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Introduction

These notes are intended to provide a first view of Lie theory accessible to mathematics undergrad-
uates. Although the prerequisites are kept as low level as possible, the material is sophisticated and
contains many of the key themes of the mature subject. In order to achieve this we confine ourselves
to matriz groups, i.e., closed subgroups of general linear groups. One of the main results that we prove
shows that every matrix group is in fact a Lie subgroup, the proof being modelled on that in the expos-
itory paper of Howe [5]. Indeed the latter paper together with the book of Curtis [4] played a central
part in setting our goals for the course based on these notes.

Of course, the classical Lie groups are easily introduced at undergraduate level, and it is possible
to discuss many of their features. The spinor groups are also introduced and through them the réle of
global topology.

In Chapter 1 the general linear groups GL,, (k) where k = R, the real numbers, or k = C, the complex
numbers, are introduced and studied as both groups and topological spaces. Matrix groups are defined
and a number of standard examples are discussed, including the unimodular groups SL,, (k), orthogonal
O(n) and special orthogonal groups SO(n), unitary U(n) and special unitary groups SU(n), as well as
more exotic examples such as Lorentz groups and symplectic groups. The relation of complex to real
matrix groups is also studied and finally the exponential map for the general linear groups is introduced.

In Chapter 2 the Lie algebra of a matrix group is defined. The special cases of SU(2) and SLy(C)
and their relationships with SO(3) and the Lorentz group are studied in detail.

In Chapter 3 the units in a finite dimensional algebra over R or C are studied as a source of matrix
groups using the reduced regular representation. The quaternions and more generally the real Clifford
algebras are defined and spinor groups constructed and shown to double cover the special orthogonal
groups. The quaternionic symplectic groups Sp(n) are also defined, thus completing the list of compact
classical groups and their universal covers.

In Chapter 4 we define the idea of a Lie group and show that all matrix groups are Lie subgroups of
general linear groups.

In Chapter 5 we discuss homeogeneous spaces and show how to recognise them as orbits of smooth
actions. Then in Chapter 6 we discuss connectivity of Lie groups and use homogeneous spaces to prove
that many familiar Lie groups connected.

In Chapter 7 the basic theory of compact connected Lie groups and their maximal tori is studied
and the relationship to well known diagonalisation results highlighted.

I would like to thank the Universitat Bern for inviting me to visit and teach a course in the spring of
2000; particular thanks go to the students who spotted numerous errors and obscurities and Z. Balogh
who helped with the problem classes. Thanks also the mathematicians of Glasgow, especially R. Odoni.
Finally, many thanks to the topologists and fellow travellers of Manchester University from whom I learnt

much of my mathematics.
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CHAPTER 1

Real and complex matrix groups

1. Groups of matrices

In these notes we will usually consider the cases of the fields k = R, the real numbers, and k = C, the
complex numbers. However, the general framework of this section is applicable for any (commutative)
field k. Actually, much of it applies to the case of a general division algebra, with the example of the
quaternions discussed in Chapter 3 being of most interest to us.

Let M, (k) be the set of m x n matrices with entries in k. We will denote (4, j) entry of an m x n

matrix A by A;; or aij,

A =lay] =
Am1  **  OGmn

We set M, (k) = M,, (k). Then M, (k) is a (not usually commutative) ring under the usual addition and

multiplication of matrices, with identity I,,. Recall the determinant function det: M, (k) — k.
PrOPOSITION 1.1. det: M, (k) — k has the following properties.
a) For A, B € M, (k), det(AB) = det Adet B.
b) detI, = 1.
c) A e M,(k) is invertible if and only if det A # 0.
We use the notation
GL, (k) = {A € M, (k) : det A # 0}
for the set of invertible n x n matrices, and

SL, (k) = {A € My (k) : det A = 1} C GL,, (k)

for the set of n x n unimodular matrices.

THEOREM 1.2. The sets GL,(k), SL,(k) are groups under matriz multiplication. Furthermore,
SL, (k) is a subgroup of GL,,(k), i.e., SL, (k) < GL, (k).

GL, (k) is called the n x n general linear group , while SL,, (k) is called the n x n special linear or
unimodular group. When k = R or k = C we will refer to GL,,(R) and GL,(C) as the real and complex
general linear groups. Of course, we can also consider subgroups of these groups, but before doing so we
consider the topology of M, (R) and M,,(C).

2. Groups of matrices as metric spaces

In this section we assume that k = R, C. We may view M, (k) as a vector space over k of dimension

n?. We will define a norm on M, (k) as follows. Let k™ be the set of n x 1 matrices over k, and for

x € k" let
Z1

x| = /|z1]2 + - + |zn]?2, where x=

Tn
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For A € M,,(k) consider the set

A
SA:{M:O;&XEIK”}.
x|
It turns out that S 4 is bounded and so we can define the real number
||Al| = sup 84.
Putting
Ax]|
8L = —‘ : k™, =1
A { |X| X € |X| } )
we have

Al = sup 8}, = max 8,
since {x € k™ : |x| = 1} is compact.
REMARK 1.3. The following gives a procedure for calculating || A||; it may be familiar from numerical
linear algebra where it is also used.

All the eigenvalues of the positive hermitian matrix A* A are non-negative real numbers, hence it has

a largest non-negative real eigenvalue A. Then
|A] = V.

In fact, for any unit eigenvector v of A*A for the eigenvalue A, ||A|| = |Av|.
When A is real, A*A = AT A is real positive symmetric and there are unit eigenvectors w € R"* C C"
of A*A for the eigenvalue A for which ||A|| = |Aw/|. In particular, this shows that ||A|| is independent of

whether A is viewed as a real or complex matrix.
PROPOSITION 1.4. || || is a k-norm on M, (k), i.e.,

a) [[tA] = [t |A]| for t € k, A € My (k);

b) [[AB| < [AI[|B| for A, B € My (k);

o) A+ Bl <Al + Bl for A, B € My (k);
d) [|A|| =0 if and only if A= 0.

This norm || || is called the operator or sup (= supremum) norm. We define a metric p on M, (k) by
p(A,B) = [[A- B].

Associated to this metric is a natural topology on M,, (k), which allows us to define continuous functions
M, (k) — X into a topological space X.
For A € M, (k) and r > 0, let

N, ) (4;7) = {B € My (k) : | B — Af <},
which is the open disc of radius r in M, (k). Similarly if Y C M,,(k) and A € Y, set
Ny(A;r)={BeY :|B-A|<r}= NMn(k)(A;T) nyY.

Then a subset V' C Y is open in Y if and only if for every A € V| there is a 6 > 0 such that Ny (4;4) C V.

DEFINITION 1.5. Let Y C M, (k) and (X, T) be a topological space. Then a function f: Y — X is
continuous or a continuous map if for every A € Y and U € T such that f(A) € U, there is a 6 > 0 for
which

B € Ny (A;6) = f(B) € U.

Equivalently, f is continuous if and only if for U € T, f~'U C Y is open in Y.
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Recall that for a topological space (X,T), a subset W C X is closed if X — W C X is open. Yet
another alternative formulation of the definition of continuity is that f is continuous if and only if for
every closed subset W C X, f~'W C Y is closed in Y.

In particular we may take X = k and 7 to be the natural metric space topology associated to the

standard norm on k and consider continuous functions ¥ — k.

PropPOSITION 1.6. For 1 < r,s < n, the coordinate function
coord,s: M, (k) — k; coord,s(A) = A,
18 continuous.

PROOF. For the standard unit basis vectors e; (1 < i < n) of k™, we have

|Ars| <

ZAisei
i=1

= | Aes|

< [l

So for A, A’ € M,,(k),

Ay — Arg < [|A” = A].

Now given A € M,,(k) and € > 0, ||[A’ — A|| < ¢ implies |A], — A,s| < e. This shows that the function

coord,s is continuous at every A € M, (k). O
COROLLARY 1.7. If f: k"’ —k s continuous, then the associated function
F: My(k) —k;  F(A) = f((Aij)i<ijgn)s

s continuous.

COROLLARY 1.8. The determinant det: M, (k) — k and trace tr: M, (k) — k are continuous

functions.

PROOF. The determinant is the composite of the continuous function M, (k) — k™ (which identifies

M, (k) with k™) and a polynomial function k»* — k (which is also continuous). Similarly for the trace,

trA::jiz%,
i=1

There is a sort of converse of these results.

PROPOSITION 1.9. For A € M, (k),

1A < D 1Ayl

i,7=1
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PROOF. Let x = z1e; + - - - + 2, €, with [x| = 1. Then since each |zj| < 1,
|AX‘ = |.’131A61 + -+ anen|

< |z Aer| + - + |z Ae,|
< |Aer| + -+ - + |Aey,|

<) Ayl

ij=1

Since this is true for all vectors x with |x| = 1, by definition of ||AJ|,

Al < D Ayl

ij=1

In fact, M, (k) is complete with respect to the norm || ||.
DEFINITION 1.10. A sequence {A,},>o for which the following holds is a Cauchy sequence.
e For every ¢ > 0, there is an N such that r, s > N implies |4, — 44| < e.

THEOREM 1.11. For k = R,C, every Cauchy sequence {A}r>0 in My(k) has a limit lim A,.

Furthermore,

T—00 T—00

PRrROOF. By Proposition 1.6, the limit on the right hand side exists, so it is sufficient to show that

the required matrix limit is the matrix A with
Aij = lim (Ar);.
The sequence {A, — A}, > satisfies

n

14: — Al < D7 1(Ar)iy — Ayl = 0

ij=1

as r — 00, so by Proposition 1.9, 4, — A. g

It can be shown that the metric topologies induced by || || and the usual norm on k™ agree in the
sense that they have the same open sets (actually this is true for any two norms on ]k”Q). We summarise

this in a useful criterion whose proof is left as an exercise.

PROPOSITION 1.12. A function F': My, (k) — M, (k) is continuous with respect to the norms || || if
and only if each of the component functions F.s: M,,(k) — k is continuous.
A function f: My, (k) — k is continuous with respect to the norm || || and the usual metric on k if

and only if it is continuous when viewed as a function k™ — k.
We now consider the topology of some subsets of M,,(k), in particular some groups of matrices.
ProrosiTioN 1.13. Ifk =R,C,

a) GL, (k) C M, (k) is an open subset;
b) SL, (k) C M, (k) is a closed subset.
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PrROOF. We have seen that the function det: M, (k) — k is continuous. Then
GL, (k) = M,, (k) — det {0},
which is open since {0} is closed, hence (a) holds. Similarly,
SL, (k) = det {1} C GL, (k),
which is closed in M, (k) and GL,, (k) since {1} is closed in k, so (b) is true. O

The addition and multiplication maps add, mult: M, (k) x M, (k) — M, (k) are also continuous

where we take the product metric space topology on the domain. Finally, the inverse map
inv: GL, (k) — GL,(k); inv(4)=A""!,

is also continuous since each entry of A~! has the form

polynomial in A;;’s
det A

which is a continuous function of the entries of A and so is a continuous function of A itself.

DEFINITION 1.14. Let G be a topological space and view G x G as the product space (i.e., give it
the product topology). Suppose that G is also a group with multiplication map mult: G x G — G and

inverse map inv: G — G. Then G is a topological group if mult, inv are continuous.

The most familiar examples are obtained from arbitrary groups G given discrete topologies. In

particular all finite groups can be viewed this way.

THEOREM 1.15. For k = R,C, each of the groups GL,,(k),SL, (k) is a topological group with the

evident multiplication and inverse maps and the subspace topologies inherited from M, (k).

3. Matrix groups

DEFINITION 1.16. A subgroup G < GL, (k) which is also a closed subspace is called a matriz group

over k or a k-matriz group. If we wish to make the value of n explicit, we say that G is a matriz subgroup

of GL, (k).
Before considering some examples and properties, we record the following useful fact.

PROPOSITION 1.17. Let G < GL, (k) be a matriz subgroup and H < G a closed subgroup of G. Then
H < GL, (k) is a matriz subgroup.

PrROOF. Every sequence {4, },>0 in H with a limit in GL,,(k) actually has its limit in G since each
A, € HC G and G is closed in GL, (k). Since H is closed in G, this means that {A,},>0 has a limit in
H. So H is closed in GL,, (k), showing it is a matrix subgroup. O

ExampLE 1.18. SL, (k) < GL,, (k) is a matrix group over k.
PRrROOF. By Proposition 1.13, SL, (k) is closed in M, (k) and SL, (k) C GLj (k). O

DEFINITION 1.19. A closed subgroup H < G of a matrix group G is called a matriz subgroup of G.

ProroSITION 1.20. A matriz subgroup H < G of a matriz group G is a matriz group.

PRrROOF. This is a direct consequence of Proposition 1.17. O
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EXAMPLE 1.21. We can consider GL,, (k) as a subgroup of GL,,11(k) by identifying the n x n matrix
A= [aij] with

a1 - aip O
A 0]
0o 1| ani -+ App O
o --- 0 1

and it is easily verified that GL, (k) is closed in GL,11(k), hence GL, (k) is a matrix subgroup of
GLnJrl(k)'

Restricting this embedding to SL,, (k) we find that it embeds as a closed subgroup of SL, (k) <
GL;,41(k). Hence SL,, (k) is a matrix subgroup of SLy,1 (k).

More generally, any matrix subgroup of GL,, (k) can also be viewed as a matrix subgroup of GL,, 41 (k)

with the aid of this embedding.

Given a matrix subgroup G < GL, (k), it will often be useful to restrict the determinant to a function
detg: G — k>, where detg A = det A; we usually write this as det when no ambiguity can arise. This
is a continuous group homomorphism.

When k = R, we set

Rt={tecR:t>0}, R ={teR:t<0}, R*=RTUR".

Notice that RT is a subgroup of GL;(R) = R* which is both closed and open as a subset, while R~ is

an open subset; hence RT and R~ are clopen subsets, i.e., both closed and open. For G < GL,(R),
detg' R = G Ndet™ GL,(R),
and also
G =detg' RT Udets' R,
Hence G is a disjoint union of the clopen subsets
Gt =detz' RT, G~ =detg'R™.

Since I,, € G = detg' RT, the component G* is never empty. Indeed, G+ is a closed subgroup of G,
hence it is a matrix subgroup of GL,(R). When G~ # (), the space G is not connected since it is the
union of two disjoint open subsets. When G~ = (), G = GT may or may not be connected.

If k = R,C, recall that a subset X C k™ is compact if and only of it is closed and bounded.
Identifying subsets of M,, (k) with subsets of k"Q, we can specify compact subsets of M, (k). A matrix
group G < GL, (k) is compact if it is compact as a subset of M, (k) D GL, (k). The following result is

standard for metric spaces.
PROPOSITION 1.22. X C M, (k) is compact if and only if the following two conditions are satisfied:

o there is a b € RY such that for all A € X, || A]| < b;

o cvery Cauchy sequence {Cy}n>0 i X has a limit in X.

Finally, we have the following characterisation of compact sets which is usually taken as the definition

of a compact topological space.

THEOREM 1.23 (Heine-Borel Theorem). X C M, (k) is compact if and only if every open cover
{Ua}aen of X contains a finite subcover {Uy,,...,Uq, }-
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4. Some examples of matrix groups

In this section we discuss some important examples of real and complex matrix groups.

For n > 1, an n x n matrix A = [a;;] is upper triangular if it has the form

a1l a2 A1n
0 as a2y,
0 0
)
Ap—2n—2
0 Gp—1n-1
0 o --- 0 0 Ann

ie., a;; =0if¢ < j. A matrix is unipotent if it is upper triangular and also has all diagonal entries equal
to1,ie., a;; =0if ¢ < j and a4 = 1.

The upper triangular or Borel subgroup) of GL,, (k) is
UT, (k) = {A € GL, (k) : A is upper triangular},
while the unipotent subgroup of GL,, (k) is
SUT, (k) = {A € GL, (k) : A is unipotent}.

It is easy to see that UT,, (k) and SUT,, (k) are closed subgroups of GL, (k). Notice also that SUT,, (k) <
UT, (k) and is a closed subgroup.

SUTa(K) = { Ll)

0: k — SUT»(k);

For the case

EGLﬂm:tek}ngLﬂm,

o(t) = E j ,

is a continuous group homomorphism which is an isomorphism with continuous inverse. This allows us

the function

to view k as a matrix group.

The n-dimensional affine group over k is

Aﬂ@:{ﬁt

:AeGL,(k), t e k”} < GLy41 (k).
This is clearly a closed subgroup of GL,,4+1(k). If we identify the element x € k™ with lﬂ € k"t then

X

we obtain an action of Aff, (k) on k™. Transformations of k" having the form x — Ax+t with A invertible

since

At
0 1

Ax +t
1

?

are called affine transformations and they preserve lines (i.e., translates of 1-dimensional subspaces of
the k-vector space k™). The associated geometry is affine geometry has Aff,, (k) as its symmetry group.

Notice that we can view the vector space k™ itself as the translation subgroup of Aff,,(k),

I, t
Trans, (k) = { [(;L 11 te k"} < Aff, (k),

and this is a closed subgroup.
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Forn>1,
O(n)={AcGL,(R): ATA=1,},
is the n x n real orthogonal group where A” is the transpose of A = [a;;],
(AT)ij = aji.

It is easy to see that every orthogonal matric A € O(n) has an inverse, namely A”. Moreover, the
product of two orthogonal matrices is orthogonal since (AB)T = BTAT. Hence O(n) C GL,(R). If
A, B € O(n) then

(AB)T(AB) = BTATAB = BI,BT = BBT =1,

hence O(n) is closed under multiplication. Notice also that I,, € O(n). Together these facts imply that
O(n) < GL,(R), i.e., O(n) is a subgroup of GL, (R).

The single matrix equation AT A = I,, is equivalent to n? equations for the n? real numbers a;;,

(1.1) > akiar; = 8
k=1
where the Kronecker symbol §;; is defined by
1 ifi=j,
0 ifi#j.
This means that O(n) is a closed subset of M,,(R) and hence of GL,,(R).
Let us consider the determinant function restricted to O(n), det: O(n) — R*. Then for A € O(n),

det I,, = det(AT A) = det AT det A = (det A)?,

hence det A = +1. So we have

where
O(n)t ={A€0(n):detA=1}, O(n)" ={A€0(n):detA= -1}
The subgroup SO(n) = O(n)™ is called the n x n special orthogonal group.
One of the main reasouns for the study of these groups SO(n), O(n) is their relationship with isometries
where an isometry of R™ is a distance preserving function f: R™ — R™. If such an isometry fixes
the origin 0 then it is actually a linear transformation and so with respect to say the standard basis

corresponds to a matrix A. The isometry condition is equivalent to the fact that
Ax- Ay =x-y (x,y €R"),

which is in turn equivalent to the condition that AT A = I,,, i.e., A is orthogonal. Elements of SO(n) are
called direct isometries or rotations; elements of O(n)~ are sometimes called indirect isometries.
A more general situation is associated with an n X n real symmetric matrix ). Then there is an

analogue of the orthogonal group,
Og = {A € CGL,(R) : ATQA = Q}.

It is easy to see that this is a closed subgroup of GL,,(R) and so is a matrix group. Moreover, if det @ # 0,
for A € Og we have det A = £1. We can also define

Of =det™'RT, Og =det™ 'R~

and can write Og as a disjoint union of clopen subsets Og = O&S UOg where 05 is a subgroup.
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An important example of this occurs in relativity where n = 4 and

S O O =
o o = O
o = O O

-1

The Lorentz group Lor is the closed subgroup of 025 NSL2(R) which preserves each of the two connected
components of the hyperboloid
x%+x§+x§f:€i =—-1.
A similar construction can be carried out starting with an n x n real skew symmetric matrix S, i.e.,
ST = —G. If det S # 0 then it turns out that n has to be even, so n = 2m. The standard example is

)

built up from 2 x 2 blocks

and we get
J Oy - Oy
Oy J - Oy
J2m =
Oy Oy -+ J

The matrix group
Symp,,, (R) = {A € GLa,,(R) : AT Jo, A = Jopn} < GLan (R),

is called the 2m x 2m real symplectic group. 1t is easily checked that Symp,(R) = SLy(R), but in general
Sympy,, (B) # SLom (R).

Symplectic geometry has become extremely important and is the natural geometry associated to
Hamiltonian mechanics and therefore to quantum mechanics; it is also important as an area of differential
geometry and in the study of 4-dimensional manifolds. The symplectic groups are the natural symmetry
groups of such geometries.

For A = [a;;] € M,,(C),

is the hermitian conjugate of A, i.e., (A*);; = @;;. The n x n unitary group is the subgroup
U(n) ={A € GL,(C): A*A =1} < GL,(C).

Again the unitary condition amounts to n? equations for the n? complex numbers a;j (compare Equation

(1.1)),
(12) Zaki&kj = 61]
k=1

By taking real and imaginary parts, these equations actually give 2n? bilinear equations in the 2n? real
and imaginary parts of the a;;, although there is some redundancy.

The n x n special unitary group is

SU(n) = {A € GL,(C) : A"A =T and det A = 1} < U(n).
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Again we can specify that a matrix is special unitary by requiring that its entries satisfy the (n? + 1)

equations

Zzzl ApiQkj; = 52']' (1 <i4,5 < n)’

det A =1.

(1.3)

Of course, det A is a polynomial in the a;;. Notice that SU(n) is a normal subgroup of U(n), SU(n)<U(n).
The dot product on R™ can be extended to C" by setting

n
Xy =xy =) Ty,
k=1

where

Note that this is not C-linear but satisfies
(ux) - (vy) = Tv(x - y)
This dot product allows us to define the length of a complex vector by
x| = V%

since x - x is a non-negative real number which is zero only when x = 0. Then a matrix A € M,,(C) is
unitary if and only if

Ax - Ay =x-y (x,y e C").

5. Complex matrix groups as real matrix groups

Recall that the complex numbers can be viewed as a 2-dimensional real vector space, with basis 1,4
for example. Similarly, every n x n complex matrix Z = [z;;] can also be viewed as a 2n x 2n real matrix
as follows.

We identify each complex number z = x + yi with a 2 X 2 real matrix by defining a function

r -y

p: C — Ma(R); p(x+yi)=L/ .

This turns out to be an injective ring homomorphism, so we can view C as a subring of Ma(R), i.e.,

imp:{lz Z] EMQ(R):d:a,C:—b}.

Notice that complex conjugation corresponds to transposition, i.e.,

(1.4) p(Z) = pl2)T.

More generally, given Z = [z;;] € My, (C) with 2,5, = x5 + yrsi, we can write
Z = [wi] + ilys]

where the two n x n matrices X = [2;;], Y = [y;;] are real symmetric.
Define a function
X -Y

P Mp(C) — Man(R);  pn(Z) = v X

)

which is an injective ring homomorphism.
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Let Js,, denote the 2n x 2n real matrix with block form

On _In

Jon =
2 I, O,

Notice that J2, = —I, and JI, = —J5,. We have

X O,
O, X

pn(7> = pn(Z>T'

pn(Z) =

Notice that p,(GL,(C)) < GL2,(R), so any matrix subgroup G < GL,(C) can be viewed as a matrix
subgroup of GLg,(R) by identifying it with its image p,G under p, (this uses the fact that p, is

continuous).

6. Continuous homomorphisms of matrix groups
In group theory the notion of a homomorphism of groups is central. For matrix groups we need to
be careful about topological properties as well as the algebraic ones.

DEFINITION 1.24. Let G, H be two matrix groups. A group homomorphism ¢: G — H is a
continuous homomorphism of matrix groups if it is continuous and its image im ¢ = pG < H is a closed

subspace of H.

ExAMPLE 1.25. The function

¢: SUT2(R) — U(1); ¢ q(l) j) =[]

is a continuous surjective group homomorphism, so it is a continuous homomorphism of matrix groups.

To see why this definition is necessary, consider the following example.

o ?

Then G is a closed subgroup of SUT;(R), so it is a matrix group.

EXAMPLE 1.26. Let

S SUTl(R) n e Z} .

For any irrational number » € R — Q, the function

0:G—U(); o (Ll) ﬂ) _ [e2m'rn}

is a continuous group homomorphism. But its image is a dense proper subset of U(1). So ¢ is not a
continuous homomorphism of matrix groups.

The point of this example is that ¢G has limit points in U(1) which are not in ¢G, whereas G is
discrete as a subspace of SUT3(R).

Whenever we have a homomorphism of matrix groups ¢: G — H which is a homeomorphism (i.e.,
a bijection with continuous inverse) we say that ¢ is a continuous isomorphism of matriz groups and

regard G and H as essentially identical as matrix groups.

PRrROPOSITION 1.27. Let ¢: G — H be a continuous homomorphism of matrix groups. Then ker ¢ <
G is a closed subgroup, hence ker ¢ is a matriz group.

The quotient group G/ker ¢ can be identified with the matriz group G by the usual quotient iso-
morphism @: G/ ker p — ©G.
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PROOF. Since ¢ is continuous, whenever it makes sense in G,

lim ¢(4,) = p( lim A,),

n—oo n—oo
which implies that a limit of elements of ker ¢ in G is also in ker ¢. So ker ¢ is a closed subset of G.

The fact that ker ¢ < G is a matrix group follows from Proposition 1.17. O

REMARK 1.28. G/ker ¢ has a natural quotient topology which is not obviously a metric topology.
Then @ is always a homoeomorphism.

REMARK 1.29. Not every closed normal matrix subgroup N < G of a matrix group G gives rise to
a matrix group G/N; there are examples for which G/N is a Lie group but not a matrix group. This
is one of the most important differences between matrix groups and Lie groups (we will see later that
every matrix group is a Lie group). One consequence is that certain important matrix groups have
quotients which are not matrix groups and therefore have no faithful finite dimensional representations;
such groups occur readily in Quantum Physics, where their infinite dimensional representations play an

important role.

7. Continuous group actions

In ordinary group theory, the notion of a group action is fundamental. Suitably formulated, it

amounts to the following. An action u of a group G on a set X is a function
p:GEGx X —X

for which we usually write u(g,2) = gz if there is no danger of ambiguity, satisfying the following

conditions for all g,h € G and = € X and with ¢ being the identity element of G:

e (gh)x = g(hx), i.e., u(gh,x) = p(g, u(h, x));

® T =2X.

There are two important notions associated to such an action.

For x € X, the stabilizer of x is
Stabg(z) ={g € G: gz =z} C G,
while the orbit of x is
Orbg(z) ={9gzr € X : g€ G} C X.

THEOREM 1.30. Let G act on X.
a) For x € X, Stabg(x) < G, i.e., Stabg(x) is a subgroup of G.
b) For z,y € X, y € Orbg(x) if and only if Orbg(y) = Orbg(z).

