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1 PREFACE

1 Preface

Before beginning please note that as many terms used are either unique to computational
chemistry or have a unique meaning in this context a glossary of these terms, which will
appear in bold face is given at the end. Also the document contains information at a
number of levels; for a brief introduction to the methods used I would recommend reading
sections 2 and 3 as they provide a basic conceptual background to Potential and Ab Initio
methods and try to explain the differences between these two approaches. The subsections
contained within section 3 give a somewhat more detailed introduction into different Ab
Initio approaches. In The ”Challenges In Molecular Modeling” section we have tried to
outline some of the major problems which face modelers and have presented some of the
solutions which have been developed, this section is by no means exhaustive but is intended
to give a general feel for the kinds of work which modelers do. Finally more technical points
are presented in the appendices, these sections may really only be of interest to those , who
for their sins, may be forced to do some modeling. A glossary of Computational packages
and codes and what they do is also provided.

I also wish to apologise in advance for any bias which is apparent towards my own field
of research in Ab Initio modeling of solution phases.

Keith Butler
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2 POTENTIAL MODELS

2 Potential Models

Potential models also referred to as classical simulation methods are able to consider a
large number of atoms by treating them as point charges and therefore not accounting for
the motion of the electrons, for this reason they are also commonly referred to as atomistic
models. This is an application of the Born-Oppenheimer approximation, which states that
nuclear motion is so slow compared to electronic motion that one need only consider the
nuclear positions, as the electrons will quickly adapt to the nuclear movement. It is this
approximation that makes calculations involving thousands or millions of atoms feasible.
The system will be described by force fields that detail how the energy changes as a function
of the atomic positions. In its simplest form a molecular mechanics method will treat
a molecule as an atomic point charges with bonds represented by springs. A forcefield
is divided into both the intramolecular and intermolecular potentials, and although the
choice of a forcefield is arbitrary, it must parameterised to reproduce either experimental
properties or first principles calculations and be as transferable as possible. The typical
form of a forcefield is:

Etotal = Eelectrostatic + EvanderWaals + Ebondstretching + Ebondbending + Etorsional (1)

where the first two terms are intermolecular terms and the rest intramolecular. The terms
for the intramolecular potentials are the two-body bond stretching term, three-body bond
bending terms and the four-body torsional term. These terms equate to a consideration of
how far the atoms have deviated from the ideal equilibrium value for the bond length or
angle. The three-body intramolecular term for the Si-O-Si angles is particularly important
in accurately reproducing the angles within zeolitic structures[2]. The form of some of the
most widely used potentials is presented below.

Bond Stretching : Eij = 1
2kij(l − l0)2

Bond Bending : Eijk = 1
2kijk(θ − θ0)2

Torsional : Elω = k(l − l0)cosω

Where l, θ and ω represent distance, angle and dihedral angle respectively and a sub-
script 0 denotes equilibrium value.

The non-bonding intermolecular terms consist of the Coulombic electrostatic interac-
tions and the van der Waals forces. The Coulombic electrostatic potential is particularly
challenging, because it is such a long range force, with an r−1 dependence on distance:

UC =
1
2

(
1

4πε0

) N∑
ij

′∑
n

qiqj
|rij + nL|

(2)

where qi and qj are the charges of the interacting ions i and j, rij is the distance be-
tween them and ε0 is the permittivity of vacuum.Since the summation of these long-range
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2 POTENTIAL MODELS

interactions is only conditionally convergent, the Ewald summation method is commonly
used. This divides the summation into one series in real space for the cell and another
series in reciprocal space for the periodic images, since these series converge the overall
electrostatic energy becomes computable. The Ewald method is described in more detail
in the appendix.

An additional level of sophistication may be added by employing the Dick and Over-
hauser shell model to reproduce the polarisability of the oxygen ion within zeolites. In
this model the the nucleus and the electron cloud are approximated as core and shell point
charges connected by a harmonic spring [3]. This model improves the accuracy of the cal-
culation, however as it splits each oxygen point charge in two it increases the complexity
of the calculation and thus the time needed to complete it.

Figure 1: The shell model
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3 AB INITIO METHODS

3 Ab Initio Methods

Ab Initio is a Latin term meaning from the beginning. A calculation is said to be ”ab initio”
(or ”from first principles”) if it relies on basic and established laws of nature without
additional assumptions or special models, this sets these methods apart from so called
empirical methods which rely on experimentally determined parameters to calculate the
properties of the system being studied.

For example, an ab initio calculation of the properties of liquid water might start with
the properties of the constituent hydrogen and oxygen atoms and the laws of electrody-
namics. From these basics, the properties of isolated individual water molecules would be
derived, followed by computations of the interactions of larger and larger groups of water
molecules, until the bulk properties of water had been determined. Whereas a ”classical
mechanics” or empirical calculation would treat the water a series of point charges con-
nected and interacting through a series of potentials which have been parameterized to fit
to experimental data.

The essential question at the heart of choosing between ab initio and empirical meth-
ods, as with most decisions in computational chemistry, is that of how much accuracy is
required and how large are the computational resources available for tackling the problem.
This is referred to as ”scaling” and is demonstrated in figure 1. The important factors
when estimating how a problem will scale are the order with which it scales O, and the
prefactor with which it scales P , both with respect to the number of particles in the system.
Empirical models typically scale to the order of 1 ie. the CPU time needed for N particles
is proportional to N, whereas ab initio models typically scale with higher orders of O = 2
up to O = 8 for some of the highest level methods.

While empirical models have enjoyed enormous success in modelling chemical systems
a number of drawbacks exist which necessitate the use of more expensive ab initio models.
While empirical models are designed to behave well for the set of data (the training set)
used to derive the parameters this is absolutely no guarantee that the model will behave well
beyond this training set. Among the systems where empirical models can have difficulties
are systems where there are many types of chemical interaction, requiring many model
potentials to describe them and systems where the bonding pattern of the system changes
quantitatively. An example of this is the fact that in general empirical models cannot model
chemical reactions, although some recent models have claimed to overcome this barrier [4]
[5].

