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A roadmap to some dimensionless constants of physics
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It is well known that nature’s dimensionless constants variously take the form of mass ratios,
coupling constants, and mixing angles. What is not generally known is that by considering a subset
of these constants in a particular order (following a roadmap if you will) one can easily find accurate,
but compact, approximations for each member of this subset, with each compact expression pointing
the way to the next. Specifically, if the tau-muon mass ratio, the muon-electron mass ratio, the
neutron-electron mass ratio, the fine structure constant, and the three largest quark and lepton
mixing angles are considered in that order, one can readily find a way of compressing them into a
closely-related succession of compact mathematical expressions.

I. THE ROADMAP

It is well known that nature’s dimensionless constants
variously take the form of mass ratios, coupling con-
stants, and mixing angles. What is not generally known
is that by considering a subset of these constants in a par-
ticular order — following a “roadmap” if you will — one
can easily find accurate, but compact, approximations
for each member of this subset, with each compact ex-
pression pointing the way to the next. Specifically, if the
following dimensionless constants:

• the tau-muon mass ratio

• the muon-electron mass ratio

• the neutron-electron mass ratio

• the fine structure constant

• the three largest quark and lepton mixing angles

are considered in that order, one can readily find a way
of compressing them into a closely-related succession of
compact mathematical expressions (see [1–9] for related
treatment of these same constants).

II. THE TAU-MUON MASS RATIO

So, if we take as our starting point the 2014 CO-
DATA recommended value [10] for the tau-muon mass
ratio 16.8167 (15), we immediately find that

Mτ

Mµ
≈ 4.12 , (1)

which proves accurate to one part in ∼2500 (i.e., it is off
by a factor of ∼0.9996).
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III. THE MUON-ELECTRON MASS RATIO

And, if we then take the 2014 CODATA value for the
muon-electron mass ratio 206.768 282 6 (46) we almost
automatically find that

Mµ/Me

4.12
= 12.300 314 . . . , (2a)

which immediately suggests this approximate formula

Mµ

Me
≈ 3 × 4.13 , (2b)

which is accurate to one part in ∼40 000 [1, 4]. With a
little additional effort we find

Mµ

Me
≈ 4.13 − 0.13

0.333 319 980 8 . . .
, (2c)

which suggests the following still more precise approxi-
mation

Mµ

Me
≈ 4.13 − 0.13

0.333 32
, (2d)

accurate to one part in ∼17 000 000 [3].

IV. THE NEUTRON-ELECTRON MASS RATIO

We can now experiment with the above denomina-
tor on the 2014 CODATA value for the neutron-electron
mass ratio 1838.683 661 58 (90) to find

Mn

Me
× 0.333 32 = 612.870 038 . . . , (3a)

which is an uninteresting result: a dead end. But by
modifying the value 0.333 32 only slightly — we simply
need to add three — we get this interesting result

Mn

Me
× 3.333 32 − 4.13 = 6060.000 022 8 , (3b)

involving a value close to the integer

6060 = 6000 × (1 + 10−2) . (3c)
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Rearranging terms gives

Mn

Me
≈ 4.13 + 6060

3.333 32
, (3d)

which proves accurate to one part in ∼270 000 000.

V. THE DIFFERENCE IN THE MUON AND
NEUTRON DENOMINATORS

Now compare the denominator used in this exact for-
mula for the 2014 CODATA muon-electron mass ratio

4.13 − 0.13

0.333 319 980 8 . . .
= 206.768 282 6 (4a)

against the denominator used in this exact formula for
the 2014 CODATA neutron-electron mass ratio

4.13 + 6060

3.333 319 987 5 . . .
= 1838.683 661 58 . (4b)

Specifically, observe that subtracting the above “muon-
denominator” from the above “neutron-denominator”
gives

3.333 319 987 5
– 0.333 319 980 8

3.000 000 006 7

(4c)

a result that differs from three by just one part in
∼450 000 000. One naturally wonders if, physically, this
value is not exactly three.

Note: The muon-electron mass ratio is poorly mea-
sured compared to the neutron-electron mass ratio. Con-
veniently, however, the decimal portion of 0.333 319 980 8
is only about four times less accurate than the decimal
portion of 3.333 319 987 5 [10].

VI. USING THE NEUTRON DENOMINATOR
WITH THE MUON-ELECTRON MASS RATIO

If we now solve for x in

4.13 + x

−3 + 3.333 319 987 5 . . .
= 206.768 282 6 (46) , (5a)

whose denominator is exactly three less than the neu-
tron-denominator used in Eq. (4b), we get

x ≈ −0.000 998 6 (15) , (5b)

where the 1σ uncertainty (15) in the last two digits is
determined by the 1σ uncertainty (46) in the last two
digits of the muon-electron mass ratio.

First question : Why should the above equation,
which uses the neutron-denominator to help produce
the muon-electron mass ratio, employ −0.000 998 6,
a value so close to −10−3 ? In fact, 0.000 998 6 differs
from 10−3 by just 1 part in ∼700.

