
1 | P a g e

Cheat sheet: Node.js and Express.js (version 1.01)

The following are objects and methods that you will need to know for MIS3502. In many cases the notes and examples

have been simplified. For comprehensive documentation, please see: https://expressjs.com/en/4x/api.html and

https://nodejs.org/en/docs/

Object and/or method Variable Name
(by convention)

Notes

The express object. express Top-level object. When the express() method is called it returns an
express application object. You need this application object to
make use of all other Express.js features.

The body-parser object bodyParser The body-parser object contains a variety of methods that return
functions. (You read that right – it is a method that returns a
function!)

The purpose of these functions is to provide instructions about how
to encode the data coming into the function.

So, if the incoming data is going to be URL encoded, you should use

bodyParser.urlencoded(). If the incoming data is expected to be

JSON, you could use bodyParser.json().

In our class, the incoming data will always be URL encoded, and the

outbound data of the API will always be JSON.

Remember: URL Encoded in, JSON out.

bodyParser.urlencoded(
{extended:false})

Not Applicable The URL encoded method of the bodyParser object returns a
function with instructions on how to manage incoming URL
encoded data. It must be provided with a parameter of either
{extended:false} or {extended:true}.

In our class, we will always use {extended:false}.

The “extended” option has to do with the expected complexity of
the incoming URL encoded data. Will it be multi-dimensional
(extended) or not?

The instructions include calls to the next() function so that code
execution does not terminate prematurely.

https://expressjs.com/en/4x/api.html
https://nodejs.org/en/docs/

2 | P a g e

Object and/or method Variable Name
(by convention)

Notes

The express app object app The app object is the most important object provided by the
Express framework. It has a number of useful methods:

• app.use

• app.get

• app.post

• app.delete

• app.put

• app.listen

The use method of the app
object

app.use() The Express application will invoke the callback function without
regard to the path or method (POST or GET) of the incoming
request.

Basic syntax:

app.use(function(req,res,next){

 //code goes here

});

The GET method of the app
object

app.get() Trap and manage an HTTP GET event.

The get() method takes a path as an argument, and also a callback
function. The callback function provides a request and a response
object.

The path can be ‘/’ which would mean no path.

The path can be ‘/xyz would trap an HTTP POST targeted at xyz.
The value ‘xyz’ is virtual. It does not correspond to a folder on the
servier’s file system.

Basic syntax:

app.get('/xyz',function(req,res){

 //code goes here

});

The POST method of the
app object

app.post() Trap and manage an HTTP POST event. Similar to app.get.

The DELETE method of the
app object

app.delete() Trap and manage an HTTP DELETE event. Similar to app.get.

3 | P a g e

Object and/or method Variable Name
(by convention)

Notes

The PUT method of the app
object

app.put() Trap and manage an HTTP PUT event. Similar to app.get.

The listen method of the
app object

app.listen() This method defines the port that the express app object will listen
on. The callback function executes when the app has been started.
The method returns an object that summarizes the properties of
the server.

//here XXXX is the port number

app.listen(XXXX,function(){

});

The express request object req All of the app callback functions provide a request object. The
variable “req” is short for “request”. It represents the data sent to
the API endpoint. The Express framework (which includes body-
parser) improves and simplifies the request object provided by
Node.js alone.

The request object will have query and body child objects, which in
turn have properties that correspond to the data sent via GET and
POST.

For example:
req.query.x // refers to a query

 // string parameter x

req.body.y // refers to a form tag

 // with the name of y

The express response
object

res All of the app callback functions provide a response object. The
variable “res” is short for “response”. It represents the data sent
from the API endpoint. The Express framework (which includes
body-parser) improves and simplifies the response object provided
by Node.js alone.

The response object will have the following methods:

• header()

• writeHead()

• write()

• end()

The header method of the
response object

res.header() Sets the response’s HTTP header field to value. Multiple header
key-value pairs can be written. This method is really just an alias to
res.set().

4 | P a g e

Object and/or method Variable Name
(by convention)

Notes

The writeHead method of
the response object

res.writeHead() Write the HTTP status code (e.g. 200 = success) and any
accompanying HTTP response headers. This method must only be
called once on a message and it must be called
before response.end() is called.

The write method of the
response object

res.write() Write a stream of text to the HTTP response.

The end method of the
response object

res.end() End the HTTP response.

The express next object next() The app callback functions may also provide a next object. When
the next() method is called the next matching express app event
will be evaluated.

https://nodejs.org/api/http.html#http_response_end_data_encoding_callback

