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ABSTRACT 

 

This article presents a generic model for pricing financial derivatives subject to counterparty credit risk. 

Both unilateral and bilateral types of credit risks are considered. Our study shows that credit risk should be 

modeled as American style options in most cases, which require a backward induction valuation. To correct 

a common mistake in the literature, we emphasize that the market value of a defaultable derivative is 

actually a risky value rather than a risk-free value. Credit value adjustment (CVA) is also elaborated. A 

practical framework is developed for pricing defaultable derivatives and calculating their CVAs at a 

portfolio level. 
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A broad range of financial instruments bear credit risk. Credit risk may be unilateral or bilateral. Some 

derivatives such as, debt instruments (e.g., loans, bills, notes, bonds, etc), by nature contain only unilateral 

credit risk because only the default risk of one party appears to be relevant. Whereas some other derivatives, 

such as, over the counter (OTC) derivatives and securities financing transactions (SFT), bear bilateral credit 

risk because both parties are susceptible to default risk. 

In the market, risk-free values are quoted for most financial derivatives. In other words, credit risk 

is not captured. Historical experience shows that credit risk often leads to significant losses. Therefore, it is 

obvious to all market participants that credit risk should be taken into account when reporting the fair value 

of any defaultable derivative. The adjustment to the risk-free value is known as the credit value adjustment 

(CVA). CVA offers an opportunity for banks to dynamically price credit risk into new trades and has 

become a common practice in the financial industry, especially for trading books. By definition, CVA is 

the difference between the risk-free value and the true (or risky or defaultable) value that takes into account 

the possibility of default. The risk-free value is what brokers quote or what trading systems or models 

normally report. The risky value, however, is a relatively less explored and less transparent area, which is 

the main challenge and core theme for credit risk measurement and management (see Xiao (2015) and Xiao 

(2017)). 

There are two primary types of models that attempt to describe default processes in the literature: 

structural models and reduced-form (or intensity) models. The structural models, studied by Merton (1974) 

and Longstaff and Schwartz (1995), regard default as an endogenous event, focusing on the capital structure 

of a firm. The reduced-form models introduced by Jarrow and Turnbull (1995) and Duffie and Singleton 

(1999) do not explain the event of default endogenously, but instead characterize it exogenously as a jump 

process. For pricing and hedging, reduced-form models are the preferred methodology. 

Three different recovery models exist in the literature. The default payoff is either 1) a fraction of 

par (Madan and Unal (1998)), 2) a fraction of an equivalent default-free bond (Jarrow and Turnbull (1995)), 

or 3) a fraction of market value (Duffie and Singleton (1999)).  The last one is most commonly used in the 

market. In their paper, Duffie and Singleton (1999) do not clearly state whether the market value of a 
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defaultable derivative is a risky value or a risk-free value. Instead, the authors implicitly treat the market 

value as a risky value because the market price therein evolves in a defaultable manner. Otherwise, they 

cannot obtain the desired result. However, most of the later papers in the literature mistakenly think that 

the market value of a defaultable derivative is a risk-free value. Consequently, the results are incorrect. For 

instance, the current most popular CVA model described by Pykhtin and Zhu (2007), and Gregory (2009) 

is inappropriate in theory because the authors do not distinguish risky value and risk-free value when they 

conduct a risky valuation (i.e. valuing a defaultable derivative). In fact, the model has never been rigorously 

proved. 

In this paper, we present generic models for valuing defaultable financial derivatives. For 

completeness, our study covers various cases: unilateral and bilateral, single payment and multiple 

payments, positive and negative payoffs. Although a couple of simple cases have been studied before by 

other authors, e.g. Duffie and Singleton (1999), Duffie and Huang (1996), who only provide heuristic 

derivations in a non-rigorous manner; analytic work on the other cases is novel. In contrast with the current 

recursive integral solution (see Duffie and Huang (1996)), our theory shows that the valuation of defaultable 

derivatives in most situations requires a backward induction procedure.  

There is an intuitive way of understanding these backward induction behaviours: We can think that 

any defaultable derivative with bilateral credit risk embeds two default options. In other words, when 

entering a defaultable financial transaction, one party grants the other party an option to default and, at the 

same time, also receives an option to default itself. In theory, default may occur at any time. Therefore, 

default options are American style options that normally require a backward induction valuation. 

We explicitly indicate that, within the context of risky valuation, the market value of a defaultable 

derivative is actually a risky value rather than a risk-free value, because a firm may default at any future 

time even if it survives today. An intuitive explanation is that after charging the upfront CVA, one already 

converted the market value of a defaultable derivative from the risk-free value to the risky value.  
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From a practical perspective, we propose a novel framework to perform the bilateral risky valuation 

and calculate the bilateral CVA at a portfolio level, which incorporates netting and margin (or collateral) 

agreements and captures wrong/right way risk.  

The rest of this paper is organized as follows: Basic setup is provided in Section 1; pricing unilateral 

defaultable derivatives and their unilateral CVAs is discussed in Section 2; valuing bilateral asymmetric 

defaultable derivatives and their bilateral CVAs is elaborated on in Section 3; a practical framework that 

embraces netting agreements, margining agreements, and wrong/right way risk is proposed in Section 4, 

and the numerical results are presented in Section 5. The conclusions are given in Section 6. 

 

1. Basic Setup 

We consider a filtered probability space ( , F ,  
0ttF , P ) satisfying the usual conditions, 

where   denotes a sample space, F  denotes a  -algebra, P  denotes a probability measure, and 

 
0ttF  denotes a filtration. 

The default model is based on the reduced-form approach proposed by Duffie and Singleton (1999) 

and Jarrow and Turnbell (1994), which does not explain the event of default endogenously, but 

characterizes it exogenously by a jump process. The stopping (or default) time   is modeled as a Cox 

arrival process (also known as a doubly stochastic Poisson process) whose first jump occurs at default with 

a stochastic hazard rate or arrival intensity )(th . 

It is well-known that the survival probability, conditional on a realization path, from time t to s in 

this framework is defined by 








−== 
s

t
duuhZtsstS )(exp),|Pr(:),(      (1a) 

where Z is the firm-specific state process that helps forecast that firm’s default. The default probability, 

conditional on the realization path, for the period (t, s) in this framework is defined by 
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






−−=−== 
s

t
duuhstSZtsstQ )(exp1),(1),|Pr(),(    (1b) 

 Applying the law of iterated expectations, we express the expected survival probability for the 

period (t, s) as 














−=  tF
s

t
duuhEstS )(exp),(     (2a) 

where  tE F•  is the expectation conditional on the tF . The expected default probability for the period 

(t, s) is expressed as 














−−=−=  tF
s

t
duuhEstSstQ )(exp1),(1),(    (2b) 

There are three different recovery models in the literature. The default payoff is either 1) a fraction 

of par, 2) a fraction of an equivalent default-free bond, or 3) a fraction of market value. We use the recovery 

model of market value in our study.  

