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Introduction

In Part XII of our fifth paper of our series we have introduced
a new formulation of appealing to previous knowledges which may
be recognised to have some connections with the operational points
of view. Now in Part XIII of the present paper our chief concerns
are with such operational interpretations similar to that of Part XIi,
which will hold true for the problems of prognosis. The problems
of prognosis will involve always so-called halo-cffects, and we shall
define halo-effect transformations, which can be suitably observed
from the standpoints of the loss functions. §1 in Part XIII will
provide some commentary observations to our generalised formula-
tions of successive decision functions enunciated in Part V111, while
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§2 gives moreover some contribution to Part IV. Although § 2
deals with a special problem, what we want to show is concerned
with a rather general strategic principle, that is to say, the one
which is taught in a Japanese proverb, “ Don’t use a batcher’s knife
for cooking chicken,” and in an Indian proverb, “ Don’t shoot a fly
with a gun.” In §3 we shall compare with our predictive be-
haviours with some fundamental principles which we may cbserve,
as E. S. PEARSON pointed out, in the pioneer works of STUDENT
and in the brilliant theories of R. A. FisHER. To make clear our real
situations which we formulated in Parts II, IV, V, VII and VIII and
specially to make more comprehensible our generalised formulation
in Part VIII, we shall illustrate our points of view by a simple exam-
ple, and then by discussing analysis of variance from our standpoint.

Part XIV in this paper is a continuation to Part XII in our fifth
paper, and is a partial preparation to our successive design of ex-
periment. It will chiefly concern itself with the problem how to
determine the numbers of levels of factors in our design of experi-
ments. In some engineering applications the numbers of levels of
these factors are not so fixed ones as those of varieties in agricul-
tural experimentations. The levels of temperature and those of
pressures in some chemical experimentations may be chosen as great
as we please. Indeed in such situations what we require to establish
is to determine some functional relations which will hold among
continuous variables. Consequently our problems must be reformed
from the standpoint of functional analysis. We have already intro-
duced some formulations of analysis of variance in function space
in KiTAGAWA (6]. In §1 after certain generalisations of our pre-
vious paper we shall define a sequence of resolutions of identity
and introduce main-effect functions and interaction functions. Here
the expansion theory appealing to some orthogonal function systerns
will play its important rdoles. To proceed our formulation in more
details, we must give some theory of empirical function from
stochastic point of view. There may be various formulations of
empirical functions. We have already given some of them in
KITAGAWA (7], which, in combination of the present Part XIV,
will constitute a partial preparation for discussing successive design
of experiments so far as our concerns are with adjustments of num-
bers of levels of factors previously determined.

In § 2 we shall make use of orthogonal expansions of effect function
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in analysis of variance, and we shall regard any design of experi-
ments as a method of estimating coefficients of these orthogonal
expansions. We shall observe some of fundamental factorial designs
such as 2 x 2 and 3 x 3, and give some observations upon general
cases. In spite of our several preparations, there still remain various
considerations which should be done before we may be able to pro-
ceed to some theory of successive designs of experiments. In §3
we shall enunciate some classes of successive designs of experiments
concerning levels of factors.

Part XIII. Predictive behaviours and risk functions

§ 1. Risk functions and prognosis. The two sample formula-
tion of the problems of prognosis developed in Part II of our paper[1]
will show us that the solutions of these problems involve somewhat
greater confidence intervals, larger acceptance regions than those in
the inferences from a sample to its population. For example, we
have enunciated in Theorem 2.1 in Part II, p. 153, the formula
which is equivalent to
b (@) o+

S =«
,//n,‘ - 1 ! n2 ’ ’

=

(1.01) Pr.{‘@ ¥ =

which involves the multiplying factor (7, 4+ n,)"2#%,'/2 greater than
1, compared in addition to the case when 7, = oo, that is, when
we infer from a sample to its parent population itself. The for-
mulae similar to this particular one are valid, as may be seen from
Theorems 2.2--2.10. Furthermore the relative efficiency theory de-
veloped in Part IV of our paper [2] may be observed to imply the
similar results.

On the other hand we have introduced operational interpretation
of previous knowledges in Part XII of our paper [5]. We point out
here that such operational interpretation will hold true also for
the problem of prognosis.

In an intuitive expression the problems of prognosis will involve
nearly always a halo of vagueness around our moon, that is, the
population parameter in our concern. In our two and three sample
formulations, these halo-effects have been described by stochastic
variable distributed around the population parameter. Now from
our second standpoint of operationalism, the halo-effects may be



4 Tosio Kitacawa

recognised as certain operations which transform our estimates into
other ones which are more vague and more vast than the formers.

Such halo-effect will happen when (a) there are possibilities that
population parameter will change into another value and/or when
(b) our real objects of prognosis are not population parameters
themselves but rather a second sample drawn from the population.
The first condition (a) will be reasonably treated within the scopes
of statistical inferences under certain formulation of stochastic
processes, while the second condition (b) belongs to the realm of
two and three sample formulations. These two conditions will be
sometimes amalgamated into one halo-operation.

Example 13.1. Let ) be an estimate of the population parameter
0 with its density function f(j) of sampling distribution. Our ob-
ject of prognosis ¢{z{ is not ¢ itself, but e{z} is assumed to be
uniformly distributed in an interval (#—a, 0 +a) when 0 is true.
Under this circumstance the halo-effect will be described by the
transformation 7° which transforms a point estimate g into an in-
terval predictor (j)— @, )+ a), since we have now

a

flx+ t)dt.

—a

(1.02) Prix<p+eizi <zt dsj =9

Example 13.2. Let ¢ be an estimate of the population parameter
¢ =0 with its density function g(¢),0 =& < e, of the sampling
distribution. Now let the object of our prognosis ¢{z} be distributed
uniformly in the interval (¢ ¢, b¢) when ¢ is true. Then the halo-
effect will be described by the transformation 77, which transforms
a point estimate ¢ into an interval predictor (a ¢, bo).

Example 13.3. More generally a halo-effect can be defined by
a transformation of an estimate j of the population parameter ¢
into T') having its density function %(x) of sampling distribution

(1.03) Wxs 0y = | f(t 0)K(x, t) dt

with certain determined functlon K (x, t).