For x € X, there is a bijection
¢: G/ Stabg(z) — Orbg(z);  ¢(g) = gz.
Furthermore, this is G-equivariant in the sense that for all g, h € G,
¢((hg) Stabg () = hep(g Stabg(x)).
¢) If y € Orbg(x), then for any t € G with y = tx,
Stabg(y) = t Stabg ()t

For a topological group there is a notion of continuous group action on a topological space.

DEerINITION 1.31. Let G be a topological group and X a topological space. Then a group action

w: Gx X — X is a continuous group action if the function p is continuous.
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In this definition G x X has the product topology. When G and X are metric spaces this can be
obtained from a suitable metric. Details of this can be found in the the first Problem Set.
If X is Hausdorff then any one-element subset {z} is closed and Stabg(x) < G is a closed subgroup.

This provides a useful way of producing closed subgroups.

8. The matrix exponential and logarithm functions

Let k = R or C. The power series
Exp(X) =) L xn Log(X) =Y _ w}(”
n!” n ’
n=0 n>1
have radii of convergence (r.0.c) oo and 1 respectively. If z € C, the series Exp(z), Log(z) converge
absolutely whenever |z| <r.0.c.
Let A € M,, (k). The matrix valued series
— 1 n o__ 1 2 1 3
Exp(A)—ZEA =T+ AS A+ A
n=0
Log(A)zzﬂA":A—lA2+lA3—lA4+---
n 2 3 4 ’
n>1
will converge provided ||A]| < r.o.c. So Exp(A) makes sense for every A € M, (k) while Log(A) only
exists if ||Al] < 1.
PROPOSITION 1.32. Let A € M,, (k).
a) For u,v € C, Exp((u + v)A) = Exp(uA) Exp(vA).
b) Exp(A) € GL, (k) and Exp(A)~! = Exp(—A).

PROOF.

a) Expanding the series gives

Exp((u+v)A) = Z %(u + )" A"

n=0
n
— § : (u + U) A"
n!
n=0

By a series of manipulations that can be justified since these series are all absolutely convergent,

u" v
Exp(uA) Exp(vA) = FA Z EA
r>0 s>0

b) From part (a),
I' = Exp(0) = Exp((1 + (-1))A) = Exp(A) Exp(-A4),
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so Exp(A) is invertible with inverse Exp(—A). O
Using these series we define the exponential function
exp: M, (k) — GL,(k); exp(A)=Exp(A).
ProproOSITION 1.33. If A, B € M, (k) commute then
exp(A + B) = exp(A) exp(B).

PROOF. Again we expand the series and perform a sequence of manipulations all of which can be
justified.

1 1.
exp(A) exp(B) = EA’” Z ;B“’
r>0 50
=Y g AE
- rls!
r>0
s=20

- 1 T n—r
- <ZWAB >

r=0

(S ()

Notice that we make crucial use of the commutativity of A and B in the identity

f: <’Z> A"B"" = (A+ B)".

r=0

Define the logarithmic function
log: Nag, (I3 1) — My (k);  log(A) = Log(A — ).
Then for [|[A—1I|| <1,
(_1)n—1 n
log(4) =" — (A=

n>1
PROPOSITION 1.34. The functions exp and log satisfy
a) if ||A—1I|| <1, then exp(log(A)) = A;
b) if ||exp(B) — I|| < 1, then log(exp(B)) = B.

PROOF. These results follow from the formal identities between power series

m

1 (_1)n71 n
oS-y =X,
m2=0 n>1

n
-1 n—1 1
Z L —X"| =X,
n m!
n=1 m2=1

proved by comparing coefficients. O
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The functions exp,log are continuous and in fact infinitely differentiable on their domains. By

continuity of exp at O, there is a d; > 0 such that

N, (1) (0:61) € exp™ " Nar,,, 4 (13 1).
In fact we can actually take §; = log 2 since

exp Nay,, (i) (O3 7) € Ny, i) (L3 €7 — 1).

Hence we have
ProroOSITION 1.35. The exponential function exp is injective when restricted to the open subset
N, 1) (O;1n2) € M, (k), hence it is locally a diffeomorphism at O with local inverse log.

It will sometimes be useful to have a formula for the derivative of exp at an arbitrary A € M, (k).
When B € M, (k) commutes with A,

d 1
(1.5) ) exp(A+1tB) = }llin%) 5 (exp(A + hB) —exp(A)) = exp(A)B = Bexp(A).
t=0 -
However, the general situation is more complicated.
For a variable X consider the series

1 exp(X)—1
F(X):;()(kJrl)!Xk: : X

which has infinite radius of convergence. If we have a linear operator ® on M,,(C) we can apply the

convergent series of operators

1
F(@)=)" m@’“

r=0

to elements of M, (C). In particular we can consider
P(C)=AC —CA=ad A(C),
where
ad A: M,(C) — M,(C); adA(C)=AC - CA,

is viewed as a C-linear operator. Then

F(ad A)(C) =)

r=>0

PROPOSITION 1.36. For A, B € M,,(C) we have

1
(k+1)!

(ad A)*(C).

%‘ ) exp(A +tB) = F(ad A)(B) exp(A).

In particular, if A= O or more generally if AB = BA,

%‘ exp(A +tB) = Bexp(A).

d
PROOF. We begin by observing that if D = 1s and f(s) is a smooth function of the real variable s,
S
then

1
(16) F(D)|,_, f(s) = / £(s) ds.

This holds since the Taylor expansion of a smooth function g satisfies

S 1 D4a(s) = g5 + 1)~ g(s),

r>1
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hence taking g(s) = [ f(s) d's to be an indefinite integral of f we obtain

1
;) kaf(S) =g(s+1)—g(s).

Evaluating at s = 0 gives the Equation (1.6).

Now note that the matrix valued function
©(s) = exp(sA)Bexp((1 —s)A)
satisfies
o(s) = exp(sA)Bexp(A) exp(—sA)
= exp(sad A)(Bexp(4))
= exp(sad A)(B) exp(A),

since for m,n > 1

,(ad A)™(BA™) = (ad A)™(B) A™.

So
s k1 _ gkl
F(D)((s)) = (Z = <adA>’“) (B) exp(A)
giving
FD)(¢(s)).-, = (Z (kjl)!mdA)’“) (B)exp(4)
k>0

= F(ad A)(B) exp(A).



CHAPTER 2

Lie algebras for matrix groups

1. Differential equations in matrices

Let A € M, (R). Let (a,b) C R be the open interval with endpoints a,b and a < b; we will usually

assume that a < 0 < b. We will use the standard notation

a(t) = % alt).

Consider the first order differential equation
(2.1) o (t) = a(t)4,

where a: (a,b) — M, (R) is assumed to be a differentiable function.

If n = 1 then taking A to be a non-zero real number we know that the general solution is a(t) = ce”tt
where «(0) = ¢. Hence there is a unique solution subject to this boundary condition. In fact this solution
is given by a power series

+k
at) = Ha(()).
k>0
This is indicative of the general situation.

THEOREM 2.1. For A,C € M,,(R) with A non-zero, and a < 0 < b, the differential equation of (2.1)
has a unique solution a: (a,b) — M, (R) for which «(0) = C. Furthermore, if C is invertible then so
is a(t) for t € (a,b), hence a: (a,b) — GL,(R).

ProOF. First we will solve the equation subject to the boundary condition a(0) = I. For t € (a, b),
by Chapter 1 Section 8 the series

th 1
> HA’c => H(tA)’“ = exp(tA)
k>0 k>0
converges, so the function
a: (a,b) — My (R);  a(t) = exp(tA),

is defined and differentiable with

k—1
NOESS ﬁAk — exp(tA)A = Aexp(tA).

k>1

Hence « satisfies the above differential equation with boundary condition a(0) = I. Notice also that
whenever s,t, (s +t) € (a,b),
a(s+t) = a(s)a(t).

In particular, this shows that a(t) is always invertible with «(t)~! = a(—t).

17
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One solution subject to «(0) = C is easily seen to be a(t) = Cexp(tA). If 3 is a second such solution
then y(t) = B(t) exp(—tA) satisfies
d
7' (1) = B'(1) exp(—tA) + (t) 5 exp(—t4)
= ['(t) exp(—tA) — B(t) exp(—tA)A
= B(t)Aexp(—tA) — B(t) exp(—tA)A
=0.
Hence ~(t) is a constant function with v(¢) = v(0) = C. Thus 8(t) = C exp(tA), and this is the unique
solution subject to 5(0) = C. If C is invertible so is Cexp(tA) for all ¢. O
2. One parameter subgroups

Let G < GL, (k) be a matrix group and let € > 0 or € = oo.

DEFINITION 2.2. A one parameter semigroup in G is a continuous function 7: (—&,e) — G which

is differentiable at 0 and satisfies
V(s +1) =7(s)y(t)
whenever s,t, (s +t) € (—¢g,2). We will refer to the last condition as the homomorphism property.

If e = co then v: R — G is called a one parameter group in G or one parameter subgroup of G.
Notice that for a one parameter semigroup in G, v(0) = I.

PROPOSITION 2.3. Lety: (—e,e) — G be a one parameter semigroup in G. Then =y is differentiable

at every t € (—e,e) and

PROOF. For small h € R we have

YW (E) = v(h+ 1) =7t + h) =)y (h).

Hence

and similarly

O

PROPOSITION 2.4. Let v: (—e,e) — G be a one parameter semigroup in G. Then there is a unique

extension to a one parameter group ¥: R — G in G, i.e., such that for allt € (—¢,¢), F(t) = v(¢t).
PRrROOF. Let ¢ € R. Then for a large enough natural number m, t/m € (—¢,¢). Hence
A(t/m), v (t/m)™ € G.
Similarly, for a second such natural number n,

y(t/n),y(t/n)" € G.
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Then since mn > m,n we have t/mn € (—¢,¢) and

So y(t/n)™ = ~(t/m)™ showing that we get a well defined element of G for every real number ¢. This

defines a function
J:R— G; F(t) =~(t/n)" for large n.
It is easy to see that 7 is a one parameter group in G. g
We can now determine the form of all one parameter groups in G.
THEOREM 2.5. Let v: R — G be a one parameter group in G. Then it has the form
Y(t) = exp(tA)
for some A € M,, (k).

PROOF. Let A =+/(0). By Proposition 2.3 this means that 7 satisfies the differential equation
Y (t)=A, ~(0)=1.
By Theorem 2.1, this has the unique solution ~(t) = exp(tA). O

REMARK 2.6. We cannot yet reverse this process and decide for which A € M,,(k) the one parameter

group

v: R — GL,(k); ~(t) = exp(tA)
actually takes values in G. The answer involves the Lie algebra of G. Notice that we also have a curious
phenomenon in the fact that although the definition of a one parameter group only involves first order
differentiability, the general form exp(tA) is always infinitely differentiable and indeed analytic as a
function of ¢t. This is an important characteristic of much of Lie theory, namely that conditions of first
order differentiability and even continuity often lead to much stronger conclusions.

3. Curves, tangent spaces and Lie algebras

Throughout this section, let G < GL, (k) be a matrix group.

DEFINITION 2.7. A differentiable curve in G is a function
v: (a,b) — G C M, (k)

for which the derivative 4/ (t) exists at each ¢ € (a, b).

Here we define the derivative as an element of M, (k) by
) 1
7'(t) = lim (v(s) =~(8)),

s—t (s —1)
provided this limit exists. We will usually assume that a < 0 < b.

DEFINITION 2.8. The tangent space to G at U € G is
Ty G = {7 (0) € M,,(k) : v a differentiable curve in G with ~(0) = U}.

PROPOSITION 2.9. Ty G is a real vector subspace of M, (k).
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PROOF. Suppose that «, 5 are differentiable curves in G for which «(0) = 8(0) = U. Then
v: domandomfB — G; ~(t) = a()UB(1),
is also a differentiable curve in G with v(0) = U. The Product Rule now gives
7 () = o/ (OUTBE) + a(U (1),
hence
7'(0) = &/ (OUT18(0) + (U 3'(0) = o’(0) + 3'(0),
which shows that Ty is closed under addition.

Similarly, if € R and « is a differentiable curve in G with a(0) = U, then n(t) = a(rt) defines

another such curve. Since
1'(0) = ra’(0),

we see that Ty G is closed under real scalar multiplication. O
DEFINITION 2.10. The dimension of the real matrix group G is
dimG =dimg T; G.
If G is complex then its complex dimension
dim¢c G = dime T G.

We will adopt the notation g = T; G for this real vector subspace of M,, (k). In fact, g has a more

interesting algebraic structure, namely that of a real Lie algebra.

DEFINITION 2.11. A k-Lie algebra consists of a vector space a over a field k, equipped with a

k-bilinear map [, ]: a x a — a such that for z,y,z € a,
(Skew symmetry) [2,y] = —[y, 2],
(Jacobi identity) [, [y, 2]] + [y, [z, 2]] + [2, [z, y]] = 0.

Here k-bilinear means that for x1,z2,z,y1,y2,y € a and rq,79,7, 81, S2, S € Kk,
[riz1 + raxa, y| = rilz1, y| + r2fz2, yl,
[z, 8191 + S2y2] = s1[x, 1] + s2[z, yal.
[, ] is called the Lie bracket of the Lie algebra a.
EXAMPLE 2.12. Let k = R and a = R? and set
[x,y] =x Xy,
the vector or cross product. For the standard basis vectors e, e, €3,
(2.2) [e1,€2] = —[ez,e1] = €3, [e2,e3] = —[e3, 2] =e1, [eg,e1] = —[e1, e3] = es.
Then R3 equipped with this bracket operation is an R-Lie algebra. In fact, as we will see later, this is
the Lie algebra of SO(3) and also of SU(2) in disguise.
Given two matrices A, B € M,,(k), their commutator is
[A,B] = AB — BA.
This is a k-bilinear function M,, (k) x M,, (k) — M, (k) satisfying the conditions of Definition 2.11. Recall
that A, B commute if AB = BA.
PROPOSITION 2.13. [A, B] = O,, if and only if A, B commute.
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Suppose that a is a k-vector subspace of M, (k). Then a is a k-Lie subalgebra of M, (k) if it is closed
under taking commutators of pairs of elements in a, i.e., if A, B € a then [4, B] € a. Of course M, (k) is
a k-Lie subalgebra of itself.

THEOREM 2.14. For k = R or k = C, if G < GL,(k) is a matriz subgroup, then g is an R-Lie
subalgebra of M, (k).

If G < GL,,,(C) is a matriz subgroup and g is a C-subspace of M,,(C), then g is a C-Lie subalgebra.

PrOOF. We will show that for two differentiable curves «, 8 in G with «(0) = 3(0) = I,,, there is
such a curve v with +/(0) = [a/(0), 5'(0)].

Consider the function
F: doma xdomfB — G; F(s,t) = a(s)B(t)a(s) ™ .

This is clearly continuous and differentiable with respect to each of the variables s, ¢. For each s € dom «,
F(s, ) is a differentiable curve in G with F(s,0) = I,,. Differentiating gives
d F(s,t)

S, =@ 0a

and so

a(s)8'(0)a(s) ™ € g.

Since g is a closed subspace of M, (k), whenever this limit exists we also have

lim * (a()7(0)a(s)™ ~ #(0)) € a.

s—0 8

We will use the following easily verified matrix version of the usual rule for differentiating an inverse:

(2.3) % (a®)™) = —a@®) "o/ ()a(t) "
We have
liy 2 (a(e)5 0)als) " = (0) = als)d 0)als)

[by Equation (2.3)]
=a’(0)8'(0)a(0) — a(0)5'(0)a'(0)
=a’(0)8'(0) — B'(0)a’(0)
=[a’(0), 3'(0)].
This shows that [o/(0), 3'(0)] € g, hence it must be of the form ~/(0) for some differentiable curve. The

second part follows easily. O

So for each matrix group G there is a Lie algebra g = T;G. A suitable type of homomorphism
G — H between matrix groups gives rise to a linear transformation g — b respecting the Lie algebra
structures.

DEFINITION 2.15. Let G < GL,(k), H < GL,,,(k) be matrix groups and ¢: G — H a continuous
map. Then ¢ is said to be a differentiable map if for every differentiable curve 7: (a,b) — G, the

composite curve ¢ o vy: (a,b) — H is differentiable, with derivative

(por) (1) = T;e((0)
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and if whenever two differentiable curves «, 3: (a,b) — G both satisfy the conditions

then
(¢ 0a)(0) = (pop)(0).
Such a ¢ is a differentiable homomorphism if it is also a group homomorphism. A continuous homomor-

phism of matrix groups that is also a differentiable map is called a Lie homomorphism.

We will see later that the technical restriction in this definition is unnecessary. For now we note
that if ¢: G — H 1is the restriction of a differentiable map ®: GL, (k) — GL,,(k) then ¢ is also a

differentiable map.

PRrROPOSITION 2.16. Let G, H, K be matrix groups and p: G — H, 8: H — K be differentiable

homomorphisms.

a) For each A € G there is an R-linear transformation d¢: Ty G — Tya) H given by

dea(7'(0)) = (v 07)(0),

for every differentiable curve 7y: (a,b) — G with v(0) = A.
b) We have
dO,ay0dps=d(@op)a.

¢) For the identity map Idg: G — G and A € G,
dldg =1Idr, ¢ -

PrROOF. a) The definition of dp4 makes sense since by the definition of differentiability, given
X € T4 @G, for any curve v with
210) = 4, ~(0) = X,
(¢ 0)'(0) depends only on X and not on «. Linearity is established using similar ideas to the proof of
Proposition 2.9.
The identities of (b) and (c) are straightforward to verify. O

If p: G — H is a differentiable homomorphism then since p(I) = I, dp;: TG — T;H is a
linear transformation called the derivative of ¢ which will usually be denoted
de:g—b.
DEFINITION 2.17. Let g,h be Lie algebras over a field k. A k-linear transformation ®: g — b is a

homomorphism of Lie algebras if

O([z,y]) = [(z),2(y)] (z,y € 9).
THEOREM 2.18. Let G, H be matrixz groups and p: G — H a differentiable homomorphism. Then

the deriwative d p: g — b is a homomorphism of Lie algebras.

PRrROOF. Following ideas and notation in the proof of Theorem 2.14, for differentiable curves «, 8 in

G with «(0) = 3(0) = I, we can use the composite function ¢ o F' given by

po F(s,t) = p(F(s, 1)) = p(a(s)e(B(t)e(als)
to deduce

de([e’(0), B(0)]) = [de(a’(0)), dp(8'(0)])-
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4. Some Lie algebras of matrix groups

The Lie algebras of GL,,(R) and GL,(C). Let us start with the matrix group GL,,(R) C M, (R).
For A € M, (R) and € > 0 there is a differentiable curve
a: (—e,e) — M,(R); aft) =1+tA.
For t # 0, the roots of the equation det(t =11 4+ A) = 0 are of the form ¢t = —1/\ where X is a non-zero

eigenvalue of A. Hence if

1
€ < min { W : A a non-zero eigenvalue of A} ,

then ima € GL,,(R), so we might as well view a a function a: (—¢,¢) — GL,(R). Calculating the
derivative we find that o/(t) = A, hence o/(0) = A. This shows that A € T; GL,(R). Since A € M, (R)
was arbitrary, we have

gl (R) = Tr GLn (R) = M, (R),

dim GL,(R) = n?.

(2.4)

Similarly,

gl,(C) = T; GL,(C) = M, (C),
(2.5) dime GL,(C) = n?,

dim GL,,(C) = 2n2.

For SL,(R) < GL,(R), suppose that a: (a,b) — SL,(R) is a curve lying in SL, (R) and satisfying
a(0) = I. For t € (a,b) we have det a(t) =1, so

d(det a(t))
— =0.
dt
LEMMA 2.19. We have a(d )
et ot _ ,
——ar T tra/(0).

PROOF. Recall that for A € M, (k),
i=1

d
It is easy to verify that the operation 9 = — on functions has the derivation property
[t=0

(2.6) I(m2) = (071)72(0) + 71(0)972.
Put a;; = a(t);; and notice that when ¢ =0,
Qi = 57]

Write C;; for the cofactor matrix obtained from «(t) by deleting the ith row and jth column. By

expanding along the nth row we obtain
det a(t) = Z(—l)”“anj det Ch,;
j=1
Then

n

ddeta(t) = > (=1)"" ((9an;) det Cpj + an;(det Cyj))

1
.
Mz i
I,

(1)1 ((Dan;) det Cyj) + (9 det ).

<.
I
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For t =0, det C,,; = ¢;,, since a(0) = I, hence
Odet(a(t)) = Oany + 0 det Chp.
We can repeat this calculation with the (n — 1) x (n — 1) matrix C,,, and so on. This gives

ddet(a(t)) = dann + da(n—1)(n-1) + ddet Cin_1)(n-1)

= O0apy + aa(n—l)(n—l) +eee aall)
= tra/(0).

So we have tra/(0) = 0 and hence
s0,(R) = T; SL,.(R) C ker tr C M, (R).

If A € kertr C M,,(R), the function

k

a: (—5,6) — Mu(R);  a(t) = exp(td) = 3 %Ak,
k>0

is defined for every € > 0 and satisfies the boundary conditions

We will use the following result for which another proof appears in Chapter 4, Section 5.

LEMMA 2.20. For A € M,,(C) we have
detexp(4) = etr A,
PROOF USING DIFFERENTIAL EQUATIONS. Consider the curve
7: R — GL;(C) = C*;  ~(t) = detexp(tA).
Then
Y (t) = ;ILIE%) % (detexp((t + h)A) — detexp(tA))
= detexp(tA) }lLlLrb% (detexp(hA) — 1)
= detexp(tA)tr A
=~trA

by Lemma 2.19 applied to the curve ¢ — detexp(tA). So « satisfies the same differential equation and

initial condition as the curve t — et 4. By the uniqueness part of Theorem 2.1,

a(t) = detexp(tA) = dtrAd

PROOF USING JORDAN CANONICAL ForM. If S € GL,(C),
detexp(SAS™") = det (S exp(A)S™)
= det S det exp(A) det S~*

= detexp A,
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and

-1
JATSASTV _ trA

So it suffices to prove the identity for SAS~! for a suitably chosen invertible matrix S. Using for example
the theory of Jordan Canonical Forms, there is a suitable choice of such an S for which

B=SAS"'=D+N,

with D diagonal, N strictly upper triangular and N;; = 0 whenever ¢ > j. Then N is nilpotent, i.e.,
NF¥ =0, for large k.

We have
1
exp(B) = D+ N)*
k>0
= 1k 1 k+1 k41
= | 2w gy (P DR
E>0 k>0

1
k>0 :

Now for k& > 0, the matrix
N(D* 4+ D*¥IN + ... + N¥)
is strictly upper triangular, hence
exp(B) = exp(D) + N/,
where N’ is strictly upper triangular. If D = diag(\q,...,A,), on calculating the determinant we find
that
det exp(A) = det exp(B)

= det exp(D)

= det diag(e’, ..., e )
AL oM

= e e

:e)\1+...+)\n.
Since tr D = Ay + - - - + \,, this implies

detexp(A) = D

Using this Lemma and the function «, we obtain

sl,(R) = T7 SL,(R) = ker tr C M, (R),
dim SL,,(R) = n? — 1.

2.7)

Working over C we also have

50, (C) = T7 SL,(C) = ker tr C M,,(C),
(2.8) dimg SL,, (C) = n2 — 1,

dim SL,,(C) = 2n? — 2.
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The Lie algebras of UT, (k) and SUT, (k). For n > 1 and k = R, C, recall the upper triangular
and unipotent subgroups of GL, (k). Let

a: (—e,e) — UT,(R)

be a differentiable curve with «(0) = I. Then «/(t) is upper triangular. Moreover, using the argument

for GL,, (k) we see that given any upper triangular matrix A € M, (k), there is a curve
a: (—e,e) — UT,(k); a(t) =1+tA,
where € > 0 has to be chosen small and o/(0) = A. We then have

ut, (k) = T; UT, (k) = set of all upper triangular matrices in M, (k),

(2.9) n+1

dimutn(]k):< )

) dim]R k.

An upper triangular matrix A € M, (k) is strictly upper triangular if all its diagonal entries are 0, i.e.,
a;; = 0. Then

sut, (k) = Tr SUT,, (k) = set of all strictly upper triangular matrices in M, (k),
(2.10) .
dim sut, (k) = (2> dimp k.

The Lie algebras of O(n) and SO(n). Let O(n) be the n x n orthogonal group, i.e.,
O(n) ={A € GL,(R) : ATA =TI} < GL,(R).
Given a curve a: (a,b) — O(n) satisfying a(0) = I we have

d T _
Ea(t) a(t) =0,

and so
ot at) + at)Td (t) = O,
implying
' (0)" +a'(0) = 0.
Thus we must have o/(0)T = —a/(0), i.e., o/(0) is skew symmetric. Thus

o(n) = T; O(n) C Sk-Sym,, (R),

the set of n x n real skew symmetric matrices.

On the other hand, if A € Sk-Sym,, (R), for £ > 0 we can consider the curve
a: (—g,e) — GL,(R);  «(t) = exp(tA).

Then

Hence we can view « as a curve a: (—¢,e) — O(n). Since o/(0) = A, this shows that

Sk-Sym,,(R) C o(n) = T; O(n)
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and so
o(n) = T; O(n) = Sk-Sym,, (R).
Notice that if A € Sk-Sym,,(R) then
trA=tr AT =tr(—A) = —tr A,
hence tr A = 0. By Lemma 2.20 we have
detexp(tA) =1,

hence a: (—g,) — SO(n) where SO(n) is the n x n special orthogonal group. So we have actually
shown that
so(n) = Ty SO(n) = o(n) = T; O(n) = Sk-Sym,, (R).

The Lie algebras of U(n) and SU(n). Now consider the n x n unitary group
U(n) ={4€GL,(C): AA=1T}.
For a curve o in U(n) satisfying «(0) = I, we obtain
a'(0)" +a/(0) =0
and so a/(0)* = —a/(0), i.e., a(0) is skew hermitian. So
u(n) = T; U(n) C Sk-Herm,,(C),

the set of all n x n skew hermitian matrices.
If H € Sk-Herm,,(C) then the curve

n: (—€,6) — GL(C); n(t) = exp(tH)
satisfies
n(t)*n(t) = exp(tH)" exp(tH)
=exp(tH") exp(tH)
= exp(—tH)exp(tH)
=1.
Hence we can view 7 as a curve 1): (—e,e) — U(n). Since #’(0) = H, this shows that
Sk-Herm,,(C) C u(n) = T U(n).
Hence
u(n) = T; U(n) C Sk-Herm,,(C).
The special unitary group SU(n) can be handled in a similar way. Again we have
su(n) = Ty SU(n) C Sk-Herm,,(C).
But also if n: (a,b) — SU(n) is a curve with n(0) = I then as in the analysis for SL, (R),
trn’(0) = 0.
Writing
Sk-Herm? (C) = {H € Sk-Herm,,(C) : tr H = 0},
this gives su(n) C Sk-Herm® (C). On the other hand, if H € Sk-Herm® (C) then the curve

n: (—e,e) — U(n); n(t) =exp(tH),
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takes values in SU(n) by Lemma 2.20 and has n'(0) = H. Hence
su(n) = T; SU(n) C Sk-Herm? (C).
REMARK 2.21. Later, we will see that for a matrix group G < GL,(R), the following are true and
can be used in determining Lie algebras of matrix groups as above.
e The function
expg: g — GL,(R);  expa(X) = exp(X),
has image contained in G, expsg C G; so we will normally write exps: g — G for the
exponential on G and sometimes even just exp.
e If G is compact and connected then exps g = G.

e There is an open disc Ng(O;r) C g on which exp is injective and gives a homeomorphism

exp: Ng(O;1) — exp Ng(O; 1) where expNg(O;r) C G is in fact an open subset.