 The binomial default rule considers only two possible states: default or survival. For a discrete one-

period (t, s) economy, at the end of the period a defaultable derivative either defaults with the default 

probability ),( stQ or survives with the survival probability ),( stS . Assume that the market value of the 

defaultable derivative at time s is )(sV D
. The default payoff is a fraction of the market value given by 

)()( sVs D , where )(s is the default recovery rate at time s, whereas the survival payoff is equal to the 

market value )(sV D
 itself. Therefore, the risky value of the derivative, conditional on the realization path, 

is the discounted expectation of the payoffs, given by 

( ))(),()()(),(),()( sVstSsVsstQstDtV DDD +=      (3a) 

where 






−=  duurstD
s

t
)(exp),(      (3b) 
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where ),( stD denotes the stochastic risk-free discount factor at t for the maturity s and )(ur  denotes the 

risk-free short rate at time u ( sut  ). 

If the derivative survives at time s, the survival value is equal to the market value. However, the 

derivative may default at any time after s. Therefore, the present survival value or the market value at time 

s is a risky value. In other words, for risk-free valuations, the market value is a risk-free value, but for risky 

valuations, the market value is actually a risky value. An intuitive explanation is that one already converted 

the market value from the risk-free value to the risky value after charging the upfront CVA. 

 

2.  Unilateral Defaultable Derivatives Valuation and Unilateral CVA 

Unilateral risky valuation can be applied to two cases. By nature, the derivatives in case 1 involve 

only unilateral credit risk. In case 2, the derivatives actually bear bilateral credit risk, but people sometimes 

may treat bilateral defaultable derivatives as unilateral ones for simplicity.  

Two parties are denoted as A and B. The unilateral credit risk assumes that only one party is 

defaultable and the other one is default-free. In this section, we assume that party A is default-free, whereas 

party B is defaultable. All calculations are from the perspective of party A. Let the valuation date be t. We 

study single payment cases first. 

2.1.   Single Payment Cases 

Consider a defaultable derivative that promises to pay a TX  from party B to party A at maturity 

date T, and nothing before date T. The payoff TX  may be positive or negative, i.e. the derivative may be 

either an asset or a liability to each party. The risk-free value of the derivative at valuation date t is given 

by 

 tT

F XTtDEtV F),()( =      (4) 

where ),( TtD is the risk-free discount factor defined in (3b).  
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 We divide the time period (t, T) into n very small time intervals ( t ) and assume that a default 

may occur only at the end of each very small period. 

Proposition 1: The unilateral risky value of the single payment derivative is given by 

 tTB
D XTtCEtV F),()( =      (5a) 

where 

 
−

=
+−=

1

0
)(exp),(

n

i BB ttitcTtC      (5b) 

( ))(1)(1)()(
0))1((

tittithtitrtitc BBtitVB D +−+++=+
++

   (5c) 

where Y  is an indicator function that is equal to one if Y is true and zero otherwise.  

Proof: See the Appendix. 

 We may think of ),( TtCB  as the risk-adjusted discount factor and )(ucB  as the risk-adjusted short 

rate. Here )(uB  represents the default recovery rate of party B, and )(uhB  represents the hazard rate of 

party B. ( ))(1)()( uuhus BBB −=  is called the credit spread or the short credit spread. 

Compared to the risk-free valuation (4), the risky valuation (5) is substantially complex. The 

intermediate values are vital to determine the final price. For a small time interval, the current risky value 

has a dependence on the future risky value. Only on the final payment date T, the value of the derivative 

and the maximum amount of information needed to determine the risk-adjusted discount factor are revealed. 

This type of problem can be best solved by working backwards in time, with the later risky value feeding 

into the earlier ones, so that the process builds on itself in a recursive fashion, which is referred to as 

backward induction. The most popular backward induction valuation algorithms are lattice/tree and 

regression-based Monte Carlo.  

For an intuitive explanation, we can posit that a defaultable derivative under the unilateral credit 

risk assumption has an embedded default option. In other words, one party entering a defaultable financial 

transaction actually grants the other party an option to default. If we assume that a default may occur at any 
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time, the default option is an American style option. American options normally have backward recursive 

natures and require backward induction valuations. 

In theory, a default may happen at any time. The Continuous-Time Risky Valuation Model, or 

simply the Continuous-Time Model (CTM), assumes that a defaultable derivative is continuously 

defaultable. Proposition 1 can be further expressed in the form of the CTM as: 

Corollary 1.1: The unilateral risky value of the single payment derivative under the CTM is given by 

 tTB
D XTtCEtV F),()( =      (6a) 

where 






−= 
T

t
BB duucTtC )(exp),(      (6b) 

))(1)((1)()(
0)(

uuhuruc BBuVB D −+=
     (6c) 

The proof of this corollary becomes straightforward, according to Proposition 1, by taking the limit 

as t  approaches zero. 

Proposition 1 provides a general form for pricing a unilateral defaultable single payment derivative. 

Applying it to a particular situation in which we assume that the payoff TX  is non-negative, we derive the 

following corollary: 

Corollary 1.2: If the payoff TX  is non-negative, the risky value of the single payment derivative under the 

CTM is given by 

 tTB
D XTtCEtV F),()(


=      (7a) 

where 






−= 
T

t
BB duucTtC )(exp),(


     (7b) 

))(1)(()()( uuhuruc BBB −+=


     (7c) 



 8 

The proof of this corollary is easily obtained according to (6) by setting 0)( uV D
. Since the 

payoff TX  is non-negative, the intermediate value )(uV D
 is also non-negative. 

 Equation (7) is the same as Equation (10) in Duffie and Singleton (1999). In their heuristic 

derivation, the authors implicitly treat the market value of a defaultable derivative as a risky value because 

the market price therein evolves in a defaultable manner. Otherwise, they would not have been able to 

obtain the desired result.  

The risky valuation becomes quite simple when the payoff is non-negative. This corollary says that 

a single non-negative payment defaultable derivative can be priced using the present value of the promised 

payoff TX  discounted by the risk-adjusted discount rate )(ucB


 instead of the risk-free rate )(ur . 

By definition, the corresponding CVA of the single non-negative payment derivative can be 

expressed as 

   tTBtT
DFU XTtCEXTtDEtVtVtCVA FF ),(),()()()(


−=−=    (8) 

 Since ),( TtCB


 is always smaller than ),( TtD , the CVA is, in this case, a credit charge. The credit 

charge covering party A’s potential loss comes from the scenario of party B’s default when party A is in the 

money in the portfolio. 

Under the CTM, a unilateral defaultable derivative has an embedded American style default option, 

which is continuously defaultable. Since American options are difficult to hedge, a common practice in the 

market is to use Bermudan options to approximate American ones. Consequently, we assume that a default 

may only happen at some discrete times. A natural selection is to assume that a default may occur only on 

the payment dates. The Discrete-Time Risky Valuation Model, or simply the Discrete-Time Model (DTM), 

assumes that a defaultable derivative may only default on payment dates. 

Proposition 2: The unilateral risky value of the single payment derivative under the DTM is given by 

 tFTB
D XTtGEtV ),()( =      (9a) 

where 
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( ) )(1),(11),(),( 0 TTtQTtDTtG BBXB T
−−=      (9b) 

Proof: See the Appendix. 