Ab Initio methods are also often referred to as ”Electronic Structure Methods” as they
rely on solving the electronic state of the system, that pertaining to the electrons, to
calculate various properties of the system. Electronic structure methods apply the laws
of quantum mechanics[6][7] to obtain properties of chemical species. The basis of these
methods is to attempt to solve the Schrödinger equation:

HΨ(r, t) =
ih

2π
∂Ψ(r, t)
∂t

(3)
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3 AB INITIO METHODS

Figure 2: CPU time versus number of particles for a series of orders O and prefactors P ;
Time = PNO.

where H is the Hamiltonian operator of the system, which is represented by the wave
function Ψ, and which has a probability distribution |Ψ2|, this is the probability that the
system will be in a given state. If we consider that the systems potential energy, V , is time
independent, we obtain the time-independent Schrödinger equation:

HΨ = EΨ (4)

in which the energy E is the eigenvalue of the Hamiltonian operator. To aid calculation
these eigenvalues, the systems Hamiltonian can be split up into different contributions, the
Hamiltonian for this equation is:

H = T e(r) + Tn(R) + V n−e + V e(r) + V n(R) (5)

where the superscripts n and e refer to the nucleus and electrons respectively, V is potential
energy, T is kinetic energy and R and r refer to nuclear and electron position respectively.
A number of approximations are necessary if we are to solve the Schrödinger equation.
The first important approximation which is made is the Born-Oppenheimer (BO) approx-
imation. The BO approximation is that given that electrons are much lighter than the
nucleus and therefore move much more rapidly the motions of the nucleus and electrons
can be decoupled, the electrons are assumed to be always equilibrated and thus forces on
the nuclei arise only as a result of atomic positions. Thus the electronic structure part of

7



3.1 Hartree-Fock 3 AB INITIO METHODS

the problem is reduced to that of solving the time-independent Schrodinger equation, with
the electrons assumed to be in the ground state. This removes the second term from the
above equation, yielding the electronic Hamiltonian, He.

The next approximation necessary relates to the wave function and is called the ”Linear
Combination of Atomic Orbitals” (LCAO) approximation. Essentially we assume that the
total wave function Ψ, can be represented by a summation of smaller functions called basis
functions φ :

Ψ =
∑
i

ciφi (6)

where φi are the atomic orbitals and ci is a factor weighting their overall contribution to the
molecular orbital (MO), Ψ. The choice of the set of basis functions, called the basis set, to
be used in a calculation is of crucial importance in electronic structure calculations. This
relates to both the form of the basis functions and also to the number of functions to be
used. The minimum amount of basis functions to be used is that which can accommodate
all the electrons of the system, however for more accurate and sophisticated calculations
basis functions representing unoccupied orbitals must be employed, once again which basis
set to use boils down to a question of accuracy versus computational resources available.

We can now consider two of the major electronic structure methods , Hartree-Fock and
Density Functional Theory.

3.1 Hartree-Fock

Since we do not know the exact ground state solution, to solve the Schrödinger equation
we have to obtain the set of constants ci, using the variational principle, which states
that the calculated energy will always be higher than exact solution. Hartree-Fock uses
the variational principle to obtain the constants, ci which allows us to solve the Roothan
matrix equation,

FC = SCε (7)

det|F − εaS| = 0 (8)

where F is the Fock matrix, C is the matrix of constants ci, S is the matrix of the
overlap orbitals and εa is the matrix of the energy levels of the system. The Hartree-Fock
method utilizes a Self-Consistent Field (SCF) procedure to solve the variational principle
equations. In an SCF the first calculation involves an educated guess for the values of
ci, this is then used for a calculation of the Fock matrix, the resulting Fock matrix is
then used to generate a new better set of coefficients, this is repeated until the difference
between the new and the old fock matrices is below a certian threshold value, called the
convergence criterion. This procedure is represented schematically in figure 3. The choice
of convergence value is another important consideration when setting up a calculation.
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3.2 Post Hartree-Fock Methods 3 AB INITIO METHODS

Figure 3: A Schematic Representation of The Hartree-Fock SCF Procedure.

3.2 Post Hartree-Fock Methods

The Hartree-Fock method suffers from the fact that it approximates the many electron
problem as a one electron problem and implies that each electron sees the other electrons
as a mean-field. Many attempts have been made to include electron correlation effects in
electronic structure calculations.

The configuration Interaction (CI) method takes into account mixing of possible elec-
tronic states of the molecule in the form,

Ψ = b0Ψ0 +
∑
s

bsΨs (9)

where b0Ψ0 is the Hartree-Fock expression and the second term on the RHS takes into
account substitutions of virtual or excited states for occupied orbitals.

Another approach is the Møller-Plesset theory (MP)[8]. MP uses a perturbation on
Hartree-Fock theory, to remove the error that was introduced in Hartree-Fock theory when
the two electron integrals were replaced by a one electron potential. The two electron
integrals are restored. Perturbation theory makes use of expanding the equation in a Taylor
series with respect to the Lagrange multiplier λ. The new Hamiltonian is

H = H0 + λV (10)

where H0 is the Hartree-Fock Hamiltonian. Expanding up to the first order gives the
Hartree-Fock solution. Including second order corrections leads to MP2. MP3 and MP4
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3.3 Density Functional Theory (DFT) 3 AB INITIO METHODS

are also commonly used methods. The MP series does not often converge, because in going
from MP2 to MP3 and on to MP4, one does not necessarily get better approximations to
the ground state wave function. This is because perturbation theory is not variational,
and thus a calculated energy is not necessarily an upper bound to the true ground state
energy.

