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Abstract 

Let X be a random variable from a normal distribution with unknown mean θ 
and known variance σ2. In many practical situations, θ is known in advance to lie 
in an interval, say [−m,m], for some m > 0. As the usual estimator of θ, i.e., X 
under the LINEX loss function is inadmissible, finding some competitors for X 
becomes worthwhile. The only study in the literature considered the problem of 
minimax estimation of θ In this paper, by constructing a dominating class of 
estimators, we show that the maximum likelihood estimator is inadmissible. Then, 
as a competitor, the Bayes estimator associated with a uniform prior on the 
interval [−m,m] is proposed. Finally, considering risk performance as a 
comparison criterion, the estimators are compared and depending on the values 
taken by θ in the interval [−m,m], the appropriate estimator is suggested. 
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Introduction 

In the statistical literature it is often assumed that the 
parameter space is unbounded which seems to be never 
fulfilled in practice. In various physical, industrial and 
biological experiments, the experimenter has often some 
prior knowledge about the parameter(s) of the 
underlying population. The average per capita income 
of a developing country is likely to lie between those of 
an underdeveloped and a developed country. The 
average fuel efficiency of a new model of passenger car 
will lie between those of an old model and a formula 
one racing car. Examples of similar nature where mean 
of a real phenomena lies in a bounded interval abound 
in practice (e.g., physical attributes such as height or 

weight of people, average life of animals), [14]. 
Therefore there is practical interest to include such 
additional information into statistical procedures. 

Surprisingly, while the assumption of boundedness 
can be useful in practice, it introduces some challenging 
problems in theory. Such problems first arose with the 
practical problem in 1950 in which two probabilities 1  

and 2  known to satisfy the restriction 1 2 ,   needed 

to be estimated. Maximum likelihood estimation was 
used for this purpose. Later Maximum Likelihood 
Estimators (MLEs) were shown to be inadmissible 
under Squared Error Loss (SEL) function 

2( , ) ( ,)L       
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that is, it was shown that there exist estimators which 
are better than the MLE in the sense that their expected 
loss, i.e., ( , ) [ ( , )]R E L    , as a function of the 

parameter to be estimated, is nowhere larger and 
somewhere smaller than that of the MLE. This then led 
to the search for dominators for these inadmissible 
estimators as well as for admissible estimators with 
“good properties”. One such property is that of 
minimaxity where an estimator is minimax when there 
does not exist an estimator with a smaller maximum 
expected loss. Examples of problems addressed in the 
restricted parameter spaces, can be found in [1], [17], 
[26] and the recent treatise by ven Eeden [27] for 
detailed discussion. 

Let 2~ ( , )X N    denote a random variable having 

normal distribution with the probability density function 
2

2

1
( )

2 2

2

1
( | , ) , ,

2

x

f x e x


 


 
   

where, it is supposed that the variance 2  is known and 
the unknown mean ,  lies in an interval of the form 
[ , ],m m  for some known m > 0. The first study in 

estimating the bounded normal mean under the SEL 
function dates back to 1981. Casella and Strawderman 
[4] showed that, when 00 1.05,m m    there exists a 

unique admissible and minimax estimator of ,  
associated with a symmetric two-point prior on 

 ,m m  and proved that it dominates the MLE of ,  

when 0 1.m   They also gave a class of admissible 
and minimax estimators for the case when 
1.4 1.6m  . These estimators are minimax w.r.t. a 

symmetric three-point prior on  ,0, .m m  Bickel [2] 

presented an estimator which is asymptotically minimax 
as ,m   and showed that the weak limit of the least 
favourable prior (rescaled to [ 1,1] ) has the density 

2 ,
2

cos
 
 
 

| | 1   and the minimax risk is 

2 2 21 ( ).m o m     After these initial works, several 

authors considered the estimation problem in restricted 
parameter spaces under the SEL function. Moors [18, 
19] assumed a bounded estimation problem is invariant 
w.r.t. a finite group of transformations and constructed 
dominators of a boundary estimator. He then applied his 
results into the estimation problem of a bounded normal 
mean. Gatsonis et al. [10] considered the Bayes 
estimator w.r.t. the uniform prior on the interval 