5. SO(3) and SU(2)

In this section we will discuss the groups SO(3) and SU(2) and their Lie algebras in detail. The Lie

algebras are both 3-dimensional real vector spaces, having for example the following bases:

0 -1 0 0 0 —1 00 0

so(3): P=1{1 0 0|, @=]|0 0 0|, R=|0 0 -1},
0 0 O 1 0 0 01 0
1{i o 1o 1 1[0 i
su(2): H=_ , EF=— , = - .
O e B I A A
The non-trivial Lie brackets are then
(2.11a) [P,Q] = R, [Q,R] =P, [R, P]=Q,
(2.11b) [H,E]|=F, [E,F]=H, [F,H]=E.
This means that the R-linear isomorphism
(2.12) p:s5u(2) — 50(3); w(xH+yE+2F)=zP+yQ+ 2R (z,y,z € R),

satisfies
(U, V]) = [pU), o(V)],

hence is an isomorphism of R-Lie algebras. Thus these Lie algebras look the same algebraically. This
suggests that there might be a close relationship between the groups themselves. Before considering this,

notice also that for the Lie algebra of Example 2.12, the R-linear transformation
R? — s50(3); ze; + yey + zes — xP + yQ + 2R,

is an isomorphism of R-Lie algebras by Formulae (2.2).
Now we will construct a Lie homomorphism SU(2) — SO(3) whose derivative at I is ¢. Recall the
adjoint action of Ad of SU(2) on su(2) by

Ada(U) = AUA™ = AUA* (A €SU(2), U € su(2)).

Then each Ad4 is an R-linear isomorphism su(2) — su(2).

We can define a real inner product (| ) on su(2) by

(X |Y)=—tr(XY) (X,Y €su(2)).



5. SO(3) AND SU(2) 29

Introducing the elements

. 1 [i o - 1o 1] . 1[0
HzﬁH:EL) _J, E:\@E:E[_l o]’ F:ﬁF:E[. ]

we obtain an R-linear isomorphism

(2.13) 0:R3 — su(2); O(ze, +yey + ze3) = H + yE + 2F,

which is an isometry since H, E, F' form an orthonormal basis of su(2) with respect to (| ), i.e.,
(2.14a) (1) = (B B) = (F| F) =1,

(2.14b) (H|E)=(H|F)=(E|F)=0.

REMARK 2.22. It would perhaps be more natural to rescale the inner product ( | ) so that H, E, F
were all unit vectors. This would certainly make many of the following formulse neater as well making
the Lie bracket in SU(2) correspond exactly with the vector product in R3. However, our choice of ( | )
agrees with the conventional one for SU(n).

PROPOSITION 2.23. (| ) is a real symmetric bilinear form on su(2) which is positive definite. It is

invariant in the sense that
(2, X]|Y)+ (X |[2,Y]) =0 (X.,Y,Z €5u(2)).

PROOF. The R-bilinearity is clear, as is the symmetry. For positive definiteness, notice that for
x, 2, y,y, 2,2 €R,
(zFI+yE+2F | I/I:I+y/E+z’F) =qxx’ +yy + 27
and in particular,
(xH 4+ yE + 2F | xH + yE + 2F) =2 + > + 22 > 0,
with equality precisely when x =y =2 = 0.

The invariance is checked by a calculation. O

Also, for A € SU(2) and X,Y € su(2),

hence Ad4 is actually an orthogonal linear transformation with respect to this inner product. Using the
orthonormal basis H, E, ', we can identify su(2) with R? and ( | ) with the usual inner product -, then
each Ad, corresponds to an element of O(3) which we will still write as Ad4. It is then easy to see that
the function
Ad: SU(2) — O(3); Ad(A) = Ad4 € O(3),
is a continuous homomorphism of groups. In fact, SU(2) is path connected, as is SO(3); so since Ad(I) =
I,
AdSU(2) C SO(3),

hence we will redefine
Ad: SU(2) — SO(3); Ad(A) =Ady.
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PROPOSITION 2.24. The continuous homomorphism of matrix groups
Ad: SU(2) — SO(3); Ad(A) = Ada,
is smooth, has ker Ad = {£I} and is surjective.

PROOF. The identification of the kernel is an easy exercise. The remaining statements can be proved
using ideas from Chapter 4, especially Section 1. We will give a direct proof that ker Ad is surjective to
illustrate some important special geometric aspects of this example.

We can view an element of su(2) as a vector in R? by identifying the orthonormal basis vectors H , E'7

F with e1, €z, e3. From Equations (2.11), the non-trivial brackets of these basis elements are as follows:
(2.15) [H,E)=V2F, |[E,F]=+2H, |[F,H)=V2E.
So apart from the factors of v/2, this behaves exactly like the vector product on R3.

PROPOSITION 2.25. For Uy = 21 H + 1y E + 21 F, Uy = 20 H + 1o E + 2, F € su(2),

req + yeso + ze3 = (1‘161 + Yyi1€2 + 2163) X (56261 + Yo + 2293)

1 2

Y2 22

x
- 1 U1

T2 Y2

(U1, U] = \/§<

ProOOF. This follows from the formula

Y1 2

Y2 22

xr1 21 1 Y

T2 Y2

ey +

= e — €es.

T2 22

O

We can similarly calculate a product of elements of su(2) in terms of the dot and cross products.

However, note that in general if Uy, Us € su(2) then U;Us ¢ su(2).

PROPOSITION 2.26. Uy = x1H + 1 E 4+ 21 F, Uy = 2oH + 15 FE + F € s5u(2),

1 A . .
U Uy = (z1z2 + iy + 2122)1+ B B B L I L
2 \/i Y2 22 T2 22 T2 Y2
(Ui |Ug), 1
= 2T+ =[Uy,Us].
2 + 2[ 1 2]
PRroor. Calculation! O

COROLLARY 2.27. If Uy, Us € su(2) are orthogonal, i.e., (U | Uz2) =0, then
1
U1U; = §[U1,U2] S SU(Q).

Next we will examine the effect of A € SU(2) acting as an R-linear transformation on su(2) which

we will identify with R3. Note that A can be uniquely written as

(2.16) A=|""

—-U

for u,v € C and |u|? + |v|? = 1. This allows us to express A in the form
A =cosOl + S,
where S is skew hermitian and Rewu = cos# for 6 € [0, 7], so sinf > 0. A calculation gives
(2.17a) S? = —((Imu)? + [v|*)I = —sin? 01,
(2.17b) (S| 8S) =2sin? 6.
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Since A € SU(2), we have
A7l = A* = cosOI — S.
Notice that for any ¢t € R,
Ada(tS) = A(tS)A™! =tS.
On the other hand, if U € su(2) with (S | U) = 0, then by the above results,

Ada(U) = (cos0I + S)U(cosOI — S)
= (cos QU + SU)(cos I — S)
= cos? QU + cos OSU — cosOUS — SUS
= cos? QU + cos 0[S, U] — SUS.

A further calculation using properties of the vector product shows that

SUS = Lgs)u

By Equation (2.17b), whenever (S | U) = 0 we have

Ada(U) = (cos® 0 — sin? )U + cos 0[S, U]
= (cos20)U + cos 0[S, U]
= (cos20)U + V2 cos §sin 0[S, U]
= 0820 U + sin 2605 X U,

N 1 N
where S = mS is of unit length. Noting that U and S X U are orthogonal to S, we see that the
sin

effect of Ad4 on U is to rotate it in the plane orthogonal to S (and spanned by U and SxU ) through
the angle 6.

We can now see that every element R € SO(3) has the form Ad, for some A € SU(2). This follows
from the facts that the eigenvalues of R have modulus 1 and det R = 1. Together these show that at
least one of the eigenvalues of R must be 1 with corresponding eigenvector v say, while the other two
have the form %! = cos+isin¢ for some ¢. Now we can take A = cos(¢/2)I + S where S € su(2)
is chosen to correspond to a multiple of v and (S | S) = 2sin?(p/2). If we choose —¢ in place of ¢ we

obtain —A in place of A. O
Let B € su(2). Then the curve
B: R — SU(2); [(t) =exp(tB),

gives rise to the curve
B: R — 80(3); B(t) = fdﬁ(t).
We can differentiate 3 at ¢ = 0 to obtain and element of so(3) which R® identified with su(2) by the

formula:

B/(O)(X) = % exp(tB)X exp(*tB)h:D

— BX — XB =B, X].

For example when B = H,
[H,H|=0, [H,E|=F, [HF]=-EF,
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hence the matrix of H acting on su(2) relative to the basis H, E, F' is

Similarly,

giving the matrix

and

giving the matrix

0 -1 0
1 0 0|=P
0 0 O

So the corresponding derivative map is
dAd: su(2) — s0(3); dAd(zH +yE + 2F) = 2R+ yQ + zP.

Apart from the change in order, this is the obvious isomorphism between these two Lie algebras.

To summarize, we have proved the following.

THEOREM 2.28. Ad: SU(2) — SO(3) is a surjective Lie homomorphism with ker Ad = {£I}.

Furthermore, the derivative d Ad: su(2) — so0(3) is an isomorphism of R-Lie algebras.
6. SL;(C) and the Lorentz group
Let us now consider the Lie algebra SLy(C), slo(C). By Equation (2.8),
5l5(C) = kertr C My(C)
and dimc sl3(C) = 3. The following matrices form a C-basis for sl (C):
1 017 o |0 1]’ o
0 -1 0 0

The elements H',iH', E' +E', F',iF’ form an R-basis and dim sl (C) = 6. Notice also that su(2) C sly(C)
and the elements H, E, F' € su(2) form a C-basis of slo(C), so H,iH, E,iE, F,iF form an R-basis. The
Lie brackets of H', E’, F’ are determined by

0 0
10

H =

[H',E'] = 2F', [H',F'] = —2F', [E',F'|=H'.

Notice that the subspaces spanned by each of the pairs H', E’ and H’, F’ are C-Lie subalgebras. In fact,
H', E’ span the Lie algebra uts(C) of the group of upper triangular complex matrices, while H', F’ spans
the Lie algebra of the group of lower triangular complex matrices.

Given the existence of the double covering homomorphism Ad: SU(2) — SO(3) of Section 5, it
seems reasonable to ask if a similar homomorphism exists for SLy(C). It does, but we need to use the
special Lorentz group Lor and then obtain a double covering homomorphism SLy(C) — Lor which

appears in Physics in connection with spinors and twistors.



6. SL2(C) AND THE LORENTZ GROUP 33

Next we will determine the R-Lie algebra of Lor < SL4(R), lov. Let a: (—e,e) — Lor be a
differentiable curve with «(0) = I. By definition, for ¢ € (—¢, ) we have

a(t)Qa(t)" = Q,

where

S O O =
o O = O
o = O O

Differentiating and setting ¢ = 0 we obtain

' (0)Q + Qa'(0)" =0,

giving
(0)11 o'(0)12 a'(0)13 —a'(0)14 o/(0)11 a/(0)21 o/ (0)31 a'(0)a1
a/(0)21 a'(0)22 a(0)23 —a'(0)24 N a’(0)12 a'(0)22 ' (0)32  a'(0)a2 _0
a/(0)z1 o'(0)32 a(0)33 —a’(0)3s a’(0)13  a’(0)2s  a'(0)s3  a'(0)as .
O/(O)41 OZI(O)42 O/(O)43 —Oé/(O)44 —Oél(o)14 _O‘/(O)42 —O/(O)34 _O‘/(O)44
So we have
0 a’(0)12 a/(0)13  &'(0)14
o (0) = —a/(0)12 0 a’(0)23 04:(0)24
0)23 0 a’(0)34

Notice that the trace of such a matri

In fact, every matrix of the form

0 a2 a1z aiy
—ay2 0 az3 Aoy

A=
—a13 —as3 0 as

a4 azg azs O

or equivalently satisfying AQ + QAT = O (and hence tr A = 0), is in lor. This holds since there is a
curve
a: R — GL4(R); «ft) = exp(tA),
with o/(0) = A which satisfies
Qexp(tA)T = exp(tA)Q exp(tAT) = exp(tA) exp(—tA)Q = Q,
since QAT = —AQ, and by Lemma 2.20,
det exp(tA) = etr(tA) — 1,

and moreover it preserves the components of the hyperboloid 22 + x3 + 23 — 23 = —1; all of this shows
that exp(tA) € Lor. Therefore we might as well redefine
a: R — Lor;  «aft) = exp(tA).

We have shown that

0 a2 aiz a4

- 0
(2.18) lov={AeMyR): AQ+QAT =0} ={ AcMyR): A= | "2 25 a2
—aiz3 —azz 0 asy

a4 azg azs O
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We also have
(2.19) dim Lor = dim lor = 6.

An R-basis for lor consists of the elements

[0 -1 0 of [0 0 -1 0 (0 0 0 1]
1 0 0 0 0 O 0 0 0 0 O
P12 - ) P13 - ) P14 - 9
0O 0 0 0 1 0 0 0 0 0 O
0 0 0 o 0 0 0 100 0
[0 0 0o o] [0 0 0 0 [0 0 0 0]
00 -1 0 0 0 0 1 0 0 0 O
Po3 = , Py = ; P3y =
0 1 0 0 0 0 O 0 0 0 1
00 0 o0 0100 0 0 1 0
The non-trivial brackets for these are
[Pi2, Pi3] = Pa3,  [Pi2, Pia] = Pa, [Pi2, Pag] = —P13,  [Pi2, Poal = —Pia, [Pi2, Ps4] =0,
[Pi3, Pis] = P34,  [Pi3, Pa3] = Pio, [P13, Poa] =0, [P13, P34] = 0,
[P14, Pa3] =0, (P14, Poy] = —Pia,  [Pia, P34 = —Py3,
[Pa3, Poy] = Psy,  [Pas, Pss] = —Pay, [Paa, P34] = —Pas.

We will now define the homomorphism SLy(C) — Lor. To do this we will identify the 2 x 2 skew
hermitian matrices Sk-Hermy(C) with R* by

(t+x)i y+zi

— ze; + yes + ze3 + tey.
—y+zi (t—x)

Define an R-bilinear inner product on Sk-Hermy(C) by the formula
1
(220) <Sl|52> = Z(det(Sl + SQ) — det(81 — Sg))

When S; = S5 = S we obtain

(S]S) = —(det 25 — det O) = det S,

-

It is easy to check that

(2.21) <

which is the Lorentzian inner product on R*, which is also given by

(tl +.131)i y1 + 211
—Y1 —+ Zli (tl — Il)l

(ta +x2)i Y2 + 228
—Y2 + Zgi (tQ — mz)l

> = T1T2 + Y1Yy2 + 2122 — t1ta,

1 O 0 i)
01 0 Y2
122 + Y1y2 + 2122 —tile = {331 Y1 2 t1}
0 0 1 29
00 0 -1 to
The polarization identity allows us to write
1
(222) <Sl|SQ> = z(det(Sl + SQ) — det(51 — SQ))

Now observe that for A € SLy(C) and S € Sk-Herms(C),

(ASA*)* = AS*A* = —ASA*,
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so ASA* € Sk-Hermy(C). By Equation (2.22), for S, Sy € Sk-Hermy(C), and the fact that det A =1=
det A*,

1
(AS1A*|AS, A*) = Z(det A(S1 + S2)A" — det A(S7 — S9)A™)
1
= Z(detAdet(Sl + 55) det A* — det Adet(S; — Ss) det A*)

- %(det(Sl +S5) — det(Sy — S3)
= (51/52) .
Hence the function
Sk-Herms(C) — Sk-Hermy(C); S +— ASA*,

is an R-linear transformation preserving the inner product ( | ). We can identify this with an R-linear
transformation Ad 4: R* — R* which preserves the Lorentzian inner product. In fact, det Ad 4 =1and

Ady preserves the components of the hyperboloid z2 + y2 4+ 22 —t? = —1. Let
Ad: SLy(C) —> Lor; Ad(A) = Ady.
Ad is homomorphism since
Adap(S) = AB(S)(AB)* = AB(S)B*A* = Ada(Adp(S)) = AdaAdp(S).
It is also continuous. Also, A € ker Ad if and only if ASA* = S for all S € Sk-Hermy(C), and it is easy

to see that this occurs exactly when A = +1. This shows that ker Ad = {£I}.

THEOREM 2.29. Ad: SLy(C) — Lor is a continuous surjective Lie homomorphism with ker Ad =
{1}, hence SLy(C){£I} = Lor. Furthermore the derivative sly(C) — lov is an isomorphism of R-Lie

algebras.

We will not prove that Ad is surjective but merely consider what happens at the Lie algebra level. As
in the case of SU(2) and SO(3), we can determine the derivative d Ad by considering for each C' € sly(C),

the curve

7: R — Lor; 7(t) = exp(tC),
which gives rise to the curve

7: R — Lor; 7(t) = A\(/i,y(t).

Using as an R-basis for Sk-Herms(C) the vectors

1 0 0 1 0 =3 i 0
) ‘/2: ) ‘/3: ) V4: )
0 —i -1 0 1 0 0 1

we can determine the action of A\El,y(t) on Sk-Hermy(C) and interpret it as an element of Lor. Differ-

Vi=

entiating we obtain the action of C' as an element of [or and so dAvd(C). For X € Sk-Hermy(C) we

have
Ad,()(X) = exp(tC) X exp(tC)* = exp(tC) X exp(tC™),
hence
%Aﬁw)@()lt —0=CX+ XC*.
So for the R-basis H,iH, E,iE, F,iF of slo(C), we have

H(x1Vi + 22Va +x3Vs + 24 Vi) + (21 Vi + 2oVo + 23Vs + 24 Va) H* = 29V — x3V5,
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SO
0 0 0 0
—~ 0 0 -1 0
dAd(H) =
0 1 0 0
0 0 0 0
Here is the complete list written in terms of the matrices P, which we know form an R-basis of Lor:
[0 0 0 o] [0 0 0 —1]
—~ 0 0 -1 0 —~ 0 0 O
dAd(H) = = P»g3, dAd(iH) = = —Piy,
0 1 0 0 0 0 O
10 0 0 0] -1 0 0 |
[0 0 1 0] 0 0 0 O]
—~ 0 00O —~ 0 0 0 -1
dAd(E) = = —P13, dAd(ZE) = = —P24,
-1 0 0 0 0 0 0
| 0. 0 0 0] 0 -1 0 |
[0 -1 0 0] [0 0 0 0]
— 1 0 0 —~ 0 0 0
dAd(F) = = Py, dAd(iF) = = —Psy.
0 00 0 0 0 -1
10 0 0] 0 0 -1 0]

This shows that dAvd(C) maps a basis for Sk-Herms(C) to one for lor and hence it is an isomorphism of

Lie algebras.



CHAPTER 3

Quaternions, Clifford algebras and some associated groups

1. Algebras

In this section k will denote any field, although our main interest will be in the cases R, C.

DEFINITION 3.1. A finite dimensional (associative and wunital) algebra A is a finite dimensional

k-vector space which is an associative and unital ring such that for all r,s € k and a,b € A,

(ra)(sb) = (rs)(ab).

If A is a ring then A is a commutative k-algebra.

If every non-zero element v € A is a unit, i.e., is invertible, then A is a division algebra.

In this last equation, ra and sb are scalar products in the vector space structure, while (rs)(ab) is
the scalar product of rs with the ring product ab. Furthermore, if 1 € k is the unit of A, for ¢ € k, the
element t1 € A satisfies

(t1)a = ta = t(al) = a(tl).
If dimkA > 0, then 1 # 0, and the function
nk— A; n(t)=tl

is an injective ring homomorphism; we usually just write ¢ for n(t) = t1.

ExXAMPLE 3.2. For n > 1, M, (k) is a k-algebra. Here we have n(t) = tI,. For n > 1, M, (k) is
non-commutative.

EXAMPLE 3.3. The ring of complex numbers C is an R-algebra. Here we have n(t) = t. C is
commutative. Notice that C is a commutative division algebra.

A commutative division algebra is usually called a field while a non-commutative division algebra is
called a skew field. In French corps (~ field) is often used in sense of possibly non-commutative division
algebra.

In any algebra, the set of units of A forms a group A* under multiplication, and this contains k*.
For A =M, (k), M,,(k)* = GL,, (k).

DEFINITION 3.4. Let A, B be two k-algebras. A k-linear transformation that is also a ring homo-
morphism is called a k-algebra homomorphism or homomorphism of k-algebras.

A homomorphism of k-algebras ¢: A — B which is also an isomorphism of rings or equivalently of

k-vector spaces is called isomorphism of k-algebras.

Notice that the unit n: k — A is always a homomorphism of k-algebras. There are obvious notions

of kernel and image for such homomorphisms, and of subalgebra.

DEFINITION 3.5. Given two k-algebras A, B, their direct product has underlying set A x B with sum
and product

(a1,b1) + (az,b2) = (a1 + az,by +ba2), (a1,b1)(az,b2) = (arasz, biba).
The zero is (0,0) while the unit is (1, 1).

37



38 3. QUATERNIONS, CLIFFORD ALGEBRAS AND SOME ASSOCIATED GROUPS

It is easy to see that there is an isomorphism of k-algebras A x B =~ B x A.
Given a k-algebra A, it is also possible to consider the ring M,,(A) consisting of m X m matrices with

entries in A; this is also a k-algebra of dimension
dimy M,,(A) = m? dimy, A.

It is often the case that a k-algebra A contains a subalgebra k; C A which is also a field. In that
case A can be viewed as a over k; in two different ways, corresponding to left and right multiplication

by elements of k. Then for t € ki, a € A,

(Left scalar multiplication) t-a=ta

(Right scalar multiplication) a-t=at.

These give different k;-vector space structures unless all elements of k; commute with all elements of A,
in which case k; is said to be a central subfield of A. We sometimes write i, A and Ay, to indicate which
structure is being considered. k; is itself a finite dimensional commutative k-algebra of some dimension

dimk kl .

PROPOSITION 3.6. FEach of the ki-vector spaces x, A and A, is finite dimensional and in fact
dimk A= dim]kl (]kl A) dimk kl = dimkl A]kl dimk kl.

EXAMPLE 3.7. Let k = R and A = M3(R), so dimg A = 4. Let

klz{l ‘ y}:x,yeR}CMg(R).
.

Then k; 2 C so is a subfield of M2 (R), but it is not a central subfield. Also dimy, A = 2.
EXAMPLE 3.8. Let k =R and A = M3(C), so dimg A = 8. Let

klz{[ * y] :x,yER}gMg(C).
oz

Then k; 2 C so is subfield of My(C), but it is not a central subfield. Here dimy, A = 4.
Given a k-algebra A and a subfield k; C A containing k (possibly equal to k), an element a € A acts
on A by left multiplication:
a-u=au (u€A).
This is always a k-linear transformation of A, and if we view A as the ki-vector space Ay,, it is always
a kj-linear transformation. Given a ki-basis {v1,..., v} for Ag,, there is an m x m matrix p(a) with

entries in k; defined by

m

AMa)v; = Z A(@)rjvr.

r=1

It is easy to check that

A A— M, (ki); ar— Aa)
is a homomorphism of k-algebras, called the left regular representation of A over ky with respect to the
basis {v1,...,vm}.

LEMMA 3.9. A: A — M,,,(k1) has trivial kernel ker A = 0, hence it is an injection.
PROOF. If a € ker A then A(a)(1) =0, giving al =0, so a = 0. O

DEFINITION 3.10. The k-algebra A is simple if it has only one proper two sided ideal, namely (0),

hence every non-trivial k-algebra homomorphism #: A — B is an injection.
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PRroPOSITION 3.11. Let k be a field.
i) For a division algebra D over k, D is simple.
i) For a simple k-algebra A, M,,(A) is simple. In particular, M, (k) is a simple k-algebra.
On restricting the left regular representation to the group of units of A*, we obtain an injective

group homomorphism
A A — GLp(k1); A (a)(u) = au,
where k; C A is a subfield containing k and we have chosen a k;-basis of Ag,. Because

AX 2 im A\ < GLy(ky),

A* and its subgroups give groups of matrices.

Given a k-basis of A, we obtain a group homomorphism
p*: AX — GL,(k);  p*(a)(u) = ua™'.
We can combine A* and p* to obtain two further group homomorphisms
A x p*r A x A — GL,(k); A\ x p*(a,b)(u) = aub™*,
A: A — GL,(k); A(a)(u) = aua™".
Notice that these have non-trivial kernels,

ker \* x p* ={(1,1),(-1,-1)}, kerA={1,-1}.

2. Linear algebra over a division algebra

Throughout this section, let D be a finite dimensional division algebra over a field k.

DEFINITION 3.12. A (right) D-vector space V is a right D-module, i.e., an abelian group with a right
scalar multiplication by elements of I so that for u,v € V, z,y € D,

v(zy) = (vr)y,
v(z +y) = vz + vy,
(u+v)x = ux + v,
vl = wv.
All the obvious notions of D-linear transformations, subspaces, kernels and images make sense as do
notions of spanning set and linear independence over D.

THEOREM 3.13. Let V' be a D-vector space. Then V' has a D-basis.
If V has a finite spanning set over D then it has a finite D-basis; furthermore any two such finite

bases have the same number of elements.

DEFINITION 3.14. A D-vector space V with a finite basis is called finite dimensional and the number

of elements in a basis is called the dimension of V' over D, denoted dimp V.

For n > 1, we can view D™ as the set of n X 1 column vectors with entries in D and this becomes a

D-vector space with the obvious scalar multiplication

Zn ZnT
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PROPOSITION 3.15. Let V, W be two finite dimensional vector spaces over D, of dimensions dimp V' =
m, dimp W = n and with bases {v1,...,vm}, {wi,...,w,}. Then a D-linear transformation ¢: V. — W

is given by
n
p(v;) =D wear
r=1

for unique elements a;; € D. Hence if

n n
s=1 s=1

then
Y1 a1 a2 ... Qim x1
Y2 a21 Q22 ... Qa2m T2
Yn an1 an2 .. Amn Tn

In particular, for V.=D™ and W = D", every D-linear transformation is obtained in this way from left
multiplication by a fized matriz.