VII. THE FINE STRUCTURE CONSTANT

We will now turn our attention to the fine structure
constant reciprocal 1/α, whose 2014 CODATA value is
137.035 999 139 (31). The obvious way to use 10 and 3 to
approximate this value is

1

α
≈ 103

33
+ 102

= 137.037 , (6a)

which is accurate to one part in ∼130 000. But how to
make this formula still more accurate? To this end, let

103 + y

33
+ 102 + y = 137.035 999 139 (31) (6b)

and solve for y to get

y ≈ −0.001 000 830 (30) , (6c)

where the 1σ uncertainty (30) in the last two digits of y
is determined by the 1σ uncertainty (31) in the last two
digits of the fine structure constant reciprocal. Equation
(6c) suggests the following more accurate approximation

103−10−3

33
+ 102−10−3 = 137.036 , (6d)

which is accurate to one part in ∼160 000 000.

Second question : Why should solving for y pro-
duce −0.001 000 830, a value so close to −10−3 ? This
solution appears to “automatically reuse” −10−3 from
the earlier muon-electron mass ratio approximation.
In fact, 0.001 000 830 differs from 10−3 by just 1 part
in ∼1200.

See [7–9] for how 137.036 relates to the cubic equation.

VIII. USING THE MUON DENOMINATOR
WITH THE NEUTRON-ELECTRON MASS

RATIO

If we now solve for z in

4.13 + z

3 + 0.333 319 980 8 . . .
= 1838.683 661 58 (90) , (7a)

whose denominator is exactly three more than the muon-
denominator used in Eq. (4a), we get

z ≈ 6059.999 987 63

≈ 6000 × (1 + 0.009 999 997 9) . (7b)

Third question : Why should the above equation,
which uses the muon-denominator to help produce the
neutron-electron mass ratio, employ 0.009 999 997 9 (5),
a value so close to 10−2 ? In fact, 0.009 999 997 9 differs
from 10−2 by just 1 part in ∼5 000 000.
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Note that, above, the 1σ uncertainty (5) in the last digit
of 0.009 999 997 9 is determined by the 1σ uncertainty
(90) in the last two digits of the neutron-electron mass
ratio.

IX. THE COMPOSITE FORMULA

This article’s muon- and neutron-electron mass ratio
formulas invite the following “composite” formula{

Mµ

Mn

}
Me

≈
4.13 +

{
−10−3

6060

}
{

0

3

}
+ 0.333 32

≈
{

206.768 270 730

1838.683 654 734

}
(8)

which recovers either Eq. (2d) or (3d), depending on
whether one chooses the upper or lower values in braces.

Now observe that the composite formula’s similarity to
two previous formulas is underscored by 4.13 and −10−3

appearing in boldface, where:

• the tau-muon mass ratio formula used 4.12.

• the fine structure constant formula used −10−3.

Because the composite formula shares 4.1n and −10−3

with the above two formulas, the composite formula is
all the more likely not to be purely coincidental. Nor is
the composite formula’s use of 6060 unique. The Particle
Data Group [11] gives the J/ψ-electron mass ratio as

MJ/ψ

Me
=

3096.916 (11) MeV

0.510 998 928 (11) MeV

≈ 6060.514 (22) . (9)

X. THE THREE LARGEST QUARK AND
LEPTON MIXING ANGLES

We will now turn our attention to the less accurately
measured quark and lepton mixing angles, or, more
specifically, the sines squared of the three largest mix-
ing angles.

Firstly, experiment [5, 12] tells us that

sin2 L12 = 0.304+0.013
−0.012

≈ 0.3 . (10a)

This value is readily interpreted as 3/10, a ratio employ-
ing the same two small integers we have already seen
repeatedly.

Secondly, experiment [5, 13] tells us that

sinQ12 = 0.225 36 ± 0.000 61 ,

which gives

sin2Q12 = 0.050 78 ± 0.000 28

≈ 0.05 . (10b)

Now, experiment [5, 12] also tells us that

sin2 L23 = 0.452+0.052
−0.028 .

If we then round off this value as follows

sin2 L23 ≈ 0.5 ,

we get

sin2Q12

sin2 L23
≈ 0.05

0.5

≈ 10−1 , (10c)

another power of 10. In and of itself these results are not
so remarkable (these values are, after all, poorly mea-
sured). But the above relations lead to an economical
mixing model where all six mixing angles fit experiment,
which is not so trivial. This model is explained in [5, 9].

XI. ORIGINS OF THE ROADMAP

As it happened the author did not discover the above
formulas by following the roadmap exactly: The muon-
and neutron-electron mass ratio formulas were the first
found, with Eqs. (2b)–(3d) identified in that order, over
a span of about ten minutes (after a year of effort more
than a decade and a half ago). A month later the value
137.036 was investigated, and the fine structure constant
approximation was quickly found. Only much later was
the tau-muon mass ratio even considered. In retrospect,
it appears that the tau-muon mass ratio actually pro-
vided the most favorable starting point for finding this
article’s formulas.

