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MORE ON COMPLEMENTS OF 
MINIMAL SPANNING SURFACES 

R. J. DAIGLE1 

ABSTRACT. W. R. Alford in volume 91 of the Annals of 
Mathematics has shown the existence of a knot which has two 
minimal spanning surfaces whose complements in S3 are not 
homeomorphic. The trefoil knot is a companion to the knot. 
This paper shows that any nontrivial knot k is a companion to 
a knot K which has at least two minimal spanning surfaces. 

Introduction. In [1], W. R. Alford exhibited a knot k and two 
minimal spanning surfaces Sx and S2 for k such that S3 — S{ are not 
homeomorphic. The knot was formed by sending the torus T con­
taining the knot I in Fig. 1 faithfully to a regular neighborhood of the 
trefoil knot. 

In a later paper [2], Alford and C. B. Schaufele constructed knots 
with 2m really distinct minimal spanning surfaces; the surfaces 
do not have homeomorphic complements. The examples were 
constructed by sending the torus T containing the knot I in 
Fig. 1 faithfully to a regular neighborhood of the sum of m 
"nice" knots. The selection of the knots was strongly influenced by 
their algebraic properties. 

The purpose of this paper is to show that any nontrivial knot is a 
companion to a knot K which has at least two minimal surfaces. 

The knot K is the image of the knot I in T in Fig. 1 under a 
faithful homeomorphism of the solid torus T to a regular neighbor­
hood V of the knot I. 

The Alexander polynomial of K is (2 — t) • (2t — 1) [4] for any 
nontrivial k used. Thus K had genus at least one. The spanning 
surfaces for K have genus one, so K has genus one. 

The surfaces. The surfaces for K are constructed as in [2]. The 
knot I is spanned by a singular disk in T as shown in Fig. 2. 

Only one side is shown; the singularities are in heavy lines. 
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The image of the disk in V is as in Fig. 3 with the band portion 
tied in the knot k (with twists in the band). 

The two singularities are cut out and a tube is attached to the 
boundaries of the excised disks as indicated in Fig. 4. 
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There are two possibilities for the tube surrounding the knot k in 
the band as indicated in Figs. 5 and 6 for the figure eight knot. 

Sl will be the surface when the tube does not go "through" the 
knotted band; S2 when the tube does go "through" the knotted 
band. A spine for Sx is shown in Fig. 7. Fig. 8 has the same 
knot type as Fig. 7. Thus iri(S3 — Sx) is the free product of 
the integers with the knot group of k. 
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FIGURE 10 

A spine C for S2 will be taken so that the part of the spine which 
lies on the tube is "homologous" to zero in the complement of 
the knot k in the band. An example is shown in Fig. 9. 

Let G — (Ai9 ' • •, An : R1? •• • •, R J be the group of k obtained 
from an over presentation with Ax as in Fig. 10. 
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Let CL be the part of the spine C bounding a disk in S3 and C2 

the part bounding a Möbius band M. Let T be the boundary 
of a relative regular neighborhood of M in the complement of 
Cl- Ci H C2. Let O be the center line of M. If S3 - C is 
decomposed into the part not inside T and the part not outside T, 
then a simple application of Van Kampen's Theorem [3] gives 
7n(S3 - S2) = {OfQ,Ax, • • -, A,, : Hx, • • ^ O 2 = ÇWA^ÇW)where 
W is the word in G obtained from twisting the spine on the 
tube around the band. W is a generator of the first homology of 
the boundary of a small regular neighborhood of k in S3. 

Let Gx = TT^S3 - St) = Z * H and G2 = TT^S3 - S2) where H is 
isomorphic to G. The theorem that will be proved is 

THEOREM 1. Gx and G2 are not isomorphic. 

