Scalable Parallel Algorithms for Difficult Combinatorial Problems:
A Case Study in Optimization*

Faisal N. Abu-Khzam, Michael A. Langston®and Pushkar Shanbhag
Department of Computer Science, University of Tennessee, Knoxville, TN 37996-3450

Abstract

A novel combination of emergent algorithmic meth-
ods, powerful computational platforms and support-
ing infrastructure is described. These complementary
tools and technologies are used to launch systematic
attacks on combinatorial problems of significance. As
a case study, optimal solutions to very large instances
of the NP-hard vertex cover problem are computed.
To accomplish this, an efficient sequential algorithm
and two forms of parallel algorithms are devised and
implemented. The importance of maintaining a bal-
anced decomposition of the search space is shown to
be critical to achieving scalability. With the synergis-
tic combination of techniques detailed here, it is now
possible to solve problem instances that before were
widely viewed as hopelessly out of reach. Target prob-
lems need only be amenable to reduction and decom-
position. Applications are also discussed.

Key Words

Algorithm Design, Parallel Computing, Optimization,
Load Balancing, Applications

1 Prdiminaries

An innovative technique for dealing with foundational
NP-complete problems is based on the theory of fixed-
parameter tractability.

A problem of size n, parameterized by k, is
fixed-parameter tractable if it can be decided in
O(f(k)n®) time, where f is an arbitrary function
and c is a constant independent of both n and k.

The origins of fixed-parameter tractability (henceforth
FPT) can be traced back some 15 odd years, to the work by
Fellows and Langston on applications of well-quasi order
theory, the Robertson-Seymour theorems, nonconstructiv-
ity, and in particular the minor and immersion orders. See,
for example, [9, 10, 11]. Efforts at that time were moti-
vated by the theme that, by fixing or bounding parameters
of relevance to the problem at hand, one might be able to

*This research is supported in part by the National Science Foundation
under grants EIA-9972889 and CCR-0075792, by the Office of Naval
Research under grant N00014-01-1-0608, by the Department of Energy
under contract DE-AC05-000R22725, and by the Tennessee Center for
Information Technology Research under award E01-0178-261.

TCommunicating author: langston@cs.utk.edu.

exploit a non-uniform measure of algorithmic efficiency. In
the intervening years, Downey and Fellows developed the
major theoretical basis of FPT [8]. More recently, some-
thing of a cottage industry in FPT algorithm design has be-
gun to flourish, with research groups and workshops now
held around the world. Despite all this activity, however,
the main focus has remained on theoretical issues, espe-
cially worst-case bounds, problem restrictions and the Y-
hierarchy (a fixed-parameter analog of the polynomial hier-
archy). Few serious attempts have been made at large-scale
practical implementations. A notable exception is the work
of Cheetham et al [4].

2 Exemplar

Perhaps the best-known example of an FPT problem, and
the one we use as a case study here, is vertex cover. In
this problem, the inputs are an undirected graph G with
n vertices, and a parameter £ < n. The question asked
is whether GG contains a set C' of k or fewer vertices that
covers every edge in GG, where an edge is said to be covered
if either (or both) of its endpoints is in C.

In terms of worst-case analysis, the asymptotically-
fastest algorithm currently known for vertex cover is due
to the work of Chen et al [5], and runs in O(1.2852% +
kn) time. Compare this with O(n*), the time required to
examine all subsets of size k by brute force. Of course an
attractive worst-case bound is no guarantee of a practical
algorithm. Nevertheless, it is remarkable that the requisite
exponential growth (assuming P # A P) has been reduced
to a mere additive term.

Algorithms designed to solve FPT problems are
sometimes rather loosely termed “fixed-parameter algo-
rithms.” Such algorithms were originally intended to work
only when the parameter in question was truly fixed. The
algorithm described in [3], for example, was aimed solely
at determining whether an input graph has a vertex cover of
size at most 5.

In contrast, our interest here is on pushing the bound-
ary of feasible computation. We seek to construct effective
methods for finding optimal vertex covers in huge graphs,
irrespective of any particular parameter value. To accom-
plish this, we exploit, build upon and implement techniques
gleaned in large part from recent advances in the theory of
fixed-parameter algorithm design. We detail the salient fea-
tures of some of these techniques in the next section.