[ , ],m m  as a competitor for the sample mean ,X  and 

showed that it dominates .X  They further numerically 
compared risk performance of their Bayes estimator, the 

MLE, the minimax estimator, and the Bayes estimator 
w.r.t. the Bickel’s prior, and finally recommended the 
use of their proposed estimator. In addition to [18, 19], 
the estimation in restricted parameter spaces under the 
SEL function, in a very general setting, was considered 
in [5, 6, 7]. DasGupta [7] in estimating a vector ( )h   

when   is restricted to a small bounded convex subset 

  of k  derived sufficient conditions under which the 
Bayes estimator w.r.t. a least favourable prior on the 
boundary of   is minimax. He then applied his results 
in some distributions including the normal distribution 
and showed that the Bayes estimator w.r.t. the two-point 
prior considered in [4] is minimax when 0.643m  . 
Conditions for either inadmissibility or methods of 
constructing dominators within a given class of 
estimators were presented in [5, 6]. Kumar and Tripathi 
[14], on the basis of MLE, proposed another estimator 
and compared the risk performance of it with the above-
mentioned estimators. Dou and van Eeden [8], showed 
the inadmissibility conditions in [5, 6] are satisfied for 
the bounded normal mean problem and hence, by giving 
an explicit form of a dominating estimator, derived 
inadmissibility of MLE of the mean  . Lately, the 
general theory of estimating parameters of a symmetric 
distribution which is subject to an interval constraint, 
under the SEL function developed in [16]. See also [15] 
for a similar development. 

It is worth mentioning that the problem of estimating 
a normal mean   in the case where   is bounded 
below, i.e., ,a   for some constant ,a  also received 
considerable attention in the literature. Estimation of a 
positive normal mean was first considered in Katz [13]. 
Katz proposed the generalized Bayes estimator of   

w.r.t. the uniform prior on [0, )  and proved its 

admissibility and minimaxity under the SEL function. 
He also proved that the restricted MLE, is minimax. The 
results of Katz were independently proved in [22] and 
generalized in [9] to a general location parameter family 
under certain conditions. Thereafter, the problem of 
estimating a positive normal mean has developed in the 
literature, see for examples [25,26] and references there in. 

All the above-mentioned studies are based on the 
SEL function which penalizes equally overestimation 
and underestimation of a desired parameter, while it 
does not occur in practice. For example, in food 
processing industries, if the containers are underfilled, it 
is possible to incur a much more severe penalty arising 
from misrepresentation of the product's actual weight or 
volume, see [11]. As another example, in dam 
construction, an underestimation of the peak water level 
is usually much more serious than an overestimation, 
see [29]. 
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Some authors have considered an estimation problem 
under an asymmetric LINEX (LINear EXponential) loss 
function 

( )
, ( , ) { ( ) 1},a

a sL s e a         (1) 

where 0a   and 0s   are fixed real numbers. This loss 
function which was first introduced by Varian [28], 
rises exponentially on one side and approximately 
linearly on the other side, and is useful when 
overestimation is perceived as more serious than under-
estimation or vice-versa. For more information on point 
estimation under LINEX loss function, see [20, 29]. 

In the normal mean   estimation problem with no 
restriction on  , Zellner [29] showed that the usual 
estimator X  under the LINEX loss function is 
inadmissible and dominated by 

2
*( ) .