Preliminaries. Suppose <p : G2 —> Gx is an isomorphism. G2 contains 
a copy of G, the knot group of k. G is not a free product 
since k is not trivial [8]. Therefore, since rank (G) > 1, <p(G) 
is conjugate to a subgroup of the free factor H in Gx by the 
Kurosh Subgroup Theorem [5]. It can then be assumed that 
the isomorphism <p also sends G to a subgroup of H. 

Let z be a generator of Z and let <p(0) = v, <p(Q) = u, <p(A{) = x, 
(fiWA^1) = t, <p(W) = f' = t 'X. x, t, and t' are in H. The 
following lemma will be needed later. 

LEMMA 2. v, u2, x, Ü2, Ü2JC_1, ,̂ f', t' - t~l are each nontrivial 
words in Gx. 

PROOF OF LEMMA 2. The first five are nontrivial because G2 is a 
free product with amalgamation containing as a subgroup the free 
group generated by Q free product with G. Ax and W generate 
Z © Z [7, p. 57] as a subgroup of G since k is nontrivial. 
Because <p is an isomorphism, t, t' and £'£ - 1 cannot be trivial. 

The relation O2 = Ç W A ^ i Ç W in G2 gives v2 = utut' in Gx. 
The strategy will be to show there is no w / l which satisfies 
the relation. 

v has one of the following as its reduced form (fo/s belong to 
H): 

Form 1: Ü = fo^1* • • • bnz
a{n). 

Form 2: ü = foiZa(1) • • • za{n-l)bn. 
Form 3: t; = z«*1^ • • • za{n)bn. 
Form A: v = za{i)bl • • • bn_iZa{n). 
Conjugation by an element of H in Z * H sends H to itself. Thus 

conjugating Form 3 by bn~
l and Form 4 by x gives rise 
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to new isomorphisms of G2 to G1? sending G to a subgroup of H 
and giving the new v's Form 1 and Form 2 respectively. Form 
2 can be changed to Form 1 when bn • bx Y !• Thus the 
existence of <p depends on vs ability to assume Form 1 or Form 2 
with bn • bi= 1. 

There are three cases to consider according to the reduced form 
ofü2. 

Case 1. v has Form 1, v2 = bYza{l) • • • bnz
a{n)biZa{l) • • • bnz

a{n) is 
already reduced. 

Case 2. v has Form 2 with bn - bx = 1, v2 has reduced form 
v2 = fo^1) • • • bq.^-^ibq - bn_q+1) %«("-Q + I) • • • zain-l)bn for 
l ^ q <n. 

Case 3. t; has form 2 with bn • bx = 1, u2 has reduced form 
ü2 = b ^ 1 ) • • • &q(*

a(q)+a(n"9))&n-q+i • • * ^ " - ^ „ f o r l S q < n. 
Therefore to prove Theorem 1, it need only be shown that Cases 

1-3 cannot occur. 
PROOF OF THEOREM 1. The following lemma will contribute 

greatly to the demise of Case 1 and Case 2. 

LEMMA 3. Let g-s be elements of H and let ß(i)'s be integers. 
Suppose the following two lists of equations hold for integers 
r, k, and p with l ^ f c — p^p — 1: 

(3D f & - r + i - g r =1 for2^r^k-p, 
K ' } \ß(k - r) + ß(r) = 0 forl^r^k-p, 

(3.2) lg\ x 
lk-p+r /o r2grSp- l , 

ß(r) = ß(k- p + r) / o r l ^ r g p - 1 . 

TTien either there is an r, 2 ̂  r ̂  k — p, so that gr= 1 or there is 
an r, 1 ̂  r ̂  k — p, so thatß(r) = 0. 

PROOF OF LEMMA 3. The differences A = {fc — 2r + 1 : 2 ̂  r ̂  
k — p) and B = {/c — 2 r : l ^ r ^ f c — p} of indices in (3.1) give 
2(k — p) — 1 consecutive integers and hence all equivalence classes 
modulo (k — p) since k — p i? 1. If 0mod(fc — p) appears in A 
then there is an r, 2 S r â i c - p so that gfc_r+i • gr = 1 and 
(k — 2 4- 1) = Omod (fc — p). Using the latter fact and 
k — r^ p — 1, one can deduce from (3.2) that gr = gk_r+l. Thus 
gr

2 = 1. H has no torsion so gr = 1. The alternate conclusion is 
reached in a similar manner if 0 mod (k — p) appears in B. 