3 Reduction

The goal of problem reduction is to condense an arbitrary
input instance down to a relatively small computational
core. The idea is to find a core whose size depends only on
k, and to find it in time polynomial in . In the context of
FPT, this operation is usually termed “kernelization,” and
is most often accomplished with a variety of preprocessing
rules. Many of these rules are folklore. Others have been
formalized in the literature [2, 5].

For example, for vertex cover it is possible with pre-
processing to eliminate vertices of very low or high degree.
It is trivial to eliminate vertices of degree one, because
there is no gain in using a leaf to cover its only incident
edge. It is straightforward to eliminate vertices of degree
two. There is also a rule for handling some but not all ver-
tices of degree three, but it is complicated and not necessar-
ily worth the extra effort in practice. If a vertex has degree
k-+1 or more, then it must be in any satisfying cover. Other-
wise, all its neighbors would be required to be in the cover,
and there are simply too many of them. Therefore we can
eliminate it and reduce k by one. There is also a rule for
handling vertices of degree exactly k. When no more ver-
tices can be eliminated in this fashion, the reduced graph
(core) has size at most k2. We have implemented these and
several other preprocessing rules. The order in which they
are performed can sometimes have an impact on the size
of the core produced. Their most important attributes are
probably their speed and simplicity.

Newer and more powerful (but also slower and more
complicated) kernelization methods rely on linear pro-
gramming relaxation and related techniques [12, 13, 14].
We have implemented and fine-tuned these and alternate
methods of our own design. We have incorporated where
possible highly-efficient LP codes graciously provided to
us by Bill Cook at Georgia Tech [6]. The culmination of
all this is a suite of routines that, when used in conjunction,
quickly produce a core of size at most 2k. Details about
their use can be found in [1].

4 Decomposition

As soon as reduction is complete, the core is ready to be
passed to the decomposition stage. The problem now be-
comes one of exploring the core’s search space efficiently.
In the parlance of FPT, this is known as “branching.” This
is an extremely challenging task. Even though the core is
now of bounded size, its search space typically contains
an exponential number of candidate solutions. We use an
implicit tree structure and a depth-first search to organize
the search for a satisfying cover. Each internal node of the
tree represents a choice. For example, one might make the
choice at the root by selecting an arbitrary vertex, v. Then
the left subtree may denote the set of all solutions in which
v is to be in the cover. The right subtree may denote the set
of all solutions in which v is not in the cover. This over-
simplification alone is enough to reveal one of many cu-

riosities: solutions are often found faster should it be that
v is not in the cover. This is because, when v is unused,
all its neighbors must be in the cover and, if the degree of
v is high, we converge much more rapidly toward a solu-
tion. Moving on down the tree, each leaf is a set of &k or
fewer vertices that may or may not form a valid cover, cor-
responding to a potential solution. Although effective, this
form of decomposition is an exhaustive process to be sure.
(This should come as no surprise. After all, the underlying
problem is N’P-complete.)

Of course reduction and decomposition need not be
stand-alone tasks. As decomposition proceeds, new in-
stances generated can sometimes be further reduced by a
re-application of preprocessing rules. This technique is of-
ten termed “interleaving.” See [15] for more information
and analysis. At this time, our codes use interleaving in
only a rudimentary way, by eliminating isolated vertices
and by re-applying the degree one and degree k + 1 rules.
More complex interleaving strategies are currently under
development.

Decomposition clearly requires the lion’s share of
computational resources. Thus, it is important to note that
the subtrees spawned off at each level can be explored in
parallel. Moreover, the depth of the tree can be at most k.
All that needs to be done at a leaf is to check whether the
removal of the leaf’s candidate solution leaves an edgeless
graph (all edges are covered).

