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Abstract

We explain how beautiful combinatorial constructions involving the Robinson-Schensted-Knuth cor-
respondence, evacuation of tableaux, and the Kostka-Foulkes polynomials, arise naturally from the
structure of (affine) crystal graphs. The appearance of Kostka-Foulkes polynomials was observed by
Nakayashiki and Yamada. Almost all of the constructions presented herein, have analogues for every
simple and affine Lie algebra.
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1 Introduction

Fix an integer n > 1. Here is a little fine print for experts.

Assumption 1.1. In this primer a “crystal graph” is the crystal base of a finite-dimensional integrable
Uq(sln)-module. An “affine crystal graph” is the affine crystal base of a finite-dimensional integrable U ′

q(ŝln)-
module.

Beyond this, crystal graphs will not be defined precisely nor will they even be characterized combinato-
rially.1 Instead we describe some of their properties and give examples. Every once in a while we will invoke
the “magic” of representation theory of quantum affine algebras without explanation. Some knowledge is
assumed of partitions, tableaux, and the Robinson-Schensted-Knuth correspondence; this can be obtained
from [3].

My attribution will be sketchy. Kashiwara invented crystal graphs; see [6] for a real introduction to the
subject. The analogue of our “affine crystal graphs”, has its origins in the work of Kang, Kashiwara, Misra,
Miwa, Nakashima, and Nakayashiki [7]. The most important works for setting up the correct framework for
the subject (tensor products of Kirillov-Reshetikhin modules) are [5] [4].

The more familiar crystal graphs of integrable highest weight modules (analogous to our “crystal graphs”)
can be constructed in Kac-Moody generality using Littelmann paths [14]. For classical simple Lie algebras
Cédric Lecouvey has systematically applied the theory of crystal graphs to define a Schensted insertion [12]
[13] using the tableaux of Kashiwara and Nakashima [9].

Most of the constructions mentioned here in the context of crystal graphs, were anticipated by Lascoux
and Schützenberger (see, for example, [15]), many of whose works on tableau combinatorics preceded the
theory of quantum groups and crystal graphs.

This PDF file has embedded hyperlinks to help you navigate.

2 Crystal graphs

Example 2.1. Here’s a crystal graph for n = 3. Its vertex set consists of elements ij for i, j ∈ {1, 2, 3}.

Each of its directed edges is labeled by an element of the set {1, 2}.

11
1

−−−−→ 12
2

−−−−→ 13

1

y
y1

21 22 −−−−→
2

23

2

y
y2

31 −−−−→
1

32 33

2.1 Basic features

Every crystal graph is a finite directed graph whose edges are labeled by colors in the set I = {1, 2, . . . , n−1}.
Traditionally a crystal graph is given the same name as its vertex set.

2.1.1 String property

Every crystal graph has the following property. For a fixed i ∈ I, if all of the edges are removed except those
colored i, the resulting directed graph consists of a disjoint union of finite directed paths called i-strings.
Given a vertex b, let fi(b) (resp. ei(b)) be the vertex following (resp. preceding) b in its i-string. If this

1For a characterization of crystal graphs see [23].
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vertex does not exist then the result is declared to be the special symbol ∅. Let εi(b) (resp. ϕi(b)) be the
number of steps to the beginning (resp. end) of the i-string of b. fi and ei are called the Kashiwara lowering

and raising operators.

b b b b b b b b b
i i i i i i i i

ei(b) b fi(b)

εi(b)

ϕi(b)

Figure 1: The i-string of b

Let si be the involution on a crystal graph that reverses each i-string. In other words, si(b) is the
element on the i-string of b such that εi(si(b)) = ϕi(b) or equivalently ϕi(si(b)) = εi(b). By definition si is
an involution. It is not obvious, but it can be shown that the si define an action of the Weyl group (in our
case the symmetric group Sn) on any crystal graph [6]. si is the Kashiwara reflection operator.

Example 2.2. The 2-strings of the crystal graph of the previous example are

11 , 12 → 13 , 22 → 23 → 33 , 21 → 31 , 32 .

We have f2( 33 ) = ∅ , e2( 33 ) = 23 , ε2( 33 ) = 2, and ϕ2( 33 ) = 0. s2 fixes 11 , 23 , 32 and

exchanges 12 with 13 , 22 with 33 , and 21 with 31 .

2.1.2 Weight function

Every crystal graph B has a weight function wt : B → Z
n. For i ∈ I let αi = hi ∈ Z

n (the simple root
and simple coroot) be the i-th standard basis vector minus the (i + 1)-th. For all i ∈ I and b ∈ B,

wt(fi(b)) = wt(b)− αi if fi(b) 6= ∅. (2.1)

wt(ei(b)) = wt(b) + αi if ei(b) 6= ∅. (2.2)

wt(si(b)) = siwt(b) (2.3)

〈hi , wt(b)〉 = ϕi(b)− εi(b) (2.4)

where si acts on Z
n by exchanging the i-th and (i + 1)-th components.

Example 2.3. In Example 2.1, the weight of ij is the sum of the i-th and j-th standard basis vectors in Z
3.

Let b = 33 . Then wt(b) = (0, 0, 2), wt(e2(b)) = wt( 23 ) = (0, 1, 1), and (0, 1, 1) − (0, 0, 2) = (0, 1,−1) =
α2, verifying (2.2). Also 〈h2 , wt(b)〉 = 〈(0, 1,−1) , (0, 0, 2)〉 = −2 = ϕ2(b)− ε2(b), verifying (2.4).

Remark 2.4. The weight function on B is determined by the colored directed graph structure on B, modulo
the “irrelevant” all-ones vector (1n). We have

〈hi , wt(b)〉 = βi − βi+1 for wt(b) = (β1, . . . , βn) ∈ Z
n. (2.5)

The position of b in its i-string specifies the right hand side of (2.4) and hence fixes the values βi−βi+1 for all
i ∈ I. This determines β modulo (1n). We are using the gln-weight lattice Z

n; if we used the (more correct)
sln-weight lattice is Z

n/Z(1n), then the weight would be determined entirely by the crystal structure.

2.2 Examples

2.2.1 Trivial crystal

The trivial crystal graph B(0) consists of a single vertex of weight (0n) and no directed edges.
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2.2.2 Single box

The single box crystal graph B(1) is given by

1 2 3 · · · n
1 2 3 n−1

The weight of i is the i-th standard basis vector in Z
n.

2.2.3 Words

The set B(1)k of words of length k in the alphabet B(1), is a crystal graph2. The weight of a word b ∈ B(1)k

is just its content, the vector (β1, . . . , βn) ∈ Z
n where βi is the number of occurrences of the letter i in b. Let

i ∈ I. To go from b to fi(b) (resp. ei(b)) a single letter i is changed to i+1 (resp. i+1 to i); this is consistent
with (2.1) (resp. (2.2)). To decide which letter to change, view each letter i as a closing parenthesis “)” and
each letter i + 1 as an opening parenthesis “(”, with other letters being invisible. Match the parentheses
in the usual way; adjacent pairs of parentheses “()” are matched and declared to be invisible until no more
matching can be done. The subword of unmatched parentheses has the form )ϕ(ε, some number ϕ of closing
parentheses followed by some number ε of opening parentheses. By definition ϕi(b) = ϕ and εi(b) = ε
are the numbers of unmatched letters i and i + 1 respectively, fi(b) is obtained by changing the rightmost
unmatched i to i + 1 and ei(b) is obtained by changing the leftmost unmatched i + 1 to i. If there is no
unmatched letter i then fi(b) = ∅ and if there is no unmatched letter i + 1 then ei(b) = ∅.

To indicate the role of i we shall refer to i-matched and i-unmatched letters.

Example 2.5. Let i = 2. A word b, the associated parentheses with 2-unmatched parentheses underlined,
and f2(b) and e2(b) are given below.

b = 1 2 4 3 3 1 2 3 2 1 2 4 2 2 3 1 2 3 4 3
) ( ( ) ( ) ) ) ) ( ) ( (

f2(b) = 1 2 4 3 3 1 2 3 2 1 2 4 2 3 3 1 2 3 4 3
e2(b) = 1 2 4 3 3 1 2 3 2 1 2 4 2 2 3 1 2 2 4 3

In this particular example, s2(b) = f2(b) since the 2-unmatched subword is )3(2.

Example 2.6. Example 2.1 is B(1)2 for n = 3.

The operators si on words appeared in [15], where they were called automorphisms of conjugation.
Let u be a word. Define

uy = vx where u = xv and x is a letter. (2.6)

uy is pronounced “u-crank”. It follows easily from the definitions that cranking and automorphisms of
conjugation commute:

(siu)y = si(u
y). (2.7)

2.2.4 Tableaux

Assumption 2.7. All partitions we consider will have at most n parts.

Let λ, µ be partitions with µ ⊂ λ (that is, µi ≤ λi for 1 ≤ i ≤ n) and let B(λ/µ) be the set of semistandard
tableaux of the skew shape λ/µ [3].

The row-reading (resp. column-reading) word of a tableau T ∈ B(λ/µ) is obtained by reading the
rows (resp. columns) of T ; see the example.

2See Warning 2.18 regarding our conventions.
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Example 2.8. Let n = 4, λ = (5, 5, 3, 0) and µ = (2, 1, 0, 0). A tableau T ∈ B(λ/µ) and its row- and
column-reading words are given below.

T =
1 3 4

1 2 4 5
2 3 3

rowword(T ) = 233.1245.134
colword(T ) = 2.31.321.43.54

Taking the column-reading word of a tableau defines an embedding

B(λ/µ) →֒ B(1)|λ|−|µ|

T 7→ colword(T )
(2.8)

where |λ| =
∑

i λi.

Lemma 2.9. The set of column-reading words of tableaux in B(λ/µ) is closed under ei and fi for all i ∈ I.

B(λ/µ) is a crystal graph. Given a tableau T ∈ B(λ/µ), take its column-reading word, apply fi to that
word, and put the result back into the diagram of λ/µ to form the tableau fi(T ), which is semistandard by
the Lemma. ei(T ) is defined similarly. The weight of a tableau is the weight of its column-reading word.

Example 2.10. Continuing the previous example, e2(T ) is given below.

e2(colword(T )) = 2.21.321.43.54 e2(T ) =
1 3 4

1 2 4 5
2 2 3

Example 2.11. For n = 3 and λ = (2, 1, 0) the crystal graph B(λ) is given below.

1 1
2

1 1
3

1 2
2

1 2
3

1 3
2

2 2
3

1 3
3

2 3
3

2

1

1

2

1

2

2

1

Assumption 2.12. From now on a tableau shall be identified with its column-reading word.

Remark 2.13. Using the row-reading word also defines a crystal graph structure on B(λ/µ). The resulting
crystal graph structure is the same as that for the column-reading word. More generally [2] any reading
order that is a linear extension of the “southwest-to-northeast” partial order, induces the same crystal graph
structure on B(λ/µ).

2.2.5 Maximum column

Example 2.14. Consider B(1n). It has a unique element, the single column tableau n · · · 21. It has weight
(1n) and admits no arrows. It only differs from the trivial crystal B(0) by its weight function, which gives
the value (1n) on its lone element.

2.3 Some general constructions and notions

2.3.1 Connected components

A connected component of a crystal graph is also a crystal graph.
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2.3.2 Disjoint union or direct sum

If B and B′ are crystal graphs, then their disjoint union is also a crystal graph, traditionally denoted by
B
⊕

B′ and called the direct sum. Any crystal graph is the direct sum of its connected components.

2.3.3 Morphisms

For us, a morphism Ψ : B → B′ of crystal graphs is a map that preserves colored directed edges and
weights. More precisely, a morphism is a map Ψ : B → B′ that satifies

Ψ(fi(b)) = fi(Ψ(b))

Ψ(ei(b)) = ei(Ψ(b))

wt(Ψ(b)) = wt(b).

(2.9)

where Ψ(∅) = ∅ by convention.

Example 2.15. The crystal graph structure on B(λ/µ) was defined by asserting that the map (2.8) is a
morphism of crystal graphs.

Composing morphisms yields a morphism. An isomorphism of crystal graphs is a bijective morphism
of crystal graphs whose inverse function is also a morphism of crystal graphs.

Our definition of morphism preserves strings in the following sense.

Lemma 2.16. Let Ψ : B → B′ be a morphism that sends b to b′ and let i ∈ I. Then b has an outgoing (resp.
incoming) i-arrow if and only if b′ does. In particular, the i-strings of b and b′ are isomorphic, and they lie
in same position within their respective i-strings. More formally, (i) fi(b) 6= ∅ if and only if fi(b

′) 6= ∅, (ii)
ei(b) 6= ∅ if and only if ei(b

′) 6= ∅, (iii) ϕi(b) = ϕi(b
′), and (iv) εi(b) = εi(b

′).

Proof. If fi(b) 6= ∅ then Ψ(fi(b)) = fi(Ψ(b)) 6= ∅ since Ψ sends B to B′. Conversely, if fi(Ψ(b)) 6= ∅ then
Ψ(fi(b)) 6= ∅. Since Ψ sends ∅ to ∅ and B to B′ it follows that fi(b) 6= ∅. This proves (i). (iii) follows
immediately from (i). (ii) and (iv) are similar.

Eventually we will see that morphisms have the incredibly strong property that they preserve connected
components. The following result is proved as part of Corollary 2.54.

Theorem 2.17. A morphism sending one element to another, restricts to an isomorphism between their
components.

2.3.4 Tensor product

Warning 2.18. Our convention for tensor products is the left-to-right opposite of that of Kashiwara and
most of the literature. Our convention is directly compatible with tableaux, Knuth relations, Robinson-
Schensted correspondence, etc.

The tensor product construction is defined below. It may appear to be an unnecessarily complicated
version of the construction for words. However this construction is useful conceptually and is necessary later
for affine crystal graphs.

