
Two Tools for Formalizing Mathematical Proofs

Robert Y. Lewis

February 16, 2018

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Pure and Applied Logic

Department of Philosophy

Carnegie Mellon University

Pittsburgh, PA, USA

Dissertation committee:

Jeremy Avigad: Carnegie Mellon University, Department of Philosophy (committee chair)
Steve Awodey: Carnegie Mellon University, Department of Philosophy
Thomas Hales: University of Pittsburgh, Department of Mathematics

André Platzer: Carnegie Mellon University, Department of Computer Science

The images on the previous page and on page 81 are credited to N. G. de Bruijn, Memories of the

Automath project, 2003.

http://www.win.tue.nl/automath/about_automath/mkm-compleet-klein.pdf

i

http://www.win.tue.nl/automath/about_automath/mkm-compleet-klein.pdf

ii

Acknowledgements

Thank you, Jeremy, for your years of advice, support, and patience. It’s been a pleasure to be your

student. I hope for many more years of collaboration in the future!

Thank you, Steve, Tom, and André, for all your guidance as part of my dissertation committee.

Thanks also to all of those who have offered help and advice on various parts of this project:

Jasmin, Minchao, José, Michael, James, Wilfried, Cody, and many others.

Thank you to the Lean development group, for designing a proof assistant good enough to make

this dissertation possible. In particular, thank you Leo, for the incredible amount of energy that

you’ve put into this project; it’s hard to overstate how much your work is appreciated. Thanks also

to the Lean group at CMU, past and present—Floris, Mario, Johannes, and everyone else—with

whom countless hours of discussion have inspired the work in this document.

Thank you to my friends in Pittsburgh, who have gotten me through the last five years: for a

very non–exhaustive list, Liam, Helga, Michal, Kasey, Aidan, Dan, Ruben, Mate. And thank you

to my family, who have gotten me through many more than just the last five years.

iii

iv

Contents

1 Introduction 1

1.1 Interactive theorem proving . 3

1.2 Mathematical computation . 6

1.2.1 Inequalities over real closed fields . 7

1.2.2 Computer algebra . 9

1.2.3 Verified computation . 10

2 The Lean theorem prover 13

2.1 The Calculus of Inductive Constructions . 13

2.1.1 Lean-specific foundations . 15

2.2 Proving in Lean . 17

2.3 Metaprogramming in Lean . 20

3 A proof-producing method for verifying inequalities 23

3.1 Introduction . 23

3.2 The Polya algorithm . 25

3.2.1 Term canonizer . 26

3.2.2 Blackboard . 26

3.2.3 Modules . 27

3.3 Implementation in Lean: definitions and API . 30

3.3.1 General architecture . 31

3.3.2 Data types . 32

3.3.3 Proof trace data types . 33

3.3.4 Blackboard API . 35

3.4 Proof search . 35

3.4.1 Additive module . 38

3.4.2 Multiplicative module . 39

3.5 Proof reconstruction . 42

3.5.1 Reconstructing inequality proofs . 44

v

3.5.2 Reconstructing sum form proofs . 45

3.6 Examples and tests . 46

3.6.1 Results from the unverified implementation 46

3.6.2 Results from the proof-producing implementation 49

3.6.3 Integration into KeYmaera . 50

3.7 Interacting with Polya . 50

3.8 Producing proof traces . 52

3.9 Concluding thoughts . 52

3.9.1 Related work . 52

3.9.2 Future work . 55

4 A link between Lean and Mathematica 57

4.1 Introduction . 57

4.2 Mathematica background . 59

4.2.1 Mathematica syntax . 59

4.2.2 Mathematica functions . 60

4.3 The translation procedure . 62

4.3.1 Translating Lean to Mathematica . 63

4.3.2 Translating Mathematica to Lean . 66

4.3.3 Translating binding expressions . 68

4.4 Querying Mathematica from Lean . 68

4.4.1 Connection interface . 68

4.4.2 Verification of results . 69

4.5 Querying Lean from Mathematica . 73

4.5.1 Connection interface . 73

4.5.2 Applications . 74

4.6 Concluding thoughts . 77

4.6.1 Related work . 77

4.6.2 Future work . 78

5 Conclusion 79

Bibliography 83

vi

Chapter 1

Introduction

Computers are ubiquitous in modern life. Their presence can be felt almost everywhere, including

in the field of mathematics. Once restricted to using little more than a pencil and paper, mathe-

maticians now use computers in many essential ways. Among other tasks, computers can help to

visualize problems, test the plausibility of conjectures, search for examples and counterexamples,

and answer arithmetic or computational questions. Even the language of mathematics has been

digitized: researchers have developed software suites that will take a proof, written in the appro-

priate format, and check it for correctness according to some logical foundation. These software

suites are often accompanied by tools for filling in parts of incomplete proofs automatically. One

can imagine a future where mathematicians can state potential theorems to their computers, which

will then search for proofs and counterexamples.

Not surprisingly, this introduction of mechanized methods to a resolutely human field has faced

criticism. Both philosophers and mathematicians have questioned the importance of formalization

projects, the epistemic gains of computer-aided proofs, and whether such proofs can be trusted at

all. This skepticism is perhaps most intensely directed toward proofs that are inherently compu-

tational, in that they depend on results found by computers that cannot in practice be verified

manually. Two (in)famous examples of this, Appel and Haken’s 1976 proof of the four color theo-

rem [6] and Hales’ 1998 proof of the Kepler conjecture [73], raised concerns about the correctness

of their computational results.

Verified computations—formal proof objects that certify the result of a computer’s calculations—

provide a way to satisfy some of these skeptics. Hales responded to the controversy surrounding

his proof by launching a project to formally verify his proof. This project, named Flyspeck, was

completed in 2014. Appel and Haken’s result has also been formally verified. Such projects do

not address all of the philosophical challenges to computers in mathematics, but they ensure the

soundness of the results, resolving questions of trust.