 Here we may consider ),( TtGB  as the risk-adjusted discount factor. Proposition 2 states that the 

unilateral risky valuation of the single payoff derivative has a dependence on the sign of the payoff. If the 

payoff is positive, the risky value is equal to the risk-free value minus the discounted potential loss. 

Otherwise, the risky value is equal to the risk-free value. 

The corresponding unilateral CVA of the single payment derivative under the DTM can be 

expressed as 

   
( ) tTBBX

tTBtT
DFU

XTtQTTtDE

XTtGEXTtDEtVtVtCVA

T
F

FF

),()(1),(1

),(),()()()(

0 −=

−=−=


   (10) 

 Equation (10) shows that if the payoff is in the money, the CVA is a credit charge equal to the 

discounted potential loss. If the payoff is out of the money, the CVA is zero. 

Proposition 2 has a general form that applies in a particular situation in which we assume that the 

payoff TX  is non-negative. 

Corollary 2.1: If the payoff TX  is non-negative, the risky value of the single payment derivative under the 

DTM is given by 

 tFTB
D XTtGEtV ),()( =      (11a) 

where 

( )  ( )),()(),(),()(1),(1),(),( TtQTTtSTtDTTtQTtDTtG BBBBBB  +=−−=   (11b) 

The proof of this corollary is straightforward according to Proposition 2 by setting 0TX . 

Equations (11) are consistent with equations (3). 

2.2.    Multiple Payments Cases 
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Suppose that a defaultable derivative has m cash flows. Any of these cash flows may be positive or 

negative. Let the m cash flows be represented as 1X ,…, mX  with payment dates 1
T ,…, mT . The risk-free 

price of the derivative is given by 

  =
=

m

i tii
F XTtDEtV

1
),()( F      (12) 

We divide any payment date period ( 1−iT , iT ) into in  very small time intervals ( t ) and 

assume that a default may occur only at the end of each very small period. 

Proposition 3: The unilateral risky value of the multiple payments derivative is given by 

( )  =
=

m

i tiiB
D XTtCEtV

1
),()( F      (13a) 

where 







+−= 

 =
−

=

i

k kn

j BiB ttjtcTtC 1
1

0
)(exp),(      (13b) 

( ))(1)(1)()(
0))1((

tjttjthtjtrtjtc BBtjtVB D +−+++=+
++

    (13c) 

Proof: See the Appendix. 

Proposition 3 says that the pricing process of a multiple payments derivative has a backward nature 

since there is no way of knowing which risk-adjusted discounting rate should be used without knowledge 

of the future value. In other words, the present value takes into account the results of all future decisions. 

On the final payment date, the value of a derivative and the decision strategy are clear. Therefore, the 

evaluation must be done in a backward fashion, working from the final payment date towards the present. 

This type of valuation process is referred to as backward induction.  

 If we model default in a continuous-time setting, the Proposition 3 can be further expressed as 

follows. 

Corollary 3.1: The unilateral risky value of the multiple payments derivative under the CTM is given by 

( )  =
=

m

i tiiB
D XTtCEtV

1
),()( F      (14) 

where 
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




−= 
iT

t
BiB duucTtC )(exp),(      (14b) 

))(1)((1)()(
0)(

uuhuruc BBuVB D −+=


    (14c) 

The proof of this corollary is easily obtained, according to Proposition 3, by taking the limit as t  

approaches zero. 

Proposition 3 has a general form that applies in a particular situation in which we assume that all 

the payoffs are non-negative. 

Corollary 3.2: If all the payoffs are non-negative, the risky value of the multiple payments derivative under 

the CTM is given by 

( )  =
=

m

i tiiB
D XTtCEtV

1
),()( F


     (15a) 

where  






−= 
iT

t
BiB duucTtC )(exp),(


     (15b) 

))(1)(()()( uuhuruc BBB −+=


     (15c) 

The proof of this corollary is straightforward, according to (14), by setting 0)( uV D
.  

This is the formula for pricing defaultable bonds in the market. Corollary 3.2 says that if all the 

payoffs are positive, we can evaluate each payoff separately and sum the corresponding results. In other 

words, payoffs in this case can be treated as independent.  

If we assume that a default may occur only on the payment dates, the result is the following 

proposition in a discrete-time setting. 

Proposition 4: The unilateral risky value of the multiple payments derivative under the DTM is given by 

( )  =

−

= +=
m

i ti

i

j jjB
D XTTGEtV

1

1

0 1 ),()( F     (16a) 

where 0
Tt =  and 

( )





 −−= +++++
++

)(1),(11),(),( 110))((11
11

jBjjBTVXjjjjB TTTQTTDTTG
j

D
j

   (16b) 
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Proof: See the Appendix. 

Similar to Proposition 3, the individual payoffs under Proposition 4 cannot be evaluated separately. 

The current risky value depends on the future risky value. This type of problem is usually solved using 

backward induction algorithms. 

Proposition 4 has a general form that applies in a particular situation where we assume that all 

payoffs are non-negative. 

Corollary 4.1: If all the payoffs are non-negative, the risky value of the multiple payments derivative under 

the DTM is given by 

( )  =

−

= +=
m

i ti

i

j jjB
D XTTGEtV

1

1

0 1 ),()( F     (17a) 

Where 0
Tt =  and 

( ) )(1),(1),(),( 1111 ++++ −−= jBjjBjjjjB TTTQTTDTTG     (17b) 

The proof of this corollary is easily obtained according to Proposition 4 by setting 

( ) 0)( 11 + ++ j
D

j TVX . 

 

3.  Bilateral Defaultable Derivative Valuation and Bilateral CVA 

A critical ingredient of the pricing of a bilateral defaultable derivative is the rules for settlement in 

default. There are two rules in the market. The one-way payment rule was specified by the early 

International Swap Dealers Association (ISDA) master agreement. The non-defaulting party is not 

obligated to compensate the defaulting party if the remaining market value of the derivative is positive for 

the defaulting party. The two-way payment rule is based on current ISDA documentation. In the event of 

default, if the contract has positive value to the non-defaulting party, the defaulting party pays a fraction of 

the market value of the derivative to the non-defaulting party. If the contract has positive value to the 

defaulting party, the non-defaulting party will pay the full market value of the derivative to the defaulting 
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party. Within the context of risky valuation, one should consider the market value of a defaultable derivative 

as a risky value. 

The default indictor j


 for party j (j=A, B) is a random variable with a Bernoulli distribution, which 

takes value 1 with default probability jQ , and value 0 with survival probability jS . Consider a pair of 

random variables ( A


, B


) that has a bivariate Bernoulli distribution as summarized in Table 1.  

 

Table 1. Bivariate Bernoulli Distribution 

This table shows the joint and marginal distributions of a bivariate Bernoulli distribution of A


 and B


. 

Marginally, each random variable j


 ( j


= A


, B


) follows a univariate Bernoulli distribution that takes 

value 1 with default probability jQ  and value 0 with survival probability jS . BBAA SQSQ =  where   is 

the correlation coefficient of A


 and B


.  