This is of course analogous to what happens over a field except that we are careful to keep the scalar
action on the right and the matrix action on the left.

We will be mainly interested in linear transformations which we will identify with the corresponding

matrices. If : D¥ — D™ and ¢: D™ — D" are D-linear transformations with corresponding matrices
(6], [sp], then

(3.1) [0]l¢] = [0 0 ).
Also, the identity and zero functions Id,0: D™ — D™ have [Id] = I, and [0] = Oy,.

Notice that given a D-linear transformation ¢: V — W we can ’'forget’ the D-structure and just
view it as a k-linear transformation. Given D-bases {v1,...,vn}, {w1,...,w,} and a basis {by,...,bs}

say for I, the elements
veby (r=1,....m, t=1,...,d),
wsby (s=1,...,n, t=1,...,d)
form k-bases for V, W as k-vector spaces.
We denote the set of al m x n matrices with entries in D by M,, (D) and M, (D) = M,, ,,(D). Then
M, (D) is a k-algebra of dimension dim M,,(D) = n?dimgD. The group of units of M, (D) is denoted
GL, (D). However, for non-commutative D there is no determinant function so we cannot define an

analogue of the special linear group. We can however use the left regular representation to overcome this

problem with the aid of some algebra.

PropOSITION 3.16. Let A be algebra over a field k and B C A a finite dimensional subalgebra. If

u € B is a unit in A then u~' € B, hence u is a unit in B.

PROOF. Since B is finite dimensional, the powers u* (k > 0) are linearly dependent over k, so for
some t,. €k (r=0,...,¢) with t, # 0 and ¢ > 1, there is a relation

If we choose k suitably and multiply by a non-zero scalar, then we can assume that

¢
ub — Z tru” =0.

r=k+1
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If v is the inverse of u in A, then multiplication by v¥*+1 gives

¢
v— Z tou"F 1 =0,

r=k+1
from which we obtain

0
v = Z tou" "1 e B.
r=k+1

O

For a division algebra D, each matrix A € M,,(D) acts by multiplication on the left of D™. For any

subfield k; C D containing k, A induces a (right) ki-linear transformation,
D" — D"; x+—— Ax.

If we choose a kj-basis for D, A gives rise to a matrix Ay € M,q(k;) where d = dimy, Dy, . It is easy to
see that the function
A: M, (D) — Mua(ky); A(A) = Ag,

is a ring homomorphism with ker A = 0. This allows us to identify M, (D) with the subring im A C
M,a(ky).

Applying Proposition 3.16 we see that A is invertible in M, (D) if and only if A4 is invertible in
M, q(ky). But the latter is true if and only if det A4 # 0.

Hence to determine invertibility of A € M,,(D), it suffices to consider det A4 using a subfield k;. The
resulting function

Rdety, : M, (D) — ky; Rdety, (A) =det Aga,

is called the kj-reduced determinant of M,, (D) and is a group homomorphism. It is actually true that

det A4 € k, not just in ky, although we will not prove this here.
PROPOSITION 3.17. A € M,,(D) is invertible if and only if Rdety, (A) # 0 for some subfield k; C D

containing k.

3. Quaternions

ProprosITION 3.18. If A is a finite dimensional commutative R-division algebra then either A = R

or there is an isomorphism of R-algebras A = C.

k

PROOF. Let a. Since A is a finite dimensional R-vector space, the powers 1,,a?,...,a", ... must

be linearly dependent, say
(3.2) to+tia+---+tn,a™ =0

for some ¢t; € R with m > 1 and ¢, # 0. We can choose m to be minimal with these properties. If
to = 0, then

ty +toa +tza® + -+t =0,
contradicting minimality; so tg # 0. In fact, the polynomial p(X) = to + 61X + -+ - + t,, X™ € R[X] is
irreducible since if p(X) = p1(X)p2(X) then since A is a division algebra, either p;(a) = 0 or p2(a) = 0,
which would contradict minimality if both degp;(X) > 0 and degpa(X) > 0.

Consider the R-subspace
k

R(a) = {Zsjozj :5; €R} C A.

2

Then R(a) is easily seen to be a R-subalgebra of A. The elements 1,a,a?,...,a™"! form a basis by

Equation (3.2), hence dimg R(«) = m.
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Let v € C be any complex root of the irreducible polynomial tg + t1 X + - - - + ¢, X™ € R[X] which
certainly exists by the Fundamental Theorem of Algebra). There is an R-linear transformation which is

actually an injection,

—

m—1
p:R(@) — G (> siad) =) s
j=0 J

3

Il
o

It is easy to see that this is actually an R-algebra homomorphism. Hence ¢R(«) C C is a subalgebra.
But as dimg C = 2, this implies that m = dimg R(a) < 2. If m = 1, then by Equation (3.2), « € R. If
m = 2, then pR(a) = C.

So either dimg A =1 and A =R, or dimg A > 1 and we can choose an o € A with C =2 R(«). This

means that we can view A as a finite dimensional C-algebra. Now for any 5 € A there is polynomial
q(X) =up+w X +--- +u X € C[X]

with ¢ > 1 and u; # 0. Again choosing ¢ to be minimal with this property, ¢(X) is irreducible. But then
since ¢(X) has a root in C, ¢ =1 and 8 € C. This shows that A = C whenever dimg A > 1. O

The above proof actually shows that if A is a finite dimensional R-division algebra, then either A = R
or there is a subalgebra isomorphic to C. However, the question of what finite dimensional R-division
algebras exist is less easy to decide. In fact there is only one other up to isomorphism, the skew field of

quaternions H. We will now show how to construct this skew field.

Let
H= { [_i 11}] DZ,WwE C} C M4 (C).

It is easy to see that H is a subring of M2(C) and is in fact an R-subalgebra where we view M3 (C) as an

R-algebra of dimension 8. It also contains a copy of C, namely the R-subalgebra

{ : O‘| :ZGC}QH.
0 z

However, H is not a C-algebra since for example
i 0 0 1|4 0
| # |-
0 —i -1 0] |0 —i

| e A

Notice that if z,w € C, then z = 0 = w if and only if |z|> + |w|? = 0. We have

-

|2? + |w]? 0
0 |2 + |w]?

z w
hence is invertible if and only if # O; furthermore in that case,
-w z -w z
1 z —w
2w P+ w2 A wf?
Wz - w z

22 + [wl?  [2]? + [w]?

which is in H. So an element of H is invertible in H if and only if it is invertible as a matrix. Notice that
SU@2)={Ae€H:detA=1} <H*.

It is useful to define on H a norm in the sense of Proposition 1.4:

z w
= det = |2> + |w|*.
-w Zz
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Then
SU@2)={Ae€H: A =1} <H*.

As an R-basis of H we have the matrices

These satisfy the equations
iZ=j2=k"=-1, ij=k=-ji, k=i=-kj, ki=j=-ik

This should be compared with the vector product on R? as discussed in Example 2.12. From now on we

will write quaternions in the form
g=zi+j+zk+t1 (z,y,2,t €R).

q is a pure quaternion if and only if ¢t = 0; ¢ is a real quaternion if and only if z =y = z = 0. We can
identify the pure quaternion i+ yj+ zk with the element ze; + ye, + ze3 € R3. Using this identification

we see that the scalar and vector products on R? are related to quaternion multiplication by the following.
PRrOPOSITION 3.19. For two pure quaternions q1 = x1i+ y1j + 21K, g2 = x2i + yo2j + 22k,
q1q2 = —(z1i+y1j + 21k) - (221 + y2] + 22k) + (211 + y1j + 21k) X (221 + 32 + 22k).

In particular, qi1qs is a pure quaternion if and only if ¢1 and qo are orthogonal, in which case q1qs is

orthogonal to each of them.
The following result summarises the general situation about solutions of X2 4+ 1 = 0.

PROPOSITION 3.20. The quaternion q = zi+j+ zk + t1 satisfies ¢> +1 = 0 if and only if t = 0 and
22 +y?+22=1.

PRrROOF. This easily follows from Proposition 3.19. d
There is a quaternionic analogue of complex conjugation, namely
g=zi+j+zk+tl—G=q¢" = —xi—j— zk +11.
This is ‘almost’ a ring homomorphism H — H, in fact it satisfies
3.3a) (0 +¢2) =T+

3.3b) (9192) = Qa1

(
(
(3.3¢) g=q <= q is real quaternion;

(3.3d) g=—q <= qisa pure quaternion.

Because of Equation (3.3b) this is called a homomorphism of skew rings or anti-homomorphism of rings.

The inverse of a non-zero quaternion ¢ can be written as

1 q
34 q71 = 776 = —.
(34) (q@)"  (q9)
The real quantity ¢q is the square of the length of the corresponding vector,
lal = V@ = Va? + y? + 22 + 12,

For z = with u,v € R, Z = ul — vi is the usual complex conjugation.

In terms of the matrix description of H, quaternionic conjugation is given by hermitian conjugation,

o e e
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From now on we will write

1=1, i=i, j=j, k=k

4. Quaternionic matrix groups

The above norm | | on H extends to a norm on H", viewed as a right H-vector space. We can define

an quaternionic inner product on H by

n
Xy :X*y: Zfryh

r=1

where we define the quaternionic conjugate of a vector by

Similarly, for any matrix [a;;] over H we can define [a;;]* = [@;;].
The length of x € H™ is defined to be

n
x| = Vxrx = | > fa
r=1

We can also define a norm on M, (H) by the method used in Section 2 of Chapter 1, i.e., for A € M,,(H),

||A|:sup{|j|4T>|{:O7éx€H"}.

Then the analogue of Proposition 1.4 is true for || || and the norm | | on H, although statements involving
scalar multiplication need to be formulated with scalars on the right. There is also a resulting metric on
M,, (H),

(4, B) — [|A - B,

and we can use this to do analysis on M,,(H). The multiplication map M, (H) x M,,(H) — M,,(H) is
again continuous, and the group of invertible elements GL,,(H) C M, (H) is actually an open subset.

This can be proved using either of the reduced determinants
Rdetg: M, (H) — R, Rdetc: M, (H) — C,
each of which is continuous. By Proposition 3.17,
(3.5a) GL, (H) = M,,(H) — Rdetz ' 0,
(3.5b) GL,(H) = M,,(H) — Rdetz" 0.

In either case we see that GL,, (H) is an open subset of M,,(H). It is also possible to show that the images
of embeddings GL,(H) — GLy4,(R) and GL,(H) — GL2,(C) are closed. So GL,(H) and its closed
subgroups are real and complex matrix groups.

The n x n quaternionic symplectic group is
Sp(n) = {A € GL,(H) : A*A =TI} < GL,,(H).
These are easily seen to satisfy

Sp(n) = {A € GL,,(H) : vx,y e H", Ax- Ay =x-y}.



5. THE REAL CLIFFORD ALGEBRAS 45

These groups Sp(n) form another infinite family of compact connected matrix groups along with familiar
examples such as SO(n),U(n),SU(n). There are further examples, the spinor groups Spin(n) whose

description involves the real Clifford algebras Cl,.

5. The real Clifford algebras

The sequence of real division algebras R,C,H can be extended by introducing the real Clifford

algebras Cl,,, where
Clp=R, Cl1j=C, Clp=H, dimg=2".

There are also complex Clifford algebras, but we will not discuss these. The theory of Clifford algebras
and spinor groups is central in modern differential geometry and topology, particularly Index Theory.
It also appears in Quantum Theory in connection with the Dirac operator. There is also a theory of
Clifford Analysis in which the complex numbers are replaced by a Clifford algebra and a suitable class
of analytic functions are studied; a motivation for this lies in the above applications.

We begin by describing Cl,, as an R-vector space and then explain what the product looks like in

terms of a particular basis. There are elements ey, es, ..., e, € Cl, for which
ese, = —esep, if s # 7.

(S.Ga) s+r s+r
e2 =—1.

T
Moreover, the elements e;, e;, - - - €;, for increasing sequences 1 < iy <9 < -+ < i, < n with 0 < r < n,
form an R-basis for Cl,,. Thus

(3.6b) dimg Cl,, = 2.

When r = 0, the element e;, e;, - - - €;,. is taken to be 1.

r

PRrOPOSITION 3.21. There are isomorphisms of R-algebras
Cly =2C, Clp=¥H.
ProOOF. For Cly, the function
Ch —C;, z+yer—xz+yi (z,y€eR),

is an R-linear ring isomorphism.

Similarly, for Cly, the function
Cly — H; tl4ze; +yes + zerea — tl +xi+yj + 2k (L,z,y,2z €R),
is an R-linear ring isomorphism. O
We can order the basis monomials in the e, by declaring e;, e;, - - - €;,. to be number
L4207ty lqp gl

which should be interpreted as 1 when r = 0. Every integer k in the range 1 < k < 2™ has a unique
binary expansion

k=ko+2ki+ - +27kj+ + 2",
where each k; = 0,1. This provides a one-one correspondence between such numbers £ and the basis

monomials of Cl,,. Here are the basis orderings for the first few Clifford algebras.
Cli: ler; Cla: Ler,ez,e1e2; Clg: 1,e1,e2, €169, €3, €163, e2€3, €1€2€3.

Using the left regular representation over R associated with this basis of Cl,, we can realise Cl,, as a
subalgebra of Man (R).
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ExXAMPLE 3.22. For Cl; we have the basis {1,e;} and we find that

(1) =T, pler) = t) ‘ﬂ .

So the general formula is

r -y
p(z +yer) = [ ] (z,y €R).
Yy x
For Cly the basis {1, e1, ea,e1e2} leads to a realization in My (R) for which p(1) = I, and
0 -1 0 O 0 0 -1 0 0 0 0 -1
1 0 0 O 0 1 0 0 -1 0
(& = 3 (&4 = y é1é =
pler) 0 0 0 _1 ple2) ) 0 pleres) 01 o0 o
0 0 1 0 0 -1 0 10 0 0

In all cases the matrices p(e; e;, - -e;, ) are generalized permutation matrices all of whose entries
are entries 0, =1 and exactly on non-zero entry in each row and column. These are always orthogonal
matrices of determinant 1.

These Clifford algebras have an important universal property which actually characterises them.
First notice that there is an R-linear transformation

n n
jn: R" — Cl,;  jn (Z xreT> = Zxrer.
r=1 r=1

By an easy calculation,

n 2 n n
(3.7 Jn (Z acrer> = — fo =— Zaﬁrer
r=1 r=1 r=1
THEOREM 3.23 (The Universal Property of Clifford algebras). Let A be a R-algebra and f: R® — A

an R-linear transformation for which

2

f(x)* = —[x[*1.
Then there is a unique homomorphism of R-algebras F': Cl,, — A for which F o j, = f, i.e., for all
x € R",
F(jn(x)) = f(x).
PROOF. The homomorphism F is defined by setting F(e,) = f(e,) and showing that it extends to
a ring homomorphism on Cl,,. O
EXAMPLE 3.24. There is an R-linear transformation
ap: R" — Cl,;  ap(x) = —jn(x) = jn(—x%).
Then
ao(x)? = ju(—x)? = —|x|%,
so by the Theorem there is a unique homomorphism of R-algebras «: Cl,, — Cl,, for which
a(jn(x)) = ao(x).
Since j,(e,) = e, this implies
a(e”‘) = —€r.
Notice that for 1 < i1 < i < --- < i < n,
€i iy -+~ €, if k is even,

if k is odd.

a(ei16i2 e eik) = (71)’661'162'2 R

762.161.2 . e eik
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It is easy to see that « is an isomorphism and hence an automorphism.
This automorphism «: Cl,, — Cl,, is often called the canonical automorphism of Cl,.
We record explicit form of the next few Clifford algebras. Consider the R-algebra Mo (H) of dimension

16. Then we can define an R-linear transformation

T11 + x2j + x3k x4k
04: R4 — MQ(H), 94((E1€1 + x9€9 + x3€3 + x4e4) = ! 2J 3 ) 4. .
T4k 1t + x2f — x3k

Direct calculation shows that 6, satisfies the condition of Theorem 3.23, hence there is a unique R-algebra

homomorphism O4: Cly — My (H) with ©4 o j4 = 04. This is in fact an isomorphism of R-algebras, so
Cly = My (H).
Since R € R?2 C R3 C R* we obtain compatible homomorphisms
©1: Clj — My(H), ©3: Cly — My(H), ©3: Clz — My(H),
which have images

im©; = {zI>: z € C},
im Oy = {ql> : ¢ € H},

0
1H1@3{|fi)1 ‘|SQ1,QQ€H}.
q2

This shows that there is an isomorphism of R-algebras
Cly @2 H x H,
where the latter is the direct product of Definition 3.5. We also have
Cls 2 My(C), Clg = Mg(R), Cl; = Mg(R) x Ms(R).

After this we have the following periodicity result, where M,,(Cl,) denotes the ring of m x m matrices
with entries in Cl,.
THEOREM 3.25. Forn >0,
Clpas = Myg(Cly,).

In the next section we will make use of some more structure in Cl,,. First there is a conjugation

():Cl, — Cl,, defined by
Fnen ey = (1) enen e

whenever 1 < i1 <ig < -+ < i < n, and satisfying

for z,y € Cl, and ¢t € R. Notice that this is not a ring homomorphism Cl,, — Cl,, since for example

whenever r < s,
€€ = €56, = —€.€3 = —€r.C5 F €,€5.
However, it is a ring anti-homomorphism in the sense that for all x,y € Cl,,

(3-8) Ty =9% (z,y € Cly).

When n = 1, 2 this agrees with the conjugations already defined in C and H.
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Second there is the canonical automorphism «: Cl,, — Cl,, defined in Example 3.24. We can use «

to define a £-grading on Cl,,:
Cli ={ueCl,:alu)=u}, Cl, ={uecCl,:a(u)=—u}.

PROPOSITION 3.26. i) Every element v € Cl,, can be unique expressed in the form v = vT +v~ where
vt € CIY and v— € Cl,. Hence as an R-vector space, Cl, = CI} @ Cl .

i) This decomposition is multiplicative in the sense that
uv € CLF if u,v € CL} or u,v € Cl,,,
uv,vu € Cl} if u € Cl} and v € Cl,,.
PROOF. i) The elements
L1 1
vt =S ta), v =5(-a),

T, a(v™) = —v~ and v = v* 4+ v~. This expression is easily found to be the unique

satisfy a(vt) = v
one with these properties and defines the stated vector space direct sum decomposition.

ii) This is easily checked using the fact that « is a ring homomorphism. O
Notice that for bases of C1¥ we have the monomials

€j1"'ej2m601:; (1<.j1<"'<j2m<

),

n
(3.9)
€1 " Chamyt GCI; (]— < < "‘<j2m+1 gn)

Finally, we introduce an inner product - and a norm | | on Cl, by defining the distinct monomials

€y iy €, With 1 < 47 <49 < -+ <4 < n to be an orthonormal basis, i.e.,

1 if ¢ =k and i, = j, for all r,
(eileiz T eik) : (ejlejz e ejz) =
0 otherwise,

and
2| = V- .

A more illuminating way to define - is by the formula
1
(3.10) u-v= §Re(ﬂv+ﬁu),

where for w € Cl,, we define its real part Re w to be the coefficient of 1 when w is expanded as an R-linear
combination of the basis monomials e;, ---e;, with 1 <43 <--- <4, <n and 0 < r. It can be shown
that for any u,v € Cl,, and w € j,R",

(3.11) (wu) - (wo) = |w](u - v).

In particular, when |w| = 1 left multiplication by w defines an R-linear transformation on Cl,, which
is an isometry. The norm | | gives rise to a metric on Cl,. This makes the group of units Cl* into a
topological group while the above embeddings of Cl,, into matrix rings are all continuous. This implies
that CL is a matrix group. Unfortunately, they are not norm preserving. For example, 2+ ejeqze3 € Cl
has |2 + ejezes| = /5, but the corresponding matrix in Mg(R) has norm /3. However, by defining for
each w € Cl,
w]| = {lwz] : z € Cly, [z =1},

we obtain another equivalent norm on Cl,, for which the above embedding Cl,, — Ma» (R) does preserve

norms. For w € j,R™ we do have ||jw|| = |w| and more generally, for wy, ..., wg € j,R™,

s = -] = o] - .
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For z,y € Cl,,
lzyll < llzll lyll,

without equality in general.

6. The spinor groups

In this section we will describe the compact connected spinor groups Spin(n) which are groups of
units in the Clifford algebras Cl,,. Moreover, there are surjective Lie homomorphisms Spin(n) — SO(n)
each of whose kernels have two elements.

We begin by using the injective linear transformation j,: R” — Cl,, to identify R™ with a subspace
of Cl,, i.e.,

n n n
ZxTeT — jn(z Tr€p) = ZxTer.
r=1 r=1 r=1
Notice that R” C Cl, so for € R, u € CI} and v € Cl,,
(3.12) zu,ux € Cl,, xv,vx € CLt.
Inside of R™ C Cl,, is the unit sphere
n n
S l={xeR":|z|=1} = {Za:rer : fo =1}
r=1 r=1
LEMMA 3.27. Let u € S*1 C Cl,,. Then u is a unit in Cl,, u € CL*.

PROOF. Since u € R”,

(= () = —u? = ~(-Ju?) = 1
so (—u) is the inverse of u. Notice that —u € S"~1. O
More generally, for ug,...,u; € S*~1 we have
(3.13) (uy---up) "t = (=) *up - uy = ar .

DEFINITION 3.28. The pinor group Pin(n) is the subgroup of C1)¢ generated by the elements of S 71,
Pin(n) = {ug - ug : k >0, u, € S" '} < CLX.

Notice that Pin(n) is a topological group and is bounded as a subset of Cl,, with respect to the
metric introduced in the last section. It is in fact a closed subgroup of CL and so is a matrix group; in
fact it is even compact. We will show that Pin(n) acts on R” in an interesting fashion.

We will require the following useful result.

LEMMA 3.29. Let u,v € R® C Cl,. Ifu-v =0, then

VU = —uv.
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PRrROOF. Writing u =Y '_, z,e, and v =Y., yse, with z,,y, € R, we obtain

n n
VU = § E YsTyr€sEyp

s=1r=1
n
_ 2
= E YrZr€, + E (xsyr - xrys)eres
r=1 r<s
n
= - E YrZy — E (mTyS - xsyT)eTeS
r=1 r<s
= ~uv - E (xrys - xsyr)eres
r<s
== Z(xTyS — TsYr)eres
r<s
=v.u— g (mrys - wsyr)eres
r<s
n o n
= - E E LrlYs€res
r=1s=1
= —Uuv.

For u € S* ! and = € R,

If u-x =0, then by Lemma 3.29,

(3.14a) a(u)rt = —u’sr = —(—1)z =z,
since u? = —|u|? = —1. On the other hand, if z = tu for some t € R, then
(3.14b) a(u)2@ = tuu = —tu.

So in particular o(u)aw € R™. This allows us to define a function

pu: R — R"; pu(x) = a(u)zu = uzu.
Similarly for u € Pin(n), we can consider a(u)2w; if u = uy - - - u, for uq,...,u, € S"1, we have

alw)ra = a(uy - up)xuy - Uy

= (1w u)a(( 1) )
(3.15) = pu, 0+ 0 pu, (z) € R™
So there is a linear transformation
pu: R — R"; pu(x) = a(u)zu.

PROPOSITION 3.30. For u € Pin(n), p,: R™ — R™ is an isometry, i.e., an element of O(n).

PrOOF. By Equation (3.15) it suffices to show this for u € S*~!. Now Equations (3.14) show that

geometrically p,: R® — R™ is reflection in the hyperplane orthogonal to u which is an isometry. O
Since each p, € O(n) we actually have a continuous homomorphism
p: Pin(n) — O(n);  p(u) = pu.

PROPOSITION 3.31. p: Pin(n) — O(n) is surjective with kernel ker p = {1, —1}.
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PROOF. The observation in the proof of Proposition 3.30 shows that reflection in the hyperplane
orthogonal to v € S”~! has the form p,,. Surjectivity follows using the standard fact that every element
of O(n) is a composition of reflections in hyperplanes.

Suppose that for some u1,...,ux € S" 1, u =y ---us € kerp, i.e., p, = I,. Then
1 =det p, = det(py, - pu,,) = det py, - - - det py, .

Each p,, is a reflection and so has det p,, = —1. These facts imply & must be even, u € CL}, and then
by Equation (3.13),

So for any x € R™ we have

which implies that

TU = UX.
For each r = 1,...,n we can write
_ _ (7t - - +
u=a, +eb. = (a) +e.b. )+ (a, +e.b)),

where a,, b, € Cl,, do not involve e, in their expansions in terms of the monomial bases of Equation

(3.9). On taking x = e, we obtain
er(a, + e.b.) = (a, + e.b,)e,,
giving
ar + e;b, = —e.(a, + e,:b,)e,

= —e,a,.6, — e%brer

—efar —e,.b,
= a, — e,b,
= (af —eby) + (a7 — ;b))

= ar — erbra

where we use the fact that for each eg; # e, ese, = —e,es. Thus we have b, = 0 and so u = a,- does not

involve e,.. But this applies for all r, so u = t1 for some t € R. Since uw = t1,
1 =wu=(-1)"=1,
by Equation (3.13) and the fact that k is even. This shows that ¢ = £1 and so u = £1. O
For n > 1, the spinor groups are defined by
Spin(n) = p~* SO(n) < Pin(n).

THEOREM 3.32. Spin(n) is a compact, path connected, closed normal subgroup of Pin(n), satisfying

(3.16a) Spin(n) = Pin(n) N CL;,
(3.16b) Pin(n) = Spin(n) U e, Spin(n),
foranyr=1,....,n.

Furthermore, when n > 3 the fundamental group of Spin(n) is trivial, m Spin(n) = 1.
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PRrOOF. We only discuss connectivity. Recall that the sphere S"~! C R™ C Cl,, is path connected.
Choose a base point uy € S*~1. Now for an element u = u; - - - uy € Spin(n) with u,...,u; € S*71, as
noted in the proof of Proposition 3.31, we must have k even, say k = 2m. In fact, we might as well take

m to be even since u = u(—w)w for any w € S"~!. Then there are continuous paths
pr:[0,1] — S"Y (r=1,...,2m),
for which p,(0) = up and p,(1) = u,. Then
p:[0,1] — 8" p(t) = pi(t) - p2m(t)
is a continuous path in Pin(n) with
p0) =ug™ = (-1)" =1, p(1)=u

But t — p(p(t)) is a continuous path in O(n) with p(p(0)) € SO(n), hence p(p(t)) € SO(n) for all ¢. This
shows that p is a path in Spin(n). So every element u € Spin(n) can be connected to 1 and therefore
Spin(n) is path connected.

