫ .88π

0

log2 (1.81 + 1.8 cosω) dω (8.111)

= 1.266 + .284 (8.112)
≈ 1.5bits/second . (8.113)

See Chapters 4 and 5 for a more complete development of this example and capacity.
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Exercises - Chapter 3

8.1 Sequence Generation
Find the bipolar binary outputs (±1 sequences) of the binary differential encoder for the following

input sequences: (a input state corresponding to a previous bit of 0 can be assumed and m(D) is a
binary sequence of 0’s and 1’s)

a. m(D) = 1

b. m(D) = D

c. m(D) = 1/(1 ⊕D) (See Section 3.8.4).

d. the input periodically cycles through the sequence 1 0 1, starting at time 0.

8.2 Sequence Generation for a trellis code
Find the sequence of 16 QAM outputs for the trellis code example of Section 8.1 when the input

message sequence is as given below. You may assume the encoder starts in state zero and that the 2nd
and 3rd input bit in each group of input 3 bits specifies the subset points in clockwise fashion starting
with the upper left-hand corner point being 00. Assume the 16QAM constellation has d = 2. All
addition is mod 8 in this problem.

a. m(D) = [1 0 0] + [0 1 1]D + [0 1 0]D2 = 4 + 3D + 2D2.

b. m(D) = 3 + 7D + 5D2 +D3

c. m(D) = 4+3D+D2

1+D3 .

d. m(D) = 4+3D+D2

1−D3 .

8.3 Trellis of Extended Partial Response

a. For binary inputs, draw the trellis for EPR4 (See Section 3.8.3) following the convention that the
top branch emanating from each state corresponds to a zero input bit and the other branch is the
1 input. Use the state (mk−3,mk−2,mk−1).

b. Determine the minimum distance between any closest two sequences.

c. How many states would the trellis have if the input had 4 levels? Does the minimum distance
change?

8.4 Convolutional Code Consider only the binary output bits from the convolutional code in the example
in Section 8.1, v2,k and v1,k in this problem (that is do not translate them to bipolar signals) and
transmission on the BSC channel.

a. For the convolutional code example in Section 8.1, show that the modulo two sum of any two
codewords is another codeword.

b. Show that the all zeros sequence is a codeword.

c. Defining the Hamming weight of any codeword as the number of 1’s in the sequence, find the
smallest Hamming weight for any nonzero codeword.

d. Show that any convolutional code that can be described by the modulo-2 vector multiplication
v(D) = u(D) ·G(D) satisfies the same 3 properties in parts a,b, and c.

8.5 Capacity An AWGN has an input with two-sided power spectral density -40 dbm/Hz and noise
power spectral density -60 dBm/Hz.

a. What is the SNR for PAM transmission on this channel? For QAM transmission?
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b. What is the capacity in bits/dimension?

c. What is the minimum amount of transmit power necessary to send 1 Mbps over this channel if the
QAM symbol rate is 1 MHz? if 2 MHz? (assume sequences are used).

d. If the capacity is known to be 10 Mbps, what is the symbol rate for PAM?

8.6 Channel Capacity Calculations
For this problem, assume N = number of dimensions =1.

a. Plot the graphs of the channel capacity of the binary symmetric channel and of the binary erasure
channel as a function of the bit error probability p over the range for p of 0 to 1. (2 pts)

b. Explain intuitively why the capacity of the binary symmetric channel decreases monotonically from
1 to (for p = 0) to 0 (for p = .5) and then increases back to 1 for p = 1. (2 pts)

c. In contrast to the BSC, the capacity of the BEC decreases monotonically from 1 (for p = 0) to 0
(for p = 1). Explain why this is the case. (1 pts)

d. Find the capacity of an AWGN with SNR of 10 dB. (1pt)

e. Find Pb for binary PAM transmission on the channel of part (d). (2pts)

f. Letting p for a BSC be equal to the Pb you found in part (e), find the capacity of this BSC. (2 pts)

g. Compare the capcity in part (f) with the caqpacity in part (d). Why are they different?