Computational and formal mathematics, it seems, are here to stay, and while both paradigms

differ from “traditional” mathematics, each has its own upsides. Given that there is desire and

1

need to verify mathematical arguments, it seems well advised to make this verification as easy and

painless as possible. “Painless” is not an adjective that historically has been applied to formalization

efforts. Most reports note the difficulty of formalizing even small components of arguments [13], and

large scale projects like Flyspeck take years or decades to complete. Furthermore, much research

in verification tools aims to solve problems in computer science, not in mathematics. While there

is significant overlap, these tools do not always perform as well as one might hope in deeper, more

heterogeneous settings.

This dissertation presents two tools that aim to ease the pain—at least slightly—of formalizing

mathematics. By providing access to tools that mathematicians are accustomed to using, and

making some “obvious” derivations obvious to proof checkers, we will be one step closer to practical

formalization for the working mathematician. These tools are of use in problems from computer

science and industry as well, just as tools aimed at those fields can be applied to mathematics.

There are more general themes that connect these projects. The first is partial formalization.

Despite the best efforts of many researchers, the challenges of formalizing mathematics prevent

most mathematicians from even trying. With a larger user base developing deeper and more varied

libraries and tools, this barrier to entry will quickly lower. The question, then, is how to overcome

the initial impasse. Perhaps due to cultural reasons within the field, most formalization work is

currently gap-free: no unjustified steps or gaps in reasoning are allowed, no matter how small.

This demand is in stark contrast to informal mathematics, and causes many of the challenges of

formalization. One possible approach is to lessen the requirements of rigor, to allow gaps in proofs

or even to trust external tools like computer algebra systems. Hales’ formal abstracts project [72]

goes so far as to omit formalized proofs entirely, focusing only on formalized definitions and theorem

statements.

Both projects discussed in this dissertation separate the processes of computation from the

processes of verification. Whether for theoretical reasons or for the sake of efficiency, users of these

tools can opt to skip the verification steps and trust that the tools have done their jobs properly.

Doing so does indeed reduce the level of certainty of the argument that is produced, and some might

argue that doing so defeats the purpose of formalizing mathematics. But there are many benefits

to formalization—among them, precisely specified claims and a searchable, parsable library—that

do not depend on having gap-free proofs. In addition, if allowing partial formalizations increases

the rate at which others can produce (full and partial) formalizations, it seems beneficial to the

field as a whole to allow this concession at times.

The second theme that connects these projects is the formalization of mathematical process.

Philosophers of mathematics have noted that there is more to mathematics than the raw output of

its practitioners: the social environment, methods of reasoning and understanding, and metamath-

ematical concepts are vital components of the field [80] [8] [98]. Nonetheless, formal mathematics

libraries are, to a large extent, bare libraries of definitions, theorems, and proofs. Algorithms to

help with producing these proofs are implemented in different languages, often invisible to users,

2

and can be difficult or impossible to extend to new theories.

The Lean metaprogramming framework allows methods for mathematical reasoning to be ex-

pressed in the same language and environment as the mathematics itself. Domain-specific proof

search procedures can be developed in line with the theories that they act on. For one example,

consider a development of basic undergraduate calculus. The heuristics that are taught for comput-

ing derivatives and integrals are simple examples of mathematical reasoning, that can be expressed

as short metaprograms. Immediately after proving the product rule, chain rule, and so on, a Lean

user can write a script for computing derivatives that applies these rules, and the script will exist

alongside the definitions and theorems as a first-class member of the theory. The tools described in

this dissertation, which are both implemented in Lean’s metaprogramming framework, are designed

to be adaptable to new formal developments. The rules and techniques needed to integrate these

new developments exist as essential parts of the developments. This indicates a slight but impor-

tant shift in the understanding of formalized mathematics: a library is not a standalone tower of

definitions, theorems, and proofs, but also includes metamathematical information, processes, and

rules for how the mathematical objects interact with external systems.

Outline. The following sections of this chapter provide general background about computation

in, and verification of, mathematical proofs. Chapter 2 provides details about the Lean theorem

prover, in which the tools described in the rest of this document are implemented. Chapter 3

describes a system for verifying systems of nonlinear inequalities over R, and Chapter 4 describes

an extensible link between Lean and the computer algebra system Mathematica. Chapter 5 presents

some concluding thoughts.

1.1 Interactive theorem proving

To verify mathematical arguments by computer, the arguments must be be written so that machines

can interpret them. We refer to the practice of writing such proofs as interactive theorem proving,

and to the systems that check such proofs as proof assistants or sometimes interactive theorem

provers.

A proof assistant must have a well-specified input language for mathematical content. That is,

the user must be able to

� define mathematical objects, such as the set of natural numbers N, the particular natural

number 14, or the standard topological structure on R;

� state properties of these objects, such as the fact that 14 is positive or that addition on R is

continuous in each argument; and

� justify or prove these statements.

3

In order for the third point to have meaning, the definitions, theorems, and proofs must be connected

by a logic which describes when a proof is correct. For the proof assistant to be usable, it should

be possible—at least most of the time, in practice—to computationally check whether a proof is

correct according to the given logic.

It is convenient, although not strictly necessary, for a proof assistant to automatically generate

parts of proofs for the user. This can range from filling in implicit information to executing complex

proof search programs. Existing proof assistants vary wildly in the level of automation that they

provide, and pushing forward the limits of what can be automated is a very active area of research.

Two early proof assistants, Automath and Mizar, were developed in the late 1960s and early

1970s. Automath, whose genesis dates roughly to 1967, was a system based on dependent type

theory developed by De Bruijn [1]. Its influence is clearly seen in more modern systems that

use very similar foundations. Independently, Trybulec proposed (in 1973) and implemented (in

1975) Mizar, using Tarski–Groethendieck set theory as a foundation [101]. Mizar’s language and

capacities expanded over the following decades, and the system is still in use today. The Mizar

Mathematical Library, a curated collection of Mizar proofs, is among the largest unified collection

of formal proofs in existence [135].