The essential rdle of these halo-effect transformations can be ob-
served from the standpoints of the loss functions. In view of the
notations and terminolgies introduced in Part VII in our paper (37,
we may enunciate the following
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Theorem 13.1. In addition to the formulation in Part VIII,
§4, let us assume furthermore the following (i) - (iv):

(1) The object of our prognosis <(z) reduces to a stochastic
variable z itself such that «(z) —z - 0 + u, where U is a popula-
tion parameter and u is a stochastic variable with the mean
value 0.

(ii) The simultancous distribution function K(x,y,z) of the
stochastic variables X, Y and Z will be decomposed into two
mutually independent components to the effect that

(1. 04) dK(x,y,2) =dL(z)dH(x,y) .

(iii) The a priori distribution function of 0 is assumed to be
given by 5(0) in the parameter space ©,.
(iv) Let us define v,(&, cop) by

(1.05) 7. (&, edp) = l r (K, eop)dz(0),
4 Qp
where r\(K, eop) is defined as in (4.01) in Part VIIL
Then we have

(1L.06) r(5eom = | | Wioom af(x, y) d(y),

Jo, I riw,»
where $, denotes the whole parameter space, Ry, x) the whole
sample space associated with (Y, X), and

(1.07) o) = | e w)dLw),

< RQu)

R(u) being the whole sample space of u.

Proof: In virtue of (i) and (ii), the right-hand side of (4.01)
in Part VIII will reduce to

(1.08) 7/(K,cop)

‘ HJ W(z’d'/)(lp(l)f? 5.7//1.7") dK(Z, Y, x)
J ot R(zy ¥, @)

— | arw|

J R() J ot

W +u,d)dP(D, ou)d H(y, x) .

Ry(Y, )

The combination of (1.08) with (iii) and (iv) yields us (1.06)
and (1.07), as we were to prove.
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Corrollary 13.1. Specially when W(z,d) = (z — d')? in the As-
sumptions to Theorem 13.1, then we have

(109) r(geam = | [ | W ayap, ) arty, x) asn

Qg Ry,

+ [ wdlL(u).
JSRu)

Corrollary 13.1 is remarkable in the sense that for any strategy
on sequential designs which we may employ the average loss is al-
ways greater than a certain constant:

(1.10) 7 (& eopn) =o02=—= [ wdL(u).
JR(u)
In a more general circumstance, the characteristic featurcs of
the problems of prognosis will be observed from an inequality

(1. 11) 7(&, edp) =>c,

¢ being a prescribed constant, which may be compared with the
use of previous experiences in reaching decision functions in which
a restricted Bayes solution has been introduced by Hopcrs, J. L.
and LEnMANN, E. L.[17: denoting by Ry(#) the risk function of
the decision procedure 4, a procedure 4, is said to be a restricted
Bayes solution with respect to the a priori distribution 2 and sub-
ject to the restriction

(1.12) Ry(#)=C, forall 9,

if it minimizes gRS(//) dz(f) among all procedures satis{ying (1.13).
Indeed (1.11) and (1.12) are in striking constrast with each other.

§ 2. Predictor in sequential analysis. In this paragraph we
shall show that real significance of prognosis problems can be
observed from suitably defined risk functions. For the present pur-
pose we shall discuss the following special problem of determining
a predictor in sequential analysis which minimizes the maximum
risk. The whole problem belongs to the realm of successive deci-
sion functions. In this paragraph we adopt the following Assump-
tions (1°) ~ (6°).
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Assumption (1°). The object of prognosis ¢{Z{ is to give
a predicted value for a stochastic variable Z itself, where Z is
distributed according to a normal distribution N(0, 6*/m) .

Assumption (2°). Two sample formulation is adopted in the sense
that there is no previous knowledge which secures a stochastic
process X, and therefore, the simultanecous distribution H(y, x)
function of (Y, X) reduces to a distribution function H(y) of Y
alone, which is assumed to be given by

(2.01) H(y) =PriY,<y.;i=1273 -}
= ﬁ 4(2 71')_1/2 0.-1 ]’7 esz _(1} _ (}‘)2/2 f)'2§ dvii, .
=1t J —oo ]

Assumption (3’). The a priori distribution function & (#) of
the population parameter ¢ is given by

2.02) & () = 277)—”20—“1;( expi —1%/2q2} di .
1 1 j /407

J —oo

Assumption (4°). Our predictor is denoted by d(y), and the
loss function is defined as

(2.03) W(e(Z),e0,7,) =WI(Z,d(y)) =w(Z —d(y))?e?,
where w means a constant independent of Z and y.

Assumption (5°). The costs for making uses of storages of
memories, and for formulating the statistics to be used in determin-
ing our successive decision function become zero, and the cost of

making observations on Y = {Y,}{ is proportional to the number of
observation #, that is,

(2' 04) C(sb Soy =05 Sk dﬁ(5k>/5z(?y/1z)
= Cz(y » Sy S, 0, S;\.,) =cn,
where #z denotes all the numbers of elements in the set of integers

(si, 83, -+, ), ¢ being a constant independent of 7.

Assumption (6°). FEach stage of experimentation consists exactly
of a single observation on Y, (i =1,2,3, ---).
We shall now observe by direct calculation
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Lemma 13.1. Let d,(y) be a decision function which depends
only on the first n observations of Y, and let us define

(2.05) #(5d.(v))-- r T ien W(z, d,(y))} dL(z)d(1).

—oo . —oo

Let d(y) be the decision function which minimizes r(&,d,(y))
with respect to d,.
Then we have

(2.06) d)(y) =nol(no? + %)y,
where y = (v, + y, + - + .)/n.
Furthermore we have
(2.07) 7(&, dXNy)) =r(n) g.(y),
where we put
(2.08) r(n)=cn+wim' + o2 (nao?+ o)}
(2.09)  g.(9)==k, exp} — (3 y2— o’y (naf + o)1) (262)71,
=]
with
(2.10) k,=1(2m) 2= (22) P nap +62) V20,

Furthermore the mean value of 7,(£,, 4% y)) under the condition
that the set of values (y,, y,, -, ¥,_,) is assigned is

(2. ].].) En—]%r(éa‘) d)?(y))%

— (27)712 5 ’[m r r fen+ W(z,d,(v))}

- expi— (9, — 0)/25% dy dL(z) d(1)
= 7’(”) g/z»»l(y) .