Moreover, it appears that the two biggest obstacles to
progress were: firstly, not knowing which dimensionless
constants to consider ; and, secondly, not knowing in what
order to consider them. It now appears that a researcher
who knew enough to investigate just the constants of the
roadmap in just the order specified might well be able
to discover all of this article’s formulas on his own with
comparative ease.

XII. THE ROADMAP BRANCHES OUT

Now suppose that the roadmap’s formulas are, in fact,
non-coincidental — i.e., that they underlie physical laws.
One might then expect them to provide a convenient
jumping off point to mathematics that is interesting in
its own right. In fact, the roadmap’s formulas do lead to
some interesting mathematics, as shown by the following
articles on:

• a substitution map [6].

• a nonstandard cubic equation [8].
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Similarly, one might expect the roadmap’s formulas to
lead to more general formulas that mathematically model
a wider range of physical results. In fact, they do, as
shown by the following articles on:

• all six mixing angles [5, 9].

• the Weinberg angle [7].

In the first instance, a quark and lepton mixing model
embracing all six mixing angles is built, by exploiting an
intrinsic property of rotation matrices to constrain the
mixing angles two additional ways. In the second in-
stance, the Weinberg angle is added to the list of dimen-
sionless constants reproduced, by building on an unusu-
ally economical solution to a nonstandard cubic equation.

[1] J. S. Markovitch, “Symmetrically reproducing quark and
lepton mass, charge, and generation” (2010) http://

www.vixra.org/abs/1010.0018 .
[2] J. S. Markovitch, “A mathematical model of the quark

and lepton mixing angles (2011 update)” (2011) http:

//www.vixra.org/abs/1102.0021.
[3] J. S. Markovitch, “Compactly reproducing the fine struc-

ture constant inverse and the muon-, neutron-, and
proton-electron mass ratios” (2011) http://www.vixra.

org/abs/1105.0020 .
[4] J. S. Markovitch, “The Koide formula and its analogues”

(2012) http://www.vixra.org/abs/1207.0052 .
[5] J. S. Markovitch, “Underlying symmetry among the

quark and lepton mixing angles (Seven year update)”
(2014) http://www.vixra.org/abs/1412.0259.

[6] J. S. Markovitch, “A substitution map applied to the
simplest algebraic identities” (2014) http://www.vixra.

org/abs/1412.0252 .
[7] J. S. Markovitch, “The cubic equation’s relation to the

fine structure constant, the mixing angles, and Weinberg
angle” (2014) http://www.vixra.org/abs/1406.0033.

[8] J. S. Markovitch, “A nonstandard cubic equation” (2015)
http://www.vixra.org/abs/1412.0253.

[9] J. S. Markovitch, “The mixing matrices and the cu-
bic equation” (2015) http://www.vixra.org/abs/1509.

0027.
[10] P. J. Mohr, B. N. Taylor, and D. B. Newell (2015),

“The 2014 CODATA Recommended Values of the Fun-
damental Physical Constants” (Web Version 7.0). This
database was developed by J. Baker, M. Douma, and
S. Kotochigova. Available http://physics.nist.gov/

constants [Sunday, 18-Oct-2015 23:22:07 EDT]. Na-
tional Institute of Standards and Technology, Gaithers-
burg, MD 20899.

[11] K. A. Olive et al. [Particle Data Group Collaboration],
“Review of Particle Physics,” Chin. Phys. C 38, 090001
(2014).

[12] M. C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, “Up-
dated fit to three neutrino mixing: status of leptonic
CP violation,” JHEP 1411, 052 (2014) [arXiv:1409.5439
[hep-ph]].

[13] A. Ceccucci, Z. Ligeti, and Y. Sakai, “The CKM Quark-
Mixing Matrix” in “Review of Particle Physics,” Chin.
Phys. C 38, 090001 (2014).

http://www.vixra.org/abs/1010.0018
http://www.vixra.org/abs/1010.0018
http://www.vixra.org/abs/1102.0021
http://www.vixra.org/abs/1102.0021
http://www.vixra.org/abs/1105.0020
http://www.vixra.org/abs/1105.0020
http://www.vixra.org/abs/1207.0052
http://www.vixra.org/abs/1412.0259
http://www.vixra.org/abs/1412.0252
http://www.vixra.org/abs/1412.0252
http://www.vixra.org/abs/1406.0033
http://www.vixra.org/abs/1412.0253
http://www.vixra.org/abs/1509.0027
http://www.vixra.org/abs/1509.0027
http://physics.nist.gov/constants
http://physics.nist.gov/constants

	The Roadmap
	The Tau-Muon Mass Ratio
	The Muon-Electron Mass Ratio
	The Neutron-Electron Mass Ratio
	The Difference in the Muon and Neutron Denominators
	Using the Neutron Denominator with the Muon-Electron Mass Ratio
	The Fine Structure Constant
	Using the Muon Denominator with the Neutron-Electron Mass Ratio
	The Composite Formula
	The Three Largest Quark and Lepton Mixing Angles
	Origins of the Roadmap
	The Roadmap Branches Out
	References