 

Joint Distribution 

Marginal Distribution 

1=A


 0=A


 

Joint Distribution 

1=B


 +ABQQ  −ABSQ  BQ  

0=B


 −ABQS  +ABSS  BS  

Marginal Distribution AQ  AS   

 

3.1.   Single Payment Cases 

Consider a defaultable derivative that promises to pay a TX  from party B to party A at maturity 

date T and nothing before date T. The payoff may be either an asset or a liability to each party. 

 We divide the time period (t, T) into n very small time intervals ( t ) and assume that a default 

may occur only at the end of each very small period. 

Proposition 5: The bilateral risky value of the single payment derivative is given by 

 
tT

D XTtOEtV F),()( =       (18a) 
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where 

( )ttitoTtO
n

i
+−= 

−

=

1

0
)(exp),(     (18b) 

 )(1)(1)()( 0))1((0))1(( titptitptitrtito AtitVBtitV +++++=+ ++++   (18c) 

 

( ) ( )
( )

( )( )
ttithtith

ttithttithtithtith

tittittit

tithtittithtittitp

AB

ABBA

ABBB

ABBBB

+++

+−+−++

+++−+−−

++−+++−=+

)()(

)(1)(1)()(

)()()(1

)()(1)()(1)(







  (18d) 

 

( ) ( )
( )

( )( )
ttithtith

ttithttithtithtith

tittittit

tithtittithtittitp

AB

ABBA

ABAA

BAAAA

+++

+−+−++

+++−+−−

++−+++−=+

)()(

)(1)(1)()(

)()()(1

)()(1)()(1)(







  (18e) 

Proof: See the Appendix. 

We may think of ),( TtO  as the bilateral risk-adjusted discount factor and )(uo  as the bilateral 

risk-adjusted short rate; j
  (j=A, B) represents the default recovery rate of party j, i.e. the fraction of the 

market value paid by the defaulting party j when the market value is negative for j; j
h  represents the hazard 

rate of party j; j
  represents the non-default recovery rate of party j, i.e. the fraction of the market value 

paid by non-defaulting party j when the market value is negative for j. j
 =0 represents the one-way 

settlement rule, while j
 =1 represents the two-way settlement rule.   denotes the default correlation 

coefficient of A and B. AB  denotes the joint recovery rate when both parties A and B default 

simultaneously. 

For any time interval ( u , tu + ), the bilateral risk-adjusted short rate )(uo  has a switching-type 

dependence on the sign of future value )( tuV D + . Similar to Proposition 1, the valuation process given 

by Proposition 5 builds on itself in a backward recursive fashion and requires a backward induction 

valuation. 
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Proposition 5 provides a general form for pricing a bilateral risky single payment derivative. 

Applying it to a particular situation in which we assume that parties A and B do not default simultaneously 

and have independent default risks, i.e.  =0 and AB =0, we derive the following corollary. 

Corollary 5.1: If parties A and B do not default simultaneously and have independent default risks, the 

bilateral risky value of the single payment derivative under the CTM is given by 

 tT
D XTtOEtV F),()( =       (19a) 

where  






−=  duuoTtO
T

t
)(exp),(      (19b) 

 )(1)(1)()(
0)(0)(

upupuruo AuVBuV DD 
++=     (19c) 

 ( ) ( ) )()(1)()(1)( uhuuhuup ABBBB  −+−=     (19d) 

 ( ) ( ) )()(1)()(1)( uhuuhuup BAAAA  −+−=     (19e) 

The proof of this corollary becomes straightforward according to Proposition 5 by setting  =0 

and AB =0, taking the limit as t  approaches zero, and having 0)()( 2 tuhuh AB for very small t . 

Corollary 5.1 is the same as equation (2.5’) in Duffie and Huang (1996), but their derivation is 

heuristic rather than rigorous.  

 The corresponding bilateral CVA of the single payment derivative in this case can be expressed as 

   tTtT
DFB XTtOEXTtDEtVtVtCVA FF ),(),()()()( −=−=    (20) 

 Since ),( TtO  is always smaller than ),( TtD , the bilateral CVA may be positive or negative 

depending on the sign of the payoff. In other words, the CVA may be either a credit charge or a credit 

benefit. A credit charge that is the value of a default loss comes from the scenario of one’s counterparty 

defaulting when one is in the money, while a credit benefit is the value of a default gain in the scenario of 

one’s own default when one is out of money. 
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If we assume that a default may occur only on the payment dates, the default options become either 

European options or Bermudan options. 

Proposition 6: The bilateral risky value of the single payment derivative under the DTM is given by 

 tFT
D XTtYEtV ),()( =       (21a) 

where 

 ( )),(1),(1),(),( 00 TtyTtyTtDTtY AXBX TT  +=     (21b) 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtQTtQT

TtQTtSTTtSTtQTTtSTtSTty

ABBBABAB

ABBABBABB





+−−++

++=
  (21c) 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtQTtQT

TtQTtSTTtSTtQTTtSTtSTty

ABBBABAB

BAABAAABA





+−−++

++=
  (21d) 

),(),(),(),(),( TtQTtSTtQTtSTt AABB =     (21e) 

Proof: See the Appendix. 

We may think of ),( TtY as the risk-adjusted discount factor. Proposition 6 tells us that the bilateral 

risky price of a single payment derivative can be expressed as the present value of the payoff discounted 

by a risk-adjusted discount factor that has a switching-type dependence on the sign of the payoff. 

 Proposition 6 has a general form that applies in a particular situation where we assume that parties 

A and B do not default simultaneously and have independent default risks, i.e.  =0 and AB =0. 

Corollary 6.1: If parties A and B do not default simultaneously and have independent default risks, the 

bilateral risky value of the single payment derivative under the DTM is given by 

 tT
D XTtYEtV F),()( =     (22a) 

where 

( )),(1),(1),(),( 00 TtyTtyTtDTtY AXBX TT  +=     (22b) 

),(),()(),(),()(),(),(),( TtQTtSTTtSTtQTTtSTtSTty ABBABBABB  ++=   (22c) 

),(),()(),(),()(),(),(),( TtQTtSTTtSTtQTTtSTtSTty BAABAAABA  ++=   (22d) 
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The proof of this corollary is easily obtained according to Proposition 6 by setting  =0 and 

AB =0. 

3.2.  Multiple Payments Cases 

Suppose that a defaultable derivative has m cash flows. Let the m cash flows be represented as 1X

,…, mX  with payment dates 1
T ,…, mT . Each cash flow may be positive or negative. 

We divide any payment date period ( 1−iT , iT ) into in  very small time intervals ( t ) and 

assume that a default may occur only at the end of each very small period. 