Automath and Mizar are not only remarkable due to their age (or in the case of Mizar, its

longevity). Both systems were designed by mathematicians for the express purpose of formalizing

mathematics. De Bruijn made this motivation explicit [49]:

AUTOMATH is a language intended for expressing detailed mathematical thoughts.

It is not a programming language, although it has several features in common with

existing programming languages. It is defined by a grammar, and every text written

according to its rules is claimed to correspond to correct mathematics. It can be used to

express a large part of mathematics, and admits many ways for laying the foundations.

A zoo of systems appeared in the following decades, and while many users were interested

in these systems for their mathematical applications [3], the growing field of computer science

exerted more and more influence. Some spiritual descendants of Automath are seen as programming

languages first and verification tools second, and many primarily target the verification of software.

To describe this zoo of systems, it is helpful to classify them based on their logical foundations.

Higher order logic. The systems in the HOL family [67] are built on a foundation of simply-

typed higher order logic. This family is a descendant of the Edinburgh LCF (logic for computable

functions) program [66], extending the ideas found there to a richer theory. The language used in

these systems is closely connected to their implementation language ML. Harrison’s variant, HOL

Light, is implemented in OCaml and is noted for the small size of its trusted kernel [77]. The HOL

Light standard library contains deep developments in analysis, and the system is used for industrial

verification of hardware.

4

Isabelle, which also follows the LCF approach, is a generic proof assistant which can be instanti-

ated to any number of logics [110]. Its most popular instantiation, Isabelle/HOL, uses a foundation

very similar to that of the HOL family. With features including type classes [69], various tools

for proof search [114], and a wide range of (co)datatypes [30], it supports the Archive of Formal

Proofs, a large online database of formalization projects. While this archive delves into many fields

of mathematics, it is heavily biased toward computer science [29].

The logic used by these systems is surprisingly expressive, given the simplicity of its foundations.

It supports powerful and efficient automation for proofs, and is a natural environment in which to

formalize topics like real analysis and number theory. However, the inherent restrictions on the

types that it can express can lead to difficulties when reasoning with abstract algebraic structures

[13] [24].

Intuitionistic type theory. Many of the ideas seen in Automath became clearer as the study

of type theories progressed [108]. Martin-Löf’s intuitionistic type theory [100] had an enormous

influence on the next generation of proof assistants. The Calculus of Constructions [44] can be seen

as a refinement of De Bruijn’s and Martin-Löf’s logics, and the Calculus of Inductive Constructions

[45] extended this logic with a general schema for declaring datatypes. The CIC and its variants

have proven to be extremely expressive and high-powered languages for both programming and

formal verification.

Perhaps the most well-known of these systems is Coq [25], a project launched in 1984 by

Coquand and Huet. While Coq does not have an “official” repository as extensive as Isabelle’s

AFP, there are a number of libraries, including the Mathematical Components library [96]. This

library was the basis of the formal proofs of the Four Color Theorem [64] and the Odd Order

Theorem [65].

While the foundations of Agda [111] are quite similar to those of Coq, its proof language is

quite different: Agda proofs are declarative, while Coq proofs are largely based on tactics. Agda

is often described equally as a programming language and a proof assistant. Idris [33] and Matita

[7] also fall into this category. Some of these proof assistants support homotopy type theory [130],

a variant of the CIC that is particularly convenient for formalizing algebraic topology [132].

The CIC is a more expressive language than the ones found in HOL-based systems, and it is well

suited for reasoning with abstract structures. Since it is often implemented constructively, terms

in dependent type theory often have computational interpretations, and this can be used to great

effect. These features come at a cost, however. Due to the complexity of the logic, many algorithms

for computation and proof search are inefficient or difficult to implement in a dependently typed

setting [125].

The tools described in this dissertation are implemented in Lean, another proof assistant based

on intuitionistic type theory. Chapter 2 provides a more detailed description of the particular

foundations of this system.

5

Set theory. Systems based on set theory often appeal to mathematicians who have been raised

(perhaps only implicitly) in Zermelo–Fraenkel set theory with the axiom of choice. The simplicity

and elegance of ZFC as a foundation for mathematics is undeniable, and a century of scrutiny has

led all but the most skeptical to believe in its consistency. As a practical foundation for a proof

assistant, however, set theory encounters some difficulties. Since terms do not contain information

about “what they are” in their syntax—all terms are sets, and are elements of infinitely many other

sets—such information must be tracked propositionally, and doing so can become quite intricate.

Even Mizar supplements its set theoretic foundation with a system of weak types that makes it

possible to manage the ensuing complications.

Metamath [104], developed in 1992 by Megill, is in fact logic-agnostic at its core, and can be

thought of as a string rewriting system. The official and largest Metamath library implements ZFC.

Isabelle, another system with a core that is not specific to any logic, has been given multiple

ZF(C) instantiations. The first, by Paulson, has been used primarily to verify proofs about set

theory itself [113]. A second version, by Zhan, has attacked more general mathematical proofs

[140]. Most developments in Zhan’s Isabelle/ZFC use the Auto2 proof search tool [139]. With

the exception of Auto2, automation in set theoretic systems has historically lagged behind that in

HOL- and DTT-based systems [131].

Other foundations. PVS [126] is a system based on classical dependent type theory, used pri-

marily in software verification. Its rich type system generates numerous proof obligations during

typechecking, that are often dischargable with automation. ACL2 [91], also used widely in industry,

is based on primitive recursive arithmetic. This is a rather weak logic, but as a consequence, most

proofs are able to be automated; in fact, the primary mode of interaction with ACL2 is to simply

assert theorems and ask the system to prove them.