Post Hartree Fock methods, however, are often simply not practical for calculations.
For a system of N atoms MP2 and MP4 scale as N5 and N7 respectively while CI methods
CISD and CISD(T) scale as N6 and N8 respectively. Compared to N4 scaling for Hartree-
Fock calculations [9].

3.3 Density Functional Theory (DFT)

The central focus of DFT is the electron density,ρ and not the wave function as in Hartree-
Fock methods. It is called a functional theory as the energy is a function of the density,
E[ρ], which in turn is a function of the position, ρ(r). A functional is a function of a
function. The attraction of DFT is that it provides better results than Hartree-Fock, in
many cases comparable with the MP methods, whilst scaling as N4.

The basis for DFT is the Reductio ad absurdum1 by Hohenberg and Kohn[10] that the
ground state electronic energy is completely defined by the electron density, ρ, this proof
is provided in an appendix. The foundation for the use of DFT methods in chemistry is
the introduction of orbitals as suggested by Kohn and Sham (KS)[11]. Within these DFT
formalisms the energy is split up as follows:

EDFT [ρ] = Ts[ρ] + Ene[ρ] + J [ρ] + Exc[ρ] (11)

with Ts[ρ] the electron kinetic energy, Ene[ρ] the potential nuclear-electron interaction en-
ergy, and J [ρ] the potential electron-electron interaction energy, the final term Exc[ρ] is the
exchange-correlation energy which is calculated with an exchange-correlation functional.
The choice of this last functional is where different DFT methods diverge and is crucial to
the success of the method.

In the simplest cases the functional is the Local Density Approximation, this approx-
imation however tends to break down if the electron density is not close to homogenous.
The next level of approximation is the Generalized Gradient Approximation (GGA) which
includes the first derivative (the gradient) of electron density when calculating Exc[ρ].
Commonly known GGA methods include PBE[12] and B88[13]. After GGAs are the meta-
GGAs which include second derivatives of electron density in calculations. Finally there
are also what are known as hybrid functionals, which include a certain percentage of the
exact exchange from Hartree-Fock theory. The most widely used, and very successful, hy-
brid functional, is B3LYP[14, 15]. The major criticism of hybrid DFT methods is that the

1Reductio ad absurdum: the premise that something impossible is actually true, and then proving it is
ludicrous.
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3.3 Density Functional Theory (DFT) 3 AB INITIO METHODS

percentage of HF exchange used is defined by a parameter obtained by fitting to experi-
mental data, so for example B3LYP which was parameterized based on heats of formation
works well for energies but not necessarily well for other properties such as nuclear shielding
constants.

All DFT functionals have problems reproducing physical and intermolecular interac-
tions, like the van der Waals force. The reason for this misbehaviour is the incorrect
asymptotical behaviour of the DFT interaction energy between multiple closed shell sys-
tems. DFT is a local or short-range potential, whereas intermolecular interactions are
long-range. Corrections have been proposed to enhance the ability of DFT to model dis-
persion forces such as the DFT:MP2 hybrid approach[16]. Improvements for modelling
dispersion have also been proposed by the group of Lundqvist and Langreth [17], these
corrections are based on a double local density approximation. Yet another method for
improved modeling of dispersion is the use of a damped dispersion function[18],

Etot = EDFT + EDisp (12)

with EDisp given by a dispersion function which is dampened to remove unrealistic behavior
at small distances.
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4 CHALLENGES IN MOLECULAR MODELING

4 Challenges In Molecular Modeling

The methods described thus far have been hugely successful when calculating the properties
of systems in the gas phase at zero kelvin, however this clearly represents only a very small
subspace of the chemical reactions and systems of interest practically. In order to be able
to model ”real-life” systems a number of ingenious methods have been developed, only a
small fraction of which will be considered here. The two major challenges with which we
shall deal here are those of molecules in solution and the search for the absolute minimum
energy of chemical systems.

4.1 Molecules In Solution

When representing solvation two approaches are available, one is to model the solvent
implicitly, ie to include the solvents effects directly when solving the Schrödinger equation
of the system. The second is to include the solvent explicitly, ie. to include actual molecules
of solvent surrounding the system of interest, of these two methods the second provides a
physically more realistic scenario, however it introduces extra particles into the system, and
given scaling constraints can quickly become infeasible as the number of solvent molecules
rises. It is also possible to consider a hybrid of the two methods in which the molecule is
surrounded by one layer of solvents which in turn includes an implicit model.

4.1.1 Implicit Solvation

The origins of an implicit model for solvation effects can be traced back to Born (1920) and
Onsanger (1936). Born[19] derived the free energy of solvation for placing a charge within
a spherical cavity in a solvent, Onsanger [20] extended this to a dipole within a spherical
cavity. The Born model calculates solvation energy as the work done in moving a point
charge from vacuum to a spherical cavity within a continuum. It is an extremely simple
model however can be effective in the case of the solution of ions.

The Onsanger model is appropriate for many more species, in this model the solute
dipole in side a cavity is considered. The dipole of the solvent induces a dipole in the
surrounding continuum, which results in an electric field inside the cavity, this is called a
reaction field. The reaction field then interacts with the solute dipole providing additional
stabilization for the whole system. The reaction field model can be incorporated into
quantum mechanical calculations where it is commonly known as the ”Self Consistent
Reaction Field” (SCRF) model. The SCRF model has been refined by Menucci and co-
workers [21, 22] to use a cavity of the shape of the molecule which is built from a series of
spheres centred on each atom, the solute charge is then represented as a series of charge
points spread out on the resulting cavity surface.

SCRF models have been applied successfully to investigate the effects of solvation in
many chemical systems and for various properties, however there are certain cases for which
the continuum representation of the solvent is not sufficient, for example if hydrophobic
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4.1 Molecules In Solution 4 CHALLENGES IN MOLECULAR MODELING

effects are present the continuum model will not represent them, another example is where
specific solvent-solute interactions are important such as hydrogen bonding in water. In
such cases it may be necessary to use explicit methods.