Proposition 7: The bilateral risky value of the multiple payments derivative is given by 

( )  =
=

m

i tii

D XTtOEtV
1

),()( F      (23a) 

where 







+−= 

 =
−

=

i

k kn

ji ttjtoTtO 1
1

0
)(exp),(      (23b) 

 )(1)(1)()( 0))1((0))1(( tjtptjtptjtrtjto AtjtVBtjtV +++++=+ ++++   (23c) 

 

( ) ( )
( )

( )( )
ttjthtjth

ttjthttjthtjthtjth

tjttjttjt

tjthtjttjthtjttjtp

AB

ABBA

ABBB

ABBBB

+++

+−+−++

+++−+−−

++−+++−=+

)()(

)(1)(1)()(

)()()(1

)()(1)()(1)(







  (23d) 

 

( ) ( )
( )

( )( )
ttjthtjth

ttjthttjthtjthtjth

tjttjttjt

tjthtjttjthtjttjtp

AB

ABBA

ABAA

BAAAA

+++

+−+−++

+++−+−−

++−+++−=+

)()(

)(1)(1)()(

)()()(1

)()(1)()(1)(







  (23e)  

Proof: See the Appendix. 

Similar to Proposition 3, the individual payoffs under Proposition 7 are coupled and cannot be 

evaluated separately. The process requires a backward induction valuation. 
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Proposition 7 provides a general form for pricing a bilateral multiple payment derivative. Applying 

it to a particular situation in which we assume that parties A and B do not default simultaneously and have 

independent default risks, i.e.  =0 and AB =0, we derive the following corollary. 

Corollary 7.1: If parties A and B do not default simultaneously and have independent default risks, the 

bilateral risky value of the single payment derivative under the CTM is given by 

( )  =
=

m

i tii

D XTtOEtV
1

),()( F      (24) 

where ),( iTtO  is defined in (19). 

The proof of this corollary becomes straightforward according to Proposition 7 by setting  =0 

and AB =0, taking the limit as t  approaches zero, and having 0)()( 2 tuhuh AB for very small t . 

The default options of a defaultable derivative under the CTM are American style options, while 

the default options under the DTM are Bermudan style ones. 

Proposition 8: The bilateral risky value of the multiple payments derivative under the DTM is given by 

( )  =

−

= +=
m

i ti

i

j jj
D XTTYEtV

1

1

0 1 ),()( F     (25a) 

where 0
Tt =  and 








 += ++++++
++++

),(1),(1),(),( 10))((10))((11
1111

jjATVXjjBTVXjjjj TTyTTyTTDTTY
j

D
jj

D
j

    (25b) 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

1111111

111111111

+++++++

+++++++++

+−−++

++=

jABjBjBjjjjAjjBjAB

jjAjjBjBjjAjjBjBjjAjjBjjB

TTTTTTTQTTQT

TTQTTSTTTSTTQTTTSTTSTTy





   (25c) 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

1111111

111111111

+++++++

+++++++++

+−−++

++=

jABjBjBjjjjAjjBjAB

jjBjjAjAjjBjjAjAjjAjjBjjA

TTTTTTTQTTQT

TTQTTSTTTSTTQTTTSTTSTTy





   (25d) 

),(),(),(),(),( 11111 +++++ = jjAjjAjjBjjBjj TTQTTSTTQTTSTT     (25e) 

Proof: See the Appendix. 
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The individual payoffs under Proposition 8 are coupled and cannot be evaluated separately. The 

present value takes into account the results of all future decisions. The valuation proceeds via backward 

induction. 

 Proposition 8 has a general form that applies in a particular situation where we assume that parties 

A and B do not default simultaneously and have independent default risks, i.e.  =0 and AB =0. 

Corollary 8.1: If parties A and B do not default simultaneously and have independent default risks, the 

bilateral risky value of the single payment derivative under the DTM is given by 

( )  =

−

= +=
m

i ti

i

j jj

D XTTYEtV
1

1

0 1),()( F     (26) 

where ),( 1+jj TTY  is defined in (22). 

The proof of this corollary is easily obtained according to Proposition 8 by setting  =0 and 

AB =0. 

 

4.  A Practical Framework For Bilateral Risky Valuation and CVA 

This work was sponsored by FinPricing (2019). The risky valuation theory described above can be 

applied to any defaultable derivatives. In this section, we develop a practical framework to demonstrate 

how to perform the risky valuation and how to calculate the bilateral CVA at a portfolio level. The 

framework incorporates netting and margin agreements and captures right/wrong way risk. We use the 

DTM as an example. Switching to the CTM is quite straightforward, but requires more granular simulation 

time steps, e.g. daily. 

Two parties are denoted as A and B. All calculations are from the perspective of party A. Let the 

valuation date be t. The risky valuation and CVA computation procedure consists of the following steps. 

4.1.  Risk-Neutral Monte Carlo Scenario Generation 

One core element of a counterparty credit risk management system is the Monte Carlo scenario 

generation (market evolution). This must be able to run a large number of scenarios for each risk factor 
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with flexibility over parameterization of processes and treatment of correlation between underlying factors. 

Credit exposure may be calculated under a real probability measure, while CVA may be conducted under 

a risk-neutral probability measure.  

Due to the extensive computational intensity of pricing counterparty credit risk, there will 

inevitably be some compromise regarding limiting the number of market scenarios (paths) and the number 

of simulation dates (also called “time buckets” or “time nodes”). The time buckets are normally designed 

as fine-granularity at the short end and coarse-granularity at the far end. The details of scenario generation 

are beyond the scope of this paper. 

4.2.  Cash Flow Generation 

For ease of illustration, we choose a vanilla interest rate swap as an example. For most banks, 

interest rate swaps account for more than half of their derivative business.  

Assume that party A pays a fixed rate, while party B pays a floating-rate. We are considering that 

fixed rate payments and floating-rate payments occur at the same payment dates and with the same day-

count conventions, and ignoring the swap funding spread. Though the generalization to different payment 

dates, day-count conventions and swap funding spreads is straightforward, we prefer to present a simplified 

version to ease the notation. 

Assume that there are M time buckets ( MTTT ,...,, 10 ) in each scenario, and N cash flows in the 

sample swap. Let us consider scenario j first. 

For swaplet i, there are four important dates: the fixing date fit , , the starting date sit , , the ending 

date eit ,  and the payment date pit , . In general, these dates are not coincidently at the simulation time 

buckets. The time relationship between swaplet i and the simulation time buckets is shown in Figure 1. 

The cash flow generation consists of two procedures: cash flow determination and cash flow 

allocation. 
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Figure 1: Time Relationship between the Swaplet and the Simulation Time Buckets  

The floating leg of the interest rate swaplet is reset at the fixing date fit ,  with the starting date sit , , the 

ending date eit , , and the payment date pit , . The simulation time buckets are 11
,...,,

++ kii
TTT . The simulated 

interest rate curve starts at fit , .  

  

4.2.1. Cash Flow Determination 

The cash flow of swaplet i is determined at the fixing date fit , , which is assumed to be between 

the simulation time buckets jT  and 1+jT . First, we need to create an interest rate curve, observed at fit , , 

by interpolating the interest rate curves simulated at jT  and 1+jT  via either Brownian Bridge or linear 

interpolation. Then, we can calculate the payoff of swaplet i at scenario j as 

( ) ),(),;( ,,,,,, eisieisifiij ttRtttFN  −=      (27) 

where  N denotes the notional, ),;( ,,, eisifi tttF  denotes the simply compounded forward rate reset at fit ,  

for the forward period ( sit , , eit , ), ),( ,, eisi tt  denotes the accrual factor or day count fraction for the period 

( sit , , eit , ), and R denotes the fixed rate. 