Finally, there is a range of domain-specific provers that do not target general mathematics. One

example, KeYmaera [117] [61], generates and checks proofs in differential dynamic logic [116]. It is

used as a tool for verifying specifications of hybrid physical systems, which combine continuous and

discrete behavior. KeYmaera depends on tools for solving problems in real arithmetic, as described

in Section

1.2 Mathematical computation

To specify precisely what a “mathematical computation” is would be a major task. Even a general

overview of computational techniques in mathematics would expand far beyond the confines of this

document. Here, we summarize some particular examples of mathematical computation that are

relevant to the projects in Chapters 3 and 4, and to the general themes of this dissertation.

6

1.2.1 Inequalities over real closed fields

Chapter 3 describes a tool that symbolically verifies inequalities over the real numbers R. This

section describes the background motivating our approach and related methods in the literature.

Let TRCF denote the first-order theory of R under the operations + and ·, with constants 0

and 1 and relations = and <. (Note that −, ≤, >, and ≥ are easily definable using first-order

formulae.) This is known as the theory of real closed fields; examples of real closed fields include

R, the real algebraic numbers, and the hyperreal numbers. A number of equivalent necessary and

sufficient conditions exist to establish that a given field F models TRCF [38]. Among others:

� There is a total order on F such that each element x ∈ F with x > 0 has a square root y

such that y · y = x, and every polynomial in F [x] of odd degree has at least one root.

� There is a total order on F such that the intermediate value theorem holds for all polynomials

in F [x].

� F is not algebraically closed, but its field extension F (
√
−1) is algebraically closed.

Alfred Tarski discovered in the 1930s that TRCF admits quantifier elimination, although he did

not publish a proof until 1948 [129]. An immediate consequence of this observation is that TRCF is

decidable. His proof involves defining a succession of formulae that are used to transform a given

sentence in the language of RCF into an equivalent quantifier-free sentence. Once this new sentence

has been derived, one can apply a simple technique for deciding the truth of literals including only

constants to decide the original sentence.

Tarski’s procedure generalizes a technique from Sturm for counting roots of a polynomial in one

variable. He describes how to construct formulae representing the nth derivative of a polynomial

α in variable ξ and the statement that ξ is a root of α of order n. Combining these formulae, he

obtains more complicated sentences Gnξ (α, β) that assert relations between the number and orders

of roots of polynomials α and β. These sentences G are shown to have an equivalent quantifier-free

form by a complex process that repeatedly divides α by β. Finally, arbitrary sentences are reduced

to combinations of sentences of form G. Alongside an algorithm for deciding the satisfiability of

quantifier-free sentences in this language, this process amounts to a decision procedure for TRCF .

In addition to being rather arcane, Tarski’s proof is in effect a purely theoretical result. While

he gives a (more or less) explicit algorithm for deciding TRCF , the algorithm can be shown [107] to

have nonelementary complexity—that is, no tower function 22
··
·2
n

bounds the algorithm’s run time

for all n, where n is the number of quantifiers. In fact, Davenport and Heintz [48] show that the

quantifier elimination problem is necessarily at least doubly exponential in n. Nonetheless, Tarski

is optimistic in his monograph [129] that his algorithm will be implemented by “machines,” and

refers frequently to the potential use of these machines in mathematical research. He further holds

out hope that his procedure may be extended to include, for example, exponentiation.

7

Collins’ cylindrical algebraic decomposition method [42] [21] realizes a doubly exponential bound

on this decision problem. Given a set of polynomial inequalities F = {fi(x̄) > 0 | fi : Rn → R},
one can define the notion of a cell decomposition for F , a partition of Rn on each element of

which the sign of fi is constant. Collins develops a process for projecting F to lower dimensions,

alongside a lifting technique for cells. When n = 1, the cell decomposition can easily be found, and

then iteratively lifted up to Rn. Checking the satisfiability of a quantified conjunction
∧
F is then

reduced to a similarly quantified sentence about the n-dimensional cell structure, which is finite.

While this technique significantly improves on Tarski’s algorithm, and can in practice solve many

problems, one can describe fairly simple problems on which its performance is impractically slow.

Various other techniques for deciding TRCF have been discovered, including ones by Seidenberg

[124], Cohen [40], Hörmander [84], and Ben-Or, Kozen, and Reif [23]. These algorithms have varying

strengths and weaknesses, but all share a worst-case complexity that makes them impractical for

large problems.

All of these methods decide problems over the full theory of real closed fields, including both

universal and existential quantifiers, but similar simpler theories can be interesting on their own.

Basu and Roy [21] give a singly exponential time algorithm to decide problems in the existential

fragment of TRCF . Gröbner basis methods can be efficient for many problems in the universal frag-

ment of arithmetic involving equalities, but do not extend well to inequalities [78]. And techniques

of varying efficiency and completeness are known for the additive and multiplicative fragments of

TRCF , arithmetic over the integers, and various other domains.

In [12], Avigad and Friedman investigate the practicality of combining decision procedures for

the additive and multiplicative fragments of TRCF . Their investigation is partly motivated by the

observation that the simplicity of these subtheories is somewhat incongruous with the complexity

of TRCF . Since combining the subtheories does not produce the entirety of TRCF , one might

hope that this combination has an easier decision problem. Avigad and Friedman show that the

universal fragment of this combination is decidable (although the existential fragment of T[Q]

embeds Hilbert’s 10th Problem over Q, which is conjectured to be undecidable). Their argument

reduces the decision procedure to that of TRCF , though, and so does not reduce complexity. They

conclude by discussing “pragmatic” procedures that approximate their decidability results; this

discussion motivates the project described in Chapter 3.

Related methods approach similar problems by using numerical techniques. These methods

include those based on interval arithmetic [55] [105] and Taylor models [37]. Libraries exist for

verified numeric computations over R [88], and have been used in formalization projects [87]. These

methods differ from the project described in this dissertation in scope and applications, so we do

not describe them here. Nonetheless, they form an important part of the landscape of real number

computation.

