
RSpec Cheatsheet

Block predicates

The expect syntax in rSpec 2.11 obsoletes should and should_not, and should be used for any new code.
Behaviour is asserted by pairing expect().to and expect().not_to with a Matcher predicate.

Equality and Iden�ty
 eq(expected) # same value
 eql(expected) # same value and type
 equal(expected) # same object

True/False/nil
 be_true # true-ish
 be_false # false-ish
 be_nil # is nil

Numeric comparisons
 be >= 10 # also applicable for >, <=, <
 be_within(0.01).of(28.35) # floating point

Regex pa�ern matching
 match /a regex/

Ancestor Class
 be_a <class> # or...
 be_an <class>
 be_a_kind_of <class> # or...
 be_kind_of <class>
 be_an_instance_of <class> # or...
 be_instance_of <class>

Duck Typing
 respond_to(:foo)
 respond_to(:foo, :and_bar, :and_baz)
 respond_to(:foo).with(1).argument
 respond_to(:foo).with(2).arguments

Containment and coverage
 expect("string").to include "str"
 expect([1,2,3]).to include 2,1
 expect(1..5).to cover 3,4,5

Collec�on Size
When the target is a collec�on, "things" may be anything.
If the target owns a collec�on, "things" must be the
name of the collec�on.
 have(<n>).things
 have_at_least(<n>).things
 have_at_most(<n>).things

Object predicates

Array matching
Compares arrays for exact equivalence, ignoring ordering.
 match_array [a,b,c]
 match_array [b,c,a] # same result

Array and string prefixes/suffixes
 start_with "free"
 start_with [1,2,3]
 end_with "dom"
 end_with [3,4,5]

Raising
error and exception are func�onally interchangeable, so
you're free to use whichever op�on best suits your context.
 raise_error
 raise_error RuntimeError
 raise_error "the exact error message"
 raise_error /message$/ # regexp
 raise_error NameError, "exact message"
 raise_error NameError, /error message/

Throwing
 throw_symbol
 throw_symbol :specificsymbol
 throw_symbol :specificsymbol, with_arg

Yielding
 yield_control
 yield_with_args "match foo", /match bar/
 yield_with_no_args
 yield_successive_args "foo", "bar"

Sa�sfying
satisfy is valid for objects and blocks, and allows the target
to be tested against an arbitrarily specified block of code.
 expect(20).to satisfy { |v| v % 5 == 0 }

Examples:
 expect(a_result).to eq("this value")
 expect(a_result).not_to eq("that value")

Examples:
 expect { raise "oops" }.to raise_error
 expect { some block }.not_to throw_symbol

Changing
 change{Counter.count}
 change{Counter.count}.from(0).to(1)
 change{Counter.count}.by(2)

Migra�ng from should
to the new expect syntax

The shi� from should to expect makes much of
RSpec's code much cleaner, and unifies some aspects of
tes�ng syntax.

For the vast majority of the RSpec tests you're likely to
write, the following examples will suffice to get you
converted from should to expect.

 Old: my_object.should eq(3)
 New: expect(my_object).to eq(3)

 Old: my_object.should_not_be_a_kind_of(Foo)
 New: expect(my_object).not_to be_a_kind_of(Foo)

It should be noted that the syntax for mock objects has not
yet been finalised. It will also begin to use expect in the
near future, but for now should is s�ll in use.

Anchor, 2013 — Based on the original by Dave Astel, 2006

Crea�ng a Double
 foo = double(<name>)
 foo = double(<name>, <options>)
 # Currently a single op�on is supported:

 foo = double("Foo", :null_object => true)

Expec�ng messages
 double.should_receive(:<message>)
 double.should_not_receive(:<message>)

Expec�ng arguments to messages
 should_receive(:foo).with(<args>)
 should_receive(:foo).with(:no_args)
 should_receive(:foo).with(:any_args)

Stubs and Mock objects

Crea�on of mock objects now uses the double method instead of mock. There are also plans to move to expect for defining the
behaviour of mock objects, but this hasn't yet been finalised. Stubs remain unchanged.

Mocking a database connec�on that's expected to run a few queries:

 test_db = double("database")
 test_db.should_receive(:connect).once
 test_db.should_receive(:query).at_least(3).times.and_return(0)
 test_db.should_receive(:close).once

Using a stub in place of a live call to fetch informa�on, which may be very slow:

 world = World.new()
 world.stub(:get_current_state).and_return([1,2,3,4,5])

Mocked behaviour

Crea�ng a Stub
All three forms are equally valid on doubles and real objects.

 double.stub(:status) { "OK" }
 object.stub(:status => "OK")
 object.stub(:status).and_return("OK")

Stubs

Receive counts
 double.should_receive(:foo).once
 .twice
 .exactly(n).times
 .any_number_of_times
 .at_least(:once)
 .at_least(:twice)
 .at_least(n).times

Return values
 should_receive(:foo).once.and_return(v)
 .and_return(v1, v2, ..., vn)
 # implies consequ�ve returns

 .at_least(n).times
 .and_return {...}

Raising, Throwing and Yielding
 .and_raise(<exception>)
 .and_throw(:symbol)
 .and_yield(values, to, yield)
 # and_yield can be used mul�ple �mes for methods

 # that yield to a block mul�ple �mes

Enforcing Ordering
 .should_receive(:flip).once.ordered
 .should_receive(:flop).once.ordered

Defining explicit response of a double
 double.should_receive(:msg) { block_here }

Arbitrary argument handling
 double.should_receive(:msg) do | arg1 |
 val = do_something_with_argument(arg1)
 expect(val).to eq(42)
 end

Methods can be stubbed out on both doubles (mock objects)
and real objects. Stubs are func�onally similar to the use of
should_receive on a double, the difference is in your intents.

Double with stub at crea�on �me
 double("Foo", :status => "OK")
 double(:status => "OK") # name is optional

Mul�ple consecu�ve return values
A stubbed method can return different values on subsequent
invoca�ons. For any calls beyond the number of values
provided, the last value will be used.

 die.stub(:roll).and_return(1,2,3)

Example:

 die.roll # returns 1
 die.roll # returns 2
 die.roll # returns 3
 die.roll # returns 3
 die.roll # returns 3

Raising, Throwing and Yielding
Stubs support and_raise, and_throw and and_yield the same
was as doubles do. The syntax for use on stubs is iden�cal.

Configuring RSpec with
spec_helper.rb

The conven�on for configuring RSpec is a file named
spec_helper.rb in your spec directory. It's always in your
load path, so you require 'spec_helper' in each file.

This is the perfect place to enable coloured output,
randomise the order that specs are run in, and apply
forma�ers as appropriate.

 RSpec.configure do |config|
 config.color_enabled = true
 config.order = "random"

 # This is critical, don't remove it
 config.formatter = 'NyanCatWideFormatter'
 end

Perfect!

Anchor, 2013 — Based on the original by Dave Astel, 2006

