
Python	File	I/O	Cheat	Sheet	

Until	now,	you	have	been	reading	and	writing	to	the	standard	input	and	standard	output.	
Python	also	provides	functions	to	read	from	and	write	to	data	files.		Most	require	a	file	object.	
	
open(file_name [, access_mode]):	returns	a	file	object	connected	to	the	file	on	
your	disk	named	file_name.		The	access	mode	determines	if	the	file	will	be	used	for	input	
or	output	or	both;	access_mode	can	be	one	of	the	following	strings:	
• 'r'	–for	reading	(input);	the	default.		The	file	must	already	exist	and	it	must	be	readable.	
• 'w'	–for	writing	(output).	If	the	file	exists,	it	is	emptied;	and,	if	not,	it	is	created.	
• 'a'	–for	appending	(output).	If	the	file	exists,	writing	starts	at	the	end	of	the	file;	and,	if	

not,	it	is	created.	
See	The	Python	Tutorial	Section	2.7	for	other	access	modes.		These	are	the	only	3	we	will	use.			
	
You	usually	assign	the	file	object	to	a	variable	in	order	to	later	be	able	to	read	from	or	write	to	
the	file,	e.g.			
file_obj = open('myFile.txt').	
	
file_obj.readline():	Returns	the	next	line	of	the	file	connected	to	file_obj	as	a	
string,	if	the	file	is	open	for	reading;	or	raises	an	exception,	if	not.		The	return	string	includes	
the	'\n'	at	the	end	of	the	line.		
	
file_obj.read():		Returns	the	contents	of	the	file	connected	to	file_obj	as	a	string,	if	
the	file	is	open	for	reading;	or	raises	an	exception,	if	not.		Not	recommended	for	reading	
large	files!	
	
file_obj.write(str_exp):	Writes	str_exp	to	the	file	connected	to	file_obj,	if	the	
file	is	open	for	writing;	or	raises	an	exception,	if	not.	Requires	a	single	string	argument	and	
does	not	add	a	newline	character	('\n')	to	the	string	written.		
	
print(exp… file=file_obj):	Writes	the	strings	returned	by	calling	str()	on	each	exp	
to	the	file	connected	to	file_obj,	if	the	file	is	open	for	writing;	or	raises	an	exception,	if	not.		
The	values	of	sep	and	end	determine	what	separates	values	and	what	is	added	to	the	end.	
	
file_obj.close():		Closes	the	file	connected	to	file_obj;	flushes	any	buffers	
associated	with	file_obj;	and	breaks	the	connection	to	the	file.	
	

A	common	Python	pattern	for	reading	and	processing	data	from	a	file,	one	line	at	a	time:	

inp_obj = open('inFile.txt')	
for line_str in inp_obj:
 # process line_str, the string of chrs up to and including
 # the next '\n' in the file attached to inp_obj

input_obj.close()

	
		
A	common	Python	pattern	for	processing	data	and	writing	it	to	a	file:	
	
out_obj = open('outFile.txt', 'w')	
while not_done_processing_data:
 # calculate the next string, next_str, to write to the file
 out_obj.write(next_str)

out_obj.close()

A	common	Python	pattern	for	reading	and	processing	data	from	one	file,	and	writing	processed	
data	to	another:	

inp_obj = open('inFile.txt')
out_obj = open('outFile.txt', 'w')	
for line_str in inp_obj:
 # process line_str (characters up to and including
 # the next '\n' in the file attached to inp_obj)

 # calculate the next string, next_str, to write to the file
 out_obj.write(next_str)

input_obj.close()
out_obj.close()
	

	