Here we shall make use of the following two Theorems which are
valid under fairly general conditions without Assumptions (1°) ~ (6°).

oo J —oo J —es

Theorem A. (MivasawA[11). Let us define 7,(§,y) and {a,,
(&, %)) (7=0,1,2,---, 1) in the recurrent manner :
(1) 7,04, 9) = 7(5 d(»))
(20) 0(71,:'2(;:7 y) == 7’:2(;: y)
(3°) For j In, we define
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(2.12) (S y) =minfry(&, v), Ejfag,.(5 9)1],
where
(2 13) Ejgajﬂ,/l(;:) y); == aj'fl.n(éa y) dg(ym-‘))

& being the probability distribution function of Y, .
Then we have the following assertions :
(a) (% y) is a monotonically decreasing function of . If
we denote by «,(£, ) the limit of «;,(§,¥) as n— o, then we have

(2.14) @(S¥) = minfr,(& y), Efa; (& 9)1].

(b) Let us define a sequence of sets{S;{ in the sample space
Yy = (yJJ Vo5 =05 Vs ) by

(2.15) S, =1{y;7(59)> a4 y) for i, and 745 y) =d,(& )}

forall =1,2,3, . Let d; be the decision function which proceeds
such that if ¥ belongs to S;, we shall stop the experimentation at
the j-th observation and determine the terminal decision d(y).
Then d; is the BAYES solution relative to £.

Theorem B. (LEHMANN [17). Let d, be the Bayes solution re-
lative to the a priori distribution of the population parameter 0,
k=1,2,3,---. Let d* be a decision function for which

(2.16) sup 7(f, d*) < lim sup 7( %, dy) .

Then the decision function d* is a minimax solution.
In virtue of these two Theorems, we shall observe

Theorem 13.2. Under the Assumptions (1) ~(6°) in this para-
graph, we have the following two assertions:

(1) Let n—=mn,,* be the greatest integer which is smaller
than

(2. 17) 2--1%1 -+ (1 + 46%%—1)1/2§ . 0.*—2’
where we have put
(2.18) c*—=cwl, =022,

Then the dicision function d,, which indicates to take n observa-
Lion 3y, ., -, ¥, and there stoppes the experimentation and which
predicts iZ =27 by d(y) defined in Lemma 13.1 is the BAYES
solution relative to &, when o is sufficiently large.
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(2°) Let d* be the decision function which indicates to take
these n = mn, . observations x,, x,, ---, %, and there terminate
the experimentation and to predict Z by the sample mean y =
D+ 2+ + ). Then d* is the minimax solution of our
prognosis problem.

The proofs of (1°) and (2°) follow immediately from Theorems A,
B and Lemma 13.1, as quite similarly to those of Theorems 3.1
and 3.2 in Mivasawa [17. Indeed it suffices us to notice that
n=mn, , 1S determined as the smaller root of the equation ¢(n) =0,
where

(2.19) ‘F(”)EEiz—lgrn(fol; ¥ = ril~1(£:01) y)
=E, {7( 50_1, aXy)t—r( ’:Ul’ d, {(y))
- {7’(71) - 7’(7’1 - 1) 2 gn—l(y) )

that is equivalent to the equation #(#) — 7(n — 1) = 0.

In view of Theorem 13.2 both of the BAvEs solution relative to £,
and minimax solution are shown to be independent of the precision
of our object of prognosis, requiring experimenters to make their
bests independently from the latter. This is somewhat curious from
our practical considerations. Why should they trouble with reducing
the average risk under their controls into the amount smaller than
ten dollars, when there are certain possibilities of suffering from
dangers amounting one million dollars which will derive from uncon-
trollable causes? The discrepancies of our results in Theorem 13. 2
with our practical considerations may be remediable to some extent

by introducing a new definition of the loss function. For example
we may define

(2.20) W(Z,d(y)) = w(Z — d(9))*/(Z)

w being a constant, in stead of (2.03). We shall observe now

Theorem 13.3. Under the same hypothesis to Theorem 13. 2,
except the definition of the loss function, which is now replaced
by (2.20) in stead of (2.03), the results similar to (1°) and (2°)
hold true, except that N o+, 1S now defined by another constant

C** such that new .= is the greatest integer which is smaller
than

(2.21) 2741 4 (1 4 4ewxt)i2y — g2
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where
(2.22) C*F =c(mw)l, o= 02072 = g*?

and similarly for ne ., the limit of nes .=, as o** tends to oc .

This Theorem shows among others that (1°) the larger m becomes,
that is, the higher the precision of the object of our prognosis be-
comes, then we should necessarily make the larger observations and
that (2°) the smaller m becomes, that is, the lower the precision of
the object of our prognosis becomes, then we may dispensc with the
smaller observations.

Such characteristic procedures for predictions may be generally
introduced into our general formulation of successive decision func-
tions, provided that we may be able to define the risk intrinsically
associated with the object of prognosis, say #{e}. There are indeed
two ways: the first is similar to that discussed in this paragraph,
that is, for example, we may define

(2.23) W(elc(z)) dt(%)) = (e,C(Z) - dl((ek))2/7§elc§ ’

while the second will be defined along the idea introduced in the
previous paragraph. For example it may be of some interest to
introduce

Definition 13.1. A procedure o, is said to be a Bayes solution
of prognosis of <\Z} with respect to the a priori distribution
and subject to the condition

(2.24) 7(K,e0p) = ariel for all K,

a being a prescribed positive constant, if 6, minimizes |v(K, ¢ 7))

d3(K) among all the procedures satisfying (2.24) .

The detailed discussion of Definition 13.1 is postponed to another
occasion.

§ 3. Predictive behaviours and analysis of loss into its compo-
nents. In his article in the memory of WILLIAM SEALY GOSSET,
said E. S. PEARSON [17, p. 211-212 “There is one very simple and
illuminating theme which will be found to run as a keynote through
much of his work, and may be expressed in the two formulae:
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'7:c+z? =oal+ ’Tyz + 2 poga, - (1)

O'u;fyz = (7_1:2 =+ (71/2 - 21’70';v Ty *° (2) .

Perhaps we may count as one of his achievements the demonstra-
tion in many fields of the meaning of that short equation (2); as
he wrote in 1923 (11, p. 273, but with modified notation) :

The art of designing all experiments lies even more in arranging
matters so that s is as large as possible than in reducing 2 and ol

It is a simple idea, certainly, but I cannot doubt that its emphasis
and amplification helped to open the way to all the modern develop-
ment of analysis of variance, and ---.” R. A. FISHER [17 illustrates
the fundamental ideas on design of experiments in Chaper III, spe-
cially in § 16.