Let B1, B2, . . . , Bk be crystal graphs. The tensor product crystal graph B1 ⊗ · · · ⊗ Bk has vertex set
given by the Cartesian product B1 × · · · ×Bk. The element (b1, b2, . . . , bk) is denoted b = b1 ⊗ · · · ⊗ bk. The
weight function is the sum

wt(b) =

k∑

j=1

wtBj
(bj). (2.10)

The Kashiwara operator fi(b) (resp. ei(b)) is obtained by applying fi (resp. ei) to one of the tensor factors
of b. Form the word of parentheses

)ϕi(b1)(εi(b1)⊗ · · · ⊗)ϕi(bk)(εi(bk)

7



where the tensor symbols indicate to which tensor factor a parenthesis belongs. Match the parentheses as
usual. Then define

fi(b) = · · · ⊗ bp−1 ⊗ fi(bp)⊗ bp+1 ⊗ · · · (2.11)

where bp is the tensor factor containing the rightmost unmatched “)”. If there are no unmatched “)” then
fi(b) = ∅. Similarly

ei(b) = · · · ⊗ bq−1 ⊗ ei(bq)⊗ bq+1 ⊗ · · · (2.12)

where bq is the tensor factor containing the leftmost unmatched “(”. If there are no unmatched “(” then
ei(b) = ∅. As before ϕi(b) is the total number of unmatched “)” and εi(b) is the total number of unmatched
“(”.

Example 2.19. The crystal graph structure defined in section 2.2.3 on the set B(1)k of words of length k
in the alphabet B(1), is the k-fold tensor power B(1)⊗k. The weight function on B(1)k given by the content
of a word, is precisely the sum of the weights of its letters as prescribed by (2.10).

Proposition 2.20. The tensor product operation on crystal graphs is associative. Any grouping of tensor
factors produces an isomorphic crystal graph.

Proof. It is obvious from the parenthesis constructions that (B1 ⊗ B2) ⊗ B3
∼= B1 ⊗ (B2 ⊗ B3) since both

are isomorphic to the threefold construction B1 ⊗B2 ⊗B3.

Remark 2.21. The trivial crystal B(0) is the identity for the tensor product: for any crystal graph B,
B ⊗B(0) ∼= B(0)⊗B ∼= B.

Warning 2.22. Representation theory implies that B⊗B′ ∼= B′⊗B. In general there is no commutativity
in th sense that there is generally no natural isomorphism between tensor products in different orders. We
shall see an important exception in section 4.8 for certain affine crystal graphs.

The twofold tensor product structure is given explicitly below. Define ∅ ⊗ b′ = ∅ and b⊗ ∅ = ∅. Then

fi(b⊗ b′) =

{
b⊗ fi(b

′) if εi(b) < ϕi(b
′)

fi(b)⊗ b′ otherwise.
(2.13)

ei(b⊗ b′) =

{
ei(b)⊗ b′ if εi(b) > ϕi(b

′)

b⊗ ei(b
′) otherwise

(2.14)

and

ϕi(b⊗ b′) = ϕi(b) + max(0, ϕi(b
′)− εi(b)) (2.15)

εi(b⊗ b′) = εi(b
′) + max(0, εi(b)− ϕi(b

′)). (2.16)

We end this section with a few useful results.

Proposition 2.23. Let Ψi : Bi → B′
i be morphisms of crystal graphs for i = 1, 2. Then Ψ1⊗Ψ2 : B1⊗B2 →

B′
1 ⊗B′

2 given by b1 ⊗ b2 7→ Ψ1(b1)⊗Ψ2(b2), is a crystal graph morphism.

Proof. Follows directly from the definitions.

Proposition 2.24. Suppose b1 ⊗ b2 and c1 ⊗ c2 are two elements in the same component of B1⊗B2. Then
b1 and c1 are in the same component of B1 and b2 and c2 are in the same component of B2.

Proof. Since being in the same component is an equivalence relation, we may reduce to the case that
fi(b1 ⊗ b2) = c1 ⊗ c2. Since fi acts on one tensor factor or the other by (2.13), the result follows.

Lemma 2.25. The concatenation map B(1)k ⊗ B(1)l → B(1)k+1 given by u ⊗ v 7→ uv is a crystal graph
morphism.
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Proof. Example 2.19 and Proposition 2.20.

Proposition 2.26. Let D1,D2, . . . ,Dk be skew partition diagrams with total size N . Then the map B(D1)⊗
· · · ⊗B(Dk)→ B(1)N given by T1 ⊗ · · · ⊗ Tk 7→ T1T2 · · ·Tk is an injective crystal graph morphism.

Proof. The map B(Di) → B(1)|Di| given by taking the reading word, is a morphism by definition; see
Example 2.19. Tensoring these morphisms together is a morphism by Proposition 2.23. Following that with
the concatenation map (a morphism by Lemma 2.25) is the desired map, which is therefore a morphism.

2.3.5 Dual

This construction comes from the contragredient dual of a module. Given a crystal graph B, there is a
crystal graph B∨ called its dual, obtained by renaming each vertex b by b∨, reversing each arrow, and taking
the negative of the weight function. More precisely, B∨ = {b∨ | b ∈ B} with

fi(b
∨) = ei(b)

∨

ei(b
∨) = fi(b)

∨

ϕi(b
∨) = εi(b)

εi(b
∨) = ϕi(b)

wt(b∨) = −wt(b)

(2.17)

where by convention ∅∨ = ∅.

Example 2.27. The dual B(1)∨ of the single box crystal is given by reversing the arrows in B(1) (see
section 2.2.2) and negating weights:

1∨ 2∨ 3∨ · · · n∨1 2 3 n−1

The weight of i∨ is the negative of the i-th standard basis vector in Z
n.

Lemma 2.28. (B1 ⊗B2)
∨ ∼= B∨

2 ⊗B∨
1 .

Proof. It follows directly from the definitions that the map (b1 ⊗ b2)
∨ 7→ b∨2 ⊗ b∨1 is an isomorphism.

2.3.6 Dynkin symmetry

In general a crystal graph has an associated Kac-Moody algebra g which in our case is sln. These algebras
can in some sense be completely encoded by a graph called the Dynkin diagram, which in our case is the
graph An−1 pictured below. Its vertices are labeled by the index set i ∈ I for the vectors given by the simple
roots αi. It has directed edges labeled by integers. Vertices i and j are adjacent if and only if αi and αj are
not orthogonal, and the direction and value of the edge depends on the relative lengths of αi and αj and the
angle between them.

A Dynkin automorphism is an automorphism of the Dynkin diagram, a bijective self-map that pre-
serves all of the above graph structure. The Dynkin diagram An−1 has an automorphism of order 2 denoted
by ∗, which exchanges the Dynkin vertices i and n− i (or rather, the simple roots αi and αn−i) for i ∈ I.

b b b b· · ·
1 2 n−2 n−1

Remark 2.29. Every simple Lie algebra has an analogous Dynkin automorphism of order at most 2 (which
is the unique nontrivial Dynkin involution in types E6 and Dn for n odd) given by permuting the simple
roots by αi 7→ −w0αi where w0 is the longest element in the Weyl group. For our situation w0 is the
reversing permutation.
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Any symmetry τ of the Dynkin diagram gives rise to an induced symmetry for the crystal graphs. By
representation theory the crystal graphs and weight lattice have an induced symmetry also denoted τ . For
the automorphism ∗ of An−1, the induced symmetry of the weight lattice is negative reversal:

∗ : Z
n → Z

n

(β1, . . . , βn)∗ := −w0(β) = (−βn, . . . ,−β1).
(2.18)

Theorem 2.30. Let τ be any Dynkin automorphism and B any crystal graph. Then there is a crystal graph
Bτ that is obtained by renaming each vertex b by τ(b), relabeling each arrow i by τ(i), and changing the
weight of b by τ . That is, Bτ is defined to be a set with a bijection τ : B → Bτ such that

τ(fi(b)) = fτ(i)(τ(b))

τ(ei(b)) = eτ(i)(τ(b))

τ(si(b)) = sτ(i)(τ(b))

τ(wt(b)) = wt(τ(b))

(2.19)

for all b ∈ B and i ∈ I.

Corollary 2.31. Given any (type An−1) crystal graph B there is a crystal graph B∗ with vertices b∗, and
there is an i-arrow from b to c if and only if there is an (n− i)-arrow from b∗ to c∗, with wt(b∗) = wt(b)∗.

Example 2.32. The crystal graph B(1)∗ is given below.

1∗ 2∗ 3∗ · · · n∗
n−1 n−2 n−3 1

The weight of i∗ is the negative of the (n + 1− i)-th standard basis vector.

Lemma 2.33. For any crystal graphs B1 and B2, (B1 ⊗B2)
∗ ∼= B∗

1 ⊗B∗
2 .

2.3.7 The # operation, reverse complement, and antitableaux

Combining the Dynkin automorphism ∗ with duality ∨ we obtain the # operation. It associates to each
crystal graph B a crystal graph B# which relabels each vertex b ∈ B by b#, reverses each arrow i and
relabels it n− i. It changes weight by the map # : Z

n → Z
n given by

(β1, . . . , βn)# = (βn, . . . , β1). (2.20)

Proposition 2.34. Given any crystal graph B there is a crystal graph B# = {b# | b ∈ B} with crystal
structure defined by

fi(b
#) = en−i(b)

#

ei(b
#) = fn−i(b)

#

si(b
#) = sn−i(b)

#

wt(b#) = wt(b)#

(2.21)

Example 2.35. The crystal graph B(1)#, obtained from that of B(1)∗ by duality, that is, by reversing
arrows and negating weights, is given below.

1# 2# 3# · · · n#
n−1 n−2 n−3 1

The weight of i# is the (n + 1− i)-th standard basis vector.
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The following natural isomorphism follows immediately from Lemmata 2.28 and 2.33.

Proposition 2.36. For any crystal graphs B1, B2, the map (b2 ⊗ b1)
# 7→ b#

1 ⊗ b#
2 is an isomorphism of

crystal graphs (B2 ⊗B1)
# ∼= B#

1 ⊗B#
2 .

Warning 2.37. It turns out that there is an isomorphism B ∼= B# but it is not canonical in general; it is
akin to the fact that the isomorphism B1 ⊗B2

∼= B2 ⊗B1 is not canonical.

Remark 2.38. (i) Comparing B(1) in section 2.2.2 and B(1)# in Example 2.35, we see that B(1)# ∼=
B(1) via the identification x# = n + 1− x for x ∈ B(1).

(ii) By Proposition 2.36 there is a natural bijection B(1)k → B(1)k given by b = bk · · · b1 7→ b# := b#
1 · · · b

#
k

satisfying (2.21). This is the well-known reverse complement map on words. It restricts to a natural
bijection # : B(r)→ B(r) on weakly increasing words of length r.

(iii) For β = (β1, . . . , βk) ∈ Z
k
≥0, let Bβ = B(βk) ⊗ · · · ⊗ B(β1) and b = bk ⊗ · · · ⊗ b1 ∈ Bβ be a tensor

product of weakly increasing words. By Proposition 2.36 there is a natural bijection # : Bβ → Brev(β)

given by bk ⊗ · · · ⊗ b1 7→ b#
1 ⊗ · · · ⊗ b#

k satisfying (2.21) where rev(β) = (βk, . . . , β1) is the reverse of β.

(iv) The restriction of the map b 7→ b# on B(1)k to the subset B(λ), gives a natural bijection B(λ)→ B(λ)#

satisfying (2.21). The latter set, which is already defined by the abstract operation B 7→ B#, may
be identified (via reading words as usual) with the set of semistandard tableaux of the skew shape
obtained by the 180-degree rotation of the diagram of λ. The image T# of T is called the antitableau
of T .

Example 2.39. Let n = 4 and λ = (4, 2, 1, 0). Here is a tableau T ∈ B(4, 2, 1, 0) and its antitableau T#.

T =
1 1 1 2
2 4
3

T# =
2

1 3
3 4 4 4

2.4 Connectedness and consequences

2.4.1 B(λ) for dominant weights λ

A dominant weight is a weakly decreasing sequence of n integers, some of which could be negative. Let
Z

n
≥ denote the set of dominant weights. Let γ ∈ Z

n
≥. If γ is a partition then B(γ) has already been defined.

If γn < 0 define
B(γ) := (B(1n)∨)⊗−γn ⊗B(γ − (γn

n)). (2.22)

Example 2.40. Let n = 3. Then B(0, 0,−1) = B(1, 1, 1)∨ ⊗B(1, 1, 0).

Remark 2.41. Since B(1n) has no arrows, neither does any of its tensor powers nor do those of B(1n)∨.
Therefore tensoring (on either side) with B(1n)⊗k (resp. (B(1n)∨)⊗k) preserves the colored directed graph
structure and changes the weight by adding (resp. subtracting) (kn). Note also that if λ is a partition with
λn > 0 then all of the λn columns of height n in a tableau of shape λ, must be copies of the single column
n · · · 21. Therefore for all γ ∈ Z

n
≥ and k ≥ 0 we have

B(γ + (kn)) = B(1n)⊗k ⊗B(γ) (2.23)

B(γ − (kn)) = B(1n)∨⊗k ⊗B(γ). (2.24)

2.4.2 Highest weight vectors

A highest weight vector b ∈ B is a vertex with no incoming edges, that is, ei(b) = ∅ (or equivalently
εi(b) = 0) for all i ∈ I. Given a crystal graph B, let Y(B) denote the set of highest weight vectors in B and
Y(B;λ) those of weight λ. The weight of a highest weight vector is dominant.
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Proposition 2.42. Let i ∈ I and b ∈ B have weight β ∈ Z
n. Then ϕi(b) ≥ βi− βi+1 and εi(b) ≥ βi+1− βi.

If b ∈ Y(B) then β ∈ Z
n
≥.

Proof. Follows by (2.4), (2.5), and the fact that εi(b), ϕi(b) ≥ 0.

Lemma 2.43. For every λ ∈ Z
n
≥, every morphism of crystal graphs sends highest weight vectors of weight

λ to highest weight vectors of weight λ.

Proof. Let Ψ : B → B′ be a morphism and b ∈ Y(B). Then for all i ∈ I, ei(Ψ(b)) = Ψ(ei(b)) = Ψ(∅) = ∅.
Therefore Ψ(b) ∈ Y(B′). Finally Ψ, being a morphism, preserves weight.

Proposition 2.44. For every λ ∈ Z
n
≥, B(λ) is connected. It has a unique highest weight vector denoted yλ.

If λ is a partition yλ is called the Yamanouchi tableau, the unique tableau of shape λ whose i-th row consists
solely of letters i for all i.

Proof. See the appendix.

Example 2.45.

y(4,4,2,1) =

1 1 1 1
2 2 2 2
3 3
4

Remark 2.46. Since εi(yµ) = 0, by (2.4) and (2.5) we have ϕi(yµ) = µi − µi+1 for i ∈ I.