The equations of (3.16) follow from details in proof of Proposition 3.31.

The final statement involves homotopy theory and is not proved here. It should be compared with

the fact that for n > 3, m; SO(n) = {1, —1} and in fact the map is a universal covering. O

The double covering maps p: Spin(n) — SO(n) generalize the case of SU(2) — SO(3) discussed in
Section 5 of Chapter 2. In fact, around each element u € there is an open neighbourhood N,, C Spin(n)

for which p: N, — pN,, is a homeomorphism, and actually a diffeomorphism. This implies the following.

PROPOSITION 3.33. The derivative d p: spin(n) — so(n) is an isomorphism of R-Lie algebras and

dim Spin(n) = dim SO(n) = (Z) .

7. The centres of spinor groups
Recall that for a group G the centre of G is
C(G)={ceG:Vgeq, gc=cg}.
Then C(G) < G. It is well known that for groups SO(n) with n > 3 we have
PROPOSITION 3.34. Forn > 3,
{I.} ifn is odd,
{xI,} ifn is even.

C(SO(n)) = {th, it = +1, t" = 1} =

PrROPOSITION 3.35. Forn > 3,

{1} if n is odd,
C(Spin(n)) = { {£1,+e;---¢e,} if n =2 mod 4,
{£1,£e1---en} if n=0mod 4.
Z7/2 if n is odd,

7/4 if n =2 mod 4,

Z/2 xZ/2 if n=0mod 4.

1%
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Proor. If g € C(Spin(n)), then since p: Spin(n) — SO(n), p(g) € C(SO(n)). As £1 € C(Spin(n)),
this gives | C(Spin(n))| = 2| C(SO(n))| and indeed

C(Spin(n)) = p~1 C(SO(n)).

For n even,

Since
(n—i—l) (n+1)n 0mod 2 if n =2 mod 4,
2 1mod 2 if n=0mod4,

this implies

9 1 if n=2mod4,
(:l:el e en) =

—1 if n=0mod 4.
Hence for n even, the multiplicative order of +e; ---e, is 1 or 2 depending on the congruence class of n

modulo 4. This gives the stated groups. O

We remark that Spin(1) and Spin(2) are abelian.

8. Finite subgroups of spinor groups

Each orthogonal group O(n) and SO(n) contains finite subgroups. For example, when n = 2,3, these
correspond to symmetry groups of compact plane figures and solids. Elements of SO(n) are often called
direct isometries, while elements of O(n)~ are called indirect isometries. The case of n = 3 is explored
in the Problem Set for this chapter. Here we make some remarks about the symmetric and alternating
groups.

Recall that for each n > 1 the symmetric group S, is the group of all permutations of the set
n = 1,...,n. The corresponding alternating group A, < S, is the subgroup consisting of all even
permutations, i.e., the elements o € S, for which sign(c) = 1 where sign: S,, — {£1} is the sign
homomorphism.

For a field k, we can make S,, act on k™ by linear transformations:

T To-1(1)

T2 To-1(2)
o-| | =

Tn Lo—1(n)

Notice that o(e;) = e,(,). The matrix [o] of the linear transformation induced by o with respect to the
basis of e,’s has all its entries 0 or 1, with exactly one 1 in each row and column. For example, when
n =3,

0 0
a23))=1{1 0 of, [(A3)]=
0 1

o O =
= o O
S = O
o O =

When k = R each of these matrices is orthogonal, while when k = C it is unitary. For a given n we
can view S, as the subgroup of O(n) or U(n) consisting of all such matrices which are usually called

permutation matrices.
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PROPOSITION 3.36. For o € S,
sign(o) = det([o]).
Hence we have
SO(n)NsS, ifk=R,

SU(n)NS, ifk=C.
Recall that if n > 5, A, is a simple group.

A, =

As p: Pin(n) — O(n) is onto, there are finite subgroups S,, = p~15,, < Pin(n) and A4, = p~14, <
Spin(n) for which there are surjective homomorphisms p: gn — S, and p: ﬁn — A,, whose kernels
contain the two elements +1. Note that |S,| = 2 - n!, while |A,| = n!. However, for n > 4, there are no

homomorphisms 7: S, — §n, T: A, — gn for which p o7 = Id.

\ lp \ lp
Idgn IdAn
Sn A,

Similar considerations apply to other finite subgroups of O(n).

In C1¥ we have a subgroup E,, consisting of all the elements
te;, re, (1<ip<--<ip,<n, 0Kr).

The order of this group is |E,| = 2"T! and as it contains +1, its image under p: Pin(n) — O(n)

is £, = pE, of order |E,| = 2". In fact, {+1} = C(E,) is also the commutator subgroup since

. 1ej_1 = —1 and so E,, is abelian. Every non-trivial element in F, has order 2 since e? = —1,

hence E,, < O(n) is an elementary 2-group, i.e., it is isomorphic to (Z/2)". Each element p(e,) € O(n
y 2-g P

€€ e

is a generalized permutation matrices with all its non-zero entries on the main diagonal. There is also a
—0
subgroup E,, = pE? < SO(n) of order 2"~ !, where

EY = E, N Spin(n).
In fact FSL is isomorphic to (Z/2)"~!. These groups F, and E? are non-abelian and fit into exact
sequences of the form
1—-2/2— E, — (Z/2)" =1, 1—7Z/2— E%— (Z/2)"' -1,

in which each kernel Z/2 is equal to the centre of the corresponding group E, or EY. This means they

are extraspecial 2-groups.



CHAPTER 4
Matrix groups as Lie groups

In this chapter we will discuss the basic ideas of smooth manifolds and Lie groups. Our main aim is

to prove a theorem which identifies every real matrix of GL,,(R) is a Lie subgroup.

1. Smooth manifolds

DEFINITION 4.1. A continuous map g: V; — V5 where each V, C R™* is open, is called smooth if

1

it is infinitely differentiable. A smooth map ¢ is a diffeomorphism if it has an inverse g~ which is also

smooth.
Let M be a separable Hausdorff topological space.

DEFINITION 4.2. A homeomorphism f: U — V where U C M and V' C R™ are open subsets, is
called an n-chart for U.

IfU={U,:a€ A} is an open covering of M and F = {f,: U, — V,} is a collection of charts,
then J is called an atlas for M if, whenever U, N Uz # 0,

fﬁ Of(;lj fa(Ua N UB) —_— fﬁ(Ua n Uﬁ)
is a diffeomorphism.
(4'1) U, ﬂUg

fa(Ua NUp) _1 f8(Ua NUp)
faofa

We will sometimes denote an atlas by (M, U, F) and refer to it as a smooth manifold of dimension n

or smooth n-manifold.

DEFINITION 4.3. Let (M,U,F) and (M',UW,F') be atlases on topological spaces M and M’. A
smooth map h: (M,U,F) — (M’', U, F") is a continuous map h: M — M’ such that for each pair «, o
with h(Uy) NU,, # 0, the composite

fiooho fob fulh™MUL) — VL,
is smooth.

’ —1
(4.2) hu,) v
. fa( a’) o

| o

hu, h(Ua) N U,

2. Tangent spaces and derivatives

Let (M,U,JF) be a smooth n-manifold and p € M. Let v: (a,b) — M be a continuous curve with
a<0<b.

55
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DEFINITION 4.4. « is differentiable at t € (a,b) if for every chart f: U — V with y(¢) € U, the
curve fo~: (a,b) — V is differentiable at t € (a,b), i.e., (f o) (t) exists. v is smooth at t € (a,b) if
all the derivatives of f oy exists at t.

The curve v is differentiable if it is differentiable at all points in (a,b). Similarly « is smooth if it is

smooth at all points in (a,b).
LEMMA 4.5. Let fo: Uy — Vy be a chart with v(t) € Uy and suppose that
foor: (a,b) N fo Vo — Vo
is differentiable/smooth at t. Then for any chart f: U — V with y(t) € U,
foy:(a,b)Nf~ 'V —V
is differentiable/smooth at t.

Proor. This follows using the ideas of Definition 4.2. The smooth composite f o « is defined on
a subinterval of (a,b) containing ¢ and there is the usual Chain or Function of a Function Rule for the

derivative of the composite

(4.3) (f9)'(t) = Jac o g1 (foy(t)) (foy)'(£).
Here, for a differentiable function
hi(x)
h: Wi — Wa; h(x) = :
Pim, (%)

with Wy C R™ and Wy C R™2 open subsets, and x € W1y, the Jacobian matrix is

Oh;
Jacy(x) = {89&
J

(x)} € My m, (R).
U

If v(0) = p and ~ is differentiable at 0, then for any (and hence every) chart fy: Uy — V, with
~(0) € Uy, there is a derivative vector vo = (fv)'(0) € R™. In passing to another chart f: U — V with
~(0) € U by Equation (4.3) we have

(f7)(0) = Jacg ;-1 (f07(0)) (f07)'(0).

In order to define the notion of the tangent space T\, M to the manifold M at p, we consider all pairs of

the form
((f'0),f: U —V)
where v(0) = p € U, and then impose an equivalence relation ~ under which
((A11)(0), fr: Ur — Vi) ~ ((f27)'(0), fo: U2 — Va).
Since
(f27)'(0) = Jac, 1 (f17(0))(f17)'(0),
we can also write this as

(v, fi: Ur — Vi) ~ (Jacy, (=1 (fi(p))v, fo: Uz — V3),

whenever there is a curve o« in M for which

10)=p, (1)) =v.
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The set of equivalence classes is T, M and we will sometimes denote the equivalence class of (v, f: U —
V)by [v,f: U—V].

PRrOPOSITION 4.6. For p € M, T, M is an R-vector space of dimension n.

Proor. For any chart f: U — V with p € U, we can identify the elements of T, M with objects
of the form (v, f: U — V). Every € R"™ arises as the derivative of a curve 7: (—¢,¢) — V for which

7(0) = f(p). For example for small enough e, we could take
Y(t) = f(p) +tv.
There is an associated curve in M,
v (mee) — M; A(t) = fTIA(),
for which (0) = p. So using such a chart we can identify T, M with R™ by
Vo U~ V] v,

The same argument as used to prove Proposition 2.9, shows that T, M is a vector space and that the

above correspondence is a linear isomorphism. O

Let h: (M,U,F) — (M',UW,F") be a smooth map between manifolds of dimensions n,n’. We will
use the notation of Definition 4.3. For p € M, consider a pair of charts as in Diagram (4.2) with p € U,
and h(p) € UL,. Since hyr o =

associated R-linear transformation

' oho f !is differentiable, the Jacobian matrix Jac, , (fa(p)) has an

« a’,a

dhara: R — R™;  dhao(x) = Jac,,  (fa(p)x.
It is easy to verify that this passes to equivalence classes to give a well defined R-linear transformation
dhpt TpM — Th(p) M/.

The following result summarises the properties of the derivative and should be compared with Proposition
2.16.

PROPOSITION 4.7. Let h: (M, U, F) — (M',W,F") and g: (M',UW,F') — (M", U, F") be smooth
maps between manifolds M, M', M" of dimensions n,n’,n’".

a) For each p € M there is an R-linear transformation dh,: T, M — Ty M.
b) For eachp € M,
dgnp) odhy, =d(goh),.

¢) For the identity map Id: M — M and p € M,
dId, = Idr, -

DEFINITION 4.8. Let (M, U,JF) be a manifold of dimension n. A subset N C M is a submanifold of
dimension k if for every p € N there is an open neighbourhood U C M of p and an n-chart f: U — V
such that

pe YV NRY) =NNU.

For such an N we can form k-charts of the form
fo: NNU — VARF;  fo(z) = f(x).

We will denote this manifold by (N, Uy, Fn). The following result is immediate.
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PROPOSITION 4.9. For a submanifold N C M of dimension k, the inclusion function incl: N — M
is smooth and for every p € N, dincl,: T, N — T, M is an injection.

The next result allows us to recognise submanifolds as inverse images of points under smooth map-
pings.

THEOREM 4.10 (Implicit Function Theorem for manifolds). Let h: (M, U,F) — (M',W,F") be a
smooth map between manifolds of dimensions n,n’. Suppose that for some ¢ € M’', dh,: T, M —
Thpy M’ is surjective for every p € N = h=lq. Then N C M is submanifold of dimension n —n' and
the tangent space at p € N is given by T, N = kerd h,.

PRrROOF. This follows from the Implicit Function Theorem of Calculus. O

Another important application of the Implicit Function Theorem is to the following version of the

Inverse Function Theorem.

THEOREM 4.11 (Inverse Function Theorem for manifolds). Let h: (M,U,F) — (M',W,F) be
a smooth map between manifolds of dimensions n,n’. Suppose that for some p € M, dhy,: Ty M —
Thip) M' is an isomorphism. Then there is an open neighbourhood U C M of p and an open neighbourhood
V C M’ of h(p) such that hU =V and the restriction of h to the map hy: U — V is a diffeomorphism.

In particular, the derivative dhy: T — T is an R-linear isomorphism and n = n'.
When this occurs we say that A is locally a diffeomorphism at p.
EXAMPLE 4.12. Consider the exponential function exp: M, (R) — GL,(R). Then by Proposition
1.36,
dexpp(X) = X.

Hence exp is locally a diffeomorphism at O.

3. Lie groups

The following should be compared with Definition 1.14.

DEFINITION 4.13. Let G be a smooth manifold which is also a topological group with multiplication
map mult: G X G — G and inverse map inv: G — G and view G x G as the product manifold. Then

G is a Lie group if mult, inv are smooth maps.

DEFINITION 4.14. Let G be a Lie group. A closed subgroup H < G that is also a submanifold is
called a Lie subgroup of G. It is then automatic that the restrictions to H of the multiplication and

inverse maps on GG are smooth, hence H is also a Lie group.

For a Lie group G, at each g € G there is a tangent space Ty G and when G is a matrix group this
agrees with the tangent space defined in Chapter 2. We adopt the notation g = T; G for the tangent
space at the identity of G. A smooth homomorphism of Lie groups G — H has the properties of a Lie
homomorphism as in Definition 2.15.

For a Lie group G, let g € G. There are following three functions are of great importance.

Ly: G — G; Ly(z) = gz. (Left multiplication)
Ry: G — G; Ry(z) =zg. (Right multiplication)
Xg: G — G5 x4(x) = gzg™" (Conjugation)

PRroproSITION 4.15. For g € G, the maps Ly, Ry, x4 are all diffeomorphisms with inverses

L'=L

-1 _ -1 __
g g—1 Rg _Rg—lv Xg = Xg—1-
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PrRoOOF. Charts for G x G have the form
p1 X o: Uy x Uy — Vi x Vs,

where ¢ : Uy — Vj are charts for G. Now suppose that uU; x Uy C W C G where there is a chart

0: W — Z. By assumption, the composition
Bopo(prxpa) =0opo (e xp;!): Vi x Vo — Z.
is smooth. Then Ly (z) = u(g, ), so if g € Uy and = € U,, we have

Ly(z) =071 (B oLyopy") o pa().
But then it is clear that
0o ng_l: Vo — Z

is smooth since it is obtained from 6 o p o (g1 X 2)71, but treating the first variable as a constant.

A similar argument deals with Ry. For x,, notice that
Xg = LgoRy =Ry oLy,
and a composite of smooth maps is smooth. O

The derivatives of these maps at the identity 1 € G are worth studying. Since L, and Ry are

diffeomorphisms with inverses Ly and Rg-1,
d(Lg)1, dRg)1: g=T1G — T, G

are R-linear isomorphisms. We can use this to identify every tangent space of G with g. The conjugation

map X4 fixes 1, so it induces an R-linear isomorphism
Ady =d(xg)1: 9 — 9.

This is the adjoint action of g € G on g. For G a matrix group this is the same as defined in Chapter 2.
There is also a natural Lie bracket [, | defined on g, making it into an R-Lie algebra. The construction

follows that for matrix groups. The following Lie group analogue of Theorem 2.18 holds.

THEOREM 4.16. Let G, H be Lie groups and p: G — H a Lie homomorphism. Then the derivative
is a homomorphism of Lie algebras. In particular, if G < H is a Lie subgroup, the inclusion map

incl: G — H induces an injection of Lie algebras dincl: g — §.

4. Some examples of Lie groups

EXAMPLE 4.17. For k = R, C, GL, (k) is a Lie group.

PRrROOF. This follows from Proposition 1.13(a) which shows that GL, (k) C M, (k) is an open subset
where as usual M, (k) we identify with k™. For charts we take the open sets U C GL, (k) and the
identity function Id: U — U. The tangent space at each point A € GL, (k) is just M, (k). So the
notions of tangent space and dimension of Sections 1,2 and of Chapter 2 agree here. The multiplication
and inverse maps are obviously smooth as they are defined by polynomial and rational functions between
open subsets of M, (k). O

ExaMPLE 4.18. For k = R, C, SL,, (k) is a Lie group.
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Proor. Following Proposition 1.13(b), we have
SL, (k) = det™' 1 C GL, (k)

where det: GL, (k) — k is continuous. k is a smooth manifold of dimension dimg k with tangent space
T, R =R at each r € R and det is smooth. In order to apply Theorem 4.10, we will first show that the
derivative ddet 4 : M, (k) — R is surjective for every A € GL, (k). To do this, consider a smooth curve
a: (—e,e) — GL, (k) with «(0) = A. We calculate the derivative on «/(0) using the formula

ddeta(a/(0)) = dd%ta(t% '

The modified curve
ag: (—e,e) — GL,(k);  ao(t) = Aila(t)

satisfies a(0) = I and Lemma 2.19 implies

ddetr(ay(0)) = ddegj‘om = tra(0).
Hence we have
A
ddet 4 (a’(0)) = w = detAwl = det A tr a(0).

So ddety is the k-linear transformation
ddets: My(k) — k; ddets(X) =det Atr(A™X).

The kernel of this is ker d det 4 = Asl,, (k) and it is also surjective since tr is. In particular this is true for
A € SL, (k). By Theorem 4.10, SL,, (k) — GL, (k) is a submanifold and so is a Lie subgroup. Again we

find that the two notions of tangent space and dimension agree. O

There is a useful general principle at work in this last proof. Although we state the following two
results for matrix groups, it is worth noting that they still apply when GL,,(R) is replaced by an arbitrary
Lie group.

PROPOSITION 4.19 (Left Translation Trick). Let F': GL,,(R) — M be a smooth function and suppose
that B € GL,,(R) satisfies F(BC) = F(C) for all C € GL,(R). Let A € GL,(R) with d Fa surjective.

Then d Fpa is surjective.

PRrOOF. Left multiplication by B € G, Lp: GL,(R) — GL,(R), is a diffeomorphism, and its
derivative at A € GL,(R) is

d(Lg): M,(R) — M,(R); dLp(X)= BX.
By assumption, F' o Lg = F' as a function on GL,,(R). Then
dFpa(X)=dFpa(B(B7'X))
=dFpaod(Lp)a(B7'X)
=d(FoLp)a(B™'X)
=dF (B7'X).
Since left multiplication by B! on M,,(R) is surjective, this proves the result. O

PROPOSITION 4.20 (Identity Check Trick). Let G < GL,(R) be a matriz subgroup, M a smooth
manifold and F: GL,(R) — M a smooth function with F~1q = G for some q € M. Suppose that for
every B € G, F(BC) = F(C) for all C € GL,(R). If d F; is surjective then d Fs is surjective for all
A€ G and kerd Fy = Ag.
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EXAMPLE 4.21. O(n) is a Lie subgroup of GL,(R).

PROOF. Recall from Chapter 2 that we can specify O(n) C GL,(R) as the solution set of a family

2 variables arising from the matrix equation AT A = I. In fact, the following

n n+1 S . . .
n+ ( ) = ( 9 ) equations in the entries of the matrix A = [a;;] are sufficient:

of polynomial equations in n

2
Zair—lzo (1<r<n), Zakrakszo (I1<r<s<n).
k=1 k=1
We combine the left hand sides of these in some order to give a function F': GL,(R) — R(ngl), for
example )
ZZ:l a%}l -1
EZ:I a’l%n -1

n
Zkzl Ap10k2

P
k=1 Ok10kn

_EZ:1 a’k(nfl)akm_
We need to investigate the derivative d Fliy: M, (R) — R(":")

By the Identity Check Trick 4.20, to show that d F4 is surjective for all A € O(n), it is sufficient to
1
check the case A = I. The Jacobian matrix of F' at A = [a,;] = I is the (n;— > x n? matrix

200 0 --- 00
0 0
dFr =
010 -~ 0 10
oo0o0 -~ 1 120

where in the top block of n rows, the r th row has a 2 corresponding to the variable a,.. and in the bottom

block, each row has a 1 in each column corresponding to one of the pair a,s, as with r < s. The rank of

n n+1
) = < ;r ), so d Fy is surjective. It is also true that

this matrix is n + <2

kerd F; = Sk-Sym,,(R) = o(n).

Hence O(n) < GL,(R) is a Lie subgroup and at each element, the tangent space and dimension agree

with those obtained using the definitions of Chapter 2. O

This example is typical of what happens for any matrix group that is a Lie subgroup of GL, (R). We
summarise the situation in the following, whose proof involves a careful comparison between the ideas

introduced in Chapter 2 and the definitions involving manifolds.
THEOREM 4.22. Let G < GL,(R) be a matriz group which is also a submanifold, hence a Lie

subgroup. Then the tangent space to G at I agrees with the Lie algebra g and the dimension of the
smooth manifold G is dim G; more generally, T4 G = Ag.
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In the next sections, our goal will be to prove the following important result.

THEOREM 4.23. Let G < GL,(R) be a matriz subgroup. Then G is a Lie subgroup of GL,(R).
The following more general result also holds but we will not give a proof.

THEOREM 4.24. Let G < H be a closed subgroup of a Lie group H. Then G is a Lie subgroup of H.

5. Some useful formula in matrix groups

Let G < GL,(R) be a closed matrix subgroup. We will use Proposition 1.35. Choose r so that
0 <7 < 1/2and if A,B € Ny, (»)(O;7) then exp(A)exp(B) € exp(Ny, ®)(0;1/2)). Since exp is
injective on Nyp, (r)(O;7), there is a unique C' € M,,(R) for which

(4.4) exp(A) exp(B) = exp(C).
We also set
(4.5) S:C—A—B—%[A,B]EMH(R).
PROPOSITION 4.25. ||S|| satisfies
11 < 65(1A]l + | BI)?.
Proor. For X € M,,(R) we have
exp(X) =1+ X + Ri(X),

where the remainder term R;(X) is given by

1
= Z HX’“.

k<2
Hence,
1 _
IR (X[ < 1X)12D X2
k<2
soif | X] <1
1
1RO < IX12 D 7 | = IXIP(e—2) < X7,
k<2
Since ||C]| < 1/2,
(4.6) IR (O < [ICP>.
Similarly,
exp(C) = exp(A)exp(B) =1+ A+ B+ R1(A, B),
where
1 (< [k .
_ s c—T
Ri(A,B) = ZH > (T)A B
k>2 r=0
giving

A<y ) (i (k) ||A||’"||B|’“"“>

k>2 r=0
=y Al 1B Al +1BID* + HBII)
k>2
(1Al + 1BI)*—2
= (Al + 1B Y =
> k!

< (1Al + [1B]))*
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since [|Al| + ||B|| < 1.

Combining the two ways of writing exp(C), we have

(4.7)

and so

C=A+B+Ri(A B) - Ri(C)

ICI < AN+ 1Bl + [[R1 (A, B)[| + [[ B (O]
<[lAIl+ IBIL+ (1Al + 1BI)* + 11

1
<2014+ 1B1) + 31,

since ||A||, [|B]],||C]| < 1/2. Finally this gives

ICIF < 4([[All + [ BI)-

Equation (4.7) also gives

giving

(4.8)

1€ = A =Bl < [[Bi(A,B)|| + R (O]
< (1AL + IBID? + (Al + 1B1))*,

IC — A= Bl =17(|A|l + || BID*.

Now we will refine these estimates further. Write

where

1
exp(C) =1 +C + 502 + Ry(C)

Ry(C) = %c’“

k>3

which satisfies the estimate

1
IR2(C)l < S lC?

since ||C]] < 1. With the aid of Equation (4.5) we obtain

(4.9)
where

(4.10)
Also,
(4.11)

where

which satisfies

1 1
exp(C)=I—|—A+B+§[A,B]+S+§CQ+R2(C)
1 1
:I+A+B+§[A,B]+§(A+B)2+T
1
:I+A+B+§(A2+2AB+B2)+T,

T=S+ %(C2 — (A+ B)?) + R2(C).

1
exp(A)exp(B) =1+ A+ B+ §(A2 +2AB + B?) + Ry(A, B)

Ray(AB) =3 (zk: (f) Aer_r> |

k>3 r=0

IR2(4, B)|l < (1Al + 1B)°

Wl
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since [|Al| + ||B|| < 1.
Comparing Equations (4.9) and (4.11) and using (4.4) we see that

S=Ry(A,B) + %((A + B)? — C?) — Ry(0).
Taking norms we have
1S < [[R2(A, B)| + %||(A+ B)(A+B—-C) - (A+B-C)C| +[|R:(O)]
< %(HAH +I1B)* + %(I\AII + B+ lIChIA+ B —-C + %IICII3

1 5 1
< UAT+IBI + SAAIL+1BI) - 17(NAl+ 1BID* + 5 (414l + [1B])?

< 65(/1 4] +1I1B)?,
yielding the estimate

(4.12) IS] < 65([LAll + 1B]))°.

THEOREM 4.26. If U,V € M, (R), then the following identities are satisfied.

[Trotter Product Formulal
exp(U + V) = lim (exp((1/r)U)exp((1/r)V))".

[Commutator Formula] exp([U,V]) = lim (exp((1/r)U)exp((1/r)V)exp(—(1/r)U) eXp(—(l/r)V))Tz.

T—00
1 1 . .
Proor. For large » we may take A = —U and B = -V and apply Equation (4.5) to give
r r

exp((1/r)U) exp((1/r)V) = exp(C,)

with
(ol + ||V||)2.

2

1Cr = (1/r)(U+ V) <

r
Asr — oo,

17U + [V ])?
1rCe — U + v = HUTI+IVIDT

)
r

hence rC, — (U + V). Since exp(rC,.) = exp(C,)", the Trotter Formula follows by continuity of exp.
We also have
1 1
Cp=(U+V)+—[U,V]+8,
r( +V)+ 21"2[ ]+
where
)+ VI

151 < 65

Similarly, replacing U,V by —U, —V we have

exp((—1/r)U)) exp((—=1/r)V)) = exp(C}.),
where
C, = %(U+V) + %[U,V] + S,
and
150 < 651 IVID?,

3
r
Combining these we obtain

exp((1/r)U)) exp((1/r)V)) exp((—1/r)U)) exp((—1/r)V)) = exp(C;) exp(C})
= eXp(ET)a
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where
1
E.=C,+Cl+ §[CT,C,£] +T.
1 1
(4.13) =5+ 5[0,«, Cll+ 8.+ S, +1T,.