In these connections we shall point out the needs of emphasis
upon our predictive behaviours which will make clear our real
situations.

Let us illustrate our points of view by a simple example. Let ¢
be a population parameter, and let d' = » be an estimater for # with
probability density function f(y) such that the mean and the vari-
ance of y are given by

co

(3.01) iyl = sf(y)dy =

(3.02) iy} = ol

Let W(4,y) = (0 — »)? be the loss which we suffer when 0 is
true and y is its estimated value. The average loss when ¢ is true
and d* is adopted as estimator is given then

(3.03) 70, d) = | (= 90f(y)dy= (0~ 0+ .

For the sake of simplicity and emphasis on essential points, let
us assume that o® is a constant independent of ¢ and #'.

Under these formulations we can make the following four observa-
tions.

(1°) In the case when ¢’ = 0 the average risk 7,(0, d') becomes
constant independent of # and #. There is no need of an a priori
distribution for 4.

(2°) In the case when ¢ does not coincide with #, there leaves
some discussion or some presumption for possible differences between
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0 and ¢. The classical BAYES approach is to presume an a priori
distribution (¢ — ¢’) and to introduce

(3.04) 75 d) — \r(0, @y dzo — o)

— {(0 — 00 — 0') + o2,

On the other hand the minimax principle approach due to WALD[ 1]
concerns itself how to minimize the maximum risk, that is, max,
r(6,d"). In spite of the essential differences between these ap-
proaches there is an intimate relation between minimax solution
and BAYEs one to the effect that under certain rather weak condi-
tions any minimax solution is also a BAYES solution relative to a least
favourable a priori distribution.

The real duties of practical statisticians in designing his experi-
ments cannot be completely fulfilled by seeking merely minimax
strategy for rather broad class of possible a priori distributions.
A practical statistician should endevour at first to reduce a broad
class of possible a priori distributions into narrow one.

In our two sample points of views our predictive behaviours as-
sociated with the analysis of variance seems to play their essential
roles for this purpose, as will be illustrated in what follows.

(3°) It may be frequently observed that “what we need in
practice is not the inference about the population parameter, but
rather the inferences about its another sample which will be drawn
from this population on another occasion.” (Kitacawa [1] p. 141-
142) .

Let us illustrate our points of views by one factor formulation
in which the whole population will be divided into sz strata with
stratum means g, +Y; (¢ =1, 2, ---, m), where p, are the stratum
parameters while {Y;} are mutually independent stochastic variables
distributed in a normal distribution N(0,07). Any individual
observation will be assumed to be recognised as a realisation of
stochastic variable ,+ ¢, +Y,+ W,, where ;« is a grand population
mean, and {W,} (¢ =12, ---, m) are mutually independently dis-
tributed with each others and with {Y,} according to the normal
distribution N(0, ¢,?). For example let us denote by W, the sampling
fluctuation due to random sampling from the i-th stratum, while
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Y, denotes the material fluctuation of the i-th stratum mean itself.
Let it be assumed that >, ¢, = 0. From the standpoints of pre-
dictive behaviours the real objects of our inferences may be some-
times recognised not itself, but rather x$%, which will correspond
to the stochastic variable

(3.05) X®, = (mmn,)™" Z X‘”

g

— (mmy)” Z Stk Yo W),

when we have obtained the sample mean x,,> which corresponds to
the stochastic variable

(3. 06) ],(lll) = (l %U Z

h=

—Un)t 2 3

In the casc when [ =m and i, =h(h=1,2,--,m), X is
an unbiassed predictor for X2 , and we have

liM“ HM_

X (2)

ip ke

(v + sy, + Y, + W)

(3.07) WiX,2, X0 = (XP, — X0}
= {(m nz)—l + (mnl)ﬂ%”wz-

If o,% is independent of other population parameter, then there
is no need of assuming any a priori distribution ¢ for the grand
population mean x. On the other hand otherwise X, may not
be an unbiassed predictor for X@, . For example let / =m and

=h (h=1,2,--,1). Then we have

m

(3.08) E{Xm(;zzg Li(zi)z = Z Vis

i=it1

which is not necessarily zero, and

(3' 09) WgXﬂwg); 7(Li) = ( Z ‘UJZ + (m i l)(ml) 1g
(mnz) Lt (In) Mol

On this circumstance, not only the loss becomes greater than
(3.09), but also there is some needs for previous knowledges upon
(1, t2y =, tm) Or otherwise for appealing to some strategy such
as minimax principle. If there is an a priori distribution &(s4q, -,
t.), then the average loss will be given by
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(3.10) mid%:ﬁ“hiﬂmdﬂwm“u%)

J i=l+1
+(m—=10)(ml) o+ {(mu,)' + ({n) of
It is also to be noted that the correlation coefficient between X,
and X, is given by

J\12 ) ,
w) (L aEm )T (L o),

(B 1) p( Xy Xo) = (
where we put o2 = s,%0,2% This correlation coefficient becomes
greater as / becomes nearer to m.

(4°) If we would treat our problem merely as estimation problem,
then the a priori distribution of ;- would be suitably observed to be

(3.12) E5(p) = iw §(r—v)gw)do,

where we define £, by

(3.13) 51(z)=[ H A5ty 1y, ) 1) |

(12 Fpo2t s 2312
while g is the density function of the normal distribution N(O0,
afm).

It is to be noted that &*(x) will surely have larger variance than
each of that due to its components & and g.

In conclusion of this paragraph we emphasize what we want to
point out: (a) The predictive behaviour is indispensable for apply-
ing the Student keynote to our statistical inferences; (b) The role
of predictive behaviour is to recognise the valiability of the object
of prognosis, but at the same time to design our experiment in
which our observations will be recognised as stochastic variables
with intimate correlation with those corresponding to the object of
prognosis; (c¢) The broad class of a priori distribution function can
be reduced to a narrower one by our procedure of analysis of vari-
ances in our design of experiments.