4.2.2. Cash Flow Allocation 

 
jT 1+jT kT 1+kTfit , sit , eit , pit ,

Terms 

R
ates 

Interest rate curve simulated at fit ,  
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The cash flow amount calculated by (27) is paid on the payment date pit , . This value should be 

allocated into the nearest previous time bucket kT  as: 

 ),(
~

,,,, pikijikj tTD =      (28) 

where ),( , pik tTD  denotes the risk-free discount factor based on the interest rate curve simulated at kT . 

 Cash flow generation for products without early-exercise provision is quite straightforward. For 

early-exercise products, one can use the approach proposed by Longstaff and Schwartz (2001) to obtain the 

optimal exercise boundaries, and then the payoffs. 

4.3.  Aggregation and Netting Agreements 

After generating cash flows for each deal, we need to aggregate them at the counterparty portfolio 

level for each scenario and at each time bucket. The cash flows are aggregated by either netting or non-

netting based on the netting agreements. A netting agreement is a provision that allows the offset of 

settlement payments and receipts on all contracts between two counterparties. Another important use of 

netting is close-out netting, which allows the offset of close-out values. 

For netting, we add all cash flows together in the same scenario and at the same time bucket to 

recognize offsetting. The aggregated cash flow under netting at scenario j and time bucket k is given by 

 =
i

ikjkj ,,,

~~      (29a) 

For non-netting, we divide cash flows into positive and negative groups and add them separately. 

In other words, offsetting is not recognized. The aggregated cash flows under non-netting at scenario j and 

time bucket k are given by 



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
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mkj

lkj
l

lkj

kj

if

if
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
    (29b) 

4.4.  Margin (or Collateral) Agreements 
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Under a margin agreement, the collateral is called as soon as the counterparty exposure rises above 

the given collateral threshold H , or more precisely, above the threshold (TH) plus minimum transferable 

amount (MTA). This would result in a reduction of exposure by the collateral amount held  .  

Consequently, there would be no exposure above the threshold H  if there were no time lags between 

collateral calling, posting, liquidating, and closing out.  However, these lags, which are actually the margin 

period of risk, do exist in practice.  The collateral can depreciate or appreciate in value during this period. 

These lags expose the bank to additional exposure above the threshold, which is normally referred to as 

collateralized exposure. Clearly, the longer the margin period of risk, the larger the collateralized exposure.  

Assume that the collateral margin period of risk is  . The collateral methodology consists of the 

following procedures: 

First, for any time bucket kT , we introduce an additional collateral time node −kT . Second, we 

compute the portfolio value )( −k

F

j TV  at scenario j and collateral time node ( −kT ). Then, we calculate 

the collateral required to reduce the exposure at ( −kT ) as 


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
   (30) 

where  BBB MTATHH +=  is the collateral threshold of party B and )( AAA MTATHH +−=  is the negative 

collateral threshold of party A. 

Each bank has its own collateral simulation methodology that simulates the collateral value 

evolving from )( − kj T  to )( kj T  over the margin period of risk  . The details of collateral simulation 

are beyond the scope of this paper. Assume that the collateral value )( kj T  has already been calculated. 

Next, we compute the change amount of the collaterals between kT  and 1−kT  as 

 )()()(: 1, −−== kjkjkjkj TTT      (31) 



 24 

Since our CVA methodology is based on cash flows, we model collateral as a reversing cash flow 

kj ,−  at kT . Finally, the total cash flow at kT  is given by 

  kjkjkj ,,,

~
−=        (32) 

4.5.  Wrong or Right Way Risk 

Wrong way risk occurs when exposure to a counterparty is adversely correlated with the credit 

quality of that counterparty, while right way risk occurs when exposure to a counterparty is positively 

correlated with the credit quality of that counterparty. For example, in wrong way risk, exposure tends to 

increase when counterparty credit quality worsens, while in right way risk, exposure tends to decrease when 

counterparty credit quality declines. Wrong/right way risk, as an additional source of risk, is rightly of 

concern to banks and regulators. 

To capture wrong/right way risk, we need to correlate the credit quality (credit spreads or hazard 

rates) with other market risk factors, e.g. equities, commodities, etc., in the scenario generation.    

4.6.   CVA Calculation 

 After aggregating all cash flows via netting and margin agreements, one can price a portfolio in the 

same manner as pricing a single deal. We assume that the reader is familiar with the regression-based Monte 

Carlo valuation model proposed by Longstaff and Schwartz (2001) and thus do not repeat some well-known 

procedures for brevity. 

4.6.1. Risk-Free Valuation 

We first calculate the risk-free present value of a counterparty portfolio. The risk-free value at 

scenario j is given by 

 =
=

m

k kkj

F

j TtDtV
1 , ),()(       (33a) 

 The final risk-free portfolio value is the average (expectation) of all scenarios given by 

   ( ) ( ) =
==

m

k kkj

F

j

F TtDEtVEtV
1 , ),()()(      (33b) 

4.6.2. Risky Valuation 
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The risky valuation procedure is performed iteratively, starting at the last effective time bucket mT

, and then working backwards towards the present. We know the value of the portfolio at the final effective 

time bucket, which is equal to the last cash flow, i.e. mjm
D
j TV ,)( = . 

Based on the sign of )( m

D

j TV  and Proposition 8, we can choose a proper risk-adjusted discount 

factor. The discounted cash flow at 1−mT  is given by 

mjmmjm

D

jmmjmj TTYTVTTY ,111, ),()(),( −−− ==     (34a) 

where  






 += −−−− ),(1),(1),(),( 1,0)(1,0)(11 mmAjTVmmBjTVmmjmmj TTyTTyTTDTTY

m
D
jm

D
j

  (34b) 

where ),( 1, mmBj TTy −  and  ),( 1, mmAj TTy −  are defined in (25). 