2.4.3 Classification of connected crystal graphs

Lemma 2.47. Any morphism Ψ : B → B′ whose domain B is connected, is uniquely specified by fixing one
particular value of Ψ.

Proof. Immediate from the definitions.

The following nontrivial and strong fact is a direct consequence of complete reducibility and highest
weight theory for suitable representations of the quantum group Uq(sln).

Theorem 2.48. For every connected crystal graph B, there is a unique λ ∈ Z
n
≥ such that B ∼= B(λ).

Moreover the isomorphism is unique.

Proposition 2.49. Every connected crystal graph B unique highest weight vector; if the weight of that vector
is λ then B ∼= B(λ).

Proof. Let B be connected. By Theorem 2.48 there is an isomorphism P : B → B(λ) for some λ ∈ Z
n
≥. By

Proposition 2.44 B(λ) has a unique highest weight vector yλ. By Lemma 2.43 P−1(yλ) is the unique highest
weight vector of B and it has weight λ by Lemma 2.43.

Lemma 2.50. Let Ψ : B ∼= B′ be an isomorphism of connected crystal graphs. Then the highest weight
vectors of B and B′ have the same weight.

Proof. By Proposition 2.49 B and B′ have unique highest weight vectors, say y and y′. By Lemma 2.43
Ψ(y) = y′, so y and y′ have the same weight since morphisms preserve weight.

Remark 2.51. The crystal graphs B(λ) for λ ∈ Z
n
≥ form a set of representatives of the isomorphism classes

of connected crystal graphs. This holds by Theorem 2.48, Lemma 2.50, and Proposition 2.44.
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2.4.4 Decomposition

By Proposition 2.49 we may define the map Y : B → Y(B) that sends b ∈ B to the unique highest weight
vector in its component. The following is the abstract canonical decomposition of a crystal graph into its
components.

Corollary 2.52. Let B be any crystal graph. For each component C of B, let λ = λ(C) ∈ Z
n
≥ and

P = PC : C ∼= B(λ) be the isomorphism of Theorem 2.48. Then there is an isomorphism

B ∼=
⊕

λ

B(λ)× Y(B;λ)

b 7→ (P (b), Y (b))

(2.25)

such that

P (F (b)) = F (P (b)) (2.26)

Y (F (b)) = Y (b) (2.27)

for all b ∈ B, where F is one of the operators fi, ei, si for i ∈ I.

Proof. See the appendix.

Example 2.53. The crystal graph in Example 2.1 has components which are actually equal to B(2) and
B(1, 1) (under the identification of a tableau with its column reading word) with respective highest weight
vectors 11 and 21.

Corollary 2.54. Let Ψ : B → B′ be any crystal graph morphism. Then (i) for all b ∈ B, Ψ restricts to
an isomorphism of the component of b with that of Ψ(b). (ii) P (Ψ(b)) = P (b). (iii) b ∈ Y(B) if and only if
Ψ(b) ∈ Y(B′).

Proof. See the appendix.

Corollary 2.55. Let B and B′ be crystal graphs.

1. Let Ψ : B → B′ be a morphism of crystal graphs. Then for each partition λ, there is a map Ψλ :
Y(B, λ) → Y(B′, λ) given by restriction of Ψ to Y(B, λ). If Ψ is an isomorphism then the Ψλ are
bijections.

2. Suppose for each λ there is prescribed map of sets Ψλ : Y(B, λ) → Y(B′, λ). Then there is a unique
morphism Ψ : B ∼= B′ whose restriction to Y(B, λ) is Ψλ for all λ. If each of the Ψλ is a bijection
then Ψ is an isomorphism.

Proof. See the appendix.

A crystal graph is multiplicity-free if its connected components are nonisomorphic.

Corollary 2.56. Let B and B′ be multiplicity-free and Ψ : B → B′ a morphism. Then Ψ is an isomorphism
and is the unique isomorphism B → B′.

Proof. Immediate from Corollary 2.55 as any function between singleton sets gives the unique bijection
between them.
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2.5 Multiplicities in tensor products

Let B be a crystal graph. Define the multiplicity of B(λ) in B by the number of highest weight vectors of
B of weight λ:

[B : B(λ)] = |Y(B, λ)|. (2.28)

We shall compute this when B is a tensor product of various kinds. There are two kinds of formulae. The
first comes from the definition: just count highest weight vectors. The other kind of formula is dual to the
first; one applies the bijection (2.34) in some form and counts certain tableaux. We will see them later as
Q-tableaux from the Robinson-Schensted-Knuth correspondence.

Proposition 2.57. b⊗ b′ ∈ Y(B ⊗B′) if and only if b′ ∈ Y(B′) and εi(b) ≤ ϕi(b
′) for all i ∈ I.

Proof. Follows from (2.16).

2.5.1 Words, Yamanouchi property, and Robinson-Schensted

Say that the word b = bk · · · b2b1 ∈ B(1)k is Yamanouchi if the weight of each of its right factors bj · · · b2b1

is a partition.

Example 2.58. Let n = 3. y = 2131121 is a Yamanouchi word. Its right factors (in increasing length)
are the empty word ∅, 1, 21, 121, 1121, 31121, 131121, and 2131121, whose weights are (0, 0, 0), (1, 0, 0),
(1, 1, 0), (2, 1, 0), (3, 1, 0), (3, 1, 1), (4, 1, 1), (4, 2, 1), which are all partitions.

Lemma 2.59. There is a bijection from the set of Yamanouchi words of weight λ, to the set ST(λ) of
standard tableaux of shape λ. It sends y = yk · · · y1 7→ Q ∈ ST(λ) where the letter j is placed in the yj-th
row of Q.

Example 2.60. The standard tableau Q for y in the previous example is

j 7 6 5 4 3 2 1
yj 2 1 3 1 1 2 1

Q =
1 3 4 6
2 7
5

. (2.29)

Proposition 2.61. A word is a highest weight vector if and only if it is Yamanouchi.

Proof. See the appendix.

Here the direct count of highest weight vectors of weight λ in B(1)k is the number of Yamanouchi words
of weight λ. The multiplicity space tableaux are in this case the set ST(λ).

By Corollary 2.52 and Lemma 2.59 we obtain the decomposition

B(1)k ∼=
⊕

λ

B(λ)× ST(λ). (2.30)

The explicit computation of this bijection, the Robinson-Schensted correspondence, is developed later in
section 3.2.

2.5.2 Skew shape and partition; the LR rule

For a partition µ, say that a word u is µ-Yamanouchi if and only if uyµ is Yamanouchi. Equivalently, by
Proposition 2.57 and Remark 2.46,

u is µ-Yamanouchi if and only if εi(u) ≤ µi − µi+1 for all i ∈ I. (2.31)

Let LRµ(δ/γ, β) the set of semistandard tableaux of shape δ/γ that are µ-Yamanouchi of weight β.
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Proposition 2.62. There is a bijection from the set LRµ(δ/γ, λ − µ) to Y(B(δ/γ) ⊗ B(µ), λ) given by
T 7→ T ⊗ yµ. In particular

[B(δ/γ)⊗B(µ) : B(λ)] = |LRµ(δ/γ, λ− µ)|. (2.32)

Proof. Let T ⊗ T ′ ∈ Y(B(δ/γ) ⊗ B(µ), λ). Then T ′ = yµ by Propositions 2.57 and 2.44. By Propositions
2.26 and 2.61, Tyµ is Yamanouchi of weight λ, that is, T is µ-Yamanouchi of weight λ− µ.

Given partitions λ, µ, ν define the Littlewood-Richardson (LR) coefficient cλ
µν by

cλ
µν = [B(µ)⊗B(ν) : B(λ)]. (2.33)

Corollary 2.63. cλ
µν = |LRµ(ν, λ− µ)|.

We shall recover the usual Littlewood-Richardson rule.
Let W (α, β) be the set of sequences u = (. . . , u2, u1) of weakly increasing words such that ui has length

αi for all i and
∑

i wt(ui) = β.

Lemma 2.64. There is a bijection
W (α, β)↔W (β, α) (2.34)

sending u to v, such that the number of letters i in vj, is the number of letters j in ui.

Proof. Obvious.

Define the overlap ov(c, b) of the weakly increasing words c and b, to be the maximum r such that there
is a bijection from the letters of a subword b′ of b of length r, to the letters of a subword c′ of c of length r,
such that every letter is sent to a larger one. This measures by how many columns one may slide the row c
under the row b to obtain a two-row skew tableau.

Example 2.65. Let c = 12245 and b = 334. Then ov(c, b) = 2, since

3 3 4
1 2 2 4 5

is a semistandard skew tableau but 3 3 4
1 2 2 4 5

is not.

Lemma 2.66. Let u and v correspond under the bijection (2.34). Then ov(ui+1, ui) is the number of
i-matched pairs in the concatenated word · · · v2v1.

Proof. This follows from the fact that the number of i-matched pairs in a word is the same as the maximum
r such that there is a bijection from a subset of r of the letters i to a subset of r of the letters i + 1 such
that each i maps to an i + 1 to its left.

Lemma 2.67. Let u and v correspond under the bijection (2.34). Then u gives the rows of a tableau of
skew shape λ/µ if and only if v is µ-Yamanouchi of weight λ− µ.

Proof. Clearly the rows of u have the right size if and only if v has weight λ−µ. We may assume that these
conditions hold. The following are equivalent: (i) The rows ui+1 and ui fit as a semistandard tableau into
the i-th and (i+1)-th rows of λ/µ. (ii) ov(ui+1, ui) ≥ λi+1−µi. (iii) v has at least λi+1−µi i-matched pairs.
(iv) v has at most λi+1 − µi+1 − (λi+1 − µi) = µi − µi+1 i-unmatched letters i + 1. (v) v is µ-Yamanouchi.
(i) and (ii) are clearly equivalent. (ii) and (iii) are equivalent by Lemma 2.66. (iii) and (iv) are equivalent
since an i + 1 is either i-matched or not. (iv) and (v) are equivalent by (2.31).

Corollary 2.68. The bijection (2.34) restricts to a bijection LRµ(δ/γ, λ− µ) ∼= LRγ(λ/µ, δ − γ).

Proof. Lemma 2.67 applied twice.

We recover the classical LR rule.

Corollary 2.69. cλ
µν = |LR(λ/µ, ν)|.

Proof. Proposition 2.62 and Corollary 2.68.
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2.5.3 Row and partition; the Pieri rule

Let us consider the special case B(r)⊗B(µ) in particular. We want to know exactly when [B(r)⊗B(µ) : B(λ)]
is nonzero and what the answer is.

Given a partition µ = (µ1, . . . , µn) and r ∈ Z≥0, let (r)⊗µ be the set of partitions λ = (λ1, . . . , λn) such
that the skew diagram λ/µ is a horizontal strip of size r, meaning that the diagram of λ contains that
of µ and their difference consists of exactly r cells, at most one in each column. Such skew shapes are in
obvious bijection with the set T (λ/µ, (r)) of semistandard tableaux of shape λ/µ of weight (r).

Proposition 2.70. Let µ = (µ1, . . . , µn) be a partition and r ∈ Z≥0. There is a unique isomorphism

B(r)⊗B(µ) ∼=
⊕

λ∈(r)⊗µ

B(λ). (2.35)

Proof. By Corollary 2.69, cλ
(r),µ is the number of semistandard tableaux of shape λ/µ that are Yamanouchi

of weight (r). But any tableau of weight (r) is Yamanouchi. The letters 1 in any semistandard tableau must
form a horizontal strip. Therefore cλ

(r),µ = 1 if λ/µ is a horizontal strip of size r and 0 otherwise. This also

shows that B(r)⊗B(µ) is multiplicity-free, so the isomorphism is unique by Corollary 2.56.

Example 2.71. Let n = 3 and µ = (3, 2, 0). We have

⊗ ∼= • • • ⊕ • •
• ⊕

• •

•
⊕

•
•

•
⊕

•

• •
⊕ •
• •

where B(λ) is represented by the diagram of λ and the cells in the added horizontal strips are marked with
a •. The highest weight vectors in B(3)⊗B(3, 2), in order according to the expansion on the right, are given
by u⊗ y(3,2) where u runs over the set 111, 112, 113, 123, 133, 233. Note that each u indicates the row indices
of new cells to be added to (3, 2) to obtain the corresponding λ ∈ (3)⊗ (3, 2).

2.5.4 Rows and partition; Robinson-Schensted-Knuth correspondence

We iterate the above case. Let β = (β1, β2, . . . , βk) ∈ Z
k
≥0 and let

Bβ = B(βk)⊗ · · · ⊗B(β1) (2.36)

be the tensor product of crystal graphs indexed by single-rowed partitions. The elements of Bβ are just lists
b = (bk, . . . , b2, b1) where bj is a weakly increasing word of length βj .

Let T (λ/µ;β) is the set of semistandard tableaux Q of shape λ/µ and weight β.

Proposition 2.72. Let β ∈ Z
k
≥0 and µ a partition. There is a bijection Y(Bβ ⊗ B(µ), λ) → T (λ/µ;β)

sending y ⊗ yµ = yk ⊗ · · · ⊗ y1 ⊗ yµ to Q such that y and the rows of Q listed in decreasing order by row
index, correspond under the bijection (2.34).

Proof. The bijection is obtained by iterating Proposition 2.70. Let y ⊗ yµ ∈ Y(Bβ ⊗ B(µ), λ). For any j,
yj⊗· · ·⊗y1⊗yµ is a highest weight vector, having weight µ(j) say. We have a chain µ = µ(0) ⊂ · · · ⊂ µ(k) = λ
where each µ(j)/µ(j−1) is a horizontal strip. Q is obtained by placing βj letters j in the j-th horizontal strip.
By Proposition 2.70 this defines the desired bijection. It easily satisfies (2.34).

Example 2.73. Let β = (3, 3, 2), λ = (4, 3, 1), and µ = ∅. A highest weight element y ∈ Bβ of weight λ
and the tableau Q ∈ T (λ;β) are given below.

y =
1 1 1

1 2 2
2 3

7→
1 1 1 2
2 2 3
3

= Q.