Part XIV. Uses of orthogonal functions
on successive designs of experiments
concerning levels of factors

§ 1. Successive analysis of variance with adjustments of the
numbers of levels of cach factor. Let us consider a factorial
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experiment A x B involving two factors A and B. In an ordinary
analysis of variance, these two factors are considered at m levels
and 7 levels respectively, and hence m x n# design will be used with
certain number of replications ». It is however to be noted that
there occur frequently cases when setting of any large numbers of
levels may be possible. Thus temperatures and pressures in some
of chemical experiments may be chosen to any prescribed values
ranging almost continuously in certain intervals. In such situations
it may be said to be routine procedures to appeal to successive
process of designing the experiments by adjusting the number of
levels of the factors. In such situations our objects of statistical
inferences may change from stage to stage. Sometimes the first
object of experiment may be to test the null hypothesis that there
is no main effect due to the factor A. After the significance of
this null hypothesis has been verified, then at a second stage we
may sometimes aim to estimate the relationship between the charac-
teristic in which we are interested and the factors in our concerns,
such as to estimate regression curves, or sometimes to seek the maxi-
mum point of the characteric when each factor is ranging in its domain
respectively. In this preliminary §1, we shall begin with the se-
quential processes of testing the null hypothesis which will adopt
the adjustments of numbers of levels of each factor. Even within
this restricted object it seems to us to be necessary to adopt the
notion of analysis of variance in certain function space C, consisted
of all functions which are defined in the two-dimensional intervals:
0=t -=_1, and are everywhere continuous in a certain sense vanish-
ing on the sides £ =0 and r =0. The generalised main effects due
to the factors A and B may be expressed in terms of some functions
F(t) and G(r), while the generalised interactions between A and B
in terms of some functions of two variables H(¢, ), when A and B
are assigned to take the values ¢ and - respectively.

We have already discussed the analysis of variance applied to
function spaces in Kitacawa [6]. The following slight generalisa-
tions will be necessary in the present paper.

Definition 14.1. Let F(t) and G(<) be continuous and of bounded
variations in 0 =1 -1 and 0 =<1 respectively, and let H(t, <)
be continuous and of bounded variation in (t, -) in the two-dimen-
stonal interval 0=t=1, 0=c=1. The functional of f and g,
which we denote by A(f, g), is defined by
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1 r

(1.01) A(f, 8)== | fie) aF(t) +
L0 J

1
g(7)dG(z)
0

{'1 1 1,1
| [ e@am + | | 0 g dadas, ),

Iy
where x(t,7) is a member that belongs to the function-space C,
introduced in KITAGAWA [6].

Definition 14.2. A family of infinite sequence of fnnctions
()Y (=12, -, m; m=1,2,3,---) is said to be a complete
family of resolutions of unit function when the following condi-
tions are satisfied for every m:

(1) () + (8 + -+ f08) = m, (0=t=1)

1
(2) | fom(t)dt =1 (i=12 -, m)
Jo

(30) g.'fi(w)(t)fj(m)(t) dt = m()U (i, ] — 1, 2’ O m) .
Jo

Definition 14.3. Let {f ()} (i=1,2, -, m; m=1,2,3, ---)
and (g (<) (7=12,-,m;n=1,2,3,---) be two complete fam-
ilies of resolutions of unit functions. Then under the assumption
to Definition 14.1, the infinite sequences of comstants (i) {a, ™},
(i1) {6/} and (iii) {(a b), "} are called the complete families
of (i) the main effects due to the factor A, of (ii) main effects
due to the factor B, and of (iii) the two factor interactions due
to the factors A and B respectively :

1
(1.02) @’ = | fo(t) dF(t)
J0
1
(1.03) b = '(gj(“‘)(r) dG (<)
0
(1.04) (@ab), o™ - % [ Foo(e) go() dH(t, <),

JolJo
fori=1,2, -, m;m=1,2,3,--and j=1,2, - m; n=123 .

From the practical standpoint the null hypothesis to be tested
concerning the main effects due to the factor A should be nothing
but F(¢)==0, while at ecach stage of our experiments we shall be
concerned with the statistical hypothesis
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(1.05) H™(A): g =ag™ = = g™ =0,

These gaps between the real objects and our ordinary mathematical
formulations can be narrowed only by the successive processes of
testing the sequence of these null hypotheses {H,™(A)} (m =2,
3,-). The alternative hypothesis should be given by assigning
a function F(¢) defined in 0 <¢ =1, which does not identically
vanish there, and for which the sequence of the statistical hypo-
theses at each stage should be given as

(1.06) HO(A): a =6, 3 6 =0, 32 9,m2>0.
=1 i=1
Similarly for the main effects due to the factor B the null hypo-

thesis and its alternative one should be given as follows :
(1.07) H™(B): b =0 = =5 =0 (n=1,23 ).

(1. 08) }Ij(n‘(B) : bj(n) — Sf]'(n) s j;zzl s0]'(72) — 0’ é‘l (s,)j(n))Z > 0.

And also for the two-factor interaction between the factors A4 and
B the null hypothesis and its alternative one will be given in
a double series :
(1.09)  H"“(B): (ab)™ = (ab)s» = - = (ab),o” =0

(m; n = 17 2) 37 )

(1.10)  H&(B): (6B)§™ = 057, 5 g = 8 ¢, =0

m

3 o> 0.
1=

Now we shall remind the probability distribution functions of the
non-central F-distribution which are due to TANG[1], and which
we shall enunciate for our present purpose in the following

i=

Theorem (TANG (1]). Under the hypothesis H™(A), the pro-
bability density function of the stochastic variable G = S;/(S:
+ Sy) is

(1.11) By (G/26™)

zA(nb)i expg "')‘,1(7”)} S

_ i - GUDri-1(1 — Gyhi-t
i=0

where we put
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(112) fi=m—1, f=mn(r — 1)

‘(m)ﬁ_n_r_,,l S ' m ]zzﬂ,nﬁr_ 2
(1' 13) /‘A - 2 (TEZ m g‘[ { ‘gofi (t> dF(t)j' 2 {:kg aJ,m ) Say~

In what follows in this paragraph we denote by G(fi, f.; «/0)
or simply by G,/i(a) the a-point of the distribution £, ,,(G,/0)
such that

1
(1.14) { By (G/0YdG = a..
U AR ERE:I))

It is also to be noted that (i) G =f, F/(fF + f,). And hence
G/(1 - G)=fF/f,, where F =S,/S,; (ii) let F,”'(«) be the «-
point of F when 4, =0, then G(f, f;; a/0) =G, "*(«) =fiF, " («)
/(i FJ\(a) + f,); (iil) as f, tends to infinity, G( f,, f,; «/0) tends
to zero.