2

a
X X

    (2) 

Hence, X  is neither admissible nor minimax. Also, 
Rojo [21] and Sadooghi-Alvandi and Nematollahi [23] 
proved that in the class of estimators of the form 

,cX d *  is the only miniamx and admissible 

estimator of .  
In the bounded normal case under the LINEX loss 

function (1), the only study dates back to 1995. Bischoff 
et al. [3] considered minimax estimation of   and 
showed that the Bayes estimator w.r.t. the two-point 
prior 

( ) 1 ( )m mm m        

i.e., 

, 1 ( )
( ) ln

( )
a
m

g X
X

a g X a
 


 

where ( ) ( ) ,1mx mxg x e e     is minimax when 

0,a  1   and 0(0, ],m m   0

1
min 3 1 ,

2
m a

 


1
ln3

2a




 

In this paper, we consider the LINEX loss function 
(1) and with no loss of generality, we take 1,s   i.e., 

   ( , ) 1, 0.a
aL e a a          (3) 

We then propose some estimators of the bounded 
normal mean   and compare risk performance of the 
proposed ones with the minimax estimator derived in 
[3]. To this end, first, we obtain conditions under which 

the MLE of ,  i.e., 

( ) | |

.
MLE

m X m

X X X m

m X m


  
 
 

 

is inadmissible and hence, we derive a class of 
dominating estimators. We then propose the Bayes 
estimator of the mean   w.r.t. uniform prior as a 

competitor for .MLE  Finally, we wish to compare risk 

performance of the derived estimators. Notice that the 
concept of admissibility, Bayesianity, invariance and 
minimaxity highly depends on the choice of loss 
function. It is worth noting that there exist some other 
works related to restricted parameter estimation 
problem, considering other losses. For a brief history 
and some related references, see the recent work done 
by Karimnezhad [12] which considered the bounded 
normal mean estimation problem relative to the SEL 
function. 

Inadmissibility of MLE 

In this section, we construct a dominating class of 
estimators of MLE  based on the work done by Charras 

[5] and Charras and van Eeden [6] (readers may refer to 
[8] as a convenience version of [5, 6]). 

Let Ch  be a shrinkage estimator of the following 

form 

( ) | |

,
Ch

m X m

X X X m

m X m


   
  
   

 



 

 (4) 

where (0, ].m  Due to the mentioned aim, we first 

provide some required materials below. 
 
Lemma 1. Let 

 
21

2

( ) ( )

( ) ( ), 0,

ax

a

u x e ax x

e x a a x a

   

      

 (5) 

 
21

2

( ) ( )

( ) ( ), 0,

ax

a

v x e ax x

e x a a x a

  

     

 (6) 

where (.)  and (.)  denote the distribution and density 

function of a standard normal random variable. Then 
( ),u x ( )v x  and their first and second derivatives have 
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the following properties: 
(a) ( )u x  and ( )v x  are decreasing for 0x   and 

increasing for 0.x   

(b)  ' ( ) 1 ( )axu x a e x     and has the same sign 

as .x  
(c) '' 2( ) ( )axu x a e x    for 0.x   

(d)  ' ( ) 1 ( )axv x a e x    and has the same sign 

as .x  
(e) '' 2( ) ( )axv x a e x   for 0.x   

 
Proof. The proof is straightforward and omitted. 
 
Lemma 2. Let ' '( , ) ( ) ( )h x u x v x       where 

( )u x  and ( )v x  are given by (5) and (6). Further 

suppose a  is positive, then 

(a) For fixed (0, )m  and for ( , ],m m  
( , )h m   is a decreasing function of .  

(b) For [0, ],x m  let 

' '( ) ( , ) (2 ) ( ).x h m x m u m x v x       (7) 

Then (0) 0   and ( ) 0.m   Furthermore, if 0a   

satisfy one of the following conditions: 

0a   (8) 

or 

 1 20 1 max ( ), ( ) 0a and w a w a    (9) 

where 

2
1( ) 1amw a e a    (10) 

and 
2

2

2

( ) ( 2 )

( ) ( ),
2

am

am am

w a ae m

a
m e e m 



 

  

  
 (11) 

then ' ( ) 0,x   for (0, ).x m  Hence, there exists a 

unique root ' (0, )m  of the equation ( ) 0x   such 

that under conditions (8) or (9), for '[0, ),x    

( ) 0,x   and for '( , ],x m  ( ) 0.x   

 
Proof. 