By Proposition 2.72 with µ = ∅ we obtain the isomorphism

Bβ ∼=
⊕

λ

B(λ)× T (λ;β). (2.37)

The map is computed explicity in section 3.3.
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2.6 Schensted’s P -tableau

We now derive Schensted’s column-insertion algorithm [3] [19] to compute the P -tableau, directly from
crystal graph constructions.

2.6.1 Knuth relations

Proposition 2.74. The antitableau crystal graph is isomorphic to the tableau crystal graph:

B(λ)# ∼= B(λ). (2.38)

Proof. See the appendix.

Computing the isomorphism (2.38) explicitly for λ = (2, 1) recovers the Knuth relations.

Proposition 2.75. For λ = (2, 1) the isomorphism (2.38) is given explicitly by

y
x z

7→ x y
z

if x ≤ y < z (2.39)

x
y z

7→ x z
y

if x < y ≤ z. (2.40)

Proof. Let J : B(2, 1)# → B(2, 1) be defined by (2.39) and (2.40). J is well-defined and bijective by
definition. It remains to check that J(fi(b)) = fi(J(b)) and J(ei(b)) = ei(J(b)) for all b ∈ B(2, 1)# and
i ∈ I. The map J commutes with fi in an obvious fashion except when b = i(i + 1)i, in which case we have
J(fi(b)) = J((i + 1)(i + 1)i) = (i + 1)i(i + 1) = fi((i + 1)ii) = fi(J(i(i + 1)i)) = fi(J(b)). The commutation
of J and e is similar.

The Knuth equivalence relation ≡ on words (on B(1)) is that which is generated by elementary
Knuth transpositions, which are relations of the form

uxzyv ≡ uzxyv where x ≤ y < z

uyxzv ≡ uyzxv where x < y ≤ z
(2.41)

with letters x, y, z ∈ B(1) and words u and v.

Proposition 2.76. Let b ≡ b′ for some words b, b′ in the alphabet B(1). Then there is a unique isomorphism
from the connected component of b to that of b′ sending b to b′; moreover it sends words to Knuth-equivalent
words. In particular, for all i ∈ I,

(i) ϕi(b) = ϕi(b
′) and fi(b) ≡ fi(b

′).

(ii) εi(b) = εi(b
′) and ei(b) ≡ ei(b

′).

(iii) si(b) ≡ si(b
′).

(iv) The number of i-matched pairs are the same in b and b′.

Proof. See the appendix.

Lemma 2.77. Let u be a strictly decreasing word and x a letter in u. Then xu ≡ ux.

Example 2.78. Let x = 3 and u = 54321. We have 354321 ≡ 534321 ≡ 543321 ≡ 543231 ≡ 543213.

Lemma 2.79. For every Yamanouchi word y of weight λ, y ≡ yλ.

Proof. See the appendix.
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The Knuth relations furnish a concrete characterization of the P map of Theorem 2.48 for the crystal
graph B(1)k.

Theorem 2.80. (i) For every word b ∈ B(1)k, b ≡ P (b), and P (b) is the unique tableau (of partition shape)
that is Knuth equivalent to b. (ii) b ≡ b′ if and only if P (b) = P (b′). (iii) P (F (b)) = F (P (b)) for all b,
where F is one of ei, fi, si for i ∈ I.

Proof. See the appendix.

Given a word b we define the P -tableau P (b) to be the unique tableau of partition shape such that
b ≡ P (b).

2.6.2 Robinson’s computation of the P -tableau

We give Robinson’s method to compute the P -tableau [18], restated in crystal graph terms.
Start with the word b. Repeatedly apply raising operators until no longer possible, reaching a Yamanouchi

word y. Let E(b) = y where E = eiN
· · · ei2ei1 is the sequence of raising operators used to reach y from b.

Let λ = wt(y). Let F = fi1fi2 · · · fiN
be the sequence of lowering operators such that F (E(b)) = b. Apply

F to yλ. The result is P (b); see the proof of Theorem 2.80.

Example 2.81. Let n = 4 and b = 3141221. First, we apply raising operators to b until we reach a
Yamanouchi word y.

b = 3141221
e1→ 3141121

e3→ 3131121
e2→ 2131121 = y.

wt(y) = λ = (4, 2, 1, 0). We apply the reverse sequence of lowering operators to y(4,2,1,0).

P (b) =
1 1 1 2
2 4
3

f1

←
1 1 1 1
2 4
3

f3

←
1 1 1 1
2 3
3

f2

←
1 1 1 1
2 2
3

= y(4,2,1,0)

This algorithm has the drawback that the distance from b to y may be very large even if the objects b
and y are small.

2.6.3 Schensted’s column insertion algorithm

We derive Schensted’s column insertion algorithm [19] to compute P (b), directly from considering crystal
graphs.

Let b = bk · · · b2b1 with bi ∈ B(1). Schensted’s algorithm computes the sequence of tableaux ∅ = P (∅),
P (b1), P (b2b1), . . . , P (bk · · · b1) = P (b). We have P (bi · · · b1) = P (biP (bi−1 · · · b1)) by Theorem 2.80. So
to compute the above sequence of tableaux, it suffices to compute the P tableau for words of the form xT ,
where T is a tableau and x is a letter. Say T has shape µ. Write

(x→ T ) := P (xT ). (2.42)

The element (x → T ) is the image of x ⊗ T under the map (2.35) in the case r = 1. The shape λ of the
resulting tableau is in the set (1)⊗ µ, the set of partitions λ = (λ1, . . . , λn) obtained by adding a single cell
to µ.

We derive an algorithm for computing (x→ T ): it is called the column insertion of the letter x into the
tableau T . Our derivation proceeds by cases of increasing difficulty.

Let T have shape µ.

• µ = ∅ is the empty partition:

Here (2.35) is the isomorphism B(1)⊗B(∅) ∼= B(1) (see Remark 2.21) and

(x→ ∅) = x . (2.43)
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The column insertion of x into the empty tableau ∅ is by definition P (x) = x, the tableau with singleton
entry x.

• µ = (1r) is a single column for 1 ≤ r ≤ n− 1:

Then (2.35) becomes B(1)⊗B(1r) ∼= B(1r+1)⊕B(2, 1r−1). Let x⊗b ∈ B(1)⊗B(1r). Write b = br · · · b2b1

with bj ∈ B(1) and br > · · · > b2 > b1.
Suppose first that x > br. Then xb is strictly decreasing, that is, xb ∈ B(1r+1). Therefore P (xb) = xb

since the latter is already a tableau of partition shape. Otherwise x ≤ br and xb ∈ B(2, 1r−1)# is an
antitableau. By Proposition 2.74 it follows that P (xb) ∈ B(2, 1r−1). Let i be smallest such that x ≤ bi. Let
c be obtained from b by replacing y = bi with x. It is not hard to show that xb ≡ cy and that cy ∈ B(2, 1r−1)
is a tableau of partition shape; see Example 2.82. Therefore P (xb) = cy.

Example 2.82. Let x = 3 and b = 5421. Then y = 4, c = 5321, and

x⊗ b =

1
2
4
5

3

xb =

1
2
4

3 5

≡

1
2

3 4
5

≡

1
2 4
3
5

≡

1 4
2
3
5

= cy = (x→ b).

The rule for computing (x→ b) is summarized below.



x→

b1

·
·
br



 =

b1

·
·
br

x

if x > br. (2.44)




x→

b1

·
bi

·
br




=

b1 bi

·
x
·
br

if i is minimum with x ≤ bi. (2.45)

• µ = (1n) is a column partition of maximum height:

B(µ) = B(1n) has the lone element T ∈ B(1n) and no arrows where T is unique column tableau n · · · 21
of height n. It is easy to check that B(1) ⊗ B(1n) has the lone highest weight vector 1 ⊗ T . Therefore
B(1)⊗ B(1n) ∼= B(2, 1n−1). We have P (xT ) = Tx ∈ B(2, 1n−1) since x commutes with T by Lemma 2.77.
This rule agrees with (2.45) if we allow r = n.




x→

1
2
·
x
·
n




=

1 x
2
·
x
·
n

• µ has more than one column:

Let r be the size of the first column of µ and µ̂ the partition obtained by removing the first column from
µ. For T ∈ B(µ) write T = T1T2 where T1 ∈ B(1r) is the first column of T and T2 ∈ B(µ̂) is the rest of T .
Compute (x → T1) using the single-column case. Let S1 be the first column of (x → T1) and y the second
column.
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(i) Suppose y = ∅. Then (x → T ) = xT is the tableau obtained by placing x at the bottom of the first
column of T .

(ii) Suppose y ∈ B(1). Then (x → T ) = S1S2 (the tableau with first column S1 and the rest S2) where
S2 = (y → T2) has been computed by induction.

This agrees with the definition (2.42). If y = ∅ then it is clear that xT is a tableau, in which case
(x→ T ) = P (xT ) = xT by (2.42) and Theorem 2.80(i). If y ∈ B(1) then by employing standard arguments
[19] it may be shown that S1S2 is a tableau. This given, we have xT = xT1T2 ≡ S1yT2 ≡ S1S2 since the
smaller column insertions preserve Knuth equivalence due to the fact that b ≡ P (b) (Theorem 2.80(i)). Then
P (xT ) = P (S1S2) = S1S2 by Theorem 2.80.

Example 2.83. Let’s compute the insertion of x = 3 into the tableau T below. T has more than one
column. Split it into its first column T1 and the rest T2.

T =
1 1 1 2
2
4

T1 =
1
2
4

T2 = 1 1 2 .

Insert x into T1. The single-column recipe produces the following results.


 3→
1
2
4



 =
1 4
2
3

S1 =
1
2
3

y = 4

Inductively we need to know how to insert y = 4 into T2, which we split into its first column T21 and the
remainder T22.

T21 = 1 T22 = 1 2 .

Inserting 4 into T21 yields

(4→ 1 ) = 1
4

.

Therefore

(4→ 1 1 2 ) = 1 1 2
4

= S2.

Finally 

 3→
1 1 1 2
2
4



 = S1S2 =
1 1 1 2
2 4
3

.

2.6.4 Pieri property

Proposition 2.84. Let T ∈ B(µ) be a tableau and u = ur · · ·u1 ∈ B(r) be a weakly increasing word with
letters ui ∈ B(1). Then successive column insertions into T of the letters u1, then u2, and so on, change
the shape of the tableau by adding cells from left to right in a horizontal strip.

Proof. See the appendix.

2.7 Reverse complement and evacuation

By Proposition 2.74 there is an isomorphism B(λ)# ∼= B(λ) given by S 7→ P (S). Define the evacuation

T ev of T by

ev : B(λ)→ B(λ)

T ev = P (T#).
(2.46)

Equivalently, T ev is the unique tableau of partition shape such that

T ev ≡ T#. (2.47)
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Example 2.85. Let n = 4 and λ = (4, 2, 1, 0). We give a tableau T , its word, colword(T ), the reverse
complement of its word, and its antitableau T#, and T ev.

T =
1 1 1 2
2 4
3

colword(T ) = 321.41.1.2

T# =
2

1 3
3 4 4 4

colword(T )# = 3.4.41.432

2
1 3

3 4 4 4
≡

1 2
3 4

3 4 4
≡

1 2 4
3 4

3 4
≡

1 2 4 4
3 3
4

= T ev.

Directly from the definitions, one sees that the operation # on words, sends Knuth classes to Knuth
classes.

Proposition 2.86. For b, b′ ∈ B(1)k, b ≡ b′ if and only if b# ≡ b′
#
.

Proposition 2.87. (i) For every word b ∈ B(1)k, P (b#) = P (b)ev.

(ii) T 7→ T ev is an involution on B(λ).

(iii) fi(T
ev) = en−i(T )ev, ei(T

ev) = fn−i(T )ev, and si(T
ev) = sn−i(T )ev for all T ∈ B(λ) and i ∈ I.

Proof. See the appendix.

Example 2.88. Let n = 4 and b = 24⊗ 134⊗ 123. We have b# = 234⊗ 124⊗ 13. We may compute P (b)
and P (b#) using column insertion.

P (b) =
1 1 2 3
2 3 4
4

P (b#) =
1 1 3 4
2 2 4
3

.

We have

P (b)# =
1

1 2 3
2 3 4 4

≡
1 1 3 4
2 2 4
3

= P (b)ev

which verifies Proposition 2.87(i).

2.8 Schensted row insertion

Schensted row insertion may be defined in a similar manner beginning with the r = 1 case of the following
right hand analogue of Proposition 2.70, but we shall not pursue this.

Proposition 2.89. There is a unique crystal graph isomorphism

B(µ)⊗B(r) ∼=
⊕

λ∈(r)⊗µ

B(λ)

T ⊗ u 7→ P (Tu).
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3 Recording tableaux

From the viewpoint of the theory of crystal graphs, the recording tableaux of the Robinson-Schensted-Knuth
correspondence are merely combinatorial objects which label the connected components of certain tensor
product crystal graphs. Therefore we shouldn’t think of the recording tableaux as naturally living inside
crystal graphs. At the same time, we will end up apply some crystal graph operations to them since they
are tableaux (see [10] for a description of the full-fledged crystal structure on Q-tableaux and the duality
of raising and lowering operators with jeu-de-taquin). We develop some properties of recording tableaux,
based on the properties of the crystal graphs whose components they label.

Warning 3.1. For simple Lie algebras other than sln, the analogue of recording tableau will look nothing
like the kind of tableau which naturally label vertices of a crystal graph.

3.1 Two definitions of the standard Q-tableau

Let b ∈ B(1)k be a word. Define Q′(b) to be the standard tableau associated with the unique Yamanouchi
word y = Y (b) (see Lemma 2.59) in the component of b. This is essentially Robinson’s definition [18].

Example 3.2. Example 2.81 computes the Yamanouchi word y in the component of the word b. Q′(b),
which is the associated standard tableau of y, is given in Example 2.60.

Let b = bk · · · b1 ∈ B(1)k be a word. Schensted defines the (column insertion) Q-tableau Q(b) to be the
standard tableau of the same shape as P (b), such that j appears in the cell that must be added to the shape
of P (bj−1 · · · b1) to get to the shape of P (bj · · · b1), for 1 ≤ j ≤ k.

Example 3.3. Let b = 3141221 as in Example 2.81. We compute the P -tableaux of each right factor of b
by successive column insertions.

∅, 1 , 1
2

, 1 2
2

, 1 1 2
2

,
1 1 2
2
4

,
1 1 1 2
2
4

,
1 1 1 2
2 4
3

= P (b).