On the other hand we shall make further preparation by intro-
ducing the following

Assumption 14.1. The following limit exists:

- 1 il
(L15)  fimm> 3 Hf/"(t)dF(t) ~ VdF ok, sa.
e =L Jo

This Assumption will be certainly verified in various fields of
applications for designs of experiments.

For instances this Assumption holds true when the following two
conditions are satisfied: (1°) for each 7, 1 =i <m, f,"(¢) = m in
the subinterval (i —1)m™'=<¢ _im™, and f(¢) =0 elsewhere;
(2°) F(t) is continuously differentiable function defined in 0= f="1.
Indeed we shall have then

7. rl
(1.16)  lim m~ 33 \F(i/m) — F((i ~ 1)/m)i* — ( | dF(zr))2

m—>oo i=] Jo

1 1 )

= | (F(t)dE — ( 1 F/(t) dt) .
S0 .iO
The goals to which the successive designs of experiments will

aim to attain may be testings of statistical hypotheses as enunciated
in the following table:
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|
co;ﬁéiﬁzgceﬁxth Null hypothesis 3 alternative hypotheses
A Ho(A) Hy(A)
B Ho(B) Hy(B)
AB Ho(AB) H(AB)

A and B Hy(A) [ Ho(B) Hi(A) [ Hi(B)  (i+jiz=1)
Aand AB Hy(A) [y Ho(AB) Hi(A) N Hy(AB) (i+j=1)
Band AB Ho(B) [\ Hy(AB) Hi(B) N Hy(AB) (i +j=1)

Hi{A) N H;j{(AB) N Hx(AB)
ABand AB | Hf(A) N H(B) N H(AB) | 1T sAD R4

Nevertheless, from the view point of successive design of experi-
ments, what we really concern ourselves at each stage are some of
the hypotheses H"(A), H;(B) and H,)”(AB) (i, =0,1) and
their products, that is, simultaneous validities, and consequently all
the sequences of possible courses of successive designs constitute
a variety of abundancy. Moreover the types of designs of experi-
ments, even in our restriction within the scope of m Xz x (7)
designs, also constitute a three dimensional multiplicity whose ele-
ment will be denoted by the coordinate (m, #, ). Thus the adjust-
ments now in our consideration may be characterised as the transition
from (m, n, r) into (m',n’,7’). There are also many possibilities
and their combinations amount to numerous one. The transitions
of designs of experiments from (m, i, 7) into (m/, %/, 7') are called
to be (i) r-type, when m = m', n = »’'; (ii) m-type, when n = n,
r =7"; (iii) n-type when m =m/, » = 7'; (iv) mr-type when = #';
(V) nr-type when m = m’; (vi) mn-type when » = 7'.

For the detailed discussions, however, it seems to be adequate to
introduce effect functions and their expansions into orthogonal func-
tions, to which we shall devote the following two paragraphes.

§ 2. Uses of orthogonal expansions of effect functions in analy-
sis of variances. In this preparatory pagraph, we shall restrict
ourselves within a formal description of effect functions, which, for
a sake of brevity, are assumed to be functions of two variables (%, »)
in the quadrat 0 <x, y 1. For practical applications, the numbers
of levels should be introduced as shown in the next paragraph.
Our object in this paragraph is to show that uses of orthogonal
expansions of the functions f(x,y) will make clear the formal
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aspects of main effects and interactions adopted in analysis of
variance.

Let {¢.(x){ (m=0,1,2,3, ---) be a complete normalised ortho-
gonal system (CONS) in the function space L*0,1) of squarely
integrable functions in the sense of LEBESGUE integration in 0 < x
=1, and further let {¢,(x)¢.(¥)} (m, 2=0,1,2 3, ~-) be also
CONS in the function spaces L2(Q) where @ is the domain 0 = x,
y=1. Under certain restrictions upon these functions which secure
convergence of the following series expansion

(2.01) f(#%3) ~ 5 5 @nga(x) 003,
with

11

(2' 02) A, = ;( | f(x; y) Spm(x) %z(y) dx dy: (m: n = O: 1) 27 )
JeJo

the formal considerations will lead us to the correspondence that
the main effects with respect to X-factor and Y-factor are given by

2.08) ) = | fxyyay— [ |5z v) dedy
200 b)) = [ fmy)dr— | [ fix,3)dxdy

respectively, while the interaction between X-and Y-factors by

(2:05)  (ab) (%) =f(x,5)~ | f(z, ) dy— [ f(x, 3)dx

J0

1r1
+ [ ,(f(x,y) dx dy.
‘gs'g

Now let us consider the special case when expansion is due to
a system of orthogonal polynomials, each ¢,(x) being a polynomial
of m-th degree, and let us restrict ourselves for a moment with the
case when

(2.06)  f(x,9) = cp + ¢y o1(%) + cn ()
T Coea(X) + € gi(x) 0(y) + Cpea(y),
where we have put ¢y(x) = ¢o(y) =1. Then we can write

(2.07) a(x) = cyei(X) + €y ¢o(%)
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(2.08) b(y) = cogi(y) + Coea()
(2.09) (ab) (x,9) = cyei(x) e1(y) .

The problem how to estimate effect function f(x, y) will be con-
sequently reduced to that of estimations of these five constants c;;.
The skills and powers of the ordinary factorial designs of experi-
ments 7 x # should be judged from the efficiencies of estimations
of these parameters. In this standpoint the numbers of levels m
and/or n are sufficient enough to yield us these estimations. To
investigate such problems concerning level numbers it seems almost
necessary to appeal to orthogonal expansions of functions defined
for a discrete set of x and y arguments, that is, essentially the re-
solution of unit functions as defined in KiTAGAWA [67] and also in
the previous pagraph. For the sake of brevity, it will suffice us in
the present case to appeal to systems of orthogonal polynomials due
to TsCHEBYCHEFF (17, defined for the interval (—1, 1).

(1] 2 x 2 designs and estimations of ¢y, €y, € and ¢,;. The use
of TSCHEBYCHEFF orthogonal polynomials give us the estimations
of the four constants ¢, ¢, ¢, and ¢;; by means of the 2 x 2 designs
which yield us the observations on f(—1/2, —1/2), f(1/2, —1/2),
f(=1/2,1/2) and f( -1/2, —1/2) for which the relations hold:

((1/2) (€op — €oy — €0 + €1) = f(—1/2, =1/2)
(1/2) (e — € + €0 — €1) = £(1/2, —1/2)

(2.10) ‘
| (1/2) (e + € — €0 — €n) = f(—=1/2, 1/2)

L(1/2) (6 + €o + €0 + 1) = F(1/2, 1/2).