8.7 Coding Gain
This problem refers to the 4-state Trellis Code example in Section 8.1.

a. Find a way to use the same trellis code if b = 5 and the constellation used is 64 QAM. Label your
constellation points with subset indices. (2 pts)

b. What is the coding gain of your code in part (a) if the uncoded reference is 32 SQ QAM? (1 pt)

c. What is the coding gain of your code in part (a) if the uncoded reference is 32 CR QAM? (2 pts)

d. What is the coding gain if b = 1 and 4 QAM is the constellation used? (you may use BPSK as the
reference system). (3pts)

e. Find the fundamental coding gain for this code. (1 pt)

f. Find the shaping gain of 32CR constellations with respect to 32 SQ constellations when b = 5 and
no trellis code is used. (2 pts)

8.8 Universal DMC
Inputs to and outputs from a DMC is presumed to be any one of 256 possible messages and the

channel probabilities are given by

p(i/j) =
{

ps

255 ∀i 6= j
1 − ps i = j

(8.114)

a. Find the input distribution that achieves capacity for this channel. (1 pt)

b. Find the capacity. (2 pts)

c. What is the capacity as ps → 0? (1 pt)

d. Why might this channel be of interest? (1 pt)

8.9 Partial Response and Capacity
A precoded partial-response system uses M = 4 PAM on the 1 − D channel with AWGN and

SNR = Ēx/σ2=10 dB.
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a. Draw the precoder. (2 pts)

b. Compute Pe and P̄b. Assume that each hard decision is independent of the others as a worst-case.
(2 pts)

c. Model this system as a BSC and compute capacity. (2 pts)

d. Model this system as an AWGN and compute capacity, comparing to that in part (c). (You may
assume constant transmit power and T = 1.) (2 pts)

e. Do you think the answer in part (d) is the highest capacity for this channel? Why or Why not?
(variable T may be required.) (2 pts)

8.10 Gap for Trellis
A transmission system for the AWGN uses QAM and the 4-state trellis code of Section 8.1 with

symbol rate of 1 MHz and operates at Pe = 10−6.

a. Estimate the gap in SNR using the fundamental coding gain. (1 pt)

b. Estimate the gap to capacity in bits/symbol at high SNR. (2 pts)

c. Use your SNR gap in part (a) to estimate the data rate this code can achieve for SNRs of 17, 25,
and 35 dB. You need not worry about fractional bits per symbol here in your answers. (2 pts)

d. At what new symbol rate would you obtain the largest data rate if the SNR is 25 dB at the symbol
rate of 1 MHz and what is the corresponding data rate (assume constant power)? (2 pts)

8.11 Channel Capacity Calculations.
For this problem, assume N = number of dimensions = 1.

a. (2 pts) Plot the graphs of the channel capacity of the binary symmetric channel and of the binary
erasure channel as a function of the bit error probability p. Note that p varies from 0 to 1!

b. (2 pts) Can you explain intuitively as to why the capacity of the binary symmetric channel at first
decreases from 1 (for p = 0) to 0 (for p = 0.5) and then increases back to 1 (for p = 1)?

c. (1 pt) In contrast to the binary symmetric channel, the capacity of the binary erasure channel
decreases monotonically from 1 (for p = 0) to 0 (for p = 1). Explain as to why this seems
reasonable.

d. (1 pt) Find the capacity of a flat AWGN channel for an SNR of 10 dB.

e. (2 pts) Notice that the flat AWGN channel, for which you calculated the capacity in part (d), is
in fact our channel of chapter 1 (the simplest possible channel!). Suppose that on this channel, we
transmit uncoded 2-PAM signals (ie. the usual 2-PAM signals) with an SNR of 10 dB. Find Pb.
Hint: Pb = Pe for uncoded 2-PAM.

f. (2 pts) Each transmission (and detection) of an uncoded 2-PAM signal is equivalent to a 1 bit
transmission. Therefore, we can look upon the 2-PAM based transmission scheme of part (e) as
defining a binary symmetric channel with a bit error probability p = Pb. For the Pb obtained in
part (e), find the capacity of this BSC channel.

g. (3 pts) How does the capacity calculated in part (f) compare with the capacity of the actual AWGN
channel, which was calculated in part (d)? Can you think of some reason(s) for the difference?

8.12 Capacity in bits/sec - Midterm 2001 - 7 pts
An AWGN channel has SNR=20 dB when the symbol rate is 1 MHz for PAM transmission.

a. What is the capacity in bits/dimension? (1 pt)
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b. What is the capacity at any symbol rate a/T where a > 0? (2 pts)

c. Find the max bit rate in Mbps that can be transmitted on this channel (you may vary T )? (2 pts)

d. What is the SNR at the symbol rate used in part c? (1 pt) Would you expect this operating
condition to be useful in practice? (1 pt)

34