Therefore

Q(b) =
1 3 4 6
2 7
5

.

This agrees with the Robinson recording tableau Q′(b) of the previous example.

Proposition 3.4. Q(b) = Q′(b).

Proof. See the appendix.

3.2 Robinson-Schensted correspondence

Let ST(λ) be the set of standard tableaux of shape λ. The Robinson-Schensted correspondence (given below)
is the explicit decomposition of B(1)k whose existence was given by Corollary 2.52. The Q tableau is the
one in the previous section, and the P tableau is the one computed explicitly by column insertion.

Theorem 3.5. The map

B(1)k ∼=
⊕

|λ|=k

B(λ)× ST(λ)

b 7→ (P (b), Q(b))

(3.1)

is a crystal graph isomorphism, where for all i ∈ I and b ∈ B(1)k,

P (fi(b)) = fi(P (b)) Q(fi(b)) = Q(b)

P (ei(b)) = ei(P (b)) Q(ei(b)) = Q(b)

P (si(b)) = si(P (b)) Q(si(b)) = Q(b).

(3.2)
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Proof. See the appendix.

3.3 Robinson-Schensted-Knuth correspondence

The bijection of Theorem 3.5 can be generalized from B(1)k to Bβ . For b = bk ⊗ · · · ⊗ b1 ∈ Bβ , define
P (b) = P (bk · · · b1) to be the P tableau of the word bk · · · b2b1 given by concatenating the weakly increasing
words bi. Define Q(b) to be the tableau of the same shape as P (b), such that the restriction of Q(b) to the
alphabet [j] is equal to the shape of P (bj · · · b1) for all 1 ≤ j ≤ k. That is, put letters j in the cells that
are in the shape of P (bj · · · b1) that are not in the shape of P (bj−1 · · · b1). It follows from Proposition 2.70
that Q(b) is a semistandard tableau of weight β and the same shape as P (b). Let T (λ;β) denote the set of
semistandard tableaux of shape λ and weight β.

The following isomorphism is called the (column insertion) Robinson-Schensted-Knuth correspondence.

Theorem 3.6. There is a crystal graph isomorphism

Bβ ∼=
⊕

λ

B(λ)× T (λ;β)

b 7→ (P (b), Q(b))

(3.3)

where λ runs over the partitions of |β| having at most n parts. It satisfies (3.2).

Proof. See the appendix.

Example 3.7. Let n = 4, β = (3, 3, 2) and b = 24⊗ 134⊗ 123. We have

P (123) = 1 2 3 P (134123) = 1 1 2 3
3 4

P (24134123) =
1 1 2 3
2 3 4
4

and the sequence of shapes of these tableaux is

∅ ⊂ ⊂ ⊂ .

So

b =
1 2 3

1 3 4
2 4

7→

(
1 1 2 3
2 3 4
4

,
1 1 1 2
2 2 3
3

)
= (P (b), Q(b)).

3.4 Skew RSK

We find it convenient to define a skew version of RSK. One may do the same thing as in usual RSK but just
insert into an existing tableau.

For b⊗T ∈ Bβ ⊗B(µ) and b = bk ⊗ · · · ⊗ b1 ∈ Bβ , let λ be the shape of P (bT ) = P (bk · · · b1T ). Starting
with the pair (T, ∅µ) where ∅µ is the empty skew tableau of shape µ/µ, for j = 1, 2, . . . let us column insert
bj , which adds cells in a horizontal strip from left to right by Proposition 2.84. Let us adjoin letters j to
the right hand tableau in this newly created horizontal strip. Denote the result by (P (bT ), Q(b ⊗ T )). If λ
is the shape of P (bT ) we have seen that Q(b⊗ T ) ∈ T (λ/µ, β).

Theorem 3.8. There is a crystal graph isomorphism

Bβ ⊗B(µ) ∼=
⊕

λ

B(λ)× T (λ/µ;β)

b⊗ T 7→ (P (bT ), Q(b⊗ T ))

(3.4)

such that Q(F (b⊗ T )) = Q(b⊗ T ) where F is one of ei, fi, si for i ∈ I.

Proposition 3.9. In the bijection (3.4), with b = bk⊗· · ·⊗b1, ov(br+1, br) is the number of r-matched pairs
in Q(b⊗ T ).

Proof. See the appendix.
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3.5 Reverse complement and recording tableaux

Theorem 3.10. Let β = (β1, . . . , βk) and rev(β) = (βk, . . . , β1). Recall the map # : Bβ → Brev(β) from
Remark 2.38(iv). Then for all b ∈ Bβ,

P (b#) = P (b)evn

Q(b#) = Q(b)evk
(3.5)

where evk uses complementation with respect to the alphabet [k] = {1, 2, . . . , k}.

Proof. See the appendix.

Example 3.11. With b and β as in the previous example, we have k = 3 and b# = 234⊗124⊗13 = c3⊗c2⊗c1.
We have

P (c1) = 1 3 P (c2c1) = 1 1 3
2 4

P (c3c2c1) =
1 1 3 4
2 2 4
3

= P (b#)

so that

Q(b#) =
1 1 2 3
2 2 3
3

.

We compute Q(b)ev with respect to k = 3, taking Q(b) from the previous example.

Q(b) =
1 1 1 2
2 2 3
3

Q(b)# =
1

1 2 2
2 3 3 3

≡
1 1 2 3
2 2 3
3

= Q(b)ev.

This agrees with Q(b#).

4 Affine crystal graphs

In this section we discuss the additional rich structure of affine crystal graphs (of type A
(1)
n−1) that exists on

certain of the crystal graphs we have examined in the previous section.

4.1 Basic features

Affine crystal graphs are crystal graphs in the sense of section 2. However affine crystal graphs also have
extra directed edges labeled with the new color 0. So let Î = I ∪ {0} be the set of colors of directed edges

for affine crystal graphs. We can view Î as the set Z/nZ. Due to the circular symmetry of the affine Dynkin

diagram A
(1)
n−1 (which looks like a cycle with vertices labeled by Z/nZ) every construction will have rotational

symmetry.
There is a zero-th simple root, which for our purposes will be given as α0 = (−1, 0n−2, 1) ∈ Z

n. Note
that

∑
i∈bI αi = 0 in Z

n. We also write h0 = α0 for the zero-th simple coroot. Every affine crystal B has the
0-string property (see section 2.1.1) so that ϕ0(b), ε0(b), f0(b), and e0(b) are defined for b ∈ B. In addition
equations (2.1) through (2.4) hold for b ∈ B and i = 0. The analogue of (2.5) for i = 0 is

〈h0 , wt(b)〉 = βn − β1 for wt(b) = (β1, . . . , βn) ∈ Z
n. (4.1)

We should vaguely think that f0 will change a letter n into a letter 1 and e0 will do the opposite, although
it turns out that often other letters must move.

4.2 Examples

4.2.1 Single box B1,1

The affine crystal graph B1,1 is the single box crystal graph B(1) (see section 2.2.2) together with a 0 arrow
going from n to 1 .
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4.2.2 Single row B1,s

For any positive integer s the affine crystal graph B1,s is the crystal graph B(s) given by weakly increasing
words of length s, plus some extra 0 arrows. To apply f0 to b ∈ B1,s, remove a letter n from the end of b
and put a letter 1 at the beginning; if there is no n in b then f0(b) = ∅. Similarly e0(b) is obtained from b by
removing a letter 1 from the beginning and adding a letter n to the end; if there is no 1 in b then e0(b) = ∅.
So ϕ0(b) is the number of letters n in b and ε0(b) is the number of letters 1 in b. In the crystal graph B1,s all
the elements have different weights, so that the entire affine crystal graph structure is determined by (2.1).

Example 4.1. For n = 3 the affine crystal graph B1,2 is pictured below.

1 1 1 2 2 2

1 3 2 3

3 3

1 1

1

2
2

2

0

0

0

4.2.3 Rectangle Br,s

For r ∈ I and s ≥ 1 the affine crystal graph Br,s is the ordinary crystal graph B(sr) for the r×s rectangular
partition (sr), with additional zero arrows. An explicit rule for the 0-arrows on Br,s is given in [21]. The
affine crystal graphs Br,s are called Kirillov-Reshetikhin (KR) crystals.

4.3 Tensor products

The tensor product construction for crystals in section 2.3.4 also works for affine crystals: the usual rule
applies for i = 0.

Example 4.2. B1,1⊗B1,1 is given in Figure 2. Note that B1,2 does not embed into B1,1⊗B1,1 as an affine
crystal graph. However if we forget the zero arrows then the resulting crystal graph B(2) embeds naturally
into B(1)⊗B(1).

4.4 Connectedness

Tensor products of connected crystal graphs are usually disconnected. Affine crystal graphs behave in the
opposite fashion. The following result was proved using representation theory [1].

Theorem 4.3. Any tensor product of KR crystals is connected.

Example 4.4. See Figure 2 for the connected affine crystal graph B1,1 ⊗B1,1.

Conjecture 4.5. (Kashiwara) Every connected affine crystal graph is isomorphic to a tensor product of KR
crystals.

If this conjecture holds, then the world of connected affine crystal graphs consists of tensor products of
rectangles.

Assumption 4.6. For simplicity we shall only consider the set C of tensor products of single row KR crystals
Bs := B1,s, but everything mentioned here can be extended to tensor products of arbitrary rectangular KR
crystals Br,s; see [20] [21] [22].
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1 ⊗ 1 1 ⊗ 2 2 ⊗ 2

3 ⊗ 1 2 ⊗ 3

3 ⊗ 3

3 ⊗ 2 1 ⊗ 3

2 ⊗ 1

1 1

2

20

0

2

1

02

1

0

Figure 2: The affine crystal graph B1,1 ⊗B1,1 for n = 3

4.5 Classical structure

Given an affine crystal graph B, we can forget about its 0-arrows; the resulting crystal graph is called the
classical crystal graph structure on B. We can then refer to classical components and classical highest weight
vectors of B.

4.6 The leading vector

Given B ∈ C, define the leading vector (or dominant extremal vector) u(B) ∈ B to be the tensor product
whose factors are all Yamanouchi tableaux. The leading vector u(B) has partition weight. There is no other
element of B with the same weight as u(B). It is also true that u(B) is an extremal weight vector in B:
any other element in B is in the convex hull of the Sn-orbit of the weight of u(B). For B,B′ ∈ C we have
u(B ⊗B′) = u(B)⊗ u(B′).

4.7 Uniqueness of isomorphisms

Proposition 4.7. Let B,B′ ∈ C. If there is an affine crystal graph isomorphism B ∼= B′ then it is unique.

Proof. Since any isomorphism preserves weights, any isomorphism B ∼= B′ must send u(B) to u(B′). By
Theorem 4.3, B ∈ C is connected. By Lemma 2.47 B → B′ is uniquely specified.

4.8 R-matrix

Here is another feature peculiar to affine crystal graphs.

Theorem 4.8. Given any B,B′ ∈ C, there is a unique isomorphism of affine crystal graphs RB,B′ : B⊗B′ →
B′ ⊗B called the combinatorial R-matrix. They satisfy the identities

RB,B = 1B⊗B for all B ∈ C (4.2)

RB′,B ◦RB,B′ = 1B⊗B′ for all B,B′ ∈ C. (4.3)
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and the Yang-Baxter equation, which is the commutation of the diagram

B′′ ⊗B′ ⊗B

B′ ⊗B′′ ⊗B B′′ ⊗B ⊗B′

B′ ⊗B ⊗B′′ B ⊗B′′ ⊗B′

B ⊗B′ ⊗B′′

RB,B′⊗1 1⊗RB′,B′′

1⊗RB,B′′ RB,B′′⊗1

RB′,B′′⊗1 1⊗RB,B′

(4.4)

Proof. The proof of existence uses representation theory (the crystal limit of the universal R-matrix) [7].
Proposition 4.7 implies uniqueness and (4.2), (4.3), and (4.4).

The physics interpretation is that b and b′ are two particles which collide and scatter according to R with
output particles c′ and c. Time evolves from the top of the picture to the bottom.

b b′

R

c′ c

We shall use pictures to represent identities involving R-matrices. Each strand represents a particle or tensor
factor. Each crossing represents the action of an R-matrix. A diagram represents an isomorphism from a
tensor product to another using R-matrices. Equations (4.2) and (4.3) can be respectively pictured by

b b

b b

B B

=
b b

b b

B B

b

b

b

b

b b

=

b b

b b

The Yang-Baxter equation (4.4) asserts that

b b b

b b b

b b b

b b b

=

b b b

b b b

b b b

b b b (4.5)

Proposition 4.9. Suppose B = Br and B′ = Bs are single rows. Then the R-matrix RBr,Bs can be
computed by the composition of the (classical) crystal graph isomorphisms given by Proposition 2.70:

B(r)⊗B(s) ∼=
⊕

λ∈(r)⊗(s)

B(λ) =
⊕

λ∈(s)⊗(r)

B(λ) ∼= B(s)⊗B(r). (4.6)

Proof. See the appendix.

Example 4.10. The bijection in Proposition 2.70 is computed using column insertion. Let n = 4, r = 3,
s = 5. We take a typical element of b ⊗ b′ ∈ Br ⊗ Bs, column insert to obtain a tableau pair (P,Q) where
Q is semistandard of shape λ, say, and weight (s, r). Let Q′ be the unique semistandard tableau of shape λ
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and weight (r, s). Let c′ ⊗ c ∈ Bs ⊗Br be such that their tableau pair is (P,Q′). Then R(b⊗ b′) = c′ ⊗ c.

1 2 3 3 4
1 2 4

RSK
−−−−→

(
1 1 2 3 3 4
2 4

, 1 1 1 1 1 2
2 2

)

R

y
y1×(Q7→Q′)

1 3 4
1 2 2 3 4

←−−−−−
RSK−1

(
1 1 2 3 3 4
2 4

, 1 1 1 2 2 2
2 2

)

One may also compute this R-matrix using a jeu de taquin on a two-row skew shape that slides the correct
number of entries from one row to the other:

1 2 3 3 4
1 2 4

1 2 3 3 4
1 2 4 ∗

→ ∗ 1 3 3 4
1 2 2 4

1 3 3 4
1 2 2 4 ∗

→ ∗ 1 3 4
1 2 2 3 4

1 3 4
1 2 2 3 4

Or, move elements of the lower row as far as possible to the right to make semistandard columns, and then
move the first several upper letters that lie in singleton columns, to the lower row:

1 2 3 3 4
1 2 4

→ 1 2 3 3 4
1 2 • • 4

→ 1 • • 3 4
1 2 2 3 4

→ 1 3 4
1 2 2 3 4

Proposition 4.11. If B and B′ each consist of several tensor factors, then RB,B′ may be computed using
any composition of “smaller” R-matrices that exchange the factors of B to the right past those of B′.