Here T, is defined from Equation (4.5) by setting C,, = A, C. = B and T, = S.

A tedious computation now shows that

1
1 — —
(Ol = |-

1 -1 1 )
(U+V) + 53[0V + 5, —(U+V) + 55U, V] +5,

1 1 1

By Proposition 4.25, all four of these terms has norm bounded by an expression of the form (constant) /73,
so the same is true of [C,, C!]. Proposition 4.25 also implies that S,, S/, T;. have similarly bounded norms.

Setting
Q’r = TQET - [U7 V]a

we obtain
(constant)
73

1@l = \

1
Er - T_Z[U’ V]H <
as r — 00, SO
eXp(ET)T’2 =exp([U, V] + Q) — exp([U, V]).

The Commutator Formula now follows using continuity of exp. O

ANOTHER PROOF OF LEMMA 2.20. As an application of the Trotter formula, we will reprove the

formula of Lemma 2.20:
det exp(A) = exp(tr 4).

The case n = 1 is immediate, so assume that n > 1.
If U,V € M,(C) then by the Trotter formula together with the fact that det is continuous and
multiplicative,
detexp(U + V) = det ( lim (exp((1/r)U) exp((l/r)V))T)
= lim det (exp((1/r)U)exp((1/r)V))"
= lim detexp((1/r)U)" detexp((1/r)V)"
= lim det (exp((1/r)U)") det (exp((1/r)V)")
= lim detexp(U) detexp(V)

T—00

= detexp(U) det exp(V).
More generally, given U ..., U € M, (C) we have
(4.14) detexp(Uy + -+ - + Uy) = detexp(Uy) - - - det exp(Uy).
Soif A=Ay +---+ Ay where the A; satisfy

detexp(A;) =exp(trd;) (=1,...,k),
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we have

det exp(A) = detexp(A; + -+ + Ag)
= exp(tr Ay) - - - exp(tr Ay)
=exp(tr A + -+ tr Ag)
= exp(tr A).

So it suffices to show that every matrix A has this form.

Recall that A = [a;;] can be expressed as

A=Y B,

1<r<n
1<s<n

where E" is the matrix having 1 in the (r, s) place and 0 everywhere else, i.e.,
E"; = 8ir0js.
For z € C,

1

detexp(zE") = det Z 7

k>0

(Z/c(Ers)k

det((e* — 1)E™ +1,) ifr=s,

det I, if r # s,
e* ifr =s,
1 ifr#s.
On the other hand,
z ifr=s,
trzE" =
0 ifr#s.
Thus
e ifr=s,
exp(trzE™) =
1 ifr#s,

giving the desired equation

det exp(zE"™) = exp(tr zE"™).

6. Matrix groups are Lie groups

Our goal in this section is to prove Theorem 4.23. Let G < GL,(R) be a matrix subgroup. Recall
that the Lie algebra g = T; G is an R-Lie subalgebra of gl,(R) = M,,(R). Let

g={4eM,(R):Vt eR, exp(tA) € G}.

THEOREM 4.27. g is an R-Lie subalgebra of M, (R).
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PROOF. By definition g is closed under multiplication by real scalars. If U,V € g and r > 1, then

the following are in G:

(
(exp((1/m)U
(exp
(
By Theorem 4.26, for t € R,
exp(tU + V) = lim (exp((1/r)tU) exp((1/r)tV)),
exp(t{U, V]) = exp([tU, V])
= lim_ (exp((1/r)tU) exp((1/r)V) exp(—(1/7)tU) exp(~(1/r)V))" |

and as these are both limits of elements of the closed subgroup G they are also in G.
Hence g is a Lie subalgebra of gl,,(R) = M, (R). O

PROPOSITION 4.28. For a matriz subgroup G < GL,(R), g is an R-Lie subalgebra of g.
PROOF. Let U € g. The curve
7R — G5 A(t) = exp(tU),
has 4(0) = I and 7/(0) = U. Hence U € g. O

REMARK 4.29. Eventually we will see that g = g.
Later we will require the following technical result.

LEMMA 4.30. Let {A, € exp ' G}n>1 and {s, € R},>1 be sequences for which ||A,| — 0 and
$nAn — A€ M,(R) asn — co. Then A €.

PROOF. Let t € R. For each n, choose an integer m,, € Z so that |ts,, — my| < 1. Then
[mnAn — tA[| < [|(my — tsn) Anll + [tsn Ay — tA||
= |mn — tsn| [|Anl| + [[tsnAn — tA]|
< Al + [[tsn A, — tA]l — 0
as n — oo, showing that m, A, — tA. Since
exp(mn,A,) = exp(4,)™" € G,
and G is closed in GLy,(R), we have
exp(tA) = lim exp(m,A,) € G.
n—oo
Thus every real scalar multiple tA is in exp~! G, showing that A € §. O
Choose a complementary R-subspace to to g in gl,,(R) = M, (R), i.e., any vector subspace such that
g+ =M,(R),
dimg g + dimg 0 = dimg M, (R) = n?.

The second condition is equivalent to g Nt = 0. This gives a direct sum decomposition of M, (R), so

every element X € M, (R) has a unique expression of the form

X=U+V, (Ueg, Vemn).
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Consider the map
®: M, (R) — GL,(R); U +V)=exp(U)exp(V) (Ue€g, Vemw).

® is a smooth function which maps 0 to I. Notice that the factor exp(U) is in G. Consider the derivative
at O,

d®o: M, (R) — gl (R) = M, (R).
To determine d @ (A + B), where A € g and B € tv, we differentiate the curve ¢t — ®(t(A+ B)) at t = 0.

Assuming that A, B are small enough and following the notation of Equations (4.4),(4.5) for small t € R,
there is a unique C(t) depending on ¢ for which

O(t(A + B)) = exp(C(¢)).
Proposition 4.25 gives
2
I(C() — tA —tB) — —[A, BI| < 65t (| A + |1 B])*.
From this we obtain

12 .
I(C(t) —tA—tB]| < S [I[A, Bl + 65[¢[*(||All + [|B])°

2
= % (ITA, BIll + 130[¢[ (Al + 1 BID?)

and so

CBA+ B))juco = T3 exp(C))jmg = A+ B.

By linearity of the derivative, for small A, B,
d®o(A+B)=A+ B,

so d @ is the identity function on M, (R). By the Inverse Function Theorem 4.11, ® is a diffeomorphism
onto its image when restricted to a small open neighbourhood of O, and we might as well take this to

be an open disc Ny, ) (O; ) for some 6 > 0; hence the restriction of ® to
®1: Na, 1) (0;0) — ®Nyyp, 1) (05 6)

is a diffeomorphism.

Now we must show that ® maps some open subset (which we could assume to be an open disc) of
Ny, k) (O; 0)Ng containing O onto an open neighbourhood of I in G. Suppose not; then there is a sequence
of elements U,, € G with U, — I as n — oo but U, ¢ ®g. For large enough n, U, € ®Ny, 1) (0;9),
hence there are unique elements A, € g and B,, € w with ®(4,, + B,) = U,; notice that B,, # O
since otherwise U, € ®g. As ®; is a diffeomorphism, A4,, + B,, — O and this implies that 4,, — O and
B,, — O. By definition of ®,

exp(B,) = exp(A4,)"'U, € G,

hence B,, € exp~ ' G. Consider the elements B,, = (1/||B,||)B, of unit norm. Each B, is in the unit
sphere in M,,(R), which is compact hence there is a convergent subsequence of {B,}. By renumbering
this subsequence, we can assume that B,, — B as n — oo, where || B|| = 1. Applying Lemma 4.30 to the
sequences {B,,} and {1/||B,||} we find that B € g. But each B,, (and hence B,,) is in tv, so B must be
too. Thus B € g N, contradicting the fact B # O.

So there must be an open disc

NE(O, (51) = NMn(R)(O; 61) ﬂﬁ
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which is mapped by ® onto an open neighbourhood of I in G. So the restriction of ® to this open disc
is a local diffeomorphism at O. The inverse map gives a chart for GL,(R) at I and moreover N3(O;d;)
is then a submanifold of Ny, (r)(O;61).

We can use left translation to move this chart to a new chart at any other point U € G, by considering
Ly o ®. We leave the details as an exercise.

So we have shown that G < GL,(R) is a Lie subgroup, proving Theorem 4.23. Notice that the
dimension of G as a manifold is dimg g. By Proposition 4.28, g C g so dimg g < dimg g. But by Theorem
4.22, these dimensions are in fact equal, hence g = g.

We have established a fundamental result that we now reformulate. The proof of the second part is

similar to our proof of the first with minor adjustments required for the general case.

THEOREM 4.31. A subgroup of GL,,(R) is a closed Lie subgroup if and only if it is a matriz subgroup,
i.e., a closed subgroup.
More generally, a subgroup of an arbitrary Lie group G is a closed Lie subgroup if and only if it is a

closed subgroup.

7. Not all Lie groups are matrix groups

For completeness we describe the simplest example of a Lie group which is not a matrix group. In
fact there are finitely many related examples of such Heisenberg groups Heis,, and the example we will
discuss Heisg is particularly important in Quantum Physics.

For n > 3, the Heisenberg group Heis,, is defined as follows. Recall the group of n x n real unipotent

matrices SUT,, (R), whose elements have the form

1 a,12 PRI PR PEREY aln
0 1 axn - . a2n
0 O

1 Up—2n—1

1 Up—1n
o o - 0 0 1

with a;; € R. The Lie algebra sut, (R) of SUT,,(R) consists of the matrices of the form

0 tig - - tin
0 0 tor - ton
0 O

0 tn72 n—1

0 0 tn—ln
o 0 --- 0 0 0

with t;; € R. SUT, is a matrix subgroup of GL,(R) with dimSUT,, = (Z) It is a nice algebraic
exercise to show that the following hold in general.

PROPOSITION 4.32. Forn > 3, the centre C(SUT,,) of SUT,, consists of all the matrices [a;;] € Heis,,
with a;; = 0 except when i = 1 and j = n. Furthermore, C(SUT,,) is contained in the commutator
subgroup of SUT,,.

Notice that there is an isomorphism of Lie groups R = C(SUT,,). Under this isomorphism, the

subgroup of integers Z C R corresponds to the matrices with a;, € Z and these form a discrete normal
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(in fact central) subgroup Z,, < SUT,,. We can form the quotient group
Heis,, = SUT,, /Z,.

This has the quotient space topology and as Z,, is a discrete subgroup, the quotient map ¢: SUT,, —
Heis,, is a local homeomorphism. This can be used to show that Heis,, is also a Lie group since charts
for SUT,, defined on small open sets will give rise to charts for Heis,,. The Lie algebra of Heis,, is the

same as that of SUT,, i.e., heis,, = sut,,.

PROPOSITION 4.33. For n > 3, the centre C(Heis,) of Heis,, consists of the image under q of

C(SUT,,). Furthermore, C(Heis,,) is contained in the commutator subgroup of Heis,,.

Notice that C(Heis,) = C(SUT,,)/Z,, is isomorphic to the circle group
T={zeC:|z| =1}
with the correspondence coming from the map
R—T; t+— e2mit

When n = 3, there is a surjective Lie homomorphism

1 o« ¢t
p: SUT; —R%: |0 1 y HH
00 1 Y

whose kernel is kerp = C(SUTj3). Since Z3 < kerp, there is an induced surjective Lie homomorphism

p: Heis3 — R? for which po g = p. In this case the isomorphism C(Heis,,) = T is given by

Z3 eQﬂ'it

o O =
o = O
—_ O o

From now on we will write [z,y, e>™%] for the element

t
Y Z3 € Heisg .
1

o O =
o = R

Thus a general element of Heisz has the form [z,y, 2] with 2,y € R and z € T. The identity element is
1=10,0,1]. The element

o O =
o = R
_ <

of the Lie algebra heis; will be denoted (x,y,t).

PROPOSITION 4.34. Multiplication, inverses and commutators in Heiss are given by

(21, Y1, 21][@2, Y2, 22] = [T1 + @2, Y1 + Y2, 212067712,
[I, Y, 2}71 = [—.’,E, —-Y, 271627”;:“4]
(21, Y1, 21][2, Yo, o] (w1, Y1, 21) w2, Yo, 20] TH = (0,0, €2V mYIE)],

The Lie bracket in heiss is given by

(1, y1,t1), (T2, Y2, t2)] = (0,0, 21y2 — y172).
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The Lie algebra heisg is often called a Heisenberg (Lie) algebra and occurs throughout Quantum
Physics. It is essentially the same as the Lie algebra of operators on differentiable functions f: R — R
spanned by 1,q given by
df(z
1) = f@), pf@) = T qr) = ap)

The non-trivial commutator involving these three operators is given by the canonical commutation rela-

tion
[P, =pa—qp=1.

In heiss he elements (1,0,0), (1,0,0),(0,0,1) a basis with the only non-trivial commutator
[(1,0,0),(1,0,0)] = (0,0,1).

THEOREM 4.35. There are no continuous homomorphisms ¢: Heiss — GL,,(C) with trivial kernel

kerp = 1.

PROOF. Suppose that ¢: Heiss — GL,,(C) is a continuous homomorphism with trivial kernel and
suppose that n is minimal with this property. For each g € Heiss, the matrix ¢(g) acts on vectors in C".
We will identify C(Heisg) with the circle T as above. Then T has a topological generator zp; this is an
element whose powers form a cyclic subgroup (zo) < T whose closure is T. Proposition 7.7 will provide
a more general version of this phenomenon. For now we point out that for any irrational number r € R,

the following is true: for any real number s € R and any € > 0, there are integers p, ¢ € Z such that

|s —pr—q| <e.

2mir

This implies that e is a topological generator of T since its powers are dense.

Let A be an eigenvalue for the matrix ¢(zo), with eigenvector v. If necessary replacing zo with zg L

we may assume that A > 1. If [|A]] > 1, then

p(z5)v = p(z0)"v = Ay

and so
lle ()l = IAN1™-
Thus ||o(z5)|| — oo as k — oo, implying that T is unbounded. But ¢ is continuous and T is compact
hence ¢T is bounded. So in fact ||[A]| = 1.
Since ¢ is a homomorphism and zy € C(Heisg), for any g € Heisg we have
p(20)(9)v = ¢(209)v = ©(g20)v = (9)p(20)v = Ae(g)v,
which shows that ¢(g) is another eigenvector of ¢(zg) for the eigenvalue \. If we set

Va={veC":3k>1st (p(z)— \,)*v =0},

then ¥\ C C" is a vector subspace which is also closed under the actions of all the matrices ¢(g) with

g € Heiss. Choose kg > 1 to be the largest number for which there is a vector vy € V) satisfying
(#(20) = Ap)"vo =0, (p(20) = ALn)*"'vo # 0.
If kg > 1, there are vectors u, v € V) for which
olzo)u=Adu+v, ©(z0)v=Av.

Then

o(z8)u = ¢(20)fu = MNu + kX ly
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and since |\| = 1,

le(z6)ll = lle(z0)" Il = [Au+ kv — oo
as k — oo. This also contradicts the fact that ¢T is bounded. So ky = 1 and V), is just the eigenspace
for the eigenvalue . This argument actually proves the following important general result, which in

particular applies to finite groups viewed as zero-dimensional compact Lie groups.

PROPOSITION 4.36. Let G be a compact Lie group and p: G — GL,,(C) a continuous homomor-
phism. Then for any g € G, p(g) is diagonalizable.

On choosing a basis for V), we obtain a continuous homomorphism 6: Heis3 — GL4(C) for which
0(z0) = AI4. By continuity, every element of T also has the form (scalar)l;. By minimality of n, we must
have d = n and we can assume @(zo) = Al,.

By the equation for commutators in Proposition 4.34, every element z € T < Heiss is a commutator
2z = ghg~'h~! in Heiss, hence

detp(z) = (ghg™'h™") =1,
since det and ¢ are homomorphisms. So for every z € T, p(2) = u(2)Iy and p(z)? = 1, where the
function p: T — C* is continuous. But T is path connected, so u(z) = 1 for every z € T. Hence for
each z € T, the only eigenvalue of ¢(z) is 1. This shows that T < ker ¢, contradicting the assumption
that ker ¢ is trivial. O

A modification of this argument works for each of the Heisenberg groups Heis,, (n > 3), showing

that none of them is a matrix group.



CHAPTER 5

Homogeneous spaces

1. Homogeneous spaces as manifolds

Let G be a Lie group of dimension dimG = n and H < G a closed subgroup, which is therefore a

Lie subgroup of dimension dim H = k. The set of left cosets
G/H ={g9H : g € G}
has an associated quotient map
m: G— G/H; n(g)=gH.
We give G/H a topology by requiring that a subset W C G/H is open if and only if 7='W C G is open;
this is called the quotient topology on G/H.
LEMMA 5.1. The projection map 7: G — G/H is an open mapping and G/H is a topological space

which is separable and Hausdorff.

Proor. For U C G,

7 (rU) = U Uh,
heH
where

Uh={uheG:uelU} CQG.
If U C G is open, then each Uh (h € H) is open, implying that #U C G is also open.
G/H is separable since a countable basis of G is mapped by 7 to a countable collection of open
subsets of G/H that is also a basis.

To see that G/H is Hausdorff, consider the continuous map
0:GxG—G; Ox,y)=z""y.
Then
0 H ={(z,y) € GxG:xH =yH},
and this is a closed subset since H C G is closed. Hence,

{(z,y) e GxG:2H=yH} CGx G

is open. By definition of the product topology, this means that whenever xz,y € G with xH # yH, there
are open subsets U,V C Gwithz e U,y € V,U # V and 71U N7V = . Since 7U, 7V C G/H are open,
this shows that G/H is Hausdorff. O

The quotient map 7: G — G/H has an important property which characterises it.

PROPOSITION 5.2 (Universal Property of the Quotient Topology). For any topological space X, a
function f: G/H — X is continuous if and only if f om: G — X is continuous.

We would like to make G/H into a smooth manifold so that 7: G — G/H is smooth. Unfortunately,
the construction of an atlas is rather complicated so we merely state a general result then consider some
examples where the smooth structure comes from an existing manifold which is diffeomorphic to a

quotient.
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THEOREM 5.3. G/H can be given the structure of a smooth manifold of dimension
dimG/H = dim G — dim H
so that the projection map w: G — G/H is smooth and at each g € G,
ker(dm: Ty G — Tyug G/H) = dLgh.

There is an atlas for G/H consisting of charts of the form 0: W — W C R"™* for which there is a
diffeomorphism ©: W x H —s 7~ 'W satisfying the conditions

@(w,hlhg) = @(’LU, hl)hg, ﬂ'(@(w, h)) =w (U) € VV, h,hhhz S H)

WXH—>7T

\/

The projection 7 looks like proj;: #~*W — W, the projection onto W, when restricted to 7= 1W.
For such a chart, the map © is said to provide a local trivialisation of m over W. An atlas consisting of
such charts and local trivialisations (6: W — W, ©) provides a local trivalisation of w. This is related
to the important notion of a principal H-bundle over G/H.

Notice that given such an atlas, an atlas for G can be obtained by taking each pair (68: W — 0, 9)
and combining the map @ with a chart ¢: U — U C R* for H to get a chart

(0 x )00 1 OW xU) — W x U C R" % x R¥ = R".

Such a manifold G/H is called a homogeneous space since each left translation map Ly on G gives rise

to a diffeomorphism
Ly: G/H — G/H; Ly(zH) = gzH,

for which mo L, = fg oT.

G/H —* G/H

So each point gH has a neighbourhood diffeomorphic under f;l to a neighbourhood of 1H; so locally
G/H is unchanged as gH is varied. This is the basic insight in Felix Klein’s view of a Geometry which

is characterised as a homogeneous space G/H for some group of transformations G and subgroup H.

2. Homogeneous spaces as orbits
Just as in ordinary group theory, group actions have orbits equivalent to sets of cosets G/H, so
homogeneous spaces also arise as orbits associated to smooth groups actions of G on a manifolds.

THEOREM 5.4. Suppose that a Lie group G acts smoothly on a manifold M. If the element x € M
has stabilizer Stabg(x) < G and the orbit Orbg(z) C M is a closed submanifold, then the function

f: G/ Stabg(x) — Orbg(z);  f(gStabg(x)) = gz

is a diffeomorphism.

ExXAMPLE 5.5. For n > 1, O(n) acts smoothly on R™ by matrix multiplication. For any nonzero
vector v € R, the orbit Orbg,)(v) € R" is diffeomorphic to O(n)/ O(n — 1).
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PROOF. First observe that when v is the standard basis vector e,, for A € O(n), Ae, = e, if and
only if e, is the last column of A, while all the other columns of A are orthogonal to e,. Since the
columns of A must be an orthonormal set of vectors, this means that each of the first (n — 1) columns of
A has the form

a1k
a2k
Ank
L 0 -
where the matrix
a11 a12 te a1mp—1
a21 a22 T a2p—1
An—11 Ap—12 Ap—1n—1

is orthogonal and hence in O(n —1). We identify O(n — 1) with the subset of O(n) consisting of matrices

of the form

[ an aiz 0 aip-1 O]
asy asp -+ agp—1 0

0

p—11 Gpn—12 *** Qp_1n-1 0
0 o - 0 1]

and then have Stabo(,)(e,) = O(n — 1). The orbit of e, is the whole unit sphere S*~! C R" since given
a unit vector u we can extend it to an orthonormal basis uy,...,u,_1,u, = u which form the columns

of an orthogonal matrix U € O(n) for which Ue,, = u. So we have a diffeomorphism
O(n)/ Stabo ) (en) = O(n)/ O(n — 1) — Orbg(,)(en) = snh
Now for a general nonzero vector v notice that Stabg,,)(v) = Stabg ) (V) where v = (1/|v])v and
Orbo(m) (v) = S (|v]),
the sphere of radius |v|. If we choose any P € O(n) with ¥ = Pe,,, we have
Stabg(n) (V) = P Stabg ) (e,) P!
and so there is a diffeomorphism
Orbon) (V) — O(n)/PO(n — 1)P~1 2225, 0(n)/ O(n — 1).
O

A similar result holds for SO(n) and the homogeneous space SO(n)/SO(n — 1). For the unitary
and special unitary groups we can obtain the homogeneous spaces U(n)/ U(n — 1) and SU(n)/SU(n—1)
as orbits of non-zero vectors in C" on which these groups act by matrix multiplication; these are all
diffeomorphic to S>*~!. The action of the quaternionic symplectic group Sp(n) on H" leads to orbits of

non-zero vectors diffeomorphic to Sp(n)/Sp(n — 1) and S**~1.
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3. Projective spaces

More exotic orbit spaces are obtained as follows. Let k = R, C, H and set d = dimg k. Consider k»+!
as a right k-vector space. Then there is an action of the group of units k* on the subset of non-zero
vectors ki = k"1 — {0}:

z-x=xz"1.

The set of orbits is denoted kP™ and is called n-dimensional k-projective space. Projective spaces An

element of kP™ written [x] is a set of the form

[x] = {xz7':2z €k} Ckpth

Notice that [x] = [y] if and only if there is a z € k* for which y = x271.

REMARK 5.6. Because of this we can identify elements kP™ with k-lines in k"*! (i.e., 1-dimensional
k-vector subspaces). kP™ is often viewed as the set of all such lines, particularly in the study of Projective

Geometry.
There is a quotient map
dn: kg+1 — kP"; gn(x) = [X]v
and we give kP" the quotient topology which is Hausdorff and separable.

ProroOSITION 5.7. kP™ is a smooth manifold of dimension dimkP"” = ndimgk. Moreover, the

quotient map qy, : ]1(6”rl — kP™ s smooth with surjective derivative at every point in lkg“.
o

)
PrOOF. For r = 1,2,...,n, set kP? = {[x] : z, # 0}, where as usual we write x = _ |- Then

Tn41
kP C kP™ is open. There is a function

or: kP — k™ o ([x]) = | 2127t

—1
[ Tn+1Ly |

which is a continuous bijection that is actually a homeomorphism. Whenever r # s, the induced map

ot oo, o ' kP NKP? — o, 'kP? N kP

S
is given by

U1
Y2

Us_ OUT(X): Ys—1

Ys+1

[ Yn+1]
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where
zijzgt if j £ s,
Yj =
r;! ifj=r.
These (n + 1) charts form the standard atlas for n-dimensional projective space over k. O

An alternative description of kP™ is given by considering the action of the subgroup
ki ={z€k”:|z| =1} <k~

on the unit sphere S(+14=1 C k! Notice that every element [x] € kP™ contains elements of S".
Furthermore, if x,y € ki have unit length |x| = |y| = 1, then [x] = [y] if and only if y = xz~! for
some z € k. This means we can also view kP™ as the orbit space of this action of k;* on S("+14=1 and

we also write the quotient map as g, : S®+14=1 — kP"; this map is also smooth.

PROPOSITION 5.8. The quotient space given by the map g, : S4=1 — kP" s compact Hausdorf}.

PRrROOF. This follows from the standard fact that the image of a compact space under a continuous

mapping is compact. O

Consider the action of O(n + 1) on the unit sphere S* C R"™!. Then for A € O(n + 1), z = +1 and

x € S™, we have
A(xz™!) = (Ax)z L
Hence there is an induced action of O(n 4 1) on RP™ given by

A - [x] = [Ax].

This action is transitive and also the matrices +1,1 fix every point of RP". There is also an action of
SO(n + 1) on RP™; notice that —I,, 11 € SO(n + 1) only if n is odd.

Similarly, U(n + 1) and SU(n + 1) act on CP™ with scalar matrices wl, 1 (w € C{) fixing every
element. Notice that if wl, 1 € SU(n + 1) then w™*! = 1, so there are exactly (n + 1) such values.

Finally, Sp(n + 1) acts on HP™ and the matrices 1,1 fix everything.