8

1.2.2 Computer algebra

Implementations of the algorithms described in the previous heading often fall under the general

umbrella of computer algebra or symbolic computation. Computers were used for numerical compu-

tations since their inception, and the need to handle exact computation soon became apparent [63].

Experimental systems began to appear in the 60s, including ALTRAN [75], MATHLAB [58], and

Reduce [20]. These systems provided tools that would look familiar to modern computer algebra

users: they were able to manipulate polynomials and rational functions, heuristically derive and

integrate, and (attempt to) display results using natural formatting, and many could be used in

an interactive fashion. Such systems were claimed to perform “about as well as a good calculus

student” [63, Section 1.3], and were adopted by physicists. Macsyma [99], released in 1971, quickly

became one of the most powerful and popular of these early programs. Also appearing, along-

side these general-purpose computation systems, were tools for specific calculations such as tensor

component manipulation [60] and computing Poisson series [89].

The 1980s and 1990s saw a push toward efficiency and portability. Maple [39] was designed with

a small, efficient kernel written in C, and a library around this kernel written in the interpreted

Maple language. This approach was also seen in Wolfram’s SMP [41] and Mathematica [137]

systems, the latter of which was noteworthy for its graphical capabilities and user interface. Axiom,

a successor to IBM’s Scratchpad, was a strongly typed system able to compute over abstract

algebraic structures [47]. Systems like GAP [62] and Cayley, which later became Magma [32], were

designed for special-purpose computations in group theory.

Development on these systems and interfaces has continued into modern years, with increasing

emphasis on ease of use [134]. Sage [128] packages many common open-source tools into a unified

Python interface. Mathematica has expanded to include numerous tools for processing and visual-

izing data [138]. Tools for geometric arguments, including Geogebra [83], have been widely adopted

in mathematics education.

The range of applications of computer algebra is vast, and it is difficult to describe these systems

in general. For the most part, computer algebra systems and proof assistants contrast in how they

approach justification. The former are tools for evaluating quantities, and while the algorithms

they implement are based on sound mathematical theory, they do not typically explain or certify

their results, beyond the explanations inferable from the correctness of the algorithms. They exist

to inform the mathematician (or, commonly, the physicist or engineer) who queries them, and to

aid in exploration, but do not help in the development of arguments. Proof assistants serve an

almost dual purpose: they aid less in the discovery of concrete results, but more in the expression

of abstract mathematical reasoning.

9

1.2.3 Verified computation

Hales’ Flyspeck project [109] [112] [70] [71] provides an illustrative case study of automation in

formalized mathematics. In 1998, Hales and Ferguson announced a proof of the Kepler conjecture,

which states that the densest way to pack congruent three-dimensional spheres is the “obvious” face-

centered packing. Their formidable proof relied on a large number of computations performed by

an unverified C++ program, to check that certain nonlinear inequality constraints are unsatisfiable.

After referees announced that they could not be 100% confident in the correctness of the proof,

Hales started the Flyspeck project in 2003 to formally verify the theorem. Hales announced the

completion of Flyspeck in August 2014. The project ultimately consisted of two parts. The first,

corresponding to the “traditional” portion of Hales’ original proof, was a formal proof in HOL Light

that classified all tame graphs. The second, computational, part of the proof was verified in three

pieces, two in HOL Light and one in Isabelle. The statement of the result formalized in Isabelle

was assumed as an axiom in HOL Light, and the two parts were combined to create one “unified”

proof.

Computation played an essential role in both the original proof of Kepler’s conjecture and in

the verification; confirming the inequality constraints by hand would be a hopeless task for any

mathematician. Efficiently verifying the calculations performed by the computer proved to be ex-

tremely difficult, and the Isabelle formalization was completed much more quickly [74]. Traditional

techniques for algorithmically deciding nonlinear inequalities were far too inefficient to be of use,

and so the Flyspeck group had to develop specialized methods [127].

While rarely seen on the same scale as in the Flyspeck project, problems of verifying and refuting

inequalities on R are found often across fields of mathematics. Automated methods to solve these

problems that interact smoothly with proof assistants can be extremely desirable. McLaughlin and

Harrison [103] describe a proof-producing implementation of Hörmander’s technique, a less efficient

but simpler analogue to CAD. As it is difficult to separate the “search” stage of this algorithm from

the “proof” stage, almost every part of their implementation is forced to be proof-producing. Some

general lemmas help to mitigate this somewhat, but their method ultimately is extremely expensive

to run. Proving the sentence (∀x)(−1 ≤ x ≤ 1 → −1 ≤ 4x3 − 3x ≤ 1) takes over a minute on a

standard desktop.

Verified computational proofs have appeared in other areas of math as well. Many SAT solvers

will generate certificates of their computations, and these certificates can be verified in proof assis-

tants [46] [81] [93]. SAT solvers have had success in solving problems in some areas of combinatorics

[82], and despite the extreme size of the generated certificates, they can be checked.

Approaches to verified automation differ in the extent to which they compute “inside” the proof

assistant. Some algorithms can be written in the object language of a proof assistant and proved to

be correct; the algorithm can then be executed in the proof assistant kernel, or sometimes extracted

to another language. The former provides a great deal of certainty, but can be extremely inefficient,

10

and the latter requires one to trust the code extraction process. Alternatively, as in McLaughin

and Harrison’s implementation of Hörmander’s algorithm, the search procedure can build a proof

term as it runs; this adds a lot of complexity to the process and can lead to extremely large proofs.

A third approach, modeled by the verification of SAT certificates, is to offload the computation

to external tools and to check or reconstruct results post hoc. Hammer systems [114] have used

this approach to great success, particularly for proving smaller lemmas and subgoals in interactive

proofs. These tools translate an ITP goal into first-order logic, along with a selection of relevant

lemmas from the environment, and use efficient external solvers to search for a proof. If successful,

they use information from that proof to reconstruct it using a less efficient, but proof-producing,

internal solver.

None of these approaches is inherently better than the others; each is appropriate in some

situations and inappropriate in others. The tools described in this dissertation largely follow the

third approach, in that they keep the process of search separate from the process of verification.