Proof. Proposition 4.7 and Theorem 4.8.

Example 4.12. If B = B1 ⊗B2 and B′ = B′
1 ⊗B′

2 then the R-matrix RB,B′ may be computed pictorially
by

b b b b

b b b b

b b b b

b b b b

B1 B2 B′
1 B′

2

B′
1 B′

2 B1 B2

The R-matrices RB1,B′

1
and RB2,B′

2
in the middle time step can be computed in either order since they don’t

involve common tensor factors.

Proposition 4.13. Let Ψi : Bi → B′
i be isomorphisms of affine crystal graphs Bi, B

′
i ∈ C for i = 1, 2. Then

(Ψ2 ⊗Ψ1) ◦RB1,B2
= RB′

1
,B′

2
◦ (Ψ1 ⊗Ψ2).

Proof. This is an immediate consequence of Proposition 4.7 and the existence of the R-matrix in Theorem
4.8.

4.9 Local coenergy function

Another amazing feature of affine crystal graphs is the coenergy function. Given any B,B′ ∈ C, there is a
function HB,B′ : B ⊗ B′ → Z called the local coenergy function. This function measures the interaction
between a pair of neighboring particles.

Theorem 4.14. [7] Let B,B′ ∈ C. There is a unique function HB,B′ : B ⊗ B′ → Z called the local

coenergy function, that satisfies the following properties.

(i) HB,B′(u(B)⊗ u(B′)) = 0.
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(ii) HB,B′ is constant on classical components.

(iii) Let b⊗ b′ ∈ B ⊗B′ and RB,B′(b⊗ b′) = c′ ⊗ c. Then

H(e0(b⊗ b′)) = H(b⊗ b′) +






1
if e0(b⊗ b′) = e0(b)⊗ b′ and

e0(c
′ ⊗ c) = e0(c

′)⊗ c

−1
if e0(b⊗ b′) = b⊗ e0(b

′) and
e0(c

′ ⊗ c) = c′ ⊗ e0(c)

0 otherwise.

(4.7)

In particular
HB′,B = HB,B′ ◦RB′,B . (4.8)

Proof. The existence of H again follows from representation theory [7]. The uniqueness of H follows imme-
diately from the connectedness of B ⊗B′ ∈ C given by Theorem 4.3. Equation (4.8) is a direct consequence
of the definitions and (4.3).

Equation 4.8 says that the local coenergy between a pair of neighboring particles doesn’t change across
a collision.

If B = B′ then by (4.2) we have the simpler rule

H(e0(b⊗ b′)) = H(b⊗ b′) +

{
1 if e0(b⊗ b′) = e0(b)⊗ b′

−1 if e0(b⊗ b′) = b⊗ e0(b
′).

(4.9)

Proposition 4.15. Suppose B = Br and B′ = Bs are single rows and b⊗ b′ ∈ Br ⊗Bs. Then H(b⊗ b′) =
ov(b, b′), the overlap of b and b′.

Proof. See the appendix.

Example 4.16. The coenergy of b⊗ b′ (as well as c′ ⊗ c) in Example 4.10 is 2, since

1 2 3 3 4
1 2 4

.

Proposition 4.17. If B and B′ consist of several tensor factors, then the value of HB,B′(b ⊗ b′) is given
by the sum of the local coenergy functions evaluated at the neighboring tensor factors that must be exchanged
in the computation of the R-matrix RB,B′ .

We shall state the result precisely for the tensor product of a single factor with a twofold tensor product.
Consider HB3,B2⊗B1

and bi ∈ Bi for 1 ≤ i ≤ 3. Then RB3,B2⊗B1
is given by applying RB3,B2

⊗ 1 and then
1⊗RB3,B1

and

HB3,B2⊗B1
(b3 ⊗ (b2 ⊗ b1)) = HB3,B2

(b3 ⊗ b2) + HB3,B1
(b′3 ⊗ b1)

where RB3,B2
(b3 ⊗ b2) = b′2 ⊗ b′3.

(4.10)

We will picture such identities with diagrams in which certain crossings are circled. A diagram represents a
sum of local coenergy function evaluations, one for each circled crossing, where the local coenergy function
is evaluated at the two neighboring tensor factors that are entering the collision. Then (4.10) is depicted by

b3 b2 ⊗ b1

=

b3 b2 b1

b′2 b′3 b1

(4.11)

29



Similarly, we have

H(B3⊗B2)⊗B1
((b3 ⊗ b2)⊗ b1) = HB2,B1

(b2 ⊗ b1) + HB3,B1
(b3 ⊗ b′1)

where RB2,B1
(b2 ⊗ b1) = b′1 ⊗ b′2.

(4.12)

The associated picture is

b3 ⊗ b2 b1

=

b3 b2 b1

b3 b′1 b′2

(4.13)

Proof of Proposition 4.17. By induction and Proposition 4.11, the proof reduces to proving the special cases
(4.10) and (4.12). These cases can be verified directly by considering all the possible ways that e0 could act
on three tensor factors and their images under the appropriate R-matrices [17, Prop. 2.11].

The local coenergy function only depends on the factors up to isomorphism.

Proposition 4.18. Let B1, B2, B
′
1, B

′
2 ∈ C and suppose there are affine crystal graph isomorphisms Ψi :

Bi → B′
i for i = 1, 2. Then

HB2,B1
= HB′

2
,B′

1
◦ (Ψ2 ⊗Ψ1). (4.14)

In particular, if B,B′, B′′ ∈ C then

HB′′,B′⊗B = HB′′,B⊗B′ ◦ (1⊗RB′,B) (4.15)

HB′⊗B,B′′ = HB⊗B′,B′′ ◦ (RB′,B ⊗ 1) (4.16)

Proof. This follows directly from Proposition 4.13 and the definition of coenergy in Theorem 4.14.

4.10 Intrinsic energy function

The definitions in this subsection, taken from [17], were inspired by [4]. Every affine crystal graph B ∈ C has
an intrinsic coenergy function DB : B → Z. It is defined inductively as follows. The intrinsic coenergy

of a KR crystal (of type A
(1)
n−1) is zero:

DBs = 0. (4.17)

Second, suppose the intrinsic coenergy DB1
and DB2

have been defined for some B1, B2 ∈ C. Then define

DB2⊗B1
(b2 ⊗ b1) = HB2,B1

(b2 ⊗ b1) + DB1
(b1) + DB2

(b′2)

where RB2,B1
(b2 ⊗ b1) = b′1 ⊗ b′2.

(4.18)

Let us picture the evaluation of D using a diamond. Then the definition (4.18) can be depicted by

= + +
(4.19)

Proposition 4.19. For B1, B2 ∈ C,

DB2⊗B1
= DB1⊗B2

◦RB2,B1
. (4.20)

Proof. This follows immediately from (4.18), (4.8), and (4.3).
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Proposition 4.20. D(B3⊗B2)⊗B1
= DB3⊗(B2⊗B1) as functions B3 ⊗B2 ⊗B1 → Z.

Proof. See the appendix.

This result implies that the intrinsic coenergy of B ∈ C is well-defined, that is, it doesn’t depend on the
grouping of a tensor product involving several factors, into two-fold factors. Iterating the above twofold tensor
construction for D we have the following formula, which follows by directly by induction and Proposition
4.17 using the grouping Bk ⊗ (Bk−1 ⊗ · · · ⊗B1).

Proposition 4.21. [17, Prop. 2.14] Consider the k-fold tensor product B = Bk⊗· · ·⊗B2⊗B1 with Bi ∈ C.
Let b = bk ⊗ · · · ⊗ b1 ∈ B. Then

DB(b) =
∑

1≤i<j≤k

HBj ,Bi
(b

(i+1)
j ⊗ bi) +

k∑

j=1

DBj
(b

(1)
j ), (4.21)

where b
(j)
j = bj and for j > i, the element b

(i)
j ∈ Bj is the right hand factor in the result of applying to

bj⊗bj−1⊗· · ·⊗bi the composition of R-matrices that exchanges bj to the right past each of the tensor factors
bj−1 through bi.

If each Bi is a KR crystal Bµi for 1 ≤ i ≤ k, then writing Bµ = Bµk ⊗ · · · ⊗Bµ1 , we have

DBµ(b) =
∑

1≤i<j≤k

HB
µj ,Bµi (b

(i+1)
j ⊗ bi). (4.22)

Example 4.22. For n = 4 let b ∈ B2 ⊗B3 ⊗B3 be the element in Example 3.7.

b = b3 ⊗ b2 ⊗ b1 =
1 2 3

1 3 4
2 4

.

We have

H(b2 ⊗ b1) = 2 = overlap 1 2 3
1 3 4

,

H(b3 ⊗ b2) = 2 = overlap 1 3 4
2 4

,

R(b3 ⊗ b2) = 1 3
2 4 4

since 1 3 4
2 4

≡ 1 3
2 4 4

,

H(b
(2)
3 ⊗ b1) = 1 = overlap 1 3 4

1 3
,

so that D(b) = 2 + 2 + 1 = 5.

An important property of the intrinsic energy is that it is unchanged by permuting tensor factors by
R-matrices.

Proposition 4.23. Let B,B′ ∈ C and let Ψ : B → B′ be an affine crystal graph isomorphism given by a
composition of R-matrices. Then

DB = DB′ ◦Ψ. (4.23)

Proof. See the appendix.
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4.11 One-dimensional sums and Kostka-Foulkes polynomials

For β ∈ Z
k
≥0 and a partition λ, define the one-dimensional sum

Xλ;β(q) =
∑

y∈Y(Bβ ,λ)

qD(y). (4.24)

Define the cocharge Kostka-Foulkes polynomial Kλ;β(q) by

Kλ;β(q) =
∑

Q∈T (λ;β)

qc(Q) (4.25)

where c is the cocharge (defined in section 5.4). The cocharge Kostka-Foulkes polynomial may be realized
as a one-dimensional sum.

Theorem 4.24. [16] For β ∈ Z
k
≥0 and a partition λ, Xλ;β(q) = Kλ;β(q).

Proof. By Proposition 2.72 there is a bijection from the set of highest weight vectors y in Bβ of weight λ,
and semistandard tableaux Q of shape λ and weight β. It is given by Q = Q(y), the semistandard RSK
recording tableau for the list of words y. By the definitions (4.24) and (4.25) it suffices to prove Proposition
4.25.

Proposition 4.25. For all b ∈ Bβ,
D(b) = c(Q(b)). (4.26)

We shall discuss the proof of this result in the next section.

5 Statistics on recording tableaux

Our first goal is to transfer the coenergy statistic D on elements b ∈ Bβ , to a statistic on the recording
tableaux Q(b). The coenergy statistic is computed using the combinatorial R-matrices and the local coenergy
function. We translate these in terms of the recording tableaux. Then we show that this “tableau energy”
statistic coincides with cocharge.

5.1 R-matrices and the recording tableau

For any composition β ∈ Z
k
≥0, let Bβ = Bβk ⊗ · · · ⊗ Bβ1 be the tensor product of single row KR crystals.

Since Bs ∼= B(s) as classical crystal graphs the notation for Bβ is consistent with that in (2.36). Let
siβ = (. . . , βi+1, βi, . . . ) be β with its i-th and (i + 1)-th parts exchanged. By definition, the combinatorial
R-matrix that switches these two tensor factors gives an affine crystal graph isomorphism

Ri : Bβ ∼= Bsiβ . (5.1)

Since this is also a classical crystal graph isomorphism and since the P -tableau doesn’t change when applying
a morphism of crystal graphs between sets of words (Corollary 2.54), we have

P (Ri(b)) = P (b) for all b ∈ Bβ . (5.2)

We want to see what Ri does to the Q-tableau of RSK. Suppose b, b′ ∈ Bβ are such that Q(b) = Q(b′).
Then b and b′ are in the same component. Since Ri is an isomorphism, Ri(b) and Ri(b

′) are in the same
component, that is, Q(Ri(b)) = Q(Ri(b

′)). Therefore there is a well-defined bijection

σi : T (λ, β)→ T (λ, siβ)

Q(b) 7→ Q(Ri(b)).
(5.3)

Since the R-matrices satisfy (4.2), (4.3), and (4.4) (and obviously commute if they act on disjoint pairs of
tensor positions) it follows that the σi define an action of the symmetric group Sk on the set

⋃
w∈Sk

T (λ;wβ)
for each λ.
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Proposition 5.1. The bijections σi of (5.3) are given by the crystal reflection operators si.

Proof. See the appendix.

Example 5.2. Let b and Q(b) be as in Example 3.7;

Q(b) =
1 1 1 2
2 2 3
3

s2Q(b) =
1 1 1 2
2 3 3
3

.

With R2(b) = 244⊗ 13⊗ 123 from Example 4.22 we have

P (123) = 1 2 3 P (13.123) = 1 1 2 3
3

P (244.13.123) =
1 1 2 3
2 3 4
4

so that

Q(R2(b)) =
1 1 1 2
2 3 3
3

= s2Q(b).

5.2 Local coenergy on the recording tableau

We express the local coenergy in terms of the recording tableau Q(b).
Given b = bk ⊗ · · · ⊗ b1 ∈ Bβ , by abuse of notation similar to that in (5.1), for 1 ≤ i ≤ k − 1 define

Hi(b) = H(bi+1 ⊗ bi).

Proposition 5.3. For b ∈ Bβ, Hi(b) is the number of i-matched pairs in Q(b).

Proof. Propositions 4.15 and 3.9.

Let’s define Hi(Q) to be the number of i-matched pairs in Q.

Example 5.4. In Example 4.22 we had an element b and computed H1(b) = 2, H2(b) = 2, H1(R2(b)) = 1.
For this b in Example 5.2 we had

Q(b) =
1 1 1 2
2 2 3
3

Q(R2(b)) = s2Q(b) =
1 1 1 2
2 3 3
3

.