4.1.2 Explicit Solvation and Perdioc Boundary Conditions (PBCs)

If one is to model solvation explicitly by including ”real” solvent molecules then an ob-
vious question arises, how many explicit solvent molecules are necessary for a realistic
representation, as the solvent molecules are obviously themselves ”solvated” by other sol-
vent molecules and these effects may be of importance. In some respect by including only
a finite number of solvent molecules one is in effect only modeling a bubble of molecules
within a vacuum. An elegant and relativly simple solution to this problem is to use Periodic
Boundary Conditions (PBCs). This allows a relatively small number of particles to behave
as if they are part of a bulk system. The molecules are placed inside a cubic box of given
dimensions, this box is then surrounded by identical boxes and so on, a 2D representation
of this system is given in figure 4. The coordinates of the particles in an image box can
simply be calculated by adding or subtracting an integer to the coordinates of the original
box, should a particle leave the box it will be replaced by its image entering from the other
side, thus the contents of the box remain constant. As represented by the dashed lines in

Figure 4: A representation of a 2D system surrounded by periodic images.

figure 4 the particles in the original box now interact with particles all around them, all
of this is achieved with relatively little computational cost, an certainly not of the order of
just adding the extra molecules.
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4.2 Energy Minimization 4 CHALLENGES IN MOLECULAR MODELING

It should be noted that the use of PBCs is not restricted to liquid phases, indeed the
technique was developed in the solid state modeling community and is particularly useful
when modeling crystal structures as a periodic repetition of a basic unit cell, see sections
4.3 and 5.

4.2 Energy Minimization

The energy minimization problem is this: given a system with energy E which depends
on independent variables x1, x2, . . . , xi, find the values of xi for which E is a minimum.
At a minimum point the first derivatives with respect to xi of E are zero and the second
derivatives are positive:

∂E

∂xi
= 0;

∂2E

∂x2
i

> 0 (13)

For standard analytical functions these values may be found by calculus methods, however
given that the energy in chemical systems is dependent on the cartesian coordinates of the
atoms involved the energy functions of interest are much more complex and must be found
by numerical methods. Numerical methods in principle involve varying the coordinates
until these conditions are met. This still seems like a simple enough proposition, however
there exists another, more challenging problem, as represented in figure 5, it is this, in
a potential energy landscape there generally exists more than one point where the criteria
for a minimum are met. In this case we have both local and global minima, the global
minimum being the minimum of the minima. The question now is how can we be sure
that the minimum which we have found is a global minimum. The answer in short is we
can’t, not without exploring the full energy landscape. However if we can be sure that we
have sampled enough of the potential energy landscape then we can be confident in our
global minimum. So now we must sample the energy landscape to a suitable extent, this
is not a trivial problem given the expense incurred in electronic structure calculations. In
many cases it is more practical to sample the energy landscape using cheaper molecular
mechanics methods followed by an electronic structure refinement of the lowest energy
configurations from these calculations. However as computer resources improve and more
sophisticated and cost effective electronic structure methods are developed the goal of full
energy landscape exploration by Ab Initio methods is becoming more feesible. As molecular
dynamics have been dealt with else where we will not look at them here but rather explore
yet another restricting factor in energy landscape sampling.

This sampling problem is confounded by the energy barriers which exist in the energy
landscape, it is entirely possible that during the course of a dynamics simulation a system
may become stuck in an energy well which is not the global minimum, but which has an
energy barrier too high to allow escape. There are many methods to overcome this issue
in the next section we will look at one of the more recent and promising approaches.
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4.2 Energy Minimization 4 CHALLENGES IN MOLECULAR MODELING

Figure 5: A 2D schematic representation of the global versus local minimum problem.

4.2.1 Molecular Dynamics (MD)

The energy minimisation technique does not take into account the kinetic energy of the
species. It gives good results for the system with a temperature of zero Kelvin, even
though the zero point energy is neglected. However, this approach does not include the
influence of the temperature, therefore the system does not evolve in time and is likely to
stay in the local minimum of energy. In the molecular dynamics method, the species have
kinetic energies and therefore can mimic the situation of a real experiment in a better way.
The system is not trapped in the local minimum but can evolve to reach a more stable
configuration.

An MD simulation is performed in repetitive steps. However, firstly the starting config-
uration of the system needs to be set up. The positions of ions are initially obtained from
a simple minimisation and velocities are given randomly with a distribution producing the
required simulation temperature.

The next step is to calculate the force applied to each of the particles. It is obtained
from the interaction energy U(ri), provided by the potential model:

Fi = −∇U(ri) (14)

Having the forces, the new particle positions and velocities are obtained from the Newton’s
equations of motion:

ai(t) =
Fi(t)
mi

(15)
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The numerical solution of these equations leads to the scheme:

vi(t+ δt) = vi(t) + ai(t)δt (16)

ri(t+ δt) = ri(t) + vi(t)δt (17)

where ai, vi and ri are acceleration, velocity and position of ion i, respectively, and δt is
the time step. The value of the time step δt determines the accuracy of the result, when
it tends to zero the approximated solution tends to exact value. However, if the time step
is too small the CPU time of the calculation is too long. In practice, the δt value is a
compromise between accuracy and speed of the simulation. The size of δt is limited by
the frequencies of the molecular vibrations occurring in a modelled system – the time step
must be less then reciprocal of the highest frequency. Every step, after the new positions
and velocities are obtained, the properties of the system are calculated. In the first several
tens of time steps, the equilibration period is performed. This is necessary because the
initial positions and velocities are usually far from the equilibrium ones and, therefore, in
this period the velocities are scaled to obtain the required temperature.