Decomposition via the branching process is illus-
trated in Figure 1. Figure 1(a) shows a sample graph for
which we want to find a vertex cover of size four. Fig-
ure 1(b) depicts a resultant tree search, rooted at the ver-
tex whose label is 1. At each node of the tree, C' denotes
the candidate cover and k& denotes the maximum num-
ber of vertices that may still be added to C. (Therefore
|C| 4+ k = 4.) In this example, we have favored branching
at a node of highest current degree. Because a depth-first
search is employed, and because a solution is eventually
found in the root’s left subtree, the dotted edge leading to
the root’s right subtree need not be traversed by a sequen-
tial algorithm. This is not a property easily exploited by
parallel algorithms. As we shall see, parallel algorithms
may be very lucky or very unlucky as the solution space is
decomposed.

5 Paralleism

Parallelization works hand-in-hand with the results of de-
composition. The task of spawning processes is structured
by the same tree that is used to explore the core’s search
space. To explicate, suppose both n and & are large, and
32 processors are available. Because the search tree has
a branching factor of two, decomposition will have used
the first 5 << k levels of its tree to split the input into 32
subgraphs, one for each processor. In turn, each processor
will, in parallel, examine its subgraph using the search tree
technique.

(b)

Figure 1. The use of branching to find a vertex cover.

Once spawned, these tasks are left to run in a virtu-
ally unstructured manner. They can be farmed out as the
need arises, and serviced in anything from a tightly-coupled
to a widely-distributed fashion. No barrier synchroniza-
tion is needed. No MPI-like tools are required. A process
need not even know its siblings exist. Each is free to run
to completion, at its own pace, returning its result when-
ever it is finished. We have run our codes on several differ-
ent platform/gridware combinations. Our best results have
generally been obtained with minimal intervention, how-
ever, in the extreme case by directly launching secure shells
(SSHs).

6 Initial Resultson Synthetic Data

We first tested our algorithms on synthetic data sets. These
were mostly pseudo-random graphs generated in a variety
of ways. The results were always impressive. In fact our
best results were obtained on synthetic data sets graciously
provided by Frank Dehne at Carleton University [7]. See

Table 1. Numbers listed there reflect wall clock times.

These results are intriguing. Three different graphs
are listed, each with 600 vertices, and each containing a
vertex cover of size 400. On them we used 32 processors,
each running at 500 MHz. At first we thought the sequen-
tial routine must be hung. Traces revealed, however, that
it was humming along nicely. It is just that these graphs
have a lot of edges and their search spaces are huge. The
average speedup we observe is something north of 30,000.
Because we are only employing 32 processors, this would
surely have to be characterized as super-super-linear!

We have sought to determine what factors could have
caused this unusually fortuitous sort of parallel behavior.
Should we abandon the streamlined sequential code, and
re-write it so that it uses multiple threads or otherwise em-
ulates the actions of the parallel version?

One factor is the way in which solutions are scattered
about the search space. It has been observed before [4] that
solutions tend to be highly non-uniformly distributed. In
this setting, therefore, decomposition can do much more

Graph | Sequential
Name | Reduction

Sequential Parallel
Decomposition

Decomposition

RG30 | 1lsecond | halted after two days

5 seconds

RG31 | 1lsecond | halted after two days

4 seconds

RG32 | 1lsecond | halted after two days

4 seconds

Table 1. Intriguing results on synthetic graphs of size 600.

for us than merely help guide the search and parallelize
the process. One or more processors may find a solution
relatively close to the root of its respective subtree. The
searches occurring at other processors may be fruitless; it
matters not. Our parallel run time is based solely on the
time required for the earliest-finishing processor to deliver
to us a solution, at which point the other processors are
halted. Yet the sequential algorithm is doomed to plod
along, exhaustively examining each and every subtree un-
til it stumbles across a solution-laden region of the search
space.

Although the scenario just described is plausible
enough, we did a little more digging and believe the pri-
mary factor at play here is really just the makeup of the
data itself. These synthetic graphs are somewhat grid-like,
which for technical reasons places our parallel algorithm at
a great advantage. In short, we were lucky. Thus, the super-
super-linear speedups we observe are mainly artifacts of the
data. Nevertheless, these results do serve an important pur-
pose. They caution us against trying to read too much into
contrived examples, and echo a familiar story: rely only on
real data.