Counting matching pairs, H1(Q(b)) = 2, H2(Q(b)) = 2, and H1(s2(Q(b))) = 1.

5.3 Coenergy on recording tableaux and words

We may now define the coenergy directly on a tableau:

D(Q) =
∑

1≤i<j≤k

Hi(sisi+1 · · · sj−1Q). (5.4)

By Propositions 5.1 and 5.3 we have

D(Q(b)) = D(b) for all b ∈ Bβ . (5.5)

Example 5.5. With Q = Q(b) and the Hi computations from the previous example and the value of D(b)
from (4.22), we have D(Q) = H1(Q) + H2(Q) + H1(s2Q) = 2 + 2 + 1 = D(b).

Therefore to prove Proposition 4.25 it suffices to show that

D(Q) = c(Q). (5.6)

Since the definition of D(Q) and that of cocharge (not yet given) apply equally well to words, we shall prove

D(u) = c(u) (5.7)

for any word u in the alphabet [k].
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5.4 Cocharge

All of the results in this section are due to Lascoux and Schützenberger [15] [11].
The cocharge c is the statistic on words defined as follows.

1. c(siu) = c(u) for all i. Using this we may reduce to defining c for words of partition weight.

2. c(∅) = 0.

3. ] Suppose u has weight (1k). Define c1 = 0 and ci = ci−1 if i is right of i− 1 in u and ci = ci−1 + 1 if i
is left of i− 1 in u. Define c(u) =

∑
i ci.

4. Suppose u has partition weight. Underline the rightmost 1 in u. Given an underlined i− 1, underline
the rightmost i to its left, if it exists; otherwise underline the rightmost i in u; if it exists, and otherwise
stop. Let u1 be the underlined subword of u. Erase the underlined subword from u and repeat the
process, extracting a standard word u2. Continue until u has been exhausted. Define c(u) =

∑
i c(ui).

Example 5.6. We compute the cocharge of a word u. The extracted permutations are indicated as ui. For
each permutation ui, the quantities ci are indicated as subscripts.

u = 2 1 3 5 1 4 1 2 4 3 2 3
u1 = 21 53 10 42 31

u2 = 10 42 31 20

u3 = 10 31 20

c(u1) = 1 + 3 + 0 + 2 + 1 = 7, c(u2) = 0 + 2 + 1 + 0 = 3, c(u3) = 0 + 1 + 0 = 1, c(u) = 7 + 3 + 1 = 11.

Theorem 5.7. The cocharge is the unique function c on words such that

(C0) c(siu) = c(u) for all words u and all i.

(C1) c is zero for any weakly increasing word.

(C2) c is constant on Knuth classes.

(C3) If u has partition weight and u = xv with x 6= 1 a letter then c(xv) = c(vx) + 1.

Proof. This follows by Propositions 5.8 and 5.12 below.

Proposition 5.8. The cocharge as defined above, satisfies the properties (C0) through (C3).

Proof. See the appendix.

For the following construction we shall identify a tableau (of partition shape) with its row-reading word.
Let T be a tableau. Write T = T ′T1 where T1 is the first row of T and T ′ is the rest of T . Define the
katabolism of T by

K(T ) = P (T1T
′). (5.8)

Lemma 5.9. For any tableau T , all of the numbers of value 1 through i + 1 are in the first row in K
i(T ).

Therefore K
N (T ) is a single row tableau for N large.

Proof. Suppose it is true for i− 1. We may remove all letters that are greater than i + 1. By induction all
letters of value at most i are in the first row. Therefore the tableau only has two rows and the second row
has all values equal to i + 1. It is then clear that taking K of this tableau results in a single-row tableau,
and we are done.

Lemma 5.10. For any tableau T and any i, siK(T ) = K(siT ).

Proof. This holds since T1T
′ is obtained from T by iterated cranking and since the si commute with both

cranking (by (2.7)) and taking the P -tableau (Theorem 2.80(iii)).

34



Lemma 5.11. For any tableau T of shape λ,

c(T ) = c(K(T )) + |λ| − λ1. (5.9)

Proof. See the appendix.

Proposition 5.12. There is at most one function satisfying (C0) through (C3).

Proof. See the appendix.

Example 5.13. Let’s compute c(u) using Proposition 5.12. In this computation we will identify a tableau
with its row-reading word. We first take the P -tableau

c(u) = c(P (u)) where P (u) =

1 1 1 2 2 3
2 3 3 4
4
5

Now we apply iterated katabolisms.

1 1 1 2 2 3
2 3 3 4
4
5

K
→

1 1 1 2 2 2 3 3 4
3 4
5

K
→ 1 1 1 2 2 2 3 3 3 4

4 5

K
→ 1 1 1 2 2 2 3 3 3 4 4 5

so that c(u) = c(P (u)) = 6 + 3 + 2 = 11.

5.5 Equality of coenergy and cocharge on words

We shall prove (5.7). It suffices to show that the statistic D on words defined by (5.4), satisfies the defining
properties of c given in Theorem 5.7.

D satisfies (C0) by (5.5) and Propositions 4.23 and 5.1. For (C1), the set of weakly increasing words
of a given length M forms the crystal graph B(M) of tableaux of the single-row shape (M), and as such
is stabilized by the si by Lemma 2.9. For every i ∈ I, Hi is zero on B(M) since a single-row tableau
cannot have any matched pairs. So D is zero on weakly increasing words. The statistic D satisfies (C2)
by Proposition 2.76, since applying si to Knuth equivalent words yields Knuth equivalent words and Knuth
equivalence preserves the number of i-matched letters for any i. It remains to show that D satisfies (C3).
The following proof is analogous to one sketched in [8].

Let first(u) denote the first letter of the word u. Recall the definition of uy from (2.6). Define

∆i(u) = Hi(u)−Hi(u
y) (5.10)

Say that u has i-dominant weight if u has at least as many letters i as letters i + 1.

Lemma 5.14. Suppose u has i-dominant weight. Then

∆i(u) =






1 if first(u) = i + 1

−1 if first(u) = i and first(si(u)) = i

0 otherwise.

(5.11)

Proof. We may assume that first(u) ∈ {i, i+1} for otherwise the formula clearly gives 0 as desired. It is also
clear that we may ignore all letters not in {i, i + 1}. So we may assume that i = 1 and u consists of letters
in {1, 2}. If first(u) = 2 then the 2 is matched since wt(u) is a partition. It is unmatched after cranking.
In this case cranking destroys exactly one matching pair. Suppose first(u) = 1. This 1 is unmatched. It is
matched in uy if and only if u has an unmatched 2, if and only if first(s1(u)) = 1. The result follows.

35



Let u be a word in the alphabet [k]. We have

D(u)−D(uy) =
∑

1≤i<j≤k

(
Hi(si+1 · · · sj−1u)−Hi(si+1 · · · sj−1(u

y))
)

=
∑

1≤i<j≤k

(
Hi(si+1 · · · sj−1u)−Hi((si+1 · · · sj−1u)y))

)

=
∑

1≤i<j≤k

∆i(si+1 · · · sj−1u)

(5.12)

by the definition (5.4) of D(u), the commutation of the si with cranking (2.7), and the definition (5.10) of
∆. Let

∆(j)(u) =
∑

1≤i<j

∆i(si+1 · · · sj−1u). (5.13)

denote the sum over i in the right hand side of (5.12) with fixed j.
Let u be a word of partition content and first(u) = x > 1. Observe that for all i < j, the word

si+1si+2 · · · sj−1u has i-dominant weight. It suffices to show that

∆(j)(u) = δxj . (5.14)

For 1 ≤ i < j, define Fi = first(si+1 · · · sj−1u). Rewriting the result of Lemma 5.14 we have

∆i(si+1 · · · sj−1u) =






1 if Fi = i + 1

−1 if Fi = Fi−1 = i

0 otherwise.

(5.15)

Suppose first that j < x. Then Fj−1 = Fj−2 = · · · = x > j > i for all 1 ≤ i ≤ j − 1; in particular
x 6∈ {i, i + 1}. By (5.15) ∆i(si+1 · · · sj−1u) = 0 for all i and ∆(j)(u) = 0 as desired.

Next suppose j = x. The first letter x of u is (x − 1)-matched since u has (x − 1)-dominant weight.
Therefore Fi = x for all 1 ≤ i ≤ j − 1. By (5.15) we have ∆(j)(u) = 1 as desired; for ∆j−1(u) = 1 and
∆i(si+1 · · · sj−1u) = 0 for i < j − 1.

Finally let j > x. It is clear that Fj−1 = · · · = Fx = x. By Lemma 5.14, ∆i(si+1 · · · sj−1u) = 0 for
x + 1 ≤ i ≤ j − 1.

Let u′ = sx+1 · · · sj−1u; it has first(u′) = x. Consider Fx−1 = first(sxu′); it can either be x or x + 1.
Suppose Fx−1 = x + 1. Then ∆x(sx+1 · · · sj−1u) = 0 and Fx−1 = Fx−2 = · · · = F2 = x + 1, so that
∆i(si+1 · · · sj−1u) = 0 for i < x as well. In this case we have ∆(j)(u) = 0. Otherwise Fx−1 = x, whence
∆x(sx+1 · · · sj−1u) = −1 and ∆x−1(sx · · · sj−1u) = 1 by (5.15). When we apply sx−1 to sxu′ which has
first(sxu′) = Fx−1 = x, since sxu′ has (x − 1)-dominant weight, this leftmost x is (x − 1)-matched, and
cannot change. So Fx−2 = Fx−3 = · · · = F2 = x. Therefore ∆i(si+1 · · · sj−1u) = 0 for i ≤ x − 2. We have
∆(j)(u) = 0 again as desired.

This completes the proof of (5.14) and the equality of D and c on tableaux.

6 Appendix: Proofs

Proof of Proposition 2.44. By Remark 2.41, to prove that Y(B(λ)) is a singleton we may reduce to the case
that λ is a partition. It is easy to check directly that yλ is a highest weight vector. Suppose T ∈ B(λ) with
T 6= yλ. Let r be the smallest row index such that the r-th row of T does not consist entirely of letters r.
Let i + 1 be the last letter of this row. Within T this letter i + 1 is i-unmatched. Hence T admits ei and is
not a highest weight vector.

Proof of Corollary 2.52. B decomposes into a direct sum of its components. By Proposition 2.49 C has a
unique highest weight vector y. Let wt(y) = λ. Then there is a unique isomorphism PC : C ∼= B(λ). Putting
these maps PC together over all components C we obtain the desired isomorphism. Equation 2.26 holds
since each PC is a morphism. Equation 2.27 is obvious.

36



Proof of Corollary 2.54. Let b ∈ B and let C and C ′ be the components of b and Ψ(b). By the definition
of a morphism, Ψ restricts to a morphism Ψ : C → C ′. By Proposition 2.49 C and C ′ have unique highest
weight vectors y and y′, of the same weight (say λ) by Lemma 2.50. Let PC : C ∼= B(λ) and PC′ : C ′ ∼= B(λ)
be the isomorphisms of Theorem 2.48. PC′ ◦Ψ◦P−1

C is a morphism from B(λ) to itself, which is the identity
by the uniqueness in Theorem 2.48. Therefore Ψ is an isomorphism and PC = PC′ ◦Ψ, proving (i) and (ii).
(iii) follows by (i) and Lemma 2.43.

Proof of Corollary 2.55. The first part of (i) holds by Lemma 2.43. For the second part, suppose Ψ is also
an isomorphism. Then its inverse Φ restricts to maps Φλ : Y(B′, λ) → Y(B, λ) for all λ. But Ψ and Φ are
inverse, so it follows that Ψλ and Φλ are inverse for all λ, that is, Ψλ is a bijection for all λ.

For (ii) let Ψλ : Y(B, λ) → Y(B′, λ) be maps. Define Ψ : B → B′ as follows. Using the isomorphism
b 7→ (P (b), Y (b)) and b′ 7→ (P (b′), Y (b′)) of Corollary 2.54, for b ∈ B define Ψ(b) by P (Ψ(b)) = P (b) and
Y (Ψ(b)) = Ψλ(Y (b)) for all b that are in a component isomorphic to B(λ). This is clearly a morphism with
the desired properties. It is unique since its restriction to each component of B is uniquely specified. If in
addition each Ψλ is a bijection then let Φλ be the inverse bijection: we obtain a crystal graph morphism Φ
extending the Φλ and it is the inverse of Ψ because the same is true for the maps Φλ and Ψλ.

Proof of Proposition 2.61. Suppose b is highest weight. Let b = uv be any factorization so that v is an
arbitrary right factor of b. The word v is a highest weight vector and therefore has partition weight by
Propositions 2.57 and 2.42. So b is Yamanouchi.

The proof of the converse proceeds by induction on the length of b. The empty word b = ∅ is Yamanouchi
and also highest weight. A nonempty Yamanouchi word can be written b = xc with x ∈ B(1); c is Yamanouchi
and by induction is highest weight. By Proposition 2.57 and the fact that εi(x) = δi,x−1, we need only show
that ϕx−1(c) > 0. Since the weights of b and c are partitions and b is obtained from c by adding one to
the x-th coordinate, it follows that c has strictly more letters x − 1 than letters x. Then ϕx−1(c) > 0 by
Proposition 2.42.

Proof of Proposition 2.74. By Remark 2.41 we may assume λ is a partition. Let y ∈ Y(B(λ)#) be an
antitableau; it is Yamanouchi by Proposition 2.61. We prove by induction that each column of y of height
r must be equal to r · · · 21. Suppose the rightmost j − 1 columns have the desired form. Consider the
j-th column c; say it has height r and the column of y immediately to its right has height r′ ≥ r. By
semistandardness the elements of c are all ≤ r′. If c has some letter i + 1 and no i, then the letter i + 1 is
i-unmatched since all columns to the right have both i and i + 1. Therefore y admits ei, a contradiction. It
follows that c and therefore y have the desired form. Thus the columns of y are the columns of yλ except
they occur in reverse order from left to right. It follows that B(λ)# has a unique highest weight vector y of
weight λ. Therefore B(λ)# ∼= B(λ) by Proposition 2.49.