Let us go to the penultimate effective time bucket 1−mT . The risk-adjusted discount factor has a 

switching type, depending on the sign of 1,1)( −− + mjm
D
j TV  , where )( 1−m

D
j TV  is the value of the portfolio 

excluding the current cash flow 1, −mj  at scenario j and time bucket 1−mT . Note that )( 1−m
D
j TV  is not the 

discounted cash flow, but rather the expectation of the discounted cash flow conditional on the market 

states. We can use the well-known regression approach proposed by Longstaff and Schwartz (2001) to 

estimate )( 1−m
D
j TV  from cross-sectional information in the simulation by using least squares. After 

estimating )( 1−m
D
j TV , we can express the discounted cash flow at 2−mT  as 

1,12,1122, ),(),(),( −−−−−−− += mjmmjmjmmjmmjmj TTYTTYTTY     (35a) 

where 


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D
jmj   (35b) 

where ),( 12, −− mmBj TTy  and  ),( 12, −− mmAj TTy  are defined in (25). 
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Assume that in the previous step iT , we estimated the portfolio value )( i

D

j TV . Now, we proceed 

to 1−iT . The discounting switch-type depends on the sign of iji
D
j TV ,)( + . The discounted cash flow at 1−iT  

is given by 

( ) =

−

−= +− =
m

ik kj

k

il lljij TTY ,

1

1 11, ),(      (36) 

 We conduct the backward induction process, performed by iteratively rolling back a series of long 

jumps from the final effective time bucket mT  across time nodes until we reach the valuation date. Then, 

the present value at scenario j is 

( ) =

−

= +=
m

k kj

k

i iijj TTY
1 ,

1

0 10, ),(       (37a) 

 The final true/risky portfolio value is the average (expectation) of all scenarios, given by 

( ) ( )  =

−

= +==
m

k kj
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i iijj
D TTYEEtV
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1

0 10, ),()(      (37b) 

CVA is by definition the difference between the risk-free portfolio value and the true (or risky or 

defaultable) portfolio value given by 

( ) ( )   =
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5.   Numerical Results 

In this section, we present some numerical results for risky valuations and CVA calculations based 

on the theory and the practical framework described above.  

5.1.  Comparison Between the CTM and the DTM 

The theoretical study of this article is conducted under both the CTM and the DTM. The CTM 

assumes that a default may occur at any time, while the DTM assumes that a default may only happen at 

discrete payment dates. 
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Here we use unilateral credit risk as an example. Assume that party B has an ‘A’ rating and a 

constant default recovery rate of 70%. Party A is default-free. All calculations are from the perspective of 

party A. 

Let us consider single payment derivatives first. We use a 6-month zero-coupon bond and a 1-year 

zero-coupon bond to analog single payment instruments. Under the CTM, the derivatives are continuously 

defaultable, whereas under the DTM, the derivatives may default only at 6 months or 1 year.  The principals 

are a unit, and the hazard rates are bootstrapped from CDS spreads. The risk-free and risky values and the 

CVAs are calculated according to Corollary 1.2 and Corollary 2.1, shown in Table 2 and Table 3. The 

results demonstrate that the CVAs under both the CTM and the DTM are very close (relative difference < 

0.3%).  

Then, we use a 10-year semi-annual fixed rate coupon bond to analog a multiple payments 

instrument. Assume that the principal is a unit and that the annual coupon rate of the fixed-rate coupon 

bond is 4%. The risk-free and risky values and the CVAs are calculated according to Corollary 3.2 and 

Corollary 4.1, shown in Table 4. The results confirm that the DTM and the CTM produce very close results. 

 

Table 2. The Numerical Results of a 6-month Maturity Single Payment Derivative 

This table shows the present risk-free and unilateral risky values, and the unilateral CVAs of a 6-month 

maturity single payment derivative calculated under both the CTM and the DTM. The derivative has only 

one payoff at 6-month maturity and a unit principal. Difference of CVA = 1 – DTM-CVA / CTM-CVA. 

Risk-Free Value 

CTM DTM Difference of 

CVA Risky Value CVA Risky Value CVA 

0.998168 0.997026 0.001142 0.997028 0.001140 0.1334% 

 

Table 3. The Numerical Results of a 1-year Maturity Single Payment Derivative 

This table shows the present risk-free and unilateral risky values, and the unilateral CVAs of a 1-year 

maturity single payment derivative computed under both the CTM and the DTM. The derivative has only 

one payoff at 1-year maturity and a unit principal. Difference of CVA = 1 – DTM-CVA / CTM-CVA. 
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Risk-Free Value 

CTM DTM Difference of 

CVA Risky Value CVA Risky Value CVA 

0.995693 0.993422 0.002271 0.993428 0.002265 0.2658% 

 

Table 4 The Numerical Results of a 10-Year Maturity Multiple Payments Derivative 

This table shows the present risk-free and unilateral risky values, and the unilateral CVAs of a 10-year 

maturity multiple payments derivative calculated under both the CTM and the DTM. The derivative has a 

unit principal and semi-annual payments with an annual coupon rate of 4%. Difference of CVA = 1 – DTM-

CVA / CTM-CVA. 

Risk-Free Value 

CTM DTM Difference of 

CVA Risky Value CVA Risky Value CVA 

1.122892 1.032344 0.090547 1.032901 0.089990 0.6153% 

 

5.2.  Impact of Margin Agreements 

In this section, we use a portfolio to study the impact of margin agreements. The portfolio consists 

of a number of derivatives on interest rate, equity, and foreign exchange. In the real world, it is very rare 

that a portfolio is positive all the time and in all scenarios. The number of simulation scenarios (or paths) 

is 20,000. The time buckets are set weekly. If the computational requirements exceed the system limit, one 

can reduce both the number of scenarios and the number of time buckets. The time buckets can be designed 

as fine-granularity at the short end, and coarse-granularity at the far end, e.g. daily, weekly, monthly and 

yearly, etc. The rationale is that calculations become less accurate due to accumulated errors from 

simulation discretization and inherited errors from the calibration of the underlying models, such as those 

due to a change in macro-economic climate. The collateral margin period of risk is assumed to be 14 days 

(2 weeks). 

We use the CIR (Cox-Ingersoll-Ross) models for interest rate and hazard rate scenario generations, 

the modified GBM (Geometric Brownian Motion) models for equity and collateral evolutions, and the BK 

(Black Karasinski) models for foreign exchange dynamics. Table 5 illustrates that if party A has an infinite 
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collateral threshold =AH  i.e. no collateral requirement on A, the bilateral CVA value increases, while 

the threshold BH  increases. Table 6 shows that if party B has an infinite collateral threshold =BH , the 

bilateral CVA value actually decreases, while the threshold AH  increases. This reflects the bilateral impact 

of the collaterals on the bilateral CVA. The impact is mixed in Table 7 when both parties have finite 

collateral thresholds. 

 

Table 5. The Impact of Collateral Threshold BH  on the Bilateral CVA 

BH  denotes the collateral threshold of party B and AH  denotes the collateral threshold of party A. We set 

=AH  and change BH  only. 

Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite (  ) 

CVA 19,550.91 20,528.65 21,368.44 22,059.30 

 

Table 6. The Impact of Collateral Threshold AH  on the Bilateral CVA 

BH  denotes the collateral threshold of party B and AH  denotes the collateral threshold of party A. We set 

=BH  and change AH  only. 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite (  ) 

CVA 28,283.64 25,608.92 23,979.11 22,059.30 

 

Table 7. The Impact of Both Collateral Thresholds on the Bilateral CVA 

BH  denotes the collateral threshold of party B and AH  denotes the collateral threshold of party A. Both of 

them are changed. 

Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite (  ) 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite (  ) 

CVA 25,752.98 22,448.45 23,288.24 22,059.30 

 

5.3.  Impact of Wrong or Right Way Risk 
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We use an equity swap as an example. Assume the correlation between the underlying equity price 

and the credit quality (hazard rate) of party B is  .  The impact of the correlation on the CVA is show in 

Table 8. The results state that the CVA increases when the absolute value of the negative correlation 

increases. 

