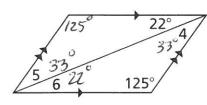

7.4 Start Thinking

A rhombus and a square are both quadrilaterals with four congruent sides, but a square always contains four right angles. Examine the diagrams below and determine some other distinctive characteristics of the rhombus and the square.

- Opp Ls ≅ - Cons Ls supp. - Diagonals bisect

7.4


Warm Up

-> Diagonals 1

Square > Diagonals

Use the diagrams to determine the measure of each angle.

Rectangle

- 1. m∠1 90-39=51° 2. m∠2 39° 4. m∠4 33° 5. m∠5 33°

7.4 **Cumulative Review Warm Up**

Determine whether the statement is always, sometimes, or never true. Explain your reasoning.

- An isosceles triangle is a right triangle.
 A right triangle is a scalene triangle.
 An equilateral triangle is an equiangular triangle.
 A right triangle is an equilateral triangle.

246 Geometry

Resources by Chapter

NEVER Copyright @ Big Ideas Learning, LLC

A right A can't have All rights reserved.

angle measures of 60°,60°, and 60°

Notetaking with Vocabulary For use after Lesson 7.4

In your own words, write the meaning of each vocabulary term.

rhombus Parallelogram W/ 4 = sides (NOT NECESSARILY 4 = Ls)

rectangle

Parallelogram w/ 4 90° angles (NOT NECESSARILY 4 = sides)

square

Rhombus AND Rectangle! (4 = sides & 4 = Ls

Core Concepts

Rhombuses, Rectangles, and Squares

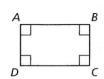
A rhombus is a parallelogram with four congruent sides. A rectangle is a parallelogram with four right angles.

A square is a parallelogram with four congruent sides and four right angles.

Notes:

Corollary 7.2 **Rhombus Corollary**

Biconditional statement Biconditional statement wither both are true A quadrilateral is a rhombus if and only if it has four congruent sides.


ABCD is a rhombus if and only if $AB \cong BC \cong CD \cong AD$.

Corollary 7.3 Rectangle Corollary

A quadrilateral is a rectangle if and only if it has four right angles.

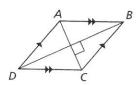
ABCD is a rectangle if and only if $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

7.4 Notetaking with Vocabulary (continued)

Corollary 7.4 Square Corollary

A quadrilateral is a square if and only if it is a rhombus and a rectangle.

ABCD is a square if and only if
$$\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{AD}$$
 and $\angle A$, $\angle B$, $\angle C$, and $\angle D$ are right angles.

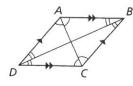


Notes:

Theorem 7.11 Rhombus Diagonals Theorem

A parallelogram is a rhombus if and only if its diagonals are perpendicular.

 $\square ABCD$ is a rhombus if and only if $\overline{AC} \perp \overline{BD}$.

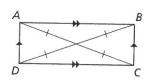


Notes:

Theorem 7.12 Rhombus Opposite Angles Theorem

A parallelogram is a rhombus if and only if each diagonal bisects a pair of opposite angles.

 $\square ABCD$ is a rhombus if and only if \overline{AC} bisects $\angle BCD$ and $\angle BAD$, and \overline{BD} bisects $\angle ABC$ and $\angle ADC$.



Notes:

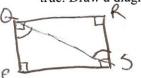
Theorem 7.13 Rectangle Diagonals Theorem

A parallelogram is a rectangle if and only if its diagonals are congruent.

 $\square ABCD$ is a rectangle if and only if $\overline{AC} \cong \overline{BD}$.

Notes:

Notetaking with Vocabulary (continued)


Extra Practice

1. For any rhombus MNOP, decide whether the statement $\overline{MO} \cong \overline{NP}$ is always or sometimes true. Draw a diagram and explain your reasoning.

Sometimes; those are the diagonals

2. For any rectangle PQRS, decide whether the statement $\angle PQS \cong \angle RSQ$ is always or sometimes true. Draw a diagram and explain your reasoning.

Always; Always;

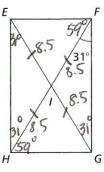
In Exercises 3-5, the diagonals of rhombus ABCD intersect at E. Given that $m\angle BCA = 44^{\circ}$, AB = 9, and AE = 7, find the indicated measure.

3. BC

4. AC

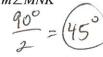
5. $m \angle ADC$

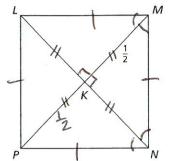
In Exercises 6-8, the diagonals of rectangle EFGH intersect at I. Given that $m \angle HFG = 31^{\circ}$ and EG = 17, find the indicated measure.


6. m∠FHG

8. m∠EFH

In Exercises 9-11, the diagonals of square AMNP intersect at K. Given that


 $MK = \frac{1}{2}$, find the indicated measure.



10. $m \angle PKN$

11. *m∠MNK*