Proof of Proposition 2.76. We may assume that b = ucv and b′ = uJ(c)v for u and v words of lengths k
and l, say, and c ∈ B(2, 1)#. The map B(1)k ⊗ B(2, 1)# ⊗ B(1)l → B(1)k ⊗ B(2, 1) ⊗ B(1)l given by
u′ ⊗ c′ ⊗ v′ 7→ u′ ⊗ J(c′) ⊗ v′, is a morphism by Proposition 2.23, and it sends words to Knuth-equivalent
words. It restricts to a an isomorphism from the component of u⊗ c⊗ v to that of u⊗J(c)⊗ v by Corollary
2.54. Since the number of i-matched pairs in a word is constant on its i-string and is equal to the number
of letters i + 1 in the word at the beginning of its i-string, properties (i) through (iv) hold.

Proof of Lemma 2.79. The result holds if λ is the zero weight: in this case y = ∅ = yλ are empty. Let y be
Yamanouchi of a nonzero weight λ and write xv = y for x ∈ B(1). Then v is Yamanouchi, of weight µ, say,
such that λ is obtained from µ by adding one cell in row x and column c = λx. By induction y = xv ≡ xyµ.
The first c−1 columns of yµ all contain x and therefore Knuth-commute with x by Lemma 2.77. Commuting
x past these columns yields yλ. That is, xyµ ≡ yλ as desired.

Proof of Theorem 2.80. Consider the crystal graph isomorphism P : C ∼= B(λ) of Theorem 2.48 where C
is the component of b and λ is a partition. It must send the lone highest weight vector y of C to the lone
highest weight vector yλ of B(λ). By Proposition 2.61 y is a Yamanouchi word, necessarily of weight λ. By
Lemma 2.79 y ≡ yλ. Let F be a sequence of crystal graph operators such that F (yλ) = P (b); it exists by
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Proposition 2.44. By Proposition 2.76 F (y) ≡ F (yλ) = P (b). Now P (b) = F (yλ) = F (P (y)) = P (F (y)).
Since P is an isomorphism b = F (y). So b ≡ P (b).

Uniqueness in (i) follows from Theorem 2.48. (ii) follows from immediately from (i). (iii) just says that
P is a morphism of crystal graphs, which it is by its definition in Theorem 2.48.

Proof of Proposition 2.84. We first reduce to the case that u⊗ T ∈ B(r)⊗B(µ) is a highest weight vector.
Let u′⊗T ′ be the highest weight vector in the component of u⊗T . Write u′ = u′

r · · ·u
′
1 with letters u′

i ∈ B(1).
Since the map u ⊗ T 7→ uT is a crystal morphism, u′T ′ is the highest weight vector in the component of
uT . Any right factor u′

i · · ·u
′
1T

′ is highest weight by Proposition 2.61. Since uT and u′T ′ are in the same
component, by Proposition 2.24 so are ui · · ·u1T and u′

i · · ·u
′
1T

′. By Theorem 2.80(iii), P (ui · · ·u1T ) and
P (u′

i · · ·u
′
1T

′) are tableaux in the same component, and therefore have the same shape. We may therefore
assume that u⊗ T ∈ Y(B(r)⊗B(µ), λ). Let u = ur · · ·u1 and let µ(j) be the weight of uj · · ·u1yµ, which is
the shape of the Yamanouchi tableau P (uj · · ·u1yµ). It is evident that the insertion of uj just adds a cell to
the uj-th row for all j. Since u is weakly increasing, the cells are being added in rows of smaller and smaller
index. Therefore the cells, which lie in a horizontal strip, are being filled in from left to right.

Proof of Proposition 2.87. For (i), for any word b we have b ≡ P (b) by Theorem 2.80. Applying # we have
b# ≡ P (b)# by Proposition 2.86. Taking P , we have P (b#) = P (P (b)#) = P (b)ev by Theorem 2.80(ii) and
(2.46), proving (i). For (ii),

T evev = P (P (T#)#) = P (T##) = P (T ) = T.

The first equality holds by (2.46). The second equality holds by the proof of part (i) with b = T#. The third
equality holds since # is obviously an involution. The last equality holds by Theorem 2.80(i). For (iii),

fi(T
ev) ≡ fi(T

#) = en−i(T )# ≡ en−i(T )ev.

The first equivalence holds by applying Proposition 2.76 to (2.47). The equality holds by (2.21). The
last equivalence holds by (2.47). The Knuth-equivalent tableaux fi(T

ev) and en−i(T )ev must coincide by
Theorem 2.80(i). The statements for ei and si have similar proofs.

Proof of Proposition 3.4. If b = ∅ is empty then by definition both Q(b) and Q′(b) are empty. Suppose
b = xc is not empty with x ∈ B(1). By induction Q(c) = Q′(c). Both Q(b) and Q′(b) share the same shape
as P (b). It suffices to show that Q′(c) is obtained from Q′(b) by removing the largest entry. Equivalently
we must show that if y is the Yamanouchi word in the component of b, and y = x′y′ with x′ ∈ B(1) then
y′ (automatically being Yamanouchi) is the component of c. Since b = xc and y = x′y′ with b and y in the
same component, by Proposition 2.24 c and y′ are in the same component as desired.

Proof of Theorem 3.5. The isomorphism (3.1) follows just by iterating the isomorphism of Proposition 2.70
k times for r = 1. That is the Schensted approach. The Robinson approach is to use Corollary 2.52 and
then use the bijection between Yamanouchi words and standard tableaux.

The commutation of fi, ei, si and P is already given in Theorem 2.80(iii). fi(b), ei(b), and si(b) are all
in the same component as b and therefore have the same associated Yamanouchi word y. So the Robinson
recording tableau Q′ is the same for all these words, and by Proposition 3.4 so is the Schensted recording
tableau Q.

Proof of Theorem 3.6. The isomorphism (3.1) follows just by iterating the isomorphism of Proposition 2.70.
Or Corollary 2.52 and then use Proposition 2.72. The other properties hold for the same reasons as they do
in Theorem 3.5.

Proof of Proposition 3.9. We first reduce to the case that b ⊗ T is highest weight. The condition (i)
ov(br+1, br) ≥ m, is equivalent to saying that br+1br is the row-reading word of a semistandard tableau
of the two-row skew shape Dm that has rows of sizes βr and βr+1 with exactly m columns of height two.
Since B(Dm) is a crystal graph, it follows that condition (i) is preserved on the component of br+1br. Con-
dition (i) still preserved on the component of b ⊗ T , by Proposition 2.24. This argument shows that the
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condition of (i) not holding for m + 1, is also preserved on the component of b ⊗ T . Therefore ov(br+1, br)
is invariant on the component of b ⊗ T . However Q(b ⊗ T ) is also invariant on the component of b ⊗ T by
Theorem 3.8. Therefore we may assume that b⊗ T is highest weight, so that T = yµ as usual. We are done
by Proposition 2.72 and Lemma 2.66.

Proof of Theorem 3.10. The statement for P -tableaux is in Proposition 2.87(i). One may prove the state-
ment about Q-tableaux by applying the symmetry of the RSK map that exchanges the P - and Q-tableaux
[3] and then using the statement for P -tableaux.

Proof of Proposition 4.9. The sets of partitions (s) ⊗ (r) and (r) ⊗ (s) of Proposition 2.70 coincide since
both consist of the partitions λ = (λ1, λ2) where λ1 + λ2 = r + s and 0 ≤ λ2 ≤ min(r, s). Since the middle
terms of (4.6) are multiplicity-free as classical crystal graphs, it follows that there is a unique isomorphism
B(r)⊗B(s) ∼= B(s)⊗B(r) of classical crystal graphs. As a classical crystal graph, Br⊗Bs is isomorphic to
B(r)⊗B(s), and an isomorphism of affine crystal graphs is also an isomorphism of classical crystal graphs.
It follows that the map (4.6) must be the R-matrix.

Proof of Proposition 4.15. By Theorem 4.14 the value of H(b⊗ b′) depends only on the classical component
of b⊗b′, which is computed by the classical crystal graph isomorphism (4.6). These classical components are
indexed by the partitions λ ∈ (r)⊗(s). We first prove that H(b, b′) = λ2 by induction on m = λ2 ≤ min(r, s)
where λ is the shape of P (bb′). For m = 0, we have u(Br) ⊗ u(Bs) = y(r) ⊗ y(s) 7→ y(s+r) in B(s + r), so

H must be zero on the component λ = (s + r) as desired. Suppose the result holds for 0 ≤ m < min(r, s).
We show it holds for m + 1. Let b⊗ b′ = 1r−m2m ⊗ 1s ∈ Br ⊗Bs. This element is highest weight of weight
λ = (r + s − m,m). We have R(b ⊗ b′) = c′ ⊗ c = 1s−m2m ⊗ 1r. We consider the 0-string of b ⊗ b′ and
c′ ⊗ c. Since m < r and m < s it follows that e0(b ⊗ b′) = e0(b) ⊗ b′ and e0(c

′ ⊗ c) = e0(c
′) ⊗ c. Therefore

H(e0(b) ⊗ b′) = H(e0(b ⊗ b′)) = H(b ⊗ b′) + 1 = m + 1. Now e0(b) ⊗ b′ = 1r−m−12mn ⊗ 1s is in the same
classical component as 1r−m−12m+1⊗1s, which is highest weight of weight (r+s−(m+1),m+1). Therefore
H(b, b′) = λ2 by induction. The equality with overhang follows from Proposition 3.9, since, for a tableau of
two-row partition shape λ = (λ1, λ2) in the alphabet {1, 2}, it is clear that λ is the number of 1-matched
pairs.

Proof of Proposition 4.20. DB3⊗(B2⊗B1) can be computed pictorially by:

+ + =

+ + + +

using (4.11) and (4.19). D(B3⊗B2)⊗B1
is computed pictorially below.

+ + =

+ + + + =

+ + + =

+ + + +
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The first equality holds by (4.13) and (4.19). The only significant change in the second equality is in the
last diagram, which uses (4.5). The third equality is trivial.

Comparing the final lines of the two computations, we need only show that

=

But this follows from (4.15).

Proof of Proposition 4.23. Say that a triple (B,B′,Ψ) is good if B,B′ ∈ C, Ψ : B ∼= B′ is an affine crystal
graph isomorphism and (4.23) holds. We observe that good triples are closed under tensor product, that is,
if (B1, B

′
1,Ψ1) and (B2, B

′
2,Ψ2) are good, then so is (B2 ⊗B1, B

′
2 ⊗B′

1,Ψ2 ⊗Ψ1); this follows immediately
from the definition (4.18) and Proposition 4.13.

Without loss of generality we may assume that B and B′ differ by exchanging two adjacent tensor factors
by an R-matrix. Since (B′′, B′′, 1) is a good triple for all B′′ ∈ C, we may reduce to the case that B = B2⊗B1,
B′ = B1 ⊗B2, and Ψ = RB2,B1

. But that is Proposition 4.19.

Proof of Proposition 5.1. Since neither the map Q = Q(b) 7→ Q(Ri(b)) nor the map Q 7→ siQ touches letters
greater than i + 1, we may assume that Ri exchanges the leftmost two tensor factors and i = k − 1. Since
evacuation is an involution (Proposition 2.87) it suffices to show that

(siQ(b))ev = Q(Ri(b))
ev. (6.1)

We have

(siQ(b))ev = P ((siQ(b))#) = P (s1Q(b)#)

= s1P (Q(b)#) = s1Q(b)ev = s1Q(b#).
(6.2)

This follows by (2.46), Proposition 2.87(iii), Theorem 2.80(iii), and Theorem 3.10.
On the other hand, with respect to the alphabet [k],

Q(Ri(b))
ev = Q(Ri(b)

#) = Q(R1(b
#)) (6.3)

by Theorem 3.10 and Proposition 6.1 (below).
Comparing (6.1), (6.2), and (6.3), we have reduced to the case i = 1 and k = 2. But in that case

both s1(Q(b)) and Q(R1(b)) are semistandard tableax of the same partition shape (namely that of P (b) =
P (R1(b))), and the same weight (β2, β1). But there is only one such semistandard tableau, so the two must
agree.

Proposition 6.1. Let β ∈ Z
k
≥0, 1 ≤ i ≤ k − 1, and b ∈ Bβ. Let Ri denote the R-matrix that exchanges the

i-th and (i + 1)-th tensor factors, indexed from the right. Then

Ri(b)
# = Rk−i(b

#). (6.4)

Proof. Directly from the definitions we may reduce to the case of two tensor factors β = (r, s), in which case
we must show that the diagram commutes.

Bs ⊗Br #
−−−−→ Br ⊗Bs

RBs,Br

y
yRBr,Bs

Br ⊗Bs −−−−→
#

Bs ⊗Br

All of the maps are bijections. If we consider the composite map from Bs ⊗ Br to itself by going around
the square, we obtain a crystal graph isomorphism by (2.21) and the fact that the R-matrix is a crystal
graph isomorphism. Since Bs ⊗ Br is multiplicity-free as a classical crystal graph there is only one such
isomorphism (Corollary 2.56), namely, the identity. The commutation of the diagram follows.
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Proof of Proposition 5.8. (C0) holds by definition. (C1) is also obvious since any extracted permutation ui

will be the increasing permutation, which has zero cocharge. For (C2) one can show that if two words of
partition content differ by a Knuth transposition, then all the extracted subwords are the same except that
one has a transposition of two values that are adjacent in position but nonadjacent in value. Therefore the
cocharges of the extracted subwords remain the same. For (C3) one observes that all extracted subwords are
the same for xv as for vx except that a single extracted subword has been cranked with x being the cranked
letter. It is easy to check that the cocharge drops by one for that standard subword.

Proof of Lemma 5.11. Since the si preserve the shape of a tableau, by Lemma 5.10 we may assume that the
weight of T is a partition. Certainly all the letters 1 are in the first row of T , so in the computation of K(T )
the cranked letters are never equal to 1. K(T ) requires |λ| − λ1 cranks, the number of letters not in the first
row of T . The result follows by properties (C3) and (C2).

Proof of Proposition 5.12. Let u be a word. By (C0) we may assume u has partition content. By (C2) we
may assume u is a tableau. We compute the sequence of tableaux u, K(u), K2(u), . . . . By Lemma 5.9 this
sequence is eventually constant, given by the single-row tableau of the same weight as u. By Lemma 5.11
c(u) is determined by adding up the number of cells in all of these tableaux that are not in the first row.
Therefore we have evaluated c(u) using the rules (C0) through (C3) and are done.
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