 

Table 8. Impact of Wrong Way Risk on the Bilateral CVA 

We use an equity swap as an example and assume that there is a negative correlation between the equity 

price and the credit quality of party B. 

Correlation   0 -50% -100% 

CVA 165.15 205.95 236.99 

 

6. Conclusion 

This article presents a theory for pricing defaultable financial derivatives and their CVAs. First, we 

want to indicate that the market value of a defaultable derivative is actually a risky value rather than a risk-

free value. In fact, in applying the upfront CVA, we already converted the market value of a defaultable 

derivative from the risk-free value to the risky value. 

For completeness, our theoretical study covers various cases. We find that the valuation of 

defaultable derivatives and their CVAs, in most situations, has a backward recursive nature and requires a 

backward induction valuation. An intuitive explanation is that two counterparties implicitly sell each other 

an option to default when entering into a defaultable transaction. If we assume that a default may occur at 

any time, the default options are American style options. If we assume that a default may only happen on 

the payment dates, the default options are either European options or Bermudan options. Both Bermudan 

and American options require backward induction valuations.  

Based on our theory, we propose a novel cash-flow-based practical framework for calculating the 

bilateral risky value and bilateral CVA at the counterparty portfolio level. This framework can easily 

incorporate various credit mitigation techniques, such as netting agreements and margin agreements, and 
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can capture wrong/right way risk. Numerical results show that these credit mitigation techniques and 

wrong/right way risk have significant impacts on CVA.  

 

Appendix 

Proof of Proposition 1: Under the unilateral credit risk assumption, only the default risk of one party 

appears to be relevant, i.e., we only consider the default risk when the derivative is in the money. We divide 

the time period (t, T) into n very small intervals ( t ) and use the approximation ( ) yy +1exp  for very 

small y. Assume that a default may occur only at the end of each small period. The survival and the default 

probabilities for the period (t, tt + ) are given by 

( ) tthtthtttStS BBBB −−=+= )(1)(exp),(:)(


    (A1a) 

( ) tthtthtttQtQ BBBB −−=+= )()(exp1),(:)(


    (A1b) 

At time tt +  the derivative either defaults or survives. The risky value of the derivative at t is 

given by 
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where Y  is an indicator function that is equal to one if Y is true and zero otherwise; and 

111
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 Similarly, we have 

( ) 
tt

D

B

D ttVtttcEttV +++−=+ F)2()(exp)(    (A3) 



 32 

Note that ( )ttcB − )(exp  is ttF + -measurable. By definition, an ttF + -measurable random 

variable is a random variable whose value is known at time tt + . Based on the taking out what is known 

and tower properties of conditional expectation, we have 
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By recursively deriving from t forward over T, where T

D XTV =)( , the price can be expressed as 
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Proof of Proposition 2: Under the unilateral credit risk assumption, we only consider the default 

risk when the derivative is in the money. Assume that a default may only occur on the payment date. 

Therefore, the risky value of the derivative at t is given by 
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where  

111 00 =+  TT XX      (A6b) 

),(1),( TtQTtS BB −=       (A6c) 

( ) )(1),(11),(),( 0 TTtQTtDTtG BBXB T
−−=      (A6d) 

Proof of Proposition 3: We divide any payment date period ( 1−iT , iT ) into in  very small time 

intervals ( t ). On the first cash flow payment date 1
T , let )( 1TV D

 denote the value of the risky derivative 
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excluding the current cash flow 1X . Both )( 1TV D
 and 1X  could be positive or negative. According to 

Proposition 1, the risky value of the derivative at t is given by 

( ) tF)(),()( 111 TVXTtCEtV D
B

D +=      (A7) 

where ),( 1TtCB  is defined in (A5) 

Similarly, we have 
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F -measurable. According to the taking out what is known and tower 
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 By recursively deriving from 2T  forward over mT , where mm
D XTV =)( , we have 
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Proof of Proposition 4: Let 0Tt = . Assume that a default may only occur on the payment dates. 

On the first payment date 1T , let )( 1TV D
 denote the risky value of the derivative excluding the current cash 

flow 1X . According to Proposition 2, the risky value of the derivative at t is given by 
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Similarly, we have 
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 By recursively deriving from 2T  forward over mT , where mm
D XTV =)( , we have 
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Proof of Proposition 5: We divide the time period (t, T) into n very small intervals ( t ) and use the 

approximation ( ) yy +1exp  for very small y. The survival and the default probabilities of party j (j=A, 

B) for the period (t, tt + ) are given by 

( ) tthtthtttStS jjjj −−=+= )(1)(exp),(:)(


 

( ) tthtthtttQtQ jjjj −−=+= )()(exp1),(:)(


 

At time tt + , there are four possible states: 1) both A and B survive, 2) A defaults but B survives, 

3) A survives but B defaults, and 4) both A and B default. The joint distribution of A and B is shown in Table 

1. Depending on whether the market value of the derivative is an asset or a liability at tt + , we have 
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where j  (j=A, B) represents the default recovery rate of party j; jh  represents the hazard rate of party j; 

j  represents the non-default recovery rate of party j. j =0 represents the one-way settlement rule, while 

j =1 represents two-way settlement rule.   denotes the default correlation of A and B. AB  represents 

the joint recovery rate when A and B default simultaneously. 

Similarly, we have 
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Note that ( )tto − )(exp  is ttF + -measurable. Based on the taking out what is known and tower 

properties of conditional expectation, we have 
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By recursively deriving from t forward over T, where T

D XTV =)( , the price can be expressed as: 
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Proof of Proposition 6: We assume that a default may only occur on the payment date. At time T, there 

are four possible states: 1) both A and B survive, 2) A defaults but B survives, 3) A survives but B defaults, 

and 4) both A and B default. The joint distribution of A and B is shown in Table 1. Depending on whether 

the payoff is in the money or out of the money at T, we have 
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 Proof of Proposition 7. On the first cash flow payment date 1
T , let )( 1TV D

 denote the risky value 

of the derivative excluding the current cash flow 1X . According to Proposition 5, we have 

( ) tF)(),()( 111 TVXTtOEtV DD +=     (A20a) 
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Where ),( 1TtO  is defined in (A18) and (A15). 

Similarly, we have 
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 By recursively deriving from 2T  forward over mT , where mm
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Proof of Proposition 8. We assume that a default may only occur on the payment dates. Let 0Tt =

. On the first cash flow payment date 1T , let )( 1TV D
 denote the risky value of the derivative excluding the 

current cash flow 1X . According to Proposition 6, we have 
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where ),( 10 TTyB and ),( 10 TTy A are defined in (A19). 

Similarly, we have 
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 Note that ),( 10 TTY  is 
1T

F -measurable. According to taking out what is known and tower properties 

of conditional expectation, we have 
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 By recursively deriving from 2T  forward over mT , where mm
D XTV =)( , we have 
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