Case 1. Note length (v2) = 4n > 0, v2 begins with bx ^ 1 from H 
and ends with za{n) ̂  1. 

A. If Z(w) = 2k ̂  2 then either 
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u = axz
t{l) • • • akz*W or u = z*a)ax • • • ze{k)ak. 

I f w = a!^(1) • • • akz
€ik) then 

t)2 = a ^ w • • • akz^k\ta{)z^ • • • flfctfWf. 

Spelling forces cancellation. Because of length, v2 = 1 is the only 
possibility, contradicting Lemma 2. 

Ifw = S'WÖ! • • • z€{k)ak then 

Because of spelling, akt' = 1 and akt = 1. Hence £ = £', a contradic­
tion to Lemma 2. 

B. If l(u) = 2 f c - l â l then either 

u = ^ ( 1 ) Ö ! • • • ak^z€{k) or u= a ^ 1 * • • • z*{k~l)ak. 

The second is the only possible choice because no cancellation is 
possible in computing v2 by v2 = utut' and there is a contradiction 
because of spelling. 

Ifw = ax^
l) • • • ^ - ^ û f c t h e n 

v2 = aiZ<(i) . . . tfih-ufatajra) . . . z«k-l\akt'). 

Length and spelling force akt ' = 1 and 

V2 = aiZe(i) . . . ^(fc-D^tojj^d) . . . se(fc-i). 

If öfctox j£ 1 then using the two reduced forms for v2 we have 
ay = bi = a^tax or a*£ = 1. Since akt' = 1 already, we have a contra­
diction to Lemma 2. Thus aktdi = 1 and cancellation will continue 
until the reduced form is either 

v2 = a^v • • • ap(z^+€{k-^)ak.p+l • • • ak.xz^k-^ 

or 

v2 = Ö^ € ( 1 ) • • • z€ir)-l)(ap • afc_p+1)2;€(fc-p+1) • • • afe_12ie(fc-1) 

for 1 ̂ § p = fc — 1. The first can be eliminated because its length is 
4p — 2, which is not 0 mod 4. If the reduced form for v2 is the second 
then l(v2) = 4(p — 1), so n = p — 1. Because of cancellations we 
have 

afc_r+1 • ar = 1 for 2 ê r ^ fc — p, 

e(k - r) + €(r) = 0 for 1 g r ^ fc - p. 



480 R. J. DAIGLE 

Using the two reduced forms for v2 we have 

ar = ak_p+r for 2 ^ r ^ p — 1, 

e(r) = e(k — p + r) for 1 ^ r ^ p — 1. 

To apply Lemma 3 to obtain a contradiction that u is reduced we need 
only show 

LEMMA4. l ^ f c — p = p— 1. 

PROOF OF LEMMA 4. 1 ^ fc — p follows from l = p=k— 1. If 
/c > 2p — 1 then in the cancellation to obtain the reduced form for 
v2 using t?2 = utut', the fcth letter of u must be cancelled. The kth 
letter of u is z€(kl2) if /c is even, a(k+i)/2 if & is °dd. Since the sum of 
the indices on the e's must be k and on the a's must be k + 1, either 
2e(fc/2) = 0 or a(

2^+1)/2 = 1. So either e(fc/2) = 0 or a(fc+1)/2 = 1, a 
contradiction to u being reduced. 

Lemma 3 can be applied to obtain that u is not reduced, a contra­
diction. Thus l(u) ^ 2k - 1 ^ 1. 