4.2.2 Monte Carlo

Monte Carlo (MC) methods unlike MD are not a deterministic technique, instead making
use of random numbers to perform random moves and orientation changes to generate
successive configurations. The particular advantage of MC methods is that completely
unrelated configurations are generated, so it is potentially possible for the entire region of
phase space to be sampled. By comparison MD methods may only sample a very small
portion of the phase space close to the starting configuration unless the simulation is run
for a long time or special techniques are used to overcome barriers. The simplest form
of a MC simulation accepts any new configuration with a lower energy than the previous
configuration, however this is an inefficient way to sample the system, since high and low
energy states are generated with equal probability. Therefore sophisticated MC methods,
such as the Metropolis algorithm, make use of importance sampling to ensure that the
majority of the time is spent sampling the low energy configurations that are of most
interest. In order to do this the configurations are weighted by the Boltzmann factor,β =
exp(−∆v/kbT ), which ensures higher energy configurations have a lower probability of
being sampled. The Metropolis algorithm will ensure that each step only depends on the
configuration of the previous step and not on any earlier configurations, hence generating
what is known as a Markov chain of states. Figure 6 is a schematic which demonstrates
the Metropolis Method. When a trial move is made through the calculation of a random
translation in each of the x, y and z coordinates, the energy is calculated and hence the
change in energy, ∆v = En − Em, from the previous configuration. If ∆v is negative then
the move is automatically accepted as it is downhill. If ∆v is positive then the Boltzmann
factor, β, is compared to a random number between 0 and 1. If the Boltzmann factor
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4.2 Energy Minimization 4 CHALLENGES IN MOLECULAR MODELING

is greater than the random number then the move is accepted, otherwise it is rejected.
This process is then iterated. The greater the temperature (i.e. the greater the thermal
energy) of the system, the more likely it is that an uphill move will be accepted, since the
Boltzmann factor is larger.

Figure 6: Schematic demonstrating how a Metropolis algorithm performs a MC simulation.

4.2.3 Metadynamics[1]

Traditional Molecular Dynamics and Monte Carlo methods have had a great impact in
many fields, however due to computational costs there exist many systems for which
”straight-forward” dynamics simply cannot explore the full landscape, consider the land-
scape presented in figure 5. If the system were to become trapped in the local minimum
well, and did not have sufficient energy to overcome the barrier to get out the resultant
simulation would sample only a small subspace of the system configurations and would
miss the global minimum. In a traditional dynamics the configuration would propagate
according to an equation something like:

σt+1
i = σti + δσ

φ

|φ|
(18)

in which σti represents the configuration at time t, and the second term on the right hand
size is related to calculating the force on the system. If this force becomes too great as
the system attempts to leave the energy well it will simply slide back down the side of
the well and not sample the space beyond this. The idea behind metadynamics is to build
into this force a history dependent term, a kind of memory in order to avoid resampling
configurational spaces. this is achieved by placing small gaussian functions at points which
have already been visited, this is illustrated in figure 4.2.3 (a). The result is that as
the calculation continues the wells become filled with these gaussian functions and the
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energy land scape flattens out, 4.2.3 (b). The metadynamics procedure at the same time
as allowing escape from local minima also provides for a backwards analysis to reveal the
original energy surface, thus no information is lost and sampling power is greatly increased.

Figure 7: (a) on the left the energy profile being filled with small gaussian (red), (b) the
energy profile becoming increasingly flattened as the simulation proceeds (thin lines).

4.3 Modeling Surfaces

A key part of understanding zeolite crystal growth is to look at what is happening at the
surfaces. To model the processes occurring at surfaces we first need to have a reasonable
model of the process. Since we are considering a crystalline (i.e. periodic) solid we will
automatically require the use PBCs. There are 2 key ways we can model a surface:

1) Periodic (3D): Use PBCs in all three dimensions. It will consist of a slab (continu-
ous in, say, the x and y directions) with a vacuum or some other medium between the top
and bottom surface in the z direction. The size of the medium gap between the top and
the bottom of the slab must be sufficiently large that the two surfaces are not chemically
aware of each others presence.

2) Aperiodic (2D): Use PBCs only in the plane of the crystal (eg. x and y plane).
In both cases you need to ensure that your slab is the correct size. For example, imagine

modelling a molecule approaching a zeolite surface, and you are using a 3D periodic cell to
represent this surface. If the crystal slab is too thin, then the molecule will not only interact
with the top surface, but also with the bottom surface. However we do not want to make
any slab excessively thick as this will increase the computational expense of modelling the
system.

When we create a surface we will be starting from a model of the materials bulk unit cell,
most often the coordinates used are those characterised by an experimental technique, eg.
XRD. For zeolites we rarely have as much information on the exact nature of its surfaces,
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Figure 8: A representation of the two methods for surface representation; a) 3D periodic;
b) 2D periodic.

although any information from HRTEM or other surface characterisation techniques is
invaluable. Starting from the bulk unit cell we consider all the possible surface terminations
for a particular plane. The most stable surface termination is particularly interesting since
we can expect this to be the longest lived termination, hence its growth will determine
the RDS of that surfaces growth and it is what we expect to be observed experimentally.
Obviously, depending on what we are trying to model, it is often necessary to look at other
viable surfaces as well. As a simple rule the most stable surface should be the surface that
requires the least chemical bonds to be broken when it is cleaved from the bulk cell (as the
more dangling bonds a surface has the less stable it would be). Another more subtle point
is that a surface should be chosen so as to minimise/remove any dipole running across it
(a dipole that does not exist in the true crystal, but is created merely by the making of
the surface model).
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5 Case Study: ZEBEDDE

The computer program ZEBEDDE (Zeolites By Evolutionary De Novo Design) was de-
veloped by Lewis and Willock in 1996 with the aim of predicting templates for a given
zeolitic structure[1,2,3]. The principle being that the better the fit of a molecule within
the framework the better that molecule will actually template to a particular structure.
The program was designed to build a template from scratch (de novo); the procedure used
is summarised as follows; the program places a small fragment (seed) within the void of
a zeolite (termed the host) and then carries out a series of actions upon this guest. These
actions are:

[1] BUILD add on a new fragment (from a library of possible fragments).