There are some important new quotient Lie groups associated to these actions, the projective unitary,

special unitary and quaternionic symplectic groups
PUn+1)=Un+1)/{wlhs1 :w € C{},

PSU(n+1) = SUn + 1)/ {wl,1q : w"Tt =1},
PSp(n -+ 1) = Sp(n + 1)/ {2 s}

Projective spaces are themselves homogeneous spaces. Consider the subgroup of O(n + 1) consisting of

elements of the form

a1 a2 - aip—1 O

as1 0
Ap—-11 O
i 0 0 0 :tl_
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—

We denote this subgroup of O(n + 1) by O(n) x O(1). There is a subgroup O(n) < SO(n + 1) whose

elements have the form

a1 a2 -+ @ip—1 O
o1 0
Ap—11 .. .. .. 0
0 0 0 w
where
a11 ai2 - A1n—1 a1 @12 - A1n—1

€ 0(n), w=det

an—11 T v Gp—1n—1 An—11 T v Qp—1n-—1

Similarly, there is a subgroup U(n) x U(1) < U(n + 1) whose elements have the form

a1 a2 -+ Gip—1 O
o 0
An—11 t e Ap—1n—1 0
0 0 0 w

and U(n) < SU(n + 1) with elements

a1 a2 -+ Gip—1 O
o 0
apn-11 - "+ Gp—in-1 0
0 0 0 w
where
-1
a1 a2 . Glp—1 a1 a2 . Glp—1
a1 ‘. T T a1

€ U(n), w=det

an—-11 D T an—1n—1 an—-11 D T An—1n—1

Finally we have Sp(n) x Sp(1) € Sp(n + 1) consisting of matrices of the form

air a2 - Gip—1 0
. 0
an—-11 t- D An—1n—1 0
0 o .- 0 w

PROPOSITION 5.9. There are diffeomorphisms between

e

e RP” and O(n+1)/O(n) x O(1), SO(n+1)/0(n);

—_—

e CP™ and U(n+1)/U(n) x U(1), SU(n+ 1)/U(n);
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e HP" and Sp(n + 1)/ Sp(n) x Sp(1).
There are similar homogeneous space of the general and special linear groups giving these projective
spaces. We illustrate this with one example.

SL2(C) contains the matrix subgroup P consisting of its lower triangular matrices

l“ 0] € SLy(C).

w v

This is often called a parabolic subgroup.

PROPOSITION 5.10. CP? is diffeomorphic to SLy(C)/P.
PROOF. There is smooth map

¥: SLy(C) — CPY;  ¢(A) = [Aey).

0
" 1 cP,
w v
o] o
1 vl
hence [(AB)es] = [Aeg] for any A € SLo(C). This means that 1(A) only depends on the coset AP €
SL2(C)/P. It is easy to see that is onto and that the induced map SLy(C)/P — CP! is injective. O

Notice that for B =

u 0

w v

4. Grassmannians

There are some important families of homogeneous spaces directly generalizing projective spaces.
These are the real, complex and quaternionic Grassmannians which we now define.
Let O(k) x O(n — k) < O(n) be closed the subgroup whose elements have the form

A Ok n—k

O B (AeO(k), BeO(n—k))

Similarly there are closed subgroups U(k) x U(n—k) < U(n) and Sp(k) x Sp(n—k) < Sp(n) with elements

A Opn
U(k) x U(n— k) : Frekl (A e Uk), B eUn—k));
On—k,k B
A Opm
Sp(k) x Sp(n — k) : Bkl (A e Sp(k), B e Sp(n—k)).
On—k.k B

The associated homogeneous spaces are the Grassmannians

Grg,n(R) = O(n)/ O(k) x O(n — k);
Grg,n(C) =U(n)/ U(k) x U(n — k);
Gry, (H) = Sp(n)/ Sp(k) x Sp(n — k).

PROPOSITION 5.11. For k = R,C,H, the Grassmannian Gry (k) can be viewed as the set of all

k-dimensional k-vector subspaces in k™.

PRrROOF. We describe the case k = R, the others being similar.
Associated to element W € O(n) is the subspace spanned by the first k columns of W, say w1, ..., wg;
we will denote this subspace by (w1,...,wg). As the columns of W are an orthonormal set, they are

linearly independent, hence dimg (wi,...,wy) = k. Notice that the remaining (n — k) columns give
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rise to another subspace (Wgy1,..., W) of dimension dimg (Wg41,...,Ww,) = n — k. In fact these are

mutually orthogonal in the sense that

(Whtly-on s W) = (wl,...,wk>J‘
={xeR":x-w,=0,r=1,...,k},
(W1, , W) = (wk+1,...7wn>J'

={xeR":x-w,=0,r=k+1,...,n}.

For a matrix

A Okn—k
" e O(k) x O(n — k),
On—k.k B
the columns in the product
W/ —_ W A Ok,nfk
On—k.k B

span subspaces (w/,...,w}) and (w},,...,w,). But note that w{,..., wj are orthonormal and also
linear combinations of wi,..., wg; similarly, w;_,...,w;, are linear combinations of Wyy1,...,Wy.
Hence

/ !/ ! !

(W, W) = (Wi, oo, We), (Whg, e, Wi ) = (Whg, oo, W)

So there is a well defined function
O(n)/ O(k) x O(n — k) — k-dimensional vector subpaces of R"

which sends the coset of W to the subspace (wq,...,wy). This is actually a bijection.

Notice also that there is another bijection
O(n)/ O(k) x O(n — k) — (n — k)-dimensional vector subpaces of R"

which sends the coset of W to the subspace (wgi1,...,Wwy). This corresponds to a diffeomorphism
Grg.n(R) — Gry—g »(R) which in turn corresponds to the obvious isomorphism O(k) x O(n — k) —
O(n — k) x O(k) induced by conjugation by a suitable element P € O(n). O



CHAPTER 6

Connectivity of matrix groups

1. Connectivity of manifolds
DEFINITION 6.1. A topological space X is connected if whenever X = U UV with U,V # (), then
unv #0.
DEFINITION 6.2. A topological space X is path connected if whenever x,y € X, there is a continuous
path p: [0,1] — X with p(0) =z and p(1) = y.
X is locally path connected if every point is contained in a path connected open neighbourhood.

The following result is fundamental to Real Analysis.

PROPOSITION 6.3. Ewvery interval [a,b], [a,b), (a,b], (a,b) C R is path connected and connected. In

particular, R is path connected and connected.

PROPOSITION 6.4. If X is a path connected topological space then X is connected.

PRrROOF. Suppose X is not connected. Then X = U UV where U,V C X are non-empty and
UNV =0. Let z € U and y € V. By path connectedness of there X, is a continuous map p: [0,1] — X
with p(0) = x and p(1) = y. Then [0,1] = p~*U U p~ !V expresses [0, 1] as a union of open subsets with

no common elements. But this contradicts the connectivity of [0,1]. So X must be connected. O

PROPOSITION 6.5. Let X be a connected topological space which is locally path connected. Then X

is path connected.
PROOF. Let z € X, and set
X, ={y € X :3p: [0,1] — X continuous such that p(0) = z and p(1) = y}.

Then for each y € X,, there is a path connected open neighbourhood U,. But for each point z € U,

there is a continuous path from to z via y, hence U, C X,. This shows that
X.=Jucx
yEXa
is open in X. Similarly, if w € X — X, then X,, C X — X, and this is also open. But then so is
X-X, = U Xo.
weX —X,

Hence X = X, U (X — X_), and so by connectivity, X, = or X — X, = (. So X is path connected.
O

PROPOSITION 6.6. If the topological spaces X and Y are path connected then their product X xY is

path connected.
COROLLARY 6.7. Forn > 1, R™ is path connected and connected.

It is also useful to record the following standard results.
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PROPOSITION 6.8. i) Let n > 2. The unit sphere S*=1 C R™ is path connected. In S° = {+1} C R,
the subsets {1} and {—1} are path connected. The set of non-zero vectors Ry C R™ is path connected.
il) For n > 1, the sets of non-zero complex and quaternionic vectors C§j C C™ and Hf C H™ are path
connected.

PROPOSITION 6.9. FEvery manifold is locally path connected. Hence every connected manifold is path

connected.

PROOF. Every point is contained in an open neighbourhood homeomorphic to some open subset of
R™ which can be taken to be an open disc which is path connected. The second statement now follows

from Proposition 6.5. O

THEOREM 6.10. Let M be a connected manifold and N C M a non-empty submanifold which is also
a closed subset. If dim N = dim M then N = M.

PROOF. Since N C M is closed, M — N C M is open. But N C M is also open since every element
is contained in an open subset of M contained in IV; hence M — N C M is closed. Since M is connected,
M — N = 0. O

PROPOSITION 6.11. Let G be a Lie group and H < G a closed subgroup. If G/H and H are connected,

then so is G.

Proor. First we remark on the following: for any g € G, left translation map L,: H — gH
provides a homeomorphism between these spaces, hence gH is connected since H is.

Suppose that G is not connected, and let U,V C G be nonempty open subsets for which UNV =0
and UUV = G. By Lemma 5.1 the projection n: G — G/H is a surjective open mapping, so
7U, 7V C G/H are open subsets for which 71U UnV = G/H. As G/H is connected, there is an element
gH say in tU N7V, In G we have

gH =(gHNU)U(gHNV),

where (¢H NU),(gH NV) C gH are open subsets in the subspace topology on gH since U,V are open
in G. By connectivity of gH, this can only happen if gH NU = () or gH NV = (J, since these are subsets

of U,V which have no common elements. As
ntgH = {gh:h € H},

this is false, so (gH NU) N (gH N V) # () which implies that U NV # (. This contradicts the original

assumption on U, V. g

This result together with Proposition 6.9 gives a useful criterion for path connectedness of a Lie
group which may need to be applied repeatedly to show a particular example is path connected. Recall
that by Theorem 4.31, a closed subgroup of a Lie group is a submanifold.

PROPOSITION 6.12. Let G be a Lie group and H < G a closed subgroup. If G/H and H are connected,
then G is path connected.

2. Examples of path connected matrix groups

In this section we apply Proposition 6.12 to show that many familiar matrix groups are path con-
nected.

EXAMPLE 6.13. For n > 1, SL,(R) is path connected.
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PROOF. For the real case, we proceed by induction on n. Notice that SL;(R) = {1}, which is
certainly connected. Now suppose that SL,,_1(R) is path connected for some n > 2.
Recall that SL,(R) acts continuously on R™ by matrix multiplication. Consider the continuous

function
f:SL,(R) — R™;  f(A) = Ae,.
The image of f is im f = Rjj = R™ — {0} since every vector v € R} can be extended to a basis
Vi...y3Vp-1,Vp =V

of R, and we can multiply v; by a suitable scalar to ensure that the matrix A, with these vectors as
its columns has determinant 1. Then A, e, = v.

Notice that Pe, = e, if and only if

P =

Q 0
w 1] ’

where @ is (n—1) x (n—1) with det @ = 1, is the (n —1) x 1 zero vector and w is an arbitrary 1 x (n—1)
vector. The set of all such matrices is the stabilizer of e,,, Stabgy,, (r)(€n), which is a closed subgroup of

SL,,(R). More generally, Ae,, = v if and only if
A= A,P forsome P € Stabgy,, (r)(€n).

So the homogeneous space SL, (R)/ Stabgy, (r)(en) is homeomorphic to Rf.

Since n > 2, it is well known that Rf is path connected, hence is connected. This implies that
SL,(R)/ Stabgy,, (r)(en) is connected.

The subgroup SL,_1(R) < Stabgy,, r)(en) is closed and the well defined map

@ ﬂ SL, 1(R) — (wQ )T

StabSLn(]R) (en)/SLnfl(R) - Rn_l; l
w

is a homeomorphism so the homogeneous space Stabgy,, (r)(€n)/SL,—1(R) is homeomorphic to R
Hence by Corollary 6.7 together with the inductive assumption, Stabgy,, (r)(en) is path connected. We
can combine this with the connectivity of Rf to deduce that SL, (R) is path connected, demonstrating

the inductive step. O
EXAMPLE 6.14. For n > 1, GL;}' (R) is path connected.

Proor. Since SL,(R) < GL} (R), it suffices to show that GL (R)/SL,,(R) is path connected. But

for this we can use the determinant to define a continuous map
det: GLT(R) — R* = (0, 00),

which is surjective onto a path connected space. The homogeneous space GL; (R)/SL,(R) is then
diffeomorphic to R and hence is path connected. So GL;! (R) is path connected. O

This shows that
GL,(R) = GLZ (R)UGL,, (R)

is the decomposition of GL,(R) into two path connected components.

EXAMPLE 6.15. For n > 1, SO(n) is path connected. Hence
O(n) =SO(n) UO(n)~

is the decomposition of O(n) into two path connected components.
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PRrROOF. For n =1, SO(1) = {1}. So we will assume that n > 2 and proceed by induction on n. SO
assume that SO(n — 1) is path connected.
Consider the continuous action of on R™ by left multiplication. The stabilizer of e, is SO(n — 1) <

SO(n) thought of as the closed subgroup of matrices of the form

P o
o7 1

with P € SO(n — 1) and 0 the (n — 1) x 1 zero matrix. The orbit of e,, is the unit sphere S*~! which is
path connected. Since the orbit space is also diffeomorphic to SO(n)/SO(n — 1) we have the inductive
step. ]

EXAMPLE 6.16. For n > 1, U(n) and SU(n) are path connected.

PrROOF. For n = 1, U(1) is the unit circle in C while SU(1) = {1}, so both of these are path
connected. Assume that U(n — 1) and SU(n — 1) are path connected for some n > 2.

Then U(n) and SU(n) act on C™ by matrix multiplication and by arguments of Chapter 5,
Staby(n(e,) = U(n — 1), Stabgy(y)(e,) = SU(n — 1).
We also have
Orby () (€n) = Orbgy () (€,) = S,

where S?"~1 C C" = R?" denotes the unit sphere consisting of unit vectors. Since S?"~! is path

connected, we can deduce that U(n) and SU(n) are too, which gives the inductive step. O

3. The path components of a Lie group

Let G be a Lie group. We say that two elements x,y € G are connected by a path in G if there is a
continuous path p: [0,1] — G with p(0) = z and p(1) = y; we will then write Y.
LEMMA 6.17. > s an equivalence relation on G.

For g € G, we can consider the equivalence class of g, the path component of g in G,
Gyg={zeG: mgg}

PROPOSITION 6.18. The path component of the identity is a clopen normal subgroup of G, G1 < G;
hence it is a closed Lie subgroup of dimension dim G.

The path component G, agrees with the coset of g with respect to G1, Gy = gG1 = G1g and is a
closed submanifold of G.

Proor. By Proposition 6.9, G4 contains an open neighbourhood of g in G. This shows that every
component is actually a submanifold of G with dimension equal to dim G. The argument used in the
proof of Proposition 6.5 shows that each is G4 actually clopen in G.

Let ,y € G1. Then there are continuous paths p, ¢: [0, 1] — G with p(0) = 1 = ¢(0), p(0) = = and
¢(0) = y. The product path

r:[0,1] — G;  r(t) = p(t)q(t)
has r(0) = 1 and r(1) = zy. So G; < G. For g € G, the path
s:0,1] — G;  s(t) = gp(t)g™"

has 5(0) = 1 and s(1) = grg~!; hence G1 < G. If z € gG; = G1g, then g~z € G; and so there is a
continuous path h: [0,1] — G with h(0) = 1 and h(1) = g~ 2. Then the path

gh: [0,1] — G;  gh(t) = g(h(t))
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has gh(0) = g and gh(1) = z. So each coset gG; is path connected, hence gG1 C G,4. To show equality,
suppose that g is connected by a path k: [0,1] — G in G to w € G4. Then the path g~'k connects 1

to g~ 'w, so g7 w € Gy, giving w € gG;. This shows that G, C ¢gGj. O

The quotient group G/G is the group of path components of G, which we will denote by mG.

ExXAMPLE 6.19. We have the following groups of path components:

™0 SO(’Il) = ’/ToSLn(R) = 7o SU(TL) = T U(Tl) = ﬂoSLn((C) = WoGLn(C) = {1},
70 O(n) 2 7oGL, (R) 2 {£1}.

EXAMPLE 6.20. Let

cosf) —sinf 0
T=< |sind cosf 0] :60€R 3 <SO(3).
0 0 1

and let G = Ngo(3)(T) < SO(3) be its normalizer. Then T and G are Lie subgroups of SO(3) and
TG = {£1}.

PROOF. A straightforward computation shows that

—cosf sinf 0 -1 0 0
Nso@3)(T) =T U sinf cos® 0|:0€Rp,=TU| 0 1 0|T.
0o 0 -1 00 -1

Notice that T is isomorphic to the unit circle,

cosf) —sinf 0
T=T; sin 0 cosf 0| «— 601.
0 0 1

This implies that T is path connected and abelian since T is. The function
p: G —R* o(lay]) = ass

is continuous with

-1 0 0
e 'RY =T, o 'R-=T1| 0 1 o0,
-1

hence these are clopen subsets. This shows that the path components of G are

-1 0 0
Gr =T, 0 1 0| T.
-1

Hence moG = {£1}.
Notice that Ngo(s)(T') acts by conjugation on 7" and in fact every element of 7" < Ngos)(T) acts

trivially since T is abelian. Hence myG acts on T with the action of the non-trivial coset given by
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-1 0 0
conjugation by the matrix | 0 1 0f,
0 —
. Q-1
-1 0 0f |cos@ —sinf 0O |—1
sin 6 cosf 0
00 -1 0 0 1 0 0 -1
cosf sinf O_ cosf —sinf O o
= |—sinf cosf O = [sinf cosf 0
0 0 1 0 0 1
which corresponds to the inversion homomorphism on the unit circle T = T'. O

EXAMPLE 6.21. Let T = {x1+yi: z,y € R, 224+y? = 1} < Sp(1), the group of unit quaternions. Let
G = Ngp(1)(T') < Sp(1) be its normalizer. Then T" and G are Lie subgroups of Sp(1) and moG = {£1}.

PROOF. By a straightforward calculation,
G=TU{zj—yk:z,yeR, 2?2 +y> =1} =T U T.
T is isomorphic to the unit circle so is path connected and abelian. The function
0: G —R; Ol +zi+yj+zk) =y>+ 22,
is continuous and
~lo=1T, 67'1=jT.
Hence the path components of G are T, jT. So moG == {£1}.
The conjugation action of G on T has every element of T" acting trivially, so moG acts on T. The
action of the non-trivial coset is given by conjugation with j,
jlal +yi)j = a1 - yi,
corresponding to the inversion map on the unit circle T = T O

The significance of such examples will become clearer when we discuss maximal tori and their nor-

malizers in Chapter 7.

4. Another connectivity result

The following result will be used in Chapter 7.

PROPOSITION 6.22. Let G be a connected Lie group and H < G a subgroup which contains an open
neighbourhood of 1 in G. Then H = G.

ProoOF. Let U C H be an open neighbourhood of 1 in G. Since the inverse map inv: G — G is a
homeomorphism and maps H into itself, by replacing U with U Ninv U if necessary, we can assume that
inv maps the open neighbourhood into itself, i.e., invU = U.

For k > 1, consider
Uk:{u1~~ukEG:uj€U}gH.

Notice that inv U* = U*. Also, U* C G is open since for u1, ..., u; € U,

Uy g € Ly ooy, U CU*
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where Ly, ..y, U =L"

(ul"'uk—l)

_, U is an open subset of G. Then
v=|JUutcH
k=1

satisfies invV = V.

V is closed in G since given g € G — V, for the open set gV C G, if x € gV NV there are
ULy ennyUp, V1 ...,0s €U such that

Uy Uy = V1 U,

implying g = vy - - - vsul_l ---u-t €V, contradicting the assumption on g.

So V is a nonempty clopen subset of G, which is connected. Hence G —V = (), and therefore V = G,
which also implies that H = G. O






CHAPTER 7

Compact connected Lie groups and their maximal tori

In this chapter we will describe some results on the structure of compact connected Lie groups,
focusing on the important notion of a mazimal torus which is central to the classification of simple
compact connected Lie Groups. From Chapter 6 we know that many familiar examples of compact
matrix groups are path connected.

Although we state results for arbitrary Lie groups we will often only give proofs for matrix groups.
However, there is no loss in generality in assuming this because of the following important result which

we will not prove (the proof uses ideas of Haar measure and integration on such compact Lie groups).

THEOREM 7.1. Let G be a compact Lie group. Then there are injective Lie homomorphisms G —

O(m) and G — U(n) for some m,n. Hence G is a matriz group.

1. Tori

The circle group
T={ze€C:|z|=1} <C*
is a matrix group since C* = GL;(C). For each r > 1, the standard torus of rank r is

T" = {diag(z1,...,2r) : Vk, |zx| = 1} < GL,(C).

This is a matrix group of dimension r. More generally, a torus of rank r is a Lie group isomorphic to
T". We will often view elements of T" as sequences of complex numbers (z1,...,z,) with |zx| = 1, this

corresponds to the identification
T"2Tx---xT<(C*) (rfactors).

Such a torus is a compact path connected abelian Lie group.

Now let G be Lie group and T' < G a closed subgroup which is a torus. Then T is mazimal in G if
the only torus 77 < G for which T'< T" is T itself. Here are some examples.

For 6 € [0, 27), let

R(O) = lcos@ sin&] € 50(2).

sinf  cos@

89
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More generally, for each n > 1, and 6; € [0,27) (i = 1,...,n), let

[R(61) O oo e 19)

O R(0 o . . :
RQ’!L(@l, . .79,”) = . .( 2) ' ' . ' c SO(2n),

| O 0) R(gn)

(RO1) O oo oo e i O]
O R() O

Roni1(61,...,60,) = | €S0(2n +1),

: : O R, O

i (0] 0] 1_

where each entry marked O is an appropriately sized block so that these are matrices of size 2n x 2n and
(2n 4+ 1) x (2n + 1) respectively.
By identifying C with R? as real vector spaces using the bases {1,i} and {ei, ez}, we obtain an
isomorphism
U(1) — SO(2), €% — Ry(8).

PROPOSITION 7.2. Fach of the following is a mazximal torus in the stated group.

{R2,(01,...,0,) : Yk, O;, € [0,27)} < SO(2n).
{Roni1(01,...,0,) : Vk, 0, €[0,21)}
{diag(z1,...,2n) : Yk, |2x| = 1} < U(n).

}

}

{diag(z1,...,2n) : Vk, |zk| =1, 21+ 2z, = 1} < SU(n).

{diag(z1,...,2n) : Yk 2 € C, |2x] = 1} < Sp(n).

The maximal tori listed will be referred to as the standard maximal tori for these groups.

PROPOSITION 7.3. Let T be a torus. Then T is compact, path-connected and abelian.

PROOF. Since the circle T is compact and abelian the same is true for T” and hence for any torus.

If (21,...,2) € T", let 2, = e?**. Then there is a continuous path
p: [0,1] — T7;  p(t) = (e, ... %),
with p(0) = (1,...,1) and p(1) = (z1,...,2:). So T” and hence any torus is path connected O

THEOREM 7.4. Let H be a compact Lie group. Then H is a torus if and only if it is connected and

abelian.

PROOF. We know that H is a compact Lie group. Every torus is path connected and abelian by
Proposition 7.3. So we need to show that when H is connected and abelian it is a torus since by
Proposition 6.9 it would be path connected.

Suppose that dim H = r and let h be the Lie algebra of H; then dimh = r. From the definition of
the Lie bracket in the proof of Theorem 2.14, for XY € b,

d

X, Y| =— —
[ ’ ] ds|—odt|o

exp(sX) exp(tY)exp(—sX) =0

since exp(sX),exp(tY) € H and so exp(sX)exp(tY)exp(—sX) = exp(tY) because H is abelian. Thus

all Lie brackets in b are zero. Consider the exponential map exp: h — H. For X,Y € b, Propositions
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1.33 and 1.32 give
exp(X)exp(Y) =exp(X +Y), exp(—X) =exp(X)".
So exph = imexp C H is a subgroup. By Proposition 1.35 expfy is a subgroup containing a neighbour-
hood of 1, hence by Proposition 6.22, exph = H.
As exp is a continuous homomorphism, its kernel K = kerexp must be discrete since otherwise
dim exp(h) < r. This means that K C § is a free abelian subgroup with basis {v1, ..., v} for some s < r.

Extending this to an R-basis {v1,..., Vs, Vs41,...,0,} of h we obtain isomorphisms of Lie groups
exp(h) 2 h/K X R*/Z° x R"~%.
But the right hand term is only compact if s = r, hence K contains a basis of h and
R"/Z" = h/K = H.
Since T = R/Z, this gives H the structure of a torus. O

Notice that in this proof and that of Theorem 7.4, we made use of the following fact.

PROPOSITION 7.5. Let T be a torus of rank r. Then the exponential map exp: t — T is a surjective
homomorphism of Lie groups, whose kernel is a discrete subgroup isomorphic to Z". Hence there is an
isomorphism of Lie groups R" /7" = T.

In the proof Theorem 4.35, we met the idea of a topological generator of the circle group. It turns
out that all tori have such generators.

DEFINITION 7.6. Let G be a Lie group. Then an element g € G is a topological generator or just a
generator of G if the cyclic subgroup (g) < G is dense in G, i.e., (g) = G.

PRrROPOSITION 7.7. Fvery torus T has a generator.

Proor. Without loss of generality we can assume 7' = R"/Z" and will write elements in the form
[z1,...,2] = (21,...,2,) + Z". The group operation is then addition. Let Uy, Us, Us, ... be a countable
base for the topology on T'.

A cube of side € > 0 in T is a subset of the form

C(lur, .- yur),e) ={[z1, ... 2] € T |z — ug| < e/2 VEk},

for some [uy,...,u,] € T. Such a cube is the image of a cube in R” under the quotient map R™ — T.
Let Cy C T be a cube of side € > 0. Suppose that we have a decreasing sequence of cubes C, of side
€k
Co2C1 2 2Ch,
where for each 0 < k < m, there is an integer Ny satisfying Nier > 1 and NiCy C Ug. Now choose an
integer N,,11 large enough to guarantee that N,,1C,, = T. Now choose a small cube C,,+1 C C,, of
side €41 so that Npyy1Cmi1 C Upyr. Then if z = [z1,..., 2] € ﬂk>1 C}, we have Nz € C}, for each

k, hence the powers of z are dense in T, so z is a generator of 7. O

2. Maximal tori in compact Lie groups

We now begin to study the structure of compact Lie groups in terms of their maximal tori. Through-
out the section, let G be a compact connected Lie group and T < G a maximal torus.
THEOREM 7.8. If g € G, there is an x € G such that g € xTx™!, i.e., g is conjugate to an element

of T. Equivalently,
G = U xTz

zeG
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PROOF. The proof this uses the powerful Lefschetz Fized Point Theorem from Algebraic Topology
and we only give a sketch indicating how this is used.

The quotient space G/T is a compact space and each element g € G gives rise to a continuous map
pg: G/T — G/T;  pg(aT) = (92)T = gaT.
Since G is path connected, there is a continuous map
p: [0,1] x G/T — G/T;

for which p(0,27") = 2T and p(1,2T) = gzT), i.e., p is a homotopy Idg,r ~ py.

The Lefschetz Fized Point Theorem asserts that 11, has a fixed point provided the Fuler characteristic
X(G/T) is non-zero. Indeed it can be shown that x(G/T) # 0, so this tells us that there is an z € G
such that gzT = 2T, or equivalently g € Tz~ '. O

THEOREM 7.9. If T,T" < G are mazximal tori then they are conjugate in G, i.e., there is a y € G
such that T' = yTy~!.