Doing so ties in well with the idea of partial formalization, in that users who trust the systems

involved, or who aren’t concerned about verification, may choose to skip the reconstruction steps

for the sake of speed or flexibility.

11

12

Chapter 2

The Lean theorem prover

The tools described in this dissertation are implemented in and for the proof assistant Lean. Lean

is principally developed by Leonardo de Moura at Microsoft Research [50]. The development of

its standard library is led by Jeremy Avigad. Lean has been designed from the beginning to

support strong automation. It aims to eventually straddle the line between an interactive theorem

prover with powerful automation and an automated theorem prover with a verified code base and

interactive mode. Its powerful metaprogramming framework [56] allows for complex programs that

manipulate proofs and the proving environment to be written in the same language as the proofs

themselves. This is achieved by exposing internal system datatypes and processes in the proof

language; de Moura has described this approach as “whitebox automation.”

In this chapter, we summarize the foundations and features of Lean, with emphasis on the

components that will be used in the following chapters. More complete documentation of the

system can be found in the system’s publications [50] [56], documentation [9] [11], and website [2].

This chapter is not meant to stand as a first introduction to dependent type theory, of which there

are many examples from many perspectives [108] [115] [130].

2.1 The Calculus of Inductive Constructions

Lean is based on the Calculus of Inductive Constructions (CIC) [44] [45], an extension of the typed

lambda calculus. The CIC is dependently typed, with types given as terms of the language. In the

following sections, we use the notation T[a’/a] to denote the substitution of a’ for all occurrences of

a in the term T. (Since bound variables will be indexed in practice, we assume no naming conflicts.)

We write t : T to denote the judgment “term t has the type T,” and read it “term t of type T.”

There are two ways to define a type in the CIC. If A is a type and T is a type with variable

a : A possibly occurring freely, then the pi type Π a : A, T is a type. A term of a pi type, f

: Π a : A, T is a function which maps a term a’ : A to a term of type T[a’/a]. The standard

(non-dependent) function type, A → T, is a degenerate case of the pi type where a does not occur

13

in T. Types can also be defined inductively, by providing a list of their constructors. The empty

type can be defined as an inductive type with no constructors; the unit type can be defined as an

inductive type with one constructor, unit.star : unit; the natural numbers can be defined as an

inductive type with two constructors, nat.zero : nat and nat.succ : nat → nat.

Every inductive type has an associated recursor, or destructor, a term which describes how to

define a function mapping out of the type. For instance, to define f : nat → int using nat.rec,

one must provide two arguments. The first, of type nat, is the value of f applied to nat.zero; the

second, of type nat → int → int, is the value of f applied to nat.succ n, in terms of n and the

value of f applied to n.

Terms of the CIC can take four forms:

� Constants are named, typed declarations. For instance, nat.zero is a constant with type nat.

Every constant has a single unique type, up to convertibility. When one declares an inductive

type, the constructors and the recursor can be thought of as constants.

� Lambda abstractions inhabit function types. If t : T is a term in which a variable a : A

possibly appears, then λ a : A, t is a term with type Π a : A, T.

� Applications are terms formed by applying a term of function type to an argument. These

are denoted by writing the function and the argument successively, as in f a.

� Type universes are the types of terms that appear on the right hand side of typing judgments.

Intuitively, since types are terms of our language, and every term must have a type, every type

must have a type as well; type universes are these “types of types.” The structure of type

universes varies between implementations of the calculus of constructions. To consistently

include general inductive types, the CIC provides a hierarchy of type universes Sort u, u ≥
0, such that Sort u : Sort (u+1). The rules for computing the universe level of inductively

defined types are subtle and discussed in [45] and [50].

Terms of the CIC have a computational interpretation. There are reduction rules that (ideally)

define an equivalence relation on the set of terms. The application of a pi or lambda expression to

a term of the abstracted type reduces to a substitution: that is, if T : B and a’ : A, then (λ a

: A, T) a’ reduces to T[a’/a]. Two terms that are equivalent under this notion of reduction are

said to be definitionally equal. This sense of equality is distinct from the internal notion of equality

defined below.

In addition, the application of the recursor for an inductive type I to a closed term i : I

reduces to the application to i of the corresponding case of the recursor. If f : nat → nat is

defined using nat.rec, as above, with arguments k : nat and λ m v, t, then f nat.zero reduces

to k and f (nat.succ n) reduces to t[n/m][(f n)/v].

Following the Curry–Howard correspondence [85], propositions can be expressed in the same

language as datatypes. One can think of a term P : Type as a proposition, and a term p : P as a

14

meta inductive expr (elab : bool)
| var : nat → expr
| sort : level → expr
| const : name → list level → expr
| mvar : name → expr → expr
| local_const : name → name → binder_info → expr → expr
| app : expr → expr → expr
| lam : name → binder_info → expr → expr → expr
| pi : name → binder_info → expr → expr → expr
| elet : name → expr → expr → expr → expr
| macro : macro_def → list expr → expr

Figure 2.1: Lean expression kinds

proof of P. The conjunction of two propositions, P ∧ Q : Type, is the same as the product P × Q,

since the proof of a conjunction is a pair of proofs of each conjunct. The proof of an implication

from P to Q is a function that takes a proof of P to a proof of Q, so implications are represented as

function types. A proof of a universally quantified proposition ∀ x : A, P x is a dependently typed

function which maps x : A to a proof of P a. Using inductive types, it is possible to represent all

propositional connectives with the traditional introduction and elimination rules of intuitionistic

logic.