7 Dynamic Load Balancing

As we move toward the use of non-synthetic data, the
generic parallel decompaosition technique just outlined has
proved useful in many of our experiments. The result has
generally been much smaller runtimes than those for cor-
responding sequential codes. In some nagging cases, how-
ever, we would observe only very small, sometimes even
negligible, speedups. In an occasional extreme case, all but
one of the processors would finish quickly, leaving the lone
remaining processor to do the bulk of the computation. In
short, we were unlucky. Observe that we can get lucky,
achieving excellent speedup, only on “yes” instances. But
we can get unlucky, achieving little or no speedup at all,
on both “yes” and “no” instances. Interestingly, we have
found that as we iterate the decision algorithm to attain op-
timality, the closer we get to converging the parameter to
its optimal value, the more likely we are to get unlucky.
Thus, to maintain scalability as more and more ma-
chines come on line, it has been imperative that we incorpo-
rate at least some primitive form of dynamic load balancing

into our methods. We have studied a number of strategies
but, as we show in the next section, even a simple scheme
seems to have a tremendous impact. We hesitate to inter-
rupt active processes, and therefore refrain from redistribut-
ing processor loads until all processors but one are idle. Of
course one could probably invent data for which all proces-
sors but two, or three, or any fixed number are idle. And we
are building out our system to be robust enough to handle
these cases and others of their ilk. But thus far this is not
what real data seems to tell us is happening.

8 Resultson Non-Synthetic Data

Many applications of vertex cover rely on its relationship to
clique. In this problem, the inputs are an undirected graph
G with n vertices, and a parameter k£ < n. The question
asked is whether G contains a set C' of k& or more vertices
such that every pair of elements in C is connected by an
edge in G.

Clique is not FPT (unless the W hierarchy col-
lapses). Fortunately, vertex cover is a complementary dual
to clique. To see this, suppose we wish to determine
whether G contains a large clique, where large means of
size at least n — k for some suitable choice of k. Let G
denote the complement of G. Then G has a clique of size
at least n — k if and only if G’ has a vertex cover of size at
most k. This duality is depicted in Figure 2. Figure 2(a)
shows a clique in a sample graph, G;. Figure 2(b) shows
the corresponding vertex cover in G = G1.

An important use of clique is in the analysis of protein
sequence data that is now widely available from a variety
of sources. For example, given such data, relations between
sequences can be determined using codes such as the well-
known ClustalW package, which returns a score for each
sequence pair. A complete graph, G, is then constructed,
with vertices denoting sequences and edges labeled with
the corresponding scores. The source data often contains
outliers, duplicates and so forth, and so in many appli-
cations we seek first to obtain the largest possible set of
closely-related sequences before proceeding with the anal-
ysis.

Since we are interested in a maximum set of closely
related sequences, we need to find in G a set of vertices
whose pairwise scores are greater than a certain (biolog-

G,

CY

SNoA<T
i
\»v. 7"4
SO e

7
; .
RS SE

(b)

Figure 2. The duality between clique and vertex cover.

ically significant) threshold. To accomplish this, edges
whose labels are less than the threshold are removed. This
produces a new graph, G’, and it remains to find in G’ a
set of vertices that are completely related. Of course this is
just a restatement of the clique problem.

Working with colleagues in proteomics, we have
downloaded vast assortments of sequence data against
which to test our codes. These have been obtained mainly
from the National Center for Biotechnology Information
(NCBI). Each data set corresponds to a family of protein
sequences that share a common domain. A representative
set of results using data from the SH2 and SH3 domains is
reported in Table 2. As before, we used 32 processors, each
running at 500 MHz. Wall clock times are listed.

These results are particularly telling, because the rel-
evant parameter is just converging on the optimal value.
Note the significance of dynamic load balancing.