The coefficients of the linear equations in the left-hand side can
be easily verified by the following Table 14.1.

[2] 3 x 3 designs and estimations of ¢y, Cy, Cqs Cg, 1> Ci2s €,
¢, and cy. Let us put for a moment

(Zi=f(=1, =1}, Zy= f(=1,0), Zy= f(=1, 1)
(2.11) ) Z,=f0, -1), Z,=f(0,0), Z,=f(0,1)
\Z,=f(1, 1), Zy=f(1,0), Z=f(1,1)
(2.12) Z=(Z,, Zy, Z3, Z,, Zs, Zs, Z1, Zg, Zy)
and

(2.13) ¢ = (Cm, €, €y Croy ity €12y €y Co1y Caa) -
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Table 14.1. The matrix A in 2 x 2
Po @1
—1/2  1/2 | —1/2 1/2
r 1 ) -1 1
V2 v2 | vz o J/2
]
‘ 1 1 1 -1 1
AR 2 | 2 2
?0
12 | L | L1 1 -1 1
Vv 2 2 2 i 2
—1 -1 -1 1 —1
—1/2 V2 2 2 2 2
¢1
1z | L | 1 1 —1 1
Vv 2 2 2 2 2
Table 14.2, The matrix 4 in 3 x 3
{
Y0 ] ¢ | 2
-1 0 1 -1 0 1 -1 0 1
1 1 1 —1 0 1 1 =2 1
V'3 V3 V3 | V2 /?' V6 V6 6
PR U U e A N S S T
V'3 3 38 3 ‘ V6 V6| /18 18 /18
1 1 1 1 1 1 1 2 1
P0 0 —_— = - - I —=—— 0 — _———
V'3 3 3 3 | /6 vV 6| /18 18 1
R (A S S A U SRR S R ST SR O
V'3 3 3 3 V6 v6 | 18 18 18
P N (N S S U S SN 8 D SR S
V2l V6 6 6 2 2 ViZo /12 /12
@1 0 0 0 0 0 0 0 0 0 0
PR A S (R S U O A PO U B S T O
V2 V6 V6 /6 2 2 V12 /12 /12
1 1 1 1 1, 1 1 1 2 1
V' 6 V18 18 18 12 s/ 12 6 6 6
¢ 0 _2 )2 2 2 2 2| _ 2z 4 2
ve| VI8 Ji8 18 12 V12 6 6 6
1 1 1 I 1 1 1 2 1
1 — — = —— = o o
4 V18 18 o/ 18J V12 V12 6 6 6
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Then it can be verified that estimations of ¢ by means of observa-

tions Z in the 3 x 3 designs will be obtained from the matrix
relation :

(2'14) Z :AS,BC)

where A4, , is an orthogonal matrix 9 x 9 uniquely determined from
the 3 x 3 design as verified from Table 14.2. The following for-
mulae obtained from (2.14) will be useful for the present purpose.

[ Co = *31;(2'1 + 2yt L+ Zi+ Zs+ Zs+ Z; + Zy + Zy)

o= Zs+ Zo+ Zo— 2, — Zy— 7))

1
18

Cp = N2V 2+ 2y~ 22y & 2+ Zs) v 2y Z - 2y

CD |

1
Cp = ""/'6;(27 +Zs+Zy—Z,— Zy— Zy)
V
(2.15) | ¢y = ‘é’(Zl +Zy—2Z,—- Zy)
1
Cpp — -~,—1:§(222 +Z; v Zy—Z — Zy — 2Zy)
Vv
G = ;/}IQ(Z1 +Zy+ Zy—2Zi+ Zs+ Zg) + Z; + Zy + Zs)

1
021 == ;/fé(‘_Zl + Z3 -+ 2Z4 i 225 - Z7 -+ Zg)

Cypy = %;(Z1 — 22,4+ Z; —2Z, + AZ, — 2Z; + Z; — 2Zs + Z,)

(3] General considerations. It can be now readily observed from
the results and the estimation procedures in [17 and [2] that the
following general assertions will be established :

(I°) In an m x n x (7) factorial design, we can estimate all the
following mn constants {C,;{ encountered in the effect-function

(2.16)  f(%3)= T coglx) + T e iuly)

+ ; % ¢, ¢:(%) o)(¥) -
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The similar results can be obtained for any factorial designs
my X my X - x m, with & factors (£>=3).

(2°) From the standpoint of our purposes which aim to give es-
timations of all constants {c¢;} in effect functions one and more
replications of all the combinations of treatments in factorial designs
will sometimes neither be necessary nor sufficient. The weighing
problems due to HOTELLING, KISHEN, BANERJEE and others may be
recognised to belong to our estimation-problems as special cases
when all the interactions of factorial designs become inexistent.
Specially the cases well discussed in literatures arc those when 2
designs are in consideration and the constants {€,1,..2°}, where all
i; are zero except one of them are to be estimated.

(3°) The problem how to choose numbers of levels in a factorial
design must be also investigated in connection with the problem
how to locate the observation-points in the domain of factorial argu-
ments. For instance we have used the observation-points (—1, —1),
(=1,1), (1, =1) and (1,1) in the domain —1=<zx, y=1. In case
of 2 x 2 design, and the 9 observation points (4,7) ({,7= —1,0,1)
in case of 3 x 3 design. In fact this is intimately connected with
the use of orthogonal polynomial system, but there remain certain
possibilities for making use of observation points of other types.
Indeed it seems to be necessary and adequate to develop such general
theory as giving us some principal indications for choosing ohserva-
tion-points.

(4°) The problem whether there may be any pecularities in
choosing orthogonal polynomials rather than more general orthogonal
function systems remains unsolved in this paper. It seems to the
present auther that there will be necessity to make clear the notion
of levels in connection with the adoptation of polynomial expansions.

§3. Successive designs of experiments concerning levels of
factors. In order to discuss the problems of successive designs
of experiments concerning levels of factors, we must treat at first
with the problem how to introduce and to define the dimensionality
of each factor. The various situations which we encounter in our
statistical researches, for example, in psychological ones, will some-
times require us to adopt generalised dimension functions which
have been introduced in the lattice theory and developed in con-
tinuous geometry by J. NEUMAN and others. Nevertheless in this
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present paper we shall restict ourselves within the classical dimen-
sion ideas and specially treat with the case of firnite dimension.