(a) Differentiating ( , )h m   w.r.t. ,  we have 

''

''

( , ) ( )

( ).

h m u m

v m

 





   



  

 



 (12) 

Now using Lemma 1(c) and (e), the remainder is 
easily obtained. 

(b) Differentiating ( )x  w.r.t. ,x  we have 
' '' ''( ) (2 ) ( ).x u m x v x      

On the other side, for [0, ]x m  

 (13) 

Now let 

(2 ) 2( ) .a m x ax axw x ae a e ae       

We discuss the sign of ( ).w x  Due to condition (8),
2a a  and hence ( )w x  is positive. Moreover under 

condition (9), it can be easily seen that ( )w x  is an 

increasing function. So using equation (10), for 
[0, ],x m 2 2

1( ) (0) ( ).amw x w ae a a aw a      Further, 

using the following inequalities 

   

 

2 (2 ) 2 2

(2 ) 2

2 2

( 2 ) ( 2 ),

(2 ) 1 ( ) 1 ,

( ) (0),

( ) 1 0,

a m x am

a m x am

ax am

ax

a e x m a e m

a m x e a m e

a e x a e

a x e

 



  

  

 



    

   

  

 

 

And equations (11) and (13), we conclude that 
'' ''

2(2 ) ( ) ( ).u m x v x w a    Hence, if 0 1a   and 

 1 2max ( ), ( ) 0,w a w a  '' ''(2 ) ( )u m x v x   will be 

positive and the proof is completed. 
The main result of this section is as follows. 

 
Theorem 1. Let ~ ( ,1)X N   when | | ,m  0.m   

Then under conditions (8) and (9),  ': 0Ch     is a 

class of dominating estimators of MLE  w.r.t. the 

LINEX loss function (3), where '  is the unique root of 
equation (10). 

 
 

 
 

 
  

 

'' ''

2 (2 )

(2 )

2

(2 )

2

(2 )
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(2 ) 2
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( 2 )

(2 ) 1
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ax ax
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ax ax
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a e x m
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a e x a x e
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m x a e a e

m x ae a e ae

 

 

 

 
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 

 

   

 

  

  

   

  

   

  

  

  
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Proof. Due to equations (5) and (6), it can be easily 
verify that the risk function of MLE  and Ch  have the 

following form 

 (14) 

and 

 (15) 

Let 

( , ; , ) ( , ) ( , ).MLE Ch MLE ChR R          

Now, we discuss the sign of ( , ; , )MLE Ch     in two 

cases. (i) when [ , ),m m       using Lemma 1(a) 

the desired result follows. (ii) when ( , ],m m    

differentiating ( , ; , )MLE Ch     w.r.t. ,  according to 

Lemma 1(a), we have 
'

' '

( ) 0, 0
( , ; , ) ( , )

( ) 0, .
MLE Ch h m m


  


   

   
  

  
 

 �  �

Consequently, for '[0, ]   and ( , ],m m    

( , ; , ) ( , ; ,0) 0MLE Ch MLE Ch          

And this completes the proof. 
The next lemma which is similar to the work done by 

Moors [18, 19] and Bischoff et al. [3], provides a useful 
extension of the main result. 
 
Lemma 3. Suppose an estimation problem is invariant 
w.r.t. the finite group of transformations  , ,G e g  

where for ,x  ( )e x x  is an identity 

transformation and ( ) .g x x   Further suppose for 

,x   ( ) ( ),i ix x    1,2.i   Then, in the family 

of normal distributions  ( ,1),N     and under the 

LINEX function (3), for given 0a   and 1 2[ , ],m m   

1  dominates 2  if and only if for 0a   and 

2 1[ , ],m m     .. dominate 2 .  

 
Proof. The following relation is held assuming the 
mentioned assumptions 

   , ( ) , ( ) , 1, 2a i a iE L X E L X i               

and because of that, 

   

   

1 2

1 2

, ( ) , ( )

, ( ) , ( ) .

a a

a a

E L X E L X

E L X E L X

 

 

   

      

      

         
 

This gives the desired result. 
Now, using Theorem 1 and Lemma 3, the next 

theorem is immediately derived. 
 