This completes the proof that Case 1 cannot occur. 
Case 2. We note that l(u2) = 4q - 3 > 0. v2 begins with bx / 1 

from H3 t>2 ends with bn ^ 1 from H. Because of cancellation to 
obtain the reduced form we have 

K-r+i ' br = 1, 2 â r g n - q, 

a(n — r) + a(r) = 0, 1^ r^ n — q, 

half of the equations needed to apply Lemma 3. 

LEMMA 5. l ^ n - ç â ç - l . 

The proof is exactly as in Lemma 4 using t; instead of u. 
A. If l(u) = 2fc^ 2 then u = z€{l)al • • • ze(fc)afc or u = axz^l) • • * 

afcz
€(fc). 
Ifu = ze(1)a! • • • z€{k)ak then 

V2 = Z?Mai ' ' ' Z£(fe)(M*e(1)01 * * * ^ W ) -

Because of spelling, ze(l)ai * • • (akt) • • • ze(fc) = 1; in particular, afc£ = 
1. Thus v2 = akt

f = t~H' = x, a contradiction to Lemma 2. 
Ifw = axz

€{l) • • - akz
€{k) then 

t;2 = aYz^ • • • flfcZ^te!)^1) • • • akz^kH'. 

If tax ^ 1 then u2 does not reduce further; l(v2) = 4fc + 1, so 
q = fc + 1. Using the two reduced forms for v2 we obtain 
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br = bn_q+r for 2 g r g q - 1, 

o(r) = a(n — 9 + r) for 1 ^ r ^ g — 1. 

Lemma 3 applied here gives a contradiction to v being reduced. Thus 
tax — 1. 

Observe that l(v2) = 1 is impossible for then taY = 1 and v2 = atf' 
imply t>2 = x which is impossible by Lemma 2. Thus if v2 is allowed 
to reduce using v2 = utut' and if it is compared to the reduced form 
from v, we will always have the relation ax — bY and t' = bn. Since 
bn • bi = 1 then t ' • ax = 1 = ta1? a contradiction. 

Hence Z(w) ^ 2fc S 2. 
B. If Z(u) = 2k - 1 =§ 1 then u = %<<*%! • • • akz

€^ or w = a!%6(1) 

• • •*«<*-"a*. 
The former cannot occur because no cancellation is possible for 

v2 from v2 = utut' and v2 is spelled incorrectly. 
Ifu = aYz€{l) • • • z € ( * - S t r i e n 

t>2 = fllZ«(i) . . . z ^ - i ^ t a ^ ü ) - - - ak^^k-l\akt'). 

lì akt' = 1, spelling oft;2 forces v2 = ax and a f̂ax = 1. Since t ' = ftt, 
ax = x. Thus v2=z x contradicting Lemma 2. Therefore akt' ^ 1 
and from this point the proof of the second part of A of this case can 
be imitated to deduce that u = aiZ€(i) • • • ze(k~l) • • • z€(k~l)ak is 
impossible. Hence l(u) ^ 2fc — 1 â 1. 

This completes the proof that Case 2 cannot occur. 
Case 3. We note that l(v2) = 4q - 1 > 0, v2 begins with fox ^ 1 

from H and ends with bn j& 1 from H. 
A. If J(u) = 2 f c § 2 then u = ze(1)ax • • • z^k)ak or u = axz

€^ • • • 
akz

€{k). The former is easily shown to be impossible by spelling and 
length arguments. 

Ifw = axz
€{l) • • • akz

€(k}Ûxen 

v2 = aYz*{l) - • • akz?(k)(tai)&M • • • akz'(kH'. 

Because of length, tax — 1 and since Z(t>2) ^ 1 then using the two 
reduced forms for v2 we always obtain the relations ax = bx and 
t' = bn. Since bn ' b\ = 1, t' • ax = 1 = to1? a contradiction. Thus 
l(u)^2k^2. 

B. The proof that l(u) / 2fc - 1 â 1 is very much like part A of 
this case. 

Thus Case 3 cannot occur and Theorem 1 is proved. 
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