Equality can also be defined in the CIC as a family of inductive types.

inductive eq {α : Sort u} (a : α) : α → Prop

| refl : eq a

Intuitively, this says that the “only” way to prove two terms of a type α are equal is if they are

the same term (where “same” means “definitionally equal”). The recursion principle for this type

is exactly the substitution principle for equality.

eq.rec : Π {α : Sort u} {a : α} {C : α → Sort v}, C a → Π {b : α}, a = b → C b

2.1.1 Lean-specific foundations

Lean’s implementation of the CIC uses a non-cumulative hierarchy of type universes Sort u, with

the notation Prop := Sort 0, Type := Sort 1, and Type u := Sort (u+1). Terms of type Sort u

can be lifted to higher universes, but there is no subtype relation between universe levels.

The Lean expression grammar is presented (in Lean syntax) in Figure 2.1; the preceding keyword

meta is described below in Section 2.3.

Each Lean expression exists in an environment, which contains the names, types, and definitions

of previous declarations. The const kind accesses a previous declaration, instantiated to particular

universe levels if the declaration is parametric. In addition to constants in its environment, an ex-

pression may refer to its local context, which contains variables and hypotheses of kind local_const.

These expressions do not appear in closed terms.

15

The expression kinds lam and pi respectively represent lambda abstraction and the dependent

function type. (Non-dependent function types are degenerate cases of pi types.) Each contains a

name for the bound variable, the type of the variable, and the expression body. Bound variables of

kind var are anonymous within the body, being represented by De Bruijn indices [102]. Application

of one expression to another is represented by the app kind.

Type universes are implemented by the expression kind sort. Metavariables represent place-

holders in partially constructed expressions; the mvar kind holds the name and type of the place-

holder. Let expressions (elet) bind a named variable with a type and value within a body. Macro

expressions are used during parsing and, occasionally, to encapsulate computationally expensive

expressions. They can be eliminated by expansion and need not occur in fully elaborated terms.

Pre-expressions, or unelaborated expressions, share the same grammar as expr. These corre-

spond roughly to user input text, and can be turned into elaborated expressions by inferring implicit

information.

Lean’s first type universe, Sort 0 (more commonly referred to as Prop), is impredicative: it is

possible to define a proposition by quantifying over other propositions. The following examples

show the difference between Prop and the (predicative) universe Type 0. The #check command

prints the type of the subsequent expression. In the first line, we see that the type level has raised

by one, while in the second, it stays the same.

#check Π T : Type 0, T -- Type 1

#check Π T : Prop, T -- Prop

The impredicativity of Prop is very powerful, as it allows all logical combinations of propositions

to be expressed in the same universe. However, to preserve consistency with classical logic, it is

necessary to restrict the recursors of (most) Prop-valued types to eliminate only into Prop. One can

show that assuming impredicativity and excluded middle (for any P : Prop, P ∨ ¬P is inhabited)

implies proof irrelevance (for any P : Prop, h1 : P, and h2 : P, h1 = h2 is inhabited). But proof

irrelevance is inconsistent with so-called “large” elimination: given an inductive P : Prop with

two constructors h1 and h2, one could define a function f : P → bool such that f h1 = tt and

f h2 = ff, while proof irrelevance implies h1 = h2.

In practice, most concrete, non-Prop data types live in Sort 1, so we abbreviate this universe

as Type.

In addition to being impredicative, Prop is definitionally proof-irrelevant. For any proposition

P : Prop, any two terms p1 : P and p2 : P are considered equivalent by the kernel. The proof-

irrelevance of Prop means that Prop is computationally inert. The existence of a term p of type

P : Prop signifies a proof of P, but nothing can be said about that proof, and it cannot be used

to generate data. This observation allows the virtual machine (Section 2.3) to ignore proofs of

propositions entirely.

The core logic of Lean is constructive; it cannot be used to derive certain principles of clas-

16

sical mathematical reasoning. Lean declares an additional axiom, axiom choice (α : Sort u) :

nonempty α → α, which “creates” data from the proposition nonempty α. This axiom is used to

prove the law of excluded middle, along with a more traditionally stated choice principle. However,

terms which depend on this axiom lose some of the convenient normalization properties of the core

CIC, and cannot be used for computation in the VM.

Lean also adds quotient types to the core CIC, with the following interface:

constant quot {α : Sort u} (r : α → α → Prop) : Sort u

constant quot.mk {α : Sort u} (r : α → α → Prop) (a : α) : quot r

constant quot.lift {α : Sort u} {r : α → α → Prop} {β : Sort v} (f : α → β) :

(∀ a b : α, r a b → eq (f a) (f b)) → quot r → β

constant quot.ind {α : Sort u} {r : α → α → Prop} {β : quot r → Prop} :

(∀ a : α, β (quot.mk r a)) → ∀ q : quot r, β q

Given a relation r on a type α, these constructors create a type where r-related elements of

α have been identified. Intuitively, this type is the quotient of α by the reflexive, transitive, and

symmetric closure of r. The constant quot.mk creates a term of the quotient type from a term of

the underlying type, while the constant quot.lift defines a function on the quotient type from a

function on the underlying type (assuming this function respects r).

These additional constants do not break computation in the VM. In fact, the VM can safely

ignore applications of quot.mk and quot.lift, treating such terms as the object of the underlying

type.

2.2 Proving in Lean

Since there will be many examples in the following chapters, we briefly summarize the syntax and

features of Lean proofs here.

Implicit arguments. Some arguments in Lean declarations are marked as implicit via the use of

curly braces. In the following code, the argument α can be inferred from the argument a. Marking

it as implicit allows the user to write, e.g., id 0 instead of id N 0 when applying the declaration.

def id {α : Type} (a : α) : α := a

Other forms of implicit arguments include optional parameters, for which default values are

provided, and parameters which are synthesized at application time by a tactic. In the following

declaration add_val, the second argument k is optional, and assigned to the value 0 when it is not

provided.

def add_val (n : N) (k : N := 0) : N := n + k

#eval add_val 5 -- 5

#eval add_val 5 2 -- 7

17

In double_pos, the second argument h should prove that the first argument n is positive. This proof

is not provided by the user, but found automatically using the assumption tactic. If this tactic fails

to find a proof, a failure message will be displayed.

theorem double_pos (n : N) (h : n > 0 . tactic.assumption) : n + n > 0 :=

add_pos h h

example (n : N) (n > 0) : n + n > 0 := double_pos n

Lean’s elaborator is tasked with inserting implicit arguments to turn pre-expressions into expres-

sions. Type class instances, described below, are another example of implicit arguments.