[2] ROTATE rotate the last bond added.

[3] SHAKE move the guest a random distance (between set limits) in a random direc-
tion.

[4] ROCK rotate the guest a random amount.

[5] RING FORMATION take two end atoms and join them to form a ring.

[6] MINIMISE GAS PHASE Perform an energy minimisation (as if the zeolite host was
not visible to the guest molecule).

[7] MINIMISE IN HOST Perform an energy minimisation (with the zeolite host visible
to the guest molecule).

[8] TWIST this is a recent addition to ZEBEDDE that rotates a randomly selected
bond.

When an action is carried out it can be testing to find out whether it is an improvement
by comparing the current and previous energy, to see whether the action has resulted in
a reduction in energy (i.e. it is an energy minimisation tool, see Section 4.2 ). More
recently a Monte Carlo function was added into ZEBEDDE. This can be chosen instead of
the energy minimisation so that the simulation can overcome energetic barriers (consider
Figure 5 ).

ZEBEDDE is an atomistic technique (see Section 2 ), this is necessary because it
needs to carry out typically 1000+ actions and often each simulation would need to be
repeated many times to ensure you had sampled all possible answers. It would be too time
consuming using electronic structure methods and this level of accuracy is not deemed
necessary for the task of testing the fit. ZEBEDDE requires PBC (Section 4.1.2 ) to
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be able to model the zeolite (since it is a periodic solid). To calculate the electrostatic
(Coulombic) interactions it makes use of the Ewald summation method (Section 9 ),
necessary due to the PBCs.

There are many of simulation parameters that can be used to affect how the simulation
runs, for example: the fragments available for addition, the bias towards the addition at
certain sites (ie. to influence the amount of branched vs linear molecules that would be
grown), the minimisation tool used (for Actions 6 7), the bias towards certain actions over
others, how often an action is accepted without testing etc etc.

ZEBEDDE is not limited to being used for the growth of templates. It may also just
be used to take a given template and then carry out actions (only 3,4,6,7,8) so as to find
the most energetically favourable position for the template within a particular void or on a
surface (using a 3D periodic cell, see Section 4.3). Similarly ZEBEDDE does not have to
be carried out on a zeolite and template, it can be used for any guest molecule within/on
a host.

6 Case Study: Kinetic Monte-Carlo Method

6.1 The Model

The kinetic monte-carlo method randomly chooses a particular growth site based on certain
probabilities, and the number of that particular site which are available, and adds a growth
unit to this site. Using these probabilities the program can then be applied to calculate
the rates, activation energies and Free energies of crystal growth. As we have substantial
information realting to Zeolite A we have chosen this as our prototype model.

Thus far one type of growth unit has been implemented in the program in order to
model the following:

• Zeolite A crystal growth program in 3D.

• Zeolite A crystal growth and dissolution program in 3D

• Zeolite A crystal growth and dissolution program on (100) face in 2D (monolayer
spreading growth)

• Zeolite A crystal growth and dissolution program on (110) face in 2D (monolayer
spreading growth)

The growth unit is modeled as 1.2nm cubes, which corresponds to the experimentally
determined terrace height in zeolite A, comprising a sodalite cage and double four ring
(D4R).

The simulation performs one growth unit addition or dissolution per iteration, and then
updates the site type of the 24 nearest neighbors of the site which has been affected. The
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Figure 9: (a)Each cube shows a growth unit. Growth/dissolution site (pink) is surrounded
by 6 nearest neighbours (green) and 18 second nearest neighbours (purple). (b) The Kossel
model.

nearest neighbor sites are categorized as having either first or second sphere coordination
to the affected site see Figure 9 (a) The chosen growth/dissolution site has six nearest
neighbours, which have 5 categories corresponding to the Kossel model (Fig ??) . In
order to generate bevelled edges (ie, 110 faces) and/or corners (ie, 111 faces) of a cube, the
second nearest neighbours are also considered. This results in 223 possible ”site types” or
categories, however for simplicity we consider only the six key site types.

6.2 Development

The challenge for the program is to control both morphology and topology using a cer-
tain set of probabilities. In 3D, although crystal morphology could be controlled,topology
needed a certain shape to be more realistic.

6.2.1 Zeolite A crystal growth and dissolution program in 3D

The problem was it was hard to treat 192 site types (excluding bulk) to control the morphol-
ogy and topology at the same time. Also, the small limited computer memory environment
caused a further difficulty to compare simulation images with real crystal images. Hence,
2D simulation program on (100) face was created to cope with above problems.

6.2.2 Zeolite A crystal growth and dissolution program on (100) face in 2D

The simulation was focused on mono-layer surface spreading (ie, the top of the surface
terrace is supposed to be simulated). NB: multi-layer shows 3D because the second nearest
neighbours are considered. As a result, we could say the curved corners were generated
under the dissolution; however, to decide the certain probability set, we need more data
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(eg, more real images and their size of radius at the corner (Fig,3), and also the ratio
between growth rate and dissolution rate).

6.2.3 Zeolite A crystal growth and dissolution program on (110) face in 2D

Zeolite A crystal growth and dissolution program on (110) face in 2D As we have observed
the (110) faces by means of AFM and SEM, the 2D simulation program for (110) face was
also created to decide the (110) surface topology by a certain probability set.

