
Motor Velocity Control Experiment 
 
Part A: Speed Control 
 
In-Class Component 
 
Goal: Investigate P, PI, and PID speed control for a DC motor.  Determine effect on relative 
stability and steady-state accuracy as the gains as varied. 
 
Background: 
The analog version of the block diagram that should be implemented is shown below: 
 
 
 
 
 
 
 
where 
 G(s) is the DC motor 

D(s) is the controller 
H(s) is the sensor  
Θ(s) is the angle, θ(t) is in degrees 

 Ω(s) is the speed, ω(t) is in deg/sec 
 Ωr(s) is the reference speed, ωr(t) is in deg/sec 
  -the reference is chosen to be a square wave between 100 and 200 deg/sec 
 E(s) = Ωr(s) - Ω(s) is the error signal 
  
There is no tachometer to measure speed, so the angle sensor is used to obtain the motor shaft 
angle θ(t). This must be differentiated to obtain ω(t).  Since digital approximation to 
differentiation creates a very noisy signal, an ideal differentiator H(s) = s is replaced with a 

filtered differentiator 
as
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The control can be chosen as a P, PI, or PID controller.  The PID controller has the form: 
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The PID controller is implemented digitally as: 
 

Tz
)1z(K

1z
TzK

K
)z(E
)z(U)z(D DI

P
−

+
−

+==  

 
where T is the sampling period. This expression is easiest to implement using parallel blocks 
where  
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In the time domain, this corresponds to the following sum of terms: 
 

u[n] = up[n] + ui[n]+ud[n] 
 
The digital version of H(s) is obtained using a bilinear transformation. 
 
Ziegler-Nichols Tuning Rules: 
 Slowly increase the gain KP until there are sustained oscillations. This value of gain is 
termed Ku and the period of oscillations is termed Pu.  The tuning rules are: 
 

 KP TI TD
P 0.5Ku   
PI 0.45Ku Pu/1.2  
PID 0.6Ku Pu/2 Pu/8

 
KI = KP/TI and KD = KPTD 
 
Experiment: 
 
1) You will implement the controllers using LabVIEW. Start  with a Proportional controller, 

D(z) = KP.  Set the gains as KP = 0.1, and KI = KD = 0.   
 
2) Examine the speed response of the motor to the reference input with KP = 0.1.   

 
Observations:  average steady-state error__________ 

 
3) Increase the gain KP until you reach sustained oscillations. Note the signal is naturally 

noisy due to the errors in the differentiation approximation, but the sustained oscillations 
are at a lower frequency. They first appear as an overshoot, then the system’s damping 
ratio becomes smaller as the gain is increased. Record the average steady-state error when 
the oscillations appear to be sustained KP. 

 
Ku = ______________,    Pu = _________________ 

 
Observations:  average steady-state error__________ 
 
Summarize what has happened to the response as KP was increased, in terms of 
steady-state accuracy and relative stability. 
 
 
 

  
 
 



 
 
4) Determine the gains using the Ziegler-Nichols Tuning Rules: 

 
 KP TI TD KI KD 

P      

PI      

PID      

 
5) Summarize your observations for each control, P, PI, and PID, with the Ziegler-Nichols 

gains.  Compare them in terms of steady-state error, rise time, and noise as well as 
maximum control effort required. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

6) Tune the gains further by modifying them in an effort to improve the performance.  What 
seemed to work the best and why? 

 
 
 
 
 
 

 
  



Out-of-Class Component: 
 
This portion of the lab will ask you to verify the tracking accuracy of the closed loop PID control 
that you designed and also to plot the frequency responses of the open loop and closed loop 
systems.    
 
Background:  
The steady-state output of a linear system, H(s), to a sinusoidal input is a sinusoid with the same 
frequency: 
 
 

H(ω) 
Aisin(ω1t) Aosin(ω1t-φ)  

 
 
 
Where ω==ω js)s(H)(H  

 
The output amplitude, Ao, and the output phase, φ, are found from H(ω) as follows: 
 
 )(Hand)(HAA 11io ω∠=φω=  
  
 
To determine H(ω), find the sinusoidal response to a wide range of input frequencies. From each 
sinusoidal response, measure Ao  and φ.  Fill in a table such as the one below for each input 
frequency. 

 
ω1 φ=∠H(ω1) |H(ω1)|=Ao/Ai 20log |H(ω1)|
    
    
    
 
 

Consider, for example, the response, y(t), of a system with input x(t)=sin(3πt) shown below. For 
this input, ω1=3π and Ai = 1. Measure Ao and t1, the time lag, in steady-state.  The phase is 
calculated as  
 

o1 360*
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where T is the period of the signal. 
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From the plot, t1 =  0.12s and Ao = 1.17.  |H(ω1}| = 1.17 and φ = -0.12(360)/0.67 = -64.7o. 

 
ω1 φ=∠H(ω1) |H(ω1)|=Ao/Ai 20log |H(ω1)|
3π -64.7o 1.17 1.36dB 
 

 
Select a wide range of values of input frequencies that fully characterize the frequency response.  
If sampling is being used in the system being measured, make sure that the input frequency 
selected does not violate the sampling theorem. 
 
Once the data is collected, draw the frequency response of the system.  You can determine the  
system transfer function from the Bode plot.   
 
Experiment: 
 
1) Experimentally obtain the data to plot the frequency response for the open loop 

system,
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direction.  Your response will also have an offset in it; do not include this offset in your 



measurements. Only include the amplitude of the sinusoidal part of the response. Note that the 
output signal is noisy due to measurement errors.  Use the average values of the output signal to 
determine the  amplitude and phase. 

Note: The offset in the input signal is used because the motor has a nonlinearity, called a 
dead zone, when the velocity goes through 0. The dead zone arises due to friction in the 
motor assembly. The motor will not turn when the expected response is too low in 
magnitude, typically at high frequency inputs.  The goal in this experiment is to model 
the linear behavior of the motor, so it is necessary to avoid this nonlinear deadzone region.  

2) Plot the frequency response of both the open loop system,  
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loop systems with the final PI and PID controllers, 
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example,  |G(ω)H(ω)| vs ω and  ∠G(ω)H(ω) vs ω.  Find the bandwidth of the open and closed 
loop systems. The bandwidth is defined as the frequency for which the response is 0.707 of the 
DC value (on a Bode plot, this is the same as being 3dB down from the DC value). 
 
3) For each of the PI and PID controllers, record the closed loop responses for a sinusoid input 
reference velocity that is at a frequency that is half of the bandwidth.  Plot the corresponding 
reference velocity and actual velocity.  Repeat this procedure for an input reference signal that is 
twice the bandwidth.   
 
4)  Plot the Bode plot of the open loop system and identify the open loop transfer function 

. )s(H)s(G
 