9 Conclusions

We believe this case study has been fruitful. By coupling
algorithms based on the notion of fixed-parameter tractabil-
ity with parallel computing platforms, we think we have
identified an attractive way to design scalable parallel al-
gorithms for difficult optimization problems. Certain fea-
tures, however, most notably load balancing, are critical.
Some of our methods are being incorporated into
the parallel, high-performance release of Clustal, dubbed
Clustal-XP, due out soon. We are currently adding hard-
ware acceleration in the form of Pilchard FPGA boards into
our system, in an effort to handle particularly recalcitrant
subproblems. We are also exploring mechanisms for avoid-
ing our primitive load-balancing interrupts, for example, by
allowing heavily-loaded processors to spawn subtrees out
to a job queue that is maintained by a task manager.
Despite these and other growing pains, we think our
results to date are worthy of attention. Problems as large
as those listed in Table 2 were until recently considered
by many to be hopelessly out of reach. In clique applica-
tions alone, we are now routinely returning cliques whose

vertices number in the hundreds, on graphs whose vertices
number in the thousands. Just imagine a straightforward
O(nF) algorithm on problems of that size! In fact we re-
cently solved a problem on DNA microarray data whose
size was 12,422. The clique we returned (via vertex cover)
denoted a set of 369 genes that appear experimentally to
be co-regulated. This one took us a few days to solve even
with our best current methods. Yet solving it at all was
probably unthinkable just a short time ago. We believe the
practical implications of this work are manifest.

Acknowledgments

We are grateful to Mike Fellows and Fran Rosamond for
their collaboration and encouragement, to Bill Cook for
providing us with the streamlined linear programming rou-
tines we employed in our reduction algorithms, and to
Frank Dehne for access to some of the data sets we used
in preliminary testing of our implementations.

References

[1] Faisal N. Abu-Khzam. Topics in Graph Algorithms:
Structural Results and Algorithmic Techniques, with
Applications. PhD thesis, Dept. of Computer Science,
University of Tennessee, 2003.

[2] J.F. Buss and J. Goldsmith. Nondeterminism within
P. SIAM Journal on Computing, 22:560-572, 1993.

[3] Kevin Cattell and Michael J. Dinneen. A characteriza-
tion of graphs with vertex cover up to five. In ORDAL,
pages 86-99, 1994.

[4] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege, and
P. J. Taillon. Solving large FPT problems on coarse
grained parallel machines. Technical report, Depart-
ment of Computer Science, Carleton University, Ot-
tawa, Canada, 2002.

Graph | Graph | Cover | Instance | Sequential Sequential Parallel Dynamic
Name Size Size Type Reduction Decomposition Decomposition Decomposition
SH2-5 839 399 yes 34 seconds 7 seconds not needed not needed
SH2-5 839 398 no 34 seconds 141 minutes 82 minutes 20 minutes
SH3-10 | 2466 | 2044 yes 203 minutes | just under five days | justunder five days 140 minutes
SH3-10 | 2466 | 2043 no 203 minutes | halted after six days | halted after six days | 620 minutes

Table 2. Representative results on large non-synthetic graphs.

[5] J. Chen, I. Kanj, and W. Jia. Vertex cover: further
observations and further improvements. Journal of
Algorithms, 41:280-301, 2001.

[6] W. Cook. Private communication, 2003.
[7] F. Dehne. Private communication, 2003.

[8] R. G. Downey and M. R. Fellows. Parameterized

Complexity. Springer-Verlag, 1999.

[9] M. R. Fellows and M. A. Langston. Nonconstructive
advances in polynomial-time complexity. Informa-
tion Processing Letters, 26:157-162, 1987.

[10] M. R. Fellows and M. A. Langston. Nonconstructive
tools for proving polynomial-time decidability. Jour-

nal of the ACM, 35:727-739, 1988.

[11] M. R. Fellows and M. A. Langston. On search, de-
cision and the efficiency of polynomial-time algo-
rithms. Journal of Computer and Systems Sciences,

49:769-779, 1994,

[12] D. Hochbaum. Approximation Algorithms for NP-

hard Problems. PWS, 1997.

[13] S. Khuller. The vertex cover problem. ACM SIGACT
News, 33:31-33, June 2002.

[14] G.L. Nemhauser and L. E. Trotter. Vertex packings:
Structural properties and algorithms. Mathematical
Programming, 8:232-248, 1975.

[15] R. Niedermeier and P. Rossmanith. A general method
to speed up fixed-parameter tractacle algorithms. In-
formation Processing Letters, 73:125-129, 2000.