Let an effect function g(#) be assigned with its expansion into the
orthogonal polynomials of TSCHEBYCHEFF type in the interval (0, 1):

(3.01) g(t) = £ c.g..(1).

On the other hand our observations will be always finite dimen-
sional. In our terminology introduced in 1, we shall adopt some
k-th resolution {f,(#)} (i = 1,2, ---, k) of unit function. Then we
can not treat g(t) itself, but we can only investigate

1
(3.02) o = | f0(1)dG(t), (=12, k)
Jo

where G(t) is defined by

(t
(3.03) G(t) = i g(t)dt.

L0

To make the matter simpler without any fear of conclusion,

however, we may and we shall hereafter assume the circumstances
that our obscrvations will be done at a set of discrete points «=
(ti, by, t), 0=t <t,=.-=t,=1, and that cach observation
at the point #, can be expressed by

(304) x(t,) = E Cy, ¢n,k(t1) + &y,
k=0

where {e,} (i = 1,2, ---, #) are mutually independently distributed
according to a normal distribution N(0, »%), +* being unknown to us.

The real statistical problems with which we are concerned essen-
tially are to make inferences about the effect function g(#) itself,
while the observation (#,, t,, ---, #,) must be regarded to be chosen
according to our strategy in making these inferences. Out strategy
will be deterthined by our previous knowledge, by our object of
prognosis, and by cost considerations, in short by risk considerations.
In the following example we shall explain our problems how to in-
crease or to maintain or to decrease the number of levels in conne-
ction with the number of observation points.

Example 14.1. Let an effect function g(¢#) be of the third degree
(3.05) g(t) = ¢yeu(t) + ¢y ga(t) + C24n(2) -
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In view of the values ¢,(¢) (7=0,1,2;¢#=-1,0,1), we have

/ C, c c
)= - L (e -1
&(=1) R (¢ )
‘ C 2¢
3-06 ! /0 = 977 — ‘*_zi:-jl c; 0
(3:000 1 &)= "y - s HG0)
i
‘[\ gy =2 v o—i(e; 1), sy

V3 /26

Let us consider all the possible sequences of designs of experiments
in which the number of the observation points may increase in
a sense of successive process from one to three, by certain rule of
procedure. There are consequently 6! possible ways as the permuta-
tion of three points —1, 0 and 1. Due to the symmetry of the
matrix (¢;(2)) (7=0,1,2; #=—1,0,1), these 6 possible proce-
dures of experiments will be divided into three classes:

(1) (0, =1,1) and (0,1, -1); (2°) (=1,0,1) and (1,0, —1);
(3°) (=1,1,0) and (1, —1,0).

(a) Testing of the null hypothesis H,: f(¢)==0.

(i) First let us make observations at ¢ = ¢, with #, replications,
which yield us a random sample of size n,, O,®: (x,(#), %5(#1),
) xlnl(t)) .

(ii) Let us now test the nuil hypothesis H, by means of the
statistic

n

(3.07) Fi= (n,— 1)n (2,(8) /{2 (%,(8) — 2,(8))%,

Jj=1
for a prescribed level significance «,, 0 < «, 1, in view of the

F-distribution with the pair of degrees of freedom [1, n, — 1], where
we have put

(3.08) 2(t) = (xu(8) + 2(8) + -+ x0.(8)) /5, -

(iii); If F, is significart in (ii), then we shall stop the experi-
mentation, and we reject the null hypothesis H,.

(iii), If F, is non-significant in (ii), then we shall continuc the
experimentation, by making #, independent observations at the point
t,, which will yield us a random sample of size n,, O,,%: (%5(%,),
x22(t2) LA x3712(t2)) .

(iv) Let us now test the null hypothesis H, by means of the
statistic
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(3.09)  F,= (m — 1) m(x,(4,))*/ ;1 (25(82) — %(2;) )?

for a prescribed level of significance «,, 0 <«a, J1, in view of
F-distribution with the pair of degrees of freedom [1, #, — 1], where
we have put

(3.10) (1) = (2u(ty) + xp(ty) + - + %2,(8;)) /7,

(v), If F, is significant in (iv), then we shall stop the experi-
mentation, and we reject the null hypothesis H,.

(v), If F, is non-significant in (iv), then we shall continue the
experimentation by making #, independent observations at the point
#;, which will yields us a random sample of size n,, 0,,%: (x3(%),
xsz(ts) y T x3n(t3)) .

(vi) Let us now test the null hypothesis H;, by means of the
statistic

(311) By = (= D m(a(8)1/3 (%) ~ F())

for a prescribed level of significance a3, 0 < ay<C1, in view of
F-distribution with the pair of degrees of freedom [1, #; -- 1], where
we have put

(3.12) Z(t3) = (%y(ts3) + Xa(ds) + - + K30, (E5)) /7.

(vii), If F, is significant in (vi), then we reject the null hypo-
thesis H,.

(vii), If F, is non-significant in (vi), then we shall not reject
the null hypothesis H,.

(b) Testing of the null hypothesis H;: f(¢)=0.

This successive process is defined quite similarly as in (a) except
the statistic which will be used in F-tests. So far as the assump-
tions that the variances of {e{ (¢ = —1,0,1) are constants for all ¢,
we may replace F, and F; by the following F¥ and F respectively :

(3.13) Fj} — P — 1) + (1, — 1) b im x(8)) + 1% (8,) 4
L

250 S (x(t) — B(£))

=] J=

and
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(3.14) Fy*
_ f(m—1)+ (7_12“ 1)+ (5,—1) {(mzx(2)) +”z’z22(7£27)+?’139?324(t3))

3E Z (w(t) (1))

which can be tested by uses of F-distributions with the pairs of
degrees of freedom [2, , + n, — 2] and [3, 5, + 1, + 1, — 3] respect-
ively.

The following two points are essentially important in discussing
these procedures: (a) First these procedures manifestly appeal to
successive processes of testing hypotheses, and consequently we
must reconsider the errors of the first and the second kinds from
the standpoints developed in Parts I~ V, VII and VIII; (b) Differ-
ences of efficiencies of successive designs will be seen choosing
course of successive processes.

Y
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