Theorem 2. Let ~ ( ,1)X N   when | | , 0.m m    

Then under conditions 

1a    

or 

 1 21 0 and max ( ), ( ) 0a w a w a     
 

where 1( )w a  and 2 ( )w a  are given in equations (10) 

and (11) respectively, for 0 m   and 
[ , ],m m     MLE  is inadmissible and 

 ':0Ch     is a class of dominating estimators of 

,MLE  where Ch  is given in (4) and '  is the unique 

root satisfying Theorem 1. 
In Table 1, values of  1 2( ), ( )w a w a  (given by 

equations (10) and (11)) for different values of m  and 
a  have been tabulated. As it can be seen, when a  is 

positive, at least on of 1( )w a  and 2 ( )w a  is positive and 

the condition  1 2max ( ), ( ) 0w a w a   is not a limiting 

one. In the same way, it can be inferred that when a  is 

negative, the condition  1 2max ( ), ( ) 0w a w a    is not 

an encumbrance condition. 
In Table 2, values of the unique root of equation (7) 

for various values of a  and m  have been calculated. 
Notice that under conditions mentioned in Theorem 1, 
for '(0, ]   and [ , ],m m     Ch  dominates MLE  

but because of the mathematical difficult computations, 
it is not easy to prove this property explicitly. This 
subject in Theorem 2 for '(0, ]   and [ , ]m m    

holds but because of the same reason, we cannot prove 
that. This desired property is obviously seen from Fig. 1  

 
Table 1. Values of (w1(a),w2(a)) for different values of a and m 

   a  

  0.20 0.50 0.80

 0.30 (0.0896,0.0997) (0.2408,0.2179) (0.4188,0.0305)

 0.50 (0.0187,0.0526) (0.1065,0.1043) (0.2493,0.1313)

 0.80 (-0.0739,0.0138) (-0.0507,0.0204) (0.0780,0.0014)

m 1.00 (-0.1297,0.0052) (-0.1321,0.0029) (0.0019,-0.0097)

 2.00 (-0.3507,0.0373) (-0.3647,0.0453) (-0.1592,0.0290)

 5.00 (-0.6647,0.0368) (-0.4933,0.0205) (-0.1997,0.0073)

 10.00 (-0.7817,0.0135) (-0.5000,0.0017) (-0.2000,0.0017)

( , ) ( ) ( ) 1MLER u m v m       

( , ) ( ) ( ) 1.ChR u m v m          
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to Fig. 6. Moreover when   tends to ' ,  the difference 

between risk functions of Ch  and MLE  becomes 

significant. This desired property is obvious from Fig. 1. 
Besides in Fig. 2, risk functions of Ch  and MLE  cut 

each other in [ , ].m m  This is due to the value of ' .  In 

fact the values 0.4   and 0.7   is out of the interval 
'(0, )  (see Table 2) and hence according to Theorem 1 

there is no reason for the dominance of Ch  on .MLE  
The same thing happens in Fig. 3. Additionally, 
comparing Fig. 2 and Fig. 3 reveals the important of 
selection for values of a  (difference between 
overestimation and underestimation). Underlying the 
important of overestimation and underestimation, it can 
be seen that in Fig. 2 all the risk functions, between 

m    and ,m   take their minimum at the point 
m   and in Fig. 3 this issue happens conversely. 

Bayes Estimator Associated with the Uniform Prior 

In this section we propose another competitor for 
.MLE  This competitor is the Bayes estimator associated 

with the uniform prior 
1

( ) , [ , ].
2mu m m

m
     

The Bayes estimator w.r.t. the LINEX loss function 
(3) is given by 

 ,

,0

,

1
( ) ln

( )1
ln ,

2 ( )

a
m a

m

m a

X E e X
a

h Xa
X

a h X

  

  

 

where , ( ) ( ) ( ).m ah X m X a m X a         

Comparing ,m a  with *  (given by (2)), we are 

interested in the behaviour of risk function of , .m a  In 

the next section, we carry out a simulation study to see 
the performance of , .m a  

Comparisons of Risk Performance 

In this section we compromise the risk function of all 

the estimators, namely *,  , ,m
   ,MLE  Ch  and , .m a  

The risk function of *  is constant 2( / 2)a  and the risk 

of MLE  and Ch  have been given in (14) and (15), 

respectively. The risk function of ,
m
   and ,m a  has not 

an analytical form and hence, it is impossible to 
compare their risks explicitly. So, we have computed 
their estimated risks and figured them in Fig. 4 to Fig. 6. 