Probability sets generated by the 2D programs will be applied for probability sets on
the 3D program, considering the ratio of site types to make the crystal morphology as well
as surface topology.
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7 Appendix A: Proof of the Hohenberg-Kohn Theorem

The Hohenberg-Kohn theorem demonstrates that there is a functional relationship between
the electron density, ρ, and all observable properties of the interacting system of particles,
meaning that all properties of the system may be determined if the electron density is
known. We start by assuming that there exist two different potemtials v and v′ which yield
the same electron density ρ, these two external potentails generate different operators V̂
and V̂ ′ which in turn yield two different Hamiltonians Ĥ and Ĥ ′. These systems also will
have different wave functions Φ and Φ′ with energies E and E′ the energies are given by :

E = 〈Φ|Ĥ|Φ〉 (19)
E′ = 〈Φ′|Ĥ ′|Φ′〉

Now by applying the variational principle we can say that the exact Hamiltonian for a
system always yields lower energy than an approximate one thus:

E′ = 〈Φ|Ĥ|Φ〉 < 〈Φ|Ĥ ′|Φ〉 (20)
E = 〈Φ′|Ĥ ′|Φ′〉 < 〈Φ′|Ĥ|Φ′〉

We can also say that

〈Φ|Ĥ ′|Φ〉 = 〈Φ|Ĥ + V̂ ′ − V̂ |Φ〉 (21)
〈Φ′|Ĥ|Φ′〉 = 〈Φ′|Ĥ ′ + V̂ ′ − V̂ |Φ′〉

assuming that
〈Φ′|ρ|Φ′〉 = ρ(r) = 〈Φ′|ρ′|Φ′〉 (22)

which is our original assumption, we obtain that

E′ < 〈Φ|Ĥ|Φ〉+
∫
dr[v′(r)− v(r)]ρ(r) = E +

∫
dr[v′(r)− v(r)]ρ(r) (23)

E < 〈Φ′|Ĥ ′|Φ′〉+
∫
dr[v(r)− v′(r)]ρ(r) = E′ +

∫
dr[v(r)− v′(r)]ρ(r)

Adding these two inequalities yields:

E′ + E < E + E′ (24)

This result is inconsistent and thus proves that the original assumption is false.
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8 Appendix B: Basis Sets

It would be negligent when introducing Ab Initio methods to overlook an explanation of
basis sets, which after the choice of method are the most important factor in setting up a
calculation, and a continual source of controversy and debate.

As stated earlier basis sets are sets of basis functions which are combined to give a
wave function. There exist two major types of basis sets, plane wave basis sets and atom
centred basis sets. We will concentrate primarily on the latter as they are more commonly
used in liquid and gas phase calculations. Atom centred basis sets are comprised of atomic
functions representing the electron population at a given distance from the nucleus and
can be thought of as being atomic orbitals. There are a number of different types of atom
centred basis functions available. One obvious choice are Slater type orbitals (STOs) which
are of the form:

R(r) = Nrn−1e−ζr (25)

where n is the principal quantum number, N is a normalization constant, r is the distance
from the nucleus and ζ is a constant related to the atomic charge of the nucleus. Un-
fortunately STOs are often impractical for quantum chemical calculations as some of the
integrals are difficult or even impossible.

By far the most popular type of basis sets used in quantum chemistry are those based
on Gaussian functions, Gaussian type orbitals (GTOs), these have the form:

R(r) = xaybzce−αr
2

(26)

α determines the spread of the function, r is the distance from the nucleus, x, y, z are
cartesian variables and a, b, c determine the order of the function. If a+ b+ c = 0 then the
function is zeroth order, and one such function exists, if a+ b+ c = 1 the function is first
order and three such functions exist, zeroth order functions are equivalent to s orbitals,
first order functions to px, py and pz orbitals and so on up the orders.

A minimal basis as stated earlier is that which contains just enough functions to ac-
commodate all of the electrons present., however as stated earlier in practice minimal basis
sets are often not good enough for the task at hand. The basis set can be expanded in a
number of ways. One way is to split each of the functions in the basis set, if the functions
are split once this is known as a double zeta basis set, basis sets up to quadruple zeta are
commonly used. An alternative approach which is highly popular is to split only the basis
sets used for valance electrons, the rational being that the chemical properties of interest
are effected by the valance rather than the core electrons, this approach is known as the
split valance approach and is so popular that it has its own notation, exemplified by the
label 3-21G, this means that core electrons are teated with 3 functions, whilst valance
electrons are treated with functions split into two contracted Gaussians and one diffuse
Gaussian. Popular examples of this type of basis set are 3-21G, 4-31G and 6-31G.

Simply increasing the number of basis functions may not necessarily improve the model,
and there are other issues which must be considered when issues such as orbital mixing
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are involved, for example in an isolated hydrogen atom the electron cloud is spherical,
however as the atom approaches another hydrogen atom this becomes distorted and the
cloud takes on some p orbital character or is said to be sp hybridized. in order to account for
this we introduce what are called polarization functions. Polarization functions have higher
angular quantum numbers, thus the polarization function for a hydrogen atom corresponds
to a p orbital function, and to a d orbital function for first and second row atoms. The
use of polarization functions is denoted by an asterix. Hence the 6-31G basis with added
polarization is the 6-31G* basis set.

A final complication which we will consider is that of species with lone pairs of electrons.
These lone pairs reside far away from the nucleus and are poorly represented by Gaussian
functions, as they decay quickly when moving away from the nucleus. The solution to this
is to add highly diffuse functions. These are denoted by a +, so the 6-31G* basis set with
added diffuse functions for heavy atoms is denoted 6-31+G*.

When modeling periodic systems basis sets of the lane wave form are usually chosen,
the general form of such basis sets is:

ψ(r) =
∑
G

aGexp(i(k +G)ṙ) (27)

In this case the basis function is continuous and not centred on the atom as with gaussian
type basis sets.

There exist many other types of basis sets and methods for improving them, however
for the purposes of this introductory document it is considered sufficient to discuss only
the most commonly encountered basis sets.