PROOF. By Proposition 7.7, T’ has a generator ¢ say. By Theorem 7.8, there is a y € G such that

1

te,soT' <yTy ' As T’ is a maximal torus and yTy ! is a torus, we must have T’ = yTy~!. O

The next result gives some important special cases related to the examples of Proposition 7.2. Notice
that if A € SO(m), A~! = AT while if B € U(m), B~ = B*.
THEOREM 7.10 (Principle Axis Theorem). In each of the following matriz groups every element is

conjugate to one of the stated form.

e SO(2n): Ron(01,...,6n), Vk 0 € [0,27);

SO(2n+1): Ront1(61,...,0,), Vk 0, € [0,27);

U(n): diag(z1,...,2n), Vk 21, € C, |21| = 1;

SU(n): diag(z1,...,2n), VE 2, €C, |2k =1, 21+ 2, =1
Sp(n): diag(z1,...,2n), Vk 2 € C, |2| = 1.

We can also deduce a results on the Lie algebra g of such a compact, connected matrix group G.

Recall that for each g € G, there is a linear transformation
Ady: G —g; Ady(t) = gtg~ L.

PROPOSITION 7.11. Suppose that g € G and H, H' < G are Lie subgroups with gHg~' = H'. Then
Adgh=1.

PROOF. By definition, for x € h there is a curve v: (—¢,e) — H with y(0) = 1 and ~4/(0) = =«.
Then

d _
Ady(t) = 1597(t)g, L, €1,

Lis a curve in H'. O

since t — gy(t)g~

If z,y € g and y = Ady(x) we will say that  is conjugate in G to y. This defines an equivalence
relation on g.
For t € R, let
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and
0] R(t O
én(tlv"'vtn) = (2) . 650(2”),
e O R(t)
R'(t;)) O o]
O Rty O
O R(t) O
i ) 0] 1_

THEOREM 7.12 (Principle Axis Theorem for Lie algebras). For each of the following Lie algebras,
every element x € g is conjugate in G to one of the stated form.
e 50(2n): RY, (t1,...,tn), Yk O € [0,27);
e s0(2n+1): Ry, (t1,...,tn), Yk O € [0,27);
o u(n): diag(tii,...,tni), Vk t € R;
o su(n): diag(t1d,...,tni), Vet e R t1 +---+t, = 1;
e sp(n): diag(tii,...,tns), Vk ty € R.
We can now give an important result which we have already seen is true for many familiar examples.
THEOREM 7.13. Let G be a compact, connected Lie group. Then the exponential map exp: g — G
1S surjective.

PROOF. Let T' < G be a maximal torus. By Theorem 7.8, every element g € GG is conjugate to an

1

element zgr~! € T. By Proposition 7.5, zgz~! = exp(t) for some ¢ € t, hence

g =a" " exp(t)r = exp(Ad, (1)),

where Ad,(t) € g. So g € expg. Therefore expg = G. O

3. The normalizer and Weyl group of a maximal torus

Given Theorem 7.8, we can continue to develop the general theory for a compact connected Lie group
G.
ProrosITION 7.14. Let A < G be a compact abelian Lie group and suppose that A1 < A is the

connected component of the identity element. If A/Ay is cyclic then A has a generator and hence A is

contained in a torus in G.

PROOF. Let d = |A/A1|. As A; is connected and abelian, it is a torus by Theorem 7.4, hence it has
a generator ag by Proposition 7.7. Let g € A be an element of A for which the coset gA; generates A/A;.
Notice that g? € A; and therefore agg~? € A;. Now choose b € A; so that apg~¢ = b%. Then ay = (gb)?,
so the powers (gb)*? are dense in A;. More generally, the powers of the from (gb)***" are dense in the
coset g"A1. Hence the powers of gb are dense in A, which shows that this element is a generator of A.

Let T' < G be a maximal torus. By Theorem 7.8, any generator u of A is contained in a maximal
torus Tz ! conjugate to T. Hence (u) and its closure A are contained in #7x~! which completes the

proof of the Proposition. O

PRrROPOSITION 7.15. Let A < G be a connected abelian subgroup and let g € G commute with all the
elements of A. Then there is a torus T < G containing the subgroup (A, g) < G generated by A and g.
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PROOF. By replacing A by its closure which is also connected, we can assume that A is closed in G,
hence compact and so a torus, by Theorem 7.4. Now consider the abelian subgroup (A4, g) < G generated
by A and g, whose closure B < G is again compact and abelian. If the connected component of the
identity is B; < B then B; has finitely many cosets by compactness, and these is of the form ¢" B
(r=0,1,...,d—1) for some d. By Proposition 7.14, (A, g) is contained in a torus. O

THEOREM 7.16. Let T < G be a mazimal torus and let T < A < G where A is abelian. Then A =T.

Equivalently, every mazimal torus is a maximal abelian subgroup.

PROOF. For each element g € A, Proposition 7.15 implies that there is a torus containing (T, g), but
by the maximality of 7" this must equal T'. Hence A = T. O

We have now established that every maximal torus is also a maximal abelian subgroup, and that
any two maximal tori are conjugate in G.

Recall that for a subgroup H < G, the normalizer of H in G is
Ng(H)={geG:gHg ' = H}.

Then Ng(H) < G is a closed subgroup of G, hence compact. It also contains H and its closure in G as
normal subgroups. There is a continuous left action of Ng(H) on H by conjugation, i.e., for g € Ng(H)

and h € H, the action is given by

g-h=ghg .

If H =T is a maximal torus in G, the quotient group Ng(7')/T acts on T since T acts trivially on itself
by conjugation. Notice that the connected component of the identity in Ng(7') contains 7', in fact it
agrees with T by the following Lemma.

LEMMA 7.17. Let T < G be a torus and let Q < Ng(T') be a connected subgroup acting on T by
conjugation. Then Q acts trivially, i.e., for g € Q and x € T,

g-ngxgil:x.

PROOF. Recall that T = R"/Z" as Lie groups. By Proposition 7.5, the exponential map is a surjective

group homomorphism exp: t — T whose kernel is a discrete subgroup. In fact, there is a commutative

diagram
ker exp t T
gl gl %
/A R" R"/Z"

in which all the maps are the evident ones.

Now a Lie group automorphism «: T — T lifts to homomorphism a: t — t restricting to an
isomorphism caq: kerexp — kerexp. Indeed, since each element of kerexp = Z" is uniquely divisible
in t 2 R", continuity implies that &y determines & on t. But the automorphism group Aut(kerexp) =
Aut(Z") of kerexp & Z" is a discrete group.

From this we see that the action of () on T by conjugation is determined by its restriction to the
action on kerexp. As () is connected, every element of () gives rise to the identity automorphism of the

discrete group Aut(kerexp). Hence the action of @ on T is trivial. O

This result shows that N (7)1, the connected component of the identity in Ng(7'), acts trivially on
the torus T'. In fact, if g € Ng(T') acts trivially on T then it commutes with all the elements of T, so by
Theorem 7.16 g is in T. Thus T consists of all the elements of G with this property, i.e.,

(7.1) T={geG:grg ' =aVz T}
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In particular, we have Ng(T); = T.
The Weyl group of the maximal torus T in G is the quotient group

Wea(T) = Ne(T)/T = mo Nea(T)

which is also the group of path components o Ng(T'). The Weyl group W (T') acts on T by conjugation,
i.e., according to the formula
gT -z = gzg L.
THEOREM 7.18. Let T < G be a mazimal torus. Then the Weyl group Wqa(T) is finite and acts

faithfully on T, i.e., the coset gT € Ng(T)/T acts trivially on T if and only if g € T.

PROOF. Ng(T) has finitely many cosets of T since it is closed, hence compact, so each coset is

clopen. The faithfulness of the action follows from Equation (7.1). O

ProPOSITION 7.19. Let T < G be a mazximal torus and x,y € T. If x,y are conjugate in G then
they are conjugate in Ng(T'), hence there is an element w € Wq(T) for which y = w - x.

1

PROOF. Suppose that y = gxg~'. Then the centralizer Cq(y) < G of y is a closed subgroup

~1 since every element of this commutes with .

containing 7. It also contains the maximal torus ¢g7Tg
Let H = Cg(y)1, the connected component of the identity in Cg(y); this is a closed subgroup of G since
it is closed in Cg(y). Then as T,gTg~! are connected subgroups of Cg(y) they are both contained in
H. So T,gTg™ ! are tori in H and must be maximal since a torus in H containing one of these would be
a torus in G where they are already maximal.

By Theorem 7.8 applied to the compact connected Lie group H, gTg~" is conjugate to T in H, so

for some h € H we have gT'g~! = hTh~! which gives
(R tg)T(h™tg)™ =T.

Thus h~tg € Ng(T) and
(W~ lg)ax(h™lg) ™t =" yh =y.
Now setting w = h™1gT € Wg(T) we obtain the desired result. O
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Problem sets

Throughout these problem sets, k will denote one of the fields R, C and treat vectors in k™ as column

vectors. All other notation follows the notes.
Problems on Chapter 1

1-1. Determine || Al for each of the following matrices A, where t,u,v € R.

u 0 u 1 cost —sint cosht sinht
0 wl|’ 0 wul|’ sint  cost | sinht cosht|
What can be said when u,v € C?

1-2. Let A € M, (C).
a) If B € U(n), show that ||BAB~!|| = ||A]|.
b) For a general element C' € GL,,(C), what can be said about |[CAC™!||?

1-3.  [This problem relates to Remark 1.3] Let A € M,,(C).
a) Show that || A satisfies
| A|> = sup{x*A*Ax : x € C", |x| = 1} = max{x*A*Ax : x € C", |x| = 1}.

b) Show that the eigenvalues of A* A are non-negative real numbers. Deduce that if A € R is the largest
eigenvalue of A*A then ||A|| = v/\ and for any unit eigenvector v € C" of A*A for the eigenvalue X,
[All = |Av].

¢) When A is real, show that ||A] = |Aw| for some unit vector w € R™.

1-4. If {A,},>0 is a sequence of matrices A, € M,,(k), prove the following.

A
a) If lim ||||A+ﬁ” < 1, the series Y oo A, converges in M, (k).
Al oo . :
b) If lim A, > 1, the series >~ ) A, diverges in M, (k).

¢) Develop other convergence tests for 2 A,.

1-5. Suppose that A € M, (k) and ||A] < 1.
a) Show that the series
S AT=T+A+ A+ A4
r=0
converges in M, (k).
b) Show that (I — A) is invertible and give a formula for (I — A)~1.
c) If A nilpotent (i.e., A¥ = O for k large) determine (I — A)~! and exp(A).

1-6. a) Show that the set of all n x n real orthogonal matrices O(n) C M,,(R) is compact.
b) Show that the set of all n x n unitary matrices U(n) C M, (C) is compact.

1
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¢) Show that GL,, (k) and SL,,(k) are not compact if n > 2.

d) Investigate which of the other matrix groups of Section 4 are compact.

1-7. Using Example 1.21, for n > 1 show that
a) O(n) is a matrix subgroup of O(n + 1);

b) SO(n) is a matrix subgroup of SO(n + 1);
¢) U(n) is a matrix subgroup of U(n + 1);

d) SU(n) is a matrix subgroup of SU(n + 1).

1-8. For t € R, determine the matrices

() ()

1-9. Letk =R,C, and A € M, (k).
a) Show that for B € GL,,(k),

exp(BAB™!') = Bexp(A)B™".

b) If A is diagonalisable, say with A = C diag(\y,...,\,)C7 !, for C € GL,(k), determine exp(A).

¢) Use this to find the matrices
0 t 0 t
ex , ex .
P = 0 P 0

1-10. If S € M,,(R) be skew symmetric (i.e., ST = —8), show that exp(S) is orthogonal, i.e., exp(9)T =
exp(9)~L

More generally, if S € M, (C) is skew hermitian (i.e., S* = —5), show that exp(S) is unitary, i.e.,
exp(9)* = exp(9) L.
1-11. Let

G ={A € GL,(R) : det A € Q} < GL,(R).

a) Show that G not a closed subgroup of GL,, (R).
b) Find the closure G of G in GL,(R).

1-12. Fork=R,C and n > 1, let N € M,, (k).
a) If N is strictly upper triangular, show that exp(V) is unipotent.
b) Determine exp(N) when N is an arbitrary upper triangular matrix.

The next two problems relate to Section 7.

1-13. Let (X1, p1), (X2, p2) be two metric spaces. Define a function

pr (X1 x Xo) x (X1 x Xo) — RYy p((z1,22), (Y1, 92)) = Ver (21, y1)2 + p2(z2,92)2

a) Show that (X; x Xs, p) is a metric space.
b) Show that a sequence {(z1,,%2,)}r>0 converges (i.e., has a limit) in X; x X5 if and only if the

sequences {(21,r)}r>0, {(®2,+)}r>0 converge in X; and X, respectively.

1-14. a) Using the previous question, define a metric on M, (k) x k™ and show that the product map

o: My (k) x k™ — k™;  p(4,x) = 4Ax,
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is continuous.
b) Let G < GL, (k) be a matrix subgroup. By restricting the metric and product ¢ of (a) to the subset

G x k™, consider the resulting continuous group action of G on k™. Show that the stabilizer of x € k",
Stabg(x) ={A € G: Ax = x}
is a matrix subgroup of G. More generally, if X C k” is a closed subset, show that
Stabg(X)={A € G: AX = X}

is a matrix subgroup of G, where AX = {Ax:x € X}.
c) For the standard basis vector e, = [0,---,0,1]7 and X = {te, : t € R}, determine Stabg(e,) and
Stabg (X)) for each of the following matrix subgroups G < GL,,(R):

G =GL,(R), G=SL,(R), G=0(n), G=850(n).
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Problems on Chapter 2
2-1. a) Solve the differential equation
o) |1 =2| |=(t) z(0)| |1
y'(t) 0 1] [y(]  [y(0) 2|
by finding a solution of the form
t 1
y() 2

with a: R — GL3(R). Sketch the trajectory of this solution as a curve in the zy-plane. What happens
for other initial values x(0),y(0)?
b) Repeat this with the equations

(@) |0 =2] |=(t) z(0)| |0
el e R
@) | 0 =1) |=(t) z(0)| |1
L/(t)] ! o] y@]* L/«n N H

2-2. Let G be a matrix group and U € G.
a) Show that each the functions

Ly: G — G; Ly(A)=UA,
RUZ G—>G, RU(A):AU,
Cy:G—G; Cy(A)=UAU!,

is a differentiable map and determine its derivative at I.

b) Using (a), show that there R-linear isomorphisms
/\UZT[G—>TUG, pUZT[G—>TUG, XUIT[G—>T[G,
such that for all U,V € G,

Auv = Ay oAy, puv =pvopu, Xuv =XUOXV-

2-3. For each of the following matrix groups G determine its Lie algebra g.

(a) G={AcCLyR): AQAT =Q}, Q= (1) 8];
. :1 0
(b) G={A€GL(R): 4QAT =Q}, Q= | 11;
(c) G={AcCLyR): AQAT =Q}, Q=10 0 o0];
-1
(d) G = Aff, (k);
(e) G = Symp,,,(R), (m=1,2,...).

2-4. Consider the set of all n x n real special orthogonal matrices SO(n) and its subset

U={A4€S0(n):det(I +A)#0} CSO(n).
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Define the function
®: U — Mp(R); ®(A)=T—-A)I+A)"
a) Show that im ® = Sk-Sym,, (R), the set of all n x n real skew symmetric matrices. Hence we might as
well write &: U — Sk-Sym,, (R).
b) Find the inverse map ®~1: Sk-Sym,, (R) — U.
¢) Use (b) to determine the dimension of SO(n).

[ @ is the real Cayley transform.]
2-5. Consider the set of all n x n unitary matrices U(n) and its subset
V={Ae€U(n):det(I + A) # 0} C U(n).

Define the function

0:V — M,(C); O(A)=(T—-A)IT+A"
a) Show that im © = Sk-Herm,,(C), the set of all n x n skew hermitian matrices. Hence we might as well
write ©: V — Sk-Herm,, (C).
b) Find the inverse map ©~': Sk-Herm,,(C) — V.
¢) Use (b) to determine the dimension of U(n).

d) For the case n = 2 show that ©(V N SU(2)) C Sk-HermJ(C) and ©~! Sk-Herm$(C) C SU(2). Ts this
true for n > 27

[@ is the complex Cayley transform.]
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Problems on Chapter 3

3-1. Using the bases {1,1, j, k} of Hg over R and {1, j} of Hc over C, determine the reduced determinants
Rdetg: GL,,(H) — R* and Rdet¢: GL,,(H) — C*.

3-2. i) Verify that M,,(H) is complete with respect to the norm || ||. Using this, explain how to define
an exponential function exp: M, (H) — GL,, (H) with properties analogous to those for the exponential
functions on M, (R), M, (C).

ii) When n = 1, determine exp(q) using the decomposition ¢ = r 4+ su with r;s € R and u a pure

quaternion of unit length |u| = 1.

3-3. For each of the following matrix groups G, determine the Lie algebra g and dimension dim G:
i) G = GL,,(H);

i) G = Sp,, (H);

iii) G = ker Rdety: GL,,(H) — k* where k = R, C;

iv) G = ker Rdety: Sp(n) — k* where k = R, C.

3-4. The group of unit quaternions
Sp(1) ={qeH:[q| =1}
has an R-linear action on H given by
q-x=qrq ' =qrg (v eH)

i) By identifying H with R* using the basis {i,j,k,1}, show that this defines a Lie homomorphism
Sp(1) — SO(4).
ii) Show that this action restricts to an action of Sp(1) on the space of pure quaternions and by identifying
this with R? using the basis {4, j, k}, show that this defines a surjective Lie homomorphism «: Sp(1) —
SO(3). Show that the kernel of « is {1, —1}.
3-5. Using the surjective homomorphism «: Sp(1) — SO(3) of the previous question, for a subgroup
G < SO(3) set

G=a"'G={geSp(1):alg) € G} <Sp(1).
From now on assume that G is finite.
i) What is the order of G?
ii) Show that the order of the centre of G, C(G), is even.

iii) If G contains an element of order 2, show that the group homomorphism «: G — G is not split in

the sense that there is no group homomorphism (: G — G for which oo 0 =1dg.

B
G— @G

N

G
iv) Show that Qs = {1, +i,+j, £k} is a subgroup of Sp(1) and find a geometric interpretation as a

group of symmetries for aQg < SO(3). Generalize this by considering for each n > 2,
Qon = {62”"/”:rzO,...,n—l}U{e%"/"j:rzO,...,n—l}.
v) Show that the set Th4 consisting of the 24 elements

1
£, Hi, Ej Ek, S(ElEiEjEk)
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is a subgroup of Sp(1) and find a geometric interpretation for the group aTsy < SO(3).

vi) [Challenge question: not for the fainthearted!] Let Icos be a regular icosahedron in R? centred at
the origin. The group of direct symmetries of Icos is known to be isomorphic to the alternating group,
Symm™ (Icos) = As. Find o~ Symm™ (Icos) < Sp(1).

This requires a good way to view the icosahedron relative to the x,y, z-axes. Nice graphics and information
on the icosahedron can be found at

http://mathworld.wolfram.com/Icosahedron.html

The resulting subgroup of Sp(1) is called the binary icosahedral group since it double covers the symmetry

Symm™ (Icos); it also provides a non-split double covering ﬁ5 — As of the simple group As.

3-6. In the Clifford algebra Cl,,, let u,v € R™ C Cl,,.

i) If |u| = 1, by expressing v as a sum v; + vo with v1 = tu and u- vy = 0, find a general formula for uvu.

ii) If {uq,...,u,} is any orthonormal basis for R™, show that
1 ifj=4,
UjU; =

Deduce that every element A € O(n) induces an automorphism A, : Cl,, — Cl,, for which A,z = Ax if
z € R".

3-7. In the following, use the Universal Property of Theorem 3.23.
i) Show that the natural embedding

T
x1
in: R" — R o ,
Tn
Tn
0

induces an injective R-algebra homomorphism 4,: Cl, — Cl,,11 for which i/ (z) = i,(z) whenever
x € R™. Determine the image imi/, C Cl,,41.
ii) Show that the R-linear transformation

kn: R" — Clyy1;  kn(x) = zenia,

induces an injective R-algebra homomorphism k/,: Cl,, — Cl,4; for which &/ (x) = ky(z) whenever
z € R™. Show that im &/, = CL} ;.
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Problems on Chapter 4

4-1. Show that the subset
M ={(A,b) e M,,(R) x R:bdet A =1} C M, (R) xR

is a closed submanifold and determine T4 ) M for (A,b) € M.
Show that M has the structure of a Lie group with multiplication u given by

p((A1,01), (A2,b2)) = (A1 A2, b1b2).

To which standard matrix group is M isomorphic?
Repeat this with R replaced by C.

4-2. Write out the details of the calculation in Example 4.21 for the cases n = 2, 3.

4-3. Modify the details of Example 4.21 to show that U(n) < GL,(C) is a Lie subgroup. It might be
helpful to do the cases n = 1,2, 3 first.

Use the determinant function
det: Un) — T={ze€C:|z| =1}
together with the Identity Check Trick 4.20, to show that SU(n) < U(n) is a Lie subgroup.

4-4. Let G be a matrix group. Use Theorem 4.23 to show that each of the following subgroups of G is
a Lie subgroup. In each case, try to find a proof that works when G is an arbitrary Lie group.

a) For g € G, the centralizer of g, Cq(g9) = {x € G : xgz~! = g}.

b) The centre of G, C(G) =(,c¢ Ca(9)-

¢) For H < G a closed subgroup, the normalizer of H, Ng(g) = {x € G : zHx~! = H}.

d) The kernel of ¢, ker ¢, where ¢: G — H is a continuous homomorphism into a matrix group H.

4-5. Let G be a matrix group and M a smooth manifold. Suppose that p: Gx M — M be a continuous
group action as defined in Chapter 1 Section 7 and investigated in the Problems on Chapter 1. Also
suppose that p is smooth.

a) Show that for each x € M, Stabg(x) < G is a Lie subgroup.

b) If X C M is a closed subset, show that Stabg(X) = {g € G: gX = X} < G is a Lie subgroup.

4-6. For a Lie group G and a closed subgroup H < G, show that the cosets gH, Hg and conjugate
gHg™*

suitable tangent space to H.

are submanifolds of G. In each case, identify the the tangent space at a point in terms of a

4-7. Let G and H be Lie groups and ¢: G — H a Lie homomorphism. Show that ker p < G is a Lie
subgroup and identify the tangent space Ty ker ¢ at g € ker .

4-8. Determine the Lie bracket [, | for the Lie algebra heis, of the Heisenberg group Heisy.
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Problems on Chapters 5 and 6

5-1. Let SL,(R) act smoothly on R™ by matrix multiplication.

a) Find Stabgr,, (r)(en) and Orbgy, (r)(€n).

b) Identify the homogeneous space SL, (R)/ Stabgy, (r)(e,) and show that it is path connected if n > 2.
Use this to give another proof that GL,(R) has two path components.

5-2. Let SL,(C) act smoothly on C™ by matrix multiplication.

a) Find Stabgr,, (cy(en) and Orbgy, (cy(en).

b) Identify the homogeneous space SL,,(C)/ Stabgy, (c)(en) and show that it is path connected. Use this
to prove that SLy,(C) is path connected.

¢) By making use of the determinant det: GL,(C) — C*, deduce that GL,,(C) is path connected.

5-3. Let A € GL,(R).

a) Show that the symmetric matrix S = AA” is positive definite, i.e., its eigenvalues are all positive
real numbers. Deduce that S has a positive definite real symmetric square root, i.e., there is a positive
definite real symmetric matrix S; satisfying S7 = S.

b) Show that S;'A4 is orthogonal.

c) If PR = QS where P,(Q are positive definite real symmetric and R, S € O(n), show that P? = Q2.
d) Let Sy be a positive definite real symmetric matrix which satisfies S2 = diag(\1,...,A,). Show that
Sy = diag(v/ A1, -5 VAn)-

e) Show that A can be uniquely expressed as A = PR where P is positive definite real symmetric and
R € O(n). If det A > 0, show that R € SO(n).

f) Show that the homogeneous space GL, (R)/SO(n) is path connected. Using Example 6.15, deduce
that GL; (R) is path connected.

g) Let B € GL,,(C). By suitably modifying the details of the real case, show that B can be uniquely
expressed as B = QT with @ positive definite Hermitian and 7' € U(n). Using Example 6.16, deduce
that GL,,(C) is path connected.

[These factorizations are known as polar decompositions of A and B.]

5-4. For k =R, C and n > 1, the affine group Aff, (k) acts on k™ as explained in Chapter 1.
a) Find Stabag, (x)(0) and Orbag, (1)(0).
b) Show that the affine group Aff, (R) has two path components, while Aff,,(C) is path connected.
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Problems on Chapter 7

7-1. Show that there are exactly two Lie isomorphisms T — T, but infinitely many Lie isomorphisms

T" — T" when r > 2.

7-2. a) Show that the be the subgroup D consisting of all the diagonal matrices diag(c, §) is a maximal
torus of U(2). Determine Ny2)(D), mo Ny(2)(D) and its action by conjugation on D.

b) Show that the subgroup of diagonal matrices in SU(3) is a maximal torus and determine its normalizer
and group of path components and describe the conjugation action of the latter on this torus.

¢) Let Ty = {diag(u,v) € Sp(2) : u,v € C} < Sp(2). Show that T» is a maximal torus of Sp(2). Using

Example 6.21, determine Ngy(9)(72) and mo Ngp(2)(12) and describe its conjugation action on T5.
7-3. Show that the group
A = {(cos by + sinbe1ez)(cos by + sinfaezey) - - - (cos Oy, + sinbpea,_1€2y) : 01,...,0, €[0,27)}

is a maximal torus in each of the spinor groups Spin(2n), Spin(2n + 1).

For small values of n, determine the normalizers and Weyl groups of A in Spin(2n) and Spin(2n+1).
Find the conjugation action of each Weyl group on A.

Under the double covering maps p of Chapter 3, how are these maximal tori related to the maximal
tori of SO(2n) and SO(2n + 1) given by Proposition 7.27

7-4. a) For n > 1, show that the group

e 0 - 0
0 130}

1€l = F1
0 -« - &,

is a maximal abelian subgroup of O(n).
b) Let To, < SO(2n), Tont+1 < SO(2n + 1) be the maximal tori given by Proposition 7.2 and

TZ/n = TQTL
0 1 . :
T2/n+1 = T2n+1 U . . . . T2n+1'

Show that T3, < O(2n) and T3, ; < O(2n + 1) are maximal abelian subgroups.
¢) Explain why these results are compatible with those of Chapter 7.