Since Bischoff et al. [3] have proved minimaxity of 
,

m
   for 0,a   we have chosen some positive values 

for .a  Further, we have considered two-point prior used 

in this paper, is a symmetric one, i.e., 1/ 2.   Notice 

that our comparisons are on the basis of a carefully 
analysis and here, we have just figured the risk 
functions for some selected values of a  and .m  Our 
conclusion is as follows: 

(a) Risk function of *  is constant 2( / 2)a  but as it 

can be seen especially from Fig. 4, other the estimators 
have smaller risk values. Moreover *  is not range-
preserving. So, because of these reasons, we prefer not 
to use it any longer. 

(b) ,
m
   under the minimaxity condition, i.e., 

0(0, ],m m  where 0

1 1
min{ ( 3 1) , ln 3}

2 2
m a

a
  , has 

quite good risk performance when   is close to .m  

(c) Ch  has good risk performance w.r.t. .MLE  The 

risk difference of these two estimators for small values 
of a  and m  is satisfactory. In addition, MLE  and Ch  

has smaller risk values when   is close to .m  
(d) ,m a  for moderate values of   in [ , ],m m  has 

remarkable risk performance. It also is less sensitive to 
changes in values of a  and .m  Moreover, 

,
m
   takes the 

maximum value its risk function at point m   which 
is close to the risk function of the minimax estimator 

, .m
   These desirable behaviours of the risk function of 

,m a  can be observed simplicity from Fig. 4 to Fig. 6. 

Results 

The problem considered in this paper is that of 
estimating the mean of a normal distribution under the 
additional information that the mean lies in a bounded 
interval [ , ]m m  under the LINEX loss function (3). 

Some estimators for the mean were proposed, namely, 

,X  *,  , ,m
   ,MLE  Ch  and , .m a  It was first shown 

that, under mild conditions, Ch  dominates .MLE  Then, 

considering risk performance as a comparison criterion, 
the estimators were compared. We do not recommend 

the use of the usual estimator X  and *,  which are not 
range preserving. We then based on our numerical 
results, recommend the use of ,

m
   when   is close to 

,m  and MLE  or Ch  when   is close to .m  The use 

of ,m a  is recommended when   has moderate values 

in [ , ].m m  
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Figure 1. Risk functions of δMLE and δCh for m = a = 0.5 and 
different values of  . 

 
 

 

Figure 3. Risk functions of δMLE and δCh for m = −a = 0.75 
and different values of  . 

 
 

 

Figure 5. The risk functions for m = 0.5 and a = 1. 

 

Figure 2. Risk functions of δMLE and δCh for m = a = 0.75 and 
different values of  . 

 
 

 

Figure 4. The risk functions for m = a = 0.75. 
 

 
 

 

Figure 6. The risk functions for m = 1 and a = 1.5. 
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Table 2. Values of the unique root of equation (7) for various values of taken by estimators when a, m 

a  0.25   0.50   0.75  

m 0.30 0.40 0.50 0.40 0.50 0.60 0.50 0.75 0.90 

  0.2223 0.2561 0.2653 0.2489 0.2517 0.2284 0.2379 0.1405 0.0799 

 
Table 2. Continued 

a  1.00   1.50   1.75  

m 0.50 1.00 1.50 0.50 1.00 1.50 0.50 1.00 1.50 

  0.2240 0.0426 0.0025 0.1967 0.0308 0.0017 0.1837 0.0268 0.0015 
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