ECE429 Introduction to VLSI Design

Lecture 5: LOGICAL EFFORT

Erdal Oruklu
Illinois Institute of Technology
Spring 2006

Some of these slides have been adapted from the slides provided by David Harris, Harvey Mudd College

Outline

- Introduction
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

Introduction

- Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?
- Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries

Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$\tau = 3RC$$

 \approx 12 ps in 180 nm process 40 ps in 0.6 μm process

Express delays in process-independent unit

$$\frac{d}{d} = \frac{d_{abs}}{\tau}$$

Delay has two components

$$d = f + p$$

Express delays in process-independent unit

$$d = \frac{d_{abs}}{}$$

□ Delay has two components

$$d = f + p$$

- \square Effort delay f = gh (a.k.a. stage effort)
 - Again has two components

Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

Delay has two components

$$d = f + p$$

- \square Effort delay f = gh (a.k.a. stage effort)
 - Again has two components
- □ g: logical effort
 - Measures relative ability of gate to deliver current
 - $g \equiv 1$ for inverter

Express delays in process-independent unit

$$d = \frac{d_{abs}}{}$$

□ Delay has two components

$$d = f + p$$

- \square Effort delay f = gh (a.k.a. stage effort)
 - Again has two components
- \square h: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout

Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

Delay has two components

$$d = f + p$$

- Parasitic delay p
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

Delay Plots

$$d = f + p$$
$$= gh + p$$

Delay Plots

$$d = f + p$$
$$= gh + p$$

□ What about NOR2?

Computing Logical Effort

- □ DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

$$C_{in} = 3$$

 $g = 3/3$

$$C_{in} = 4$$

 $g = 4/3$

$$C_{in} = 5$$

 $g = 5/3$

Catalog of Gates

■ Logical effort of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate/mux	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16,16, 8	

Catalog of Gates

- Parasitic delay of common gates
 - In multiples of p_{inv} (≈1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

Example: Ring Oscillator

Estimate the frequency of an N-stage ring oscillator

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Frequency: $f_{osc} =$

Example: Ring Oscillator

Estimate the frequency of an N-stage ring oscillator

Logical Effort: g = 1

Electrical Effort: h = 1

Parasitic Delay: p = 1

Stage Delay: d = 2

Frequency: $f_{osc} = 1/(2*N*d) = 1/4N$

31 stage ring oscillator in 0.6 µm process has frequency of ~ 200 MHz

Example: FO4 Inverter

Estimate the delay of a fanout-of-4 (FO4)

inverter

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Example: FO4 Inverter

☐ Estimate the delay of a fanout-of-4 (FO4)

inverter

The FO4 delay is about

200 ps in 0.6 μ m process

60 ps in a 180 nm process

f/3 ns in an $f \mu m$ process

Logical Effort: g = 1

Electrical Effort: h = 4

Parasitic Delay: p = 1

Stage Delay: d = 5

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort
- Path Electrical Effort
- Path Effort

$$F = \prod f_i = \prod g_i h_i$$

 $G = \bigcup g_i$

out-path

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort

$$G = \prod g_i$$

Path Electrical Effort

$$H = \frac{C_{out-path}}{C_{in-path}}$$

Path Effort

$$F = \prod f_i = \prod g_i h_i$$

 \square Can we write F = GH?

Paths that Branch

■ No! Consider paths that branch:

```
G =
H =
GH =
h<sub>1</sub> =
```

$$F = GH?$$

Paths that Branch

□ No! Consider paths that branch:

$$G = 1$$

$$H = 90 / 5 = 18$$

$$GH = 18$$

$$h_1 = (15 + 15) / 5 = 6$$

$$h_2 = 90 / 15 = 6$$

$$F = g_1g_2h_1h_2 = 36 = 2GH$$

Branching Effort

- ☐ Introduce *branching effort*
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$

Note:

$$\prod h_i = BH$$

- Now we compute the path effort
 - \blacksquare F = GBH

Multistage Delays

Path Effort Delay

$$D_F = \sum f_i$$

□ Path Parasitic Delay

$$P = \sum p_i$$

Path Delay

$$D = \sum d_i = D_F + P$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- ☐ This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

Gate Sizes

□ How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

Select gate sizes x and y for least delay from A

Logical Effort

Electrical Effort

Branching Effort

Path Effort

Best Stage Effort

Parasitic Delay

Delay

$$G =$$

$$B =$$

$$\hat{f} =$$

$$D =$$

Logical Effort
$$G = (4/3)*(5/3)*(5/3) = 100/27$$

Electrical Effort

$$H = 45/8$$

Branching Effort

$$B = 3 * 2 = 6$$

Path Effort

$$F = GBH = 125$$

Best Stage Effort

$$\hat{f} = \sqrt[3]{F} = 5$$

Parasitic Delay

$$P = 2 + 3 + 2 = 7$$

Delay

$$D = 3*5 + 7 = 22 = 4.4 \text{ FO4}$$

■ Work backward for sizes

$$X =$$

■ Work backward for sizes

$$y = 45 * (5/3) / 5 = 15$$

 $x = (15*2) * (5/3) / 5 = 10$

Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit

inverter

D =

Best Number of Stages

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit

inverter

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Derivation

Consider adding inverters to end of path

How many give least delay? Logic Block: n_1 Stages Path Effort F

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

□ Define best stage effort

$$\rho = F^{\frac{1}{N}}$$

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

Best Stage Effort

- Neglecting parasitics (p_{inv} = 0), we find ρ = 2.718 (e)
- \square For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

Sensitivity Analysis

☐ How sensitive is delay to using exactly the best number of stages? 1.6 1 1.51.

- \square 2.4 < ρ < 6 gives delay within 15% of optimal
 - Use $\rho = 4$

Example

- How do we design an address decoder?
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Decisions:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Number of Stages

Decoder effort is mainly electrical and branching

Electrical Effort: H =

Branching Effort: B =

 \square If we neglect logical effort (assume G = 1)

Path Effort: F =

Number of Stages: N =

Number of Stages

Decoder effort is mainly electrical and branching

Electrical Effort: H = (32*3) / 10 = 9.6

Branching Effort: B = 8

☐ If we neglect logical effort (assume G = 1)

Path Effort: F = GBH = 76.8

Number of Stages: $N = log_4F = 3.1$

□ Try a 3-stage design

Gate Sizes & Delay

Logical Effort: G =

Path Effort: F =

Stage Effort: $\hat{f} =$

Path Delay: D =

Gate sizes: z =

y =

Gate Sizes & Delay

Logical Effort: G = 1 * 6/3 * 1 = 2

Path Effort: F = GBH = 154

Stage Effort: $\hat{f} = F^{1/3} = 5.36$

Path Delay: $D = 3\hat{f} + 1 + 4 + 1 = 22.1$

Gate sizes: z = 96*1/5.36 = 18 y = 18*2/5.36 = 6.7

A[3] $\overline{A[3]}$ A[2] $\overline{A[2]}$ A[1] $\overline{A[1]}$ A[0] $\overline{A[0]}$

Comparison

Compare many alternatives with a spreadsheet

Design	N	G	Р	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

- 1) Compute path effort
- 2) Estimate best number of stages
- 3) Sketch path with N stages
- 4) Estimate least delay
- 5) Determine best stage effort
- 6) Find gate sizes

$$F = GBH$$

$$N = \log_4 F$$

$$D = NF^{\frac{1}{N}} + P$$

$$\hat{f} = F^{\frac{1}{N}}$$

$$C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

Limits of Logical Effort

- Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- Simplistic delay model
 - Neglects input rise time effects
- □ Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master