9 Appendix C: Ewald Summation

The sum in equation 2 converges slowly because the electrostatic potential, due to point
charges, decays as 1/r. The way to overcome that was presented by Ewald [?]. In this
method the density of point charges, represented by a sum of δ functions, is modified by
an additional sum of diffuse charge distributions around each ion. The diffuse distribution
is selected such that it is opposite in sign to the point charge and thus the total charge is
cancelled out. As a result, the electrostatic potential due to a single ion is a fraction of
original potential that is not screened by diffuse charge. This remaining fraction rapidly
converges to zero at long distances, which allows the use of a direct summation for the
screened charges. The screening charge distribution around ion i usually has the form of a
Gaussian

ρg(r) = −qi
(α
π

) 3
2 exp(−αr2) (28)

where r is position relative to the centre of the distribution and parameter α sets the width
of the distribution. The interaction energy due to the screened charge distribution can be
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calculated from following equation

U1 =
1
2

(
1

4πε0

) N∑
ij

′∑
n

qiqj
|rij + nL|

erfc(
√
α|rij + nL|) (29)

where erfc is the complementary error function

erfc(x) = 1− 2√
π

x∫
0

exp(−t2)dt (30)

obtained by solving Poisson’s equation for Gaussian charge distribution. For large argu-
ments this function tends to zero.

Figure 10: Scheme of the Ewald method; a) point charges; b) screened point charges; c)
Gaussian charge distribution

The electrostatic potential due to screened charges does not describe the full interac-
tion between point charges, therefore, a correction must be introduced. The method for
correcting the interaction is shown in Figure 10. Point charges are surrounded by screen-
ing charges and are then compensated by a charge distribution smoothly varying in space.
As the compensating charge distribution is a periodic function it can be represented by a
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rapidly converging Fourier series. The density of the compensating charge is formulated
by a sum of Gaussians:

ρ1(r) =
N∑
j=1

′∑
n

qj

(α
π

) 3
2 exp

[
−α|r− (rj + nL)|2

]
(31)

which in reciprocal space becomes:

ρ1(k) =
1
V

N∑
j=1

qj exp(−ik · rj) exp
(
−k2

4α

)
(32)

Applying Poisson’s equation yields the electrostatic potential:

Φ(k) =
4π
k2

1
V

N∑
j=1

qj exp(−ik · rj) exp
(
−k2

4α

)
(33)

where k 6= 0. The reciprocal space contribution becomes:

Φ(r) =
1
V

∑
k 6=0

N∑
j=1

4πqj
k2

exp[−ik · (r− rj)] exp
(
−k2

4α

)
(34)

and the contribution to the interaction energy is equal to:

U2 =
V

2

∑
k 6=0

4π
k2
|ρ(k)|2 exp

(
−k2

4α

)
(35)

where ρ(k) is defined as:

ρ(k) =
1
V

N∑
i=1

qi exp(−ik · ri) (36)

As equation 35 includes the interaction between the charge cloud around an ion and the ion
charge itself, another correction is introduced. The form of this self-interaction correction
is evolved to be

Us =
(α
π

) 1
2

N∑
i=1

q2i (37)

and does not depend on ions positions.

Considering all contributions, the Coulomb interaction is given

UC = U1 + U2 − Us (38)

A detailed derivation of above equations can be found in Frenkel and Smit [23].
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10 Glossary

De Novo DesignThe design of compounds by incremental construction of a model within
a model of the crystal site.

Eigenvalue:A scalar value λ that permits nonzero solutions y in equations of the form
Ly = λy;
where L is an operator and where y can represent a vector or a function that is subject

to certain boundary conditions (eg that y is zero at a certain point).
Fock Matrix: Is defined by the Fock Operator, which is equivalent to a Hamiltonian

for a single electron in a poly-electron system.
Hamiltonian: An operator representing the energy of the electrons and nuclei in a

molecule. The Hamiltonian operator acts on the wave function yielding the energy.
Operator : a function, that operates on (or modifies) another function.
Potential Energy Surface: A plot of the potential energy of a system in relation

to the parameters which define the potential energy. It can be visualized as a landscape
in which the height changes with position, thus the energy would correspond tho height
and the variables would correspond to location on the north south east west grid. For
this reason it is also commonly referred to as a potential energy landscape. In reality in a
chemical system the surface will be of more than three dimensions; given that each atom
in the system has 3 degrees of freedom the surface will be in 3N dimensions, where N is
the number of atoms

Variational Principle: The expectation value of the Hamiltonian for a trial wave-
function must be greater than or equal to the actual ground state energy. Or in other
words:

Eground 6 〈φ|H|φ〉 (39)

By definition, the ground state has the lowest energy, and therefore any trial wavefunction
will have an energy greater than or equal to the ground state energy.

Wave Function: A mathematical function for a state of a system, from a space that
consists of the possible states of the system.

11 Glossary of Programs and Codes

Gaussian: A commercially available package for quantum and semi-empirical calcula-
tions.

GAMESS: Essentially the same as Gaussian but open-source, so somewhat less pol-
ished.

GULP: General Utility Lattice Program. Program to perform atomistic calculations
for molecules and solids. It provides a variety of simulation approaches, mostly using
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analytical techniques, and can be applied to a variety of systems eg molecule, surface,
periodic solid.

METADISE: Atomistic code for modeling surface structure and stability.
SIESTA: Spanish Initiative for Electronic Simulations with Thousands of Atoms. Pro-

gram to perform electronic structure (Density Functional Theory) calculations and Molec-
ular Dynamics simulations of molecules and solids.

Quickstep (cp2k): Open-source code using a mixture of gaussian and plane wave
basis sets for efficient molecular ab initio dynamics simulations of large systems.

ZEBEDDE: ZEolite By Evolutionary /De Novo/ DEsign. Program to design a tem-
plate for a specific zeolite structure. In principle has wider use for locating/building any
’guest’ within/on a ’host’.
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