Structures. Lean provides convenient syntax for dealing with structures, which are inductive

types with one constructor. The following declarations define equivalent types, but the latter

allows for named projections and “structure notation.”

inductive pair

| mk : N → N → pair

structure pair’ :=

(lhs : N) (rhs : N)

def pr : pair’ := { lhs := 2, rhs := 3 }

Structures allow optional and default parameters, and structure notation allows updating and

extending previously defined structures.

structure triple extends pair’ :=

(middle : N)

def tp : triple :=

{ pr with middle := 10 }

Type class inference. Families of structures can be declared to be type classes.

class has_add (α : Type u) := (add : α → α → α)

Declarations whose types are type classes can be declared as instances.

instance nat_has_add : has_add nat := { add := nat.add }

In subsequent declarations, arguments whose types are type classes can be marked as implicit type

class parameters. These are inferred by Lean’s elaborator, which recursively tries to find instances

of the type class in the environment to synthesize the desired arguments. In the following, plus 1 2

is definitionally equal to nat.add 1 2.

18

def plus {α : Type} [has_add α] (a b : α) : α := a + b

#check plus 1 2 -- N

Type classes are used extensively in Lean, notably to build the algebraic hierarchy. Structures

such as groups, rings, and fields are defined as type classes. Through type class inference and

coercions, theorems proved about abstract rings (for example) can be applied to any concrete

structure which has been shown to be an instance of a field.

Pattern matching. Lean declarations which decompose a term of an inductive type are often

defined using pattern matching, which provides nicer notation than using the built-in recursor

terms. Unlike systems like Coq, which support pattern matching in the kernel, Lean compiles such

declarations to terms built using recursors; it does so in a way that is largely invisible to the user.

def double : N → N
| 0 := 0

| (n+1) := double n + 2

The equation compiler supports dependent types, wild card arguments, and many other features.

Tactic mode. In addition to the “declarative” style of proving and defining, where terms are

written explicitly by the user, Lean proofs can also be synthesized using tactics. Intuitively, a tactic

can be thought of a script that tells Lean how to construct a term. For an example, suppose we

are trying to prove succ (succ (succ (succ k))) ≥ k for k : N. This proof can be completed via

a chain of applications of le_trans and le_succ. Rather than writing this chain manually, we can

tell Lean to put it together for us, with the script repeat {transitivity, apply le_succ}. This

script will continue to work if we change the number of occurrences of succ in our goal.

More formally, a proof obligation T : Type u occurs in a setting with an environment and a

collection of local hypotheses. The tactic state at this setting can be thought of as the struc-

ture containing this environment, these local hypotheses, and the goal, which is represented as a

metavariable m : T. Tactics are programs which manipulate this state, possibly adding new goals

or assigning old ones to values. If a tactic assigns m to a term which contains no metavariables, the

proof obligation is satisfied by that term.

Common tactics include assumption, which searches the local hypotheses for a term proving

the goal, and simp, which rewrites the goal using rules found in the environment. The syntax

by tac uses a single tactic tac to close the current proof obligation; a begin . . . end block applies

a sequence of tactics.

example (a : N) (h : a > 0) : a > 0 := by assumption

example (a : N) (h : a > 0) : a + 0 > 0 :=

begin

simp, assumption

end

19

The following section describes how users can write custom tactics in the language of Lean.

2.3 Metaprogramming in Lean

Terms in the CIC have a computational interpretation. If it does not refer to any undefined con-

stants or extra axioms, a closed term t of an inductive type T will always reduce to an application of

a particular constructor of T. It is possible to use Lean’s kernel to reduce terms to this normal form,

a process known as kernel evaluation. This process can be computationally expensive: among other

reasons, definitions in Lean are often chosen for ease of proving rather than evaluation complexity.

Addition on the natural numbers is defined using unary arithmetic, and this extends to all other

numerical computations. Since the kernel is as small and simple as possible to preserve trust, it

does little to optimize evaluation.

However, it is not always necessary to evaluate in a trusted manner. Lean includes a virtual

machine which uses a variety of techniques to evaluate terms more efficiently than the kernel. The

VM discards proofs of propositions, as these are not relevant to evaluating type-correct terms, and

replaces terms of some common types such as nat with efficient C++ representations [56]. It is

expected that evaluating a term in the VM will produce the same result as evaluating it in the

kernel, but the correctness of a proof in Lean never relies on this fact. The kernel and VM are

entirely independent, and only the former is used for type checking. Any term used to prove a

theorem, no matter its origin, will be passed through the kernel before being accepted.

The notion of computation in the VM is somewhat more general than that of the kernel. There

is no theoretical concern about nonterminating VM evaluation. Lean allows declarations to be

marked as “VM-only,” or “untrusted,” with the keyword meta. Termination checking is disabled

for these declarations, as in the following:

meta def f : N → N
| n := if n=1 then 1

else if n%2=0 then f (n/2)

else f (3*n + 1)

This definition would be rejected by Lean’s kernel, and it would be unsound to allow arbitrary

recursive calls, as one could define a (nonterminating) proof of false. Nevertheless, the function

f can be evaluated in the VM, failing to terminate if it is applied to 0. Meta declarations can

reference non-meta declarations, but not vice versa. The meta language is thus an extension of the

core Lean language.

A major contribution of de Moura et al. [56] is to allow metaprograms to manipulate Lean

expressions and environments. The metalanguage can thus be used to write tactics for the object

language. Various underlying data types—including those of expressions, environments, and tactic

states—and operations on them are reflected as meta constants. During VM evaluation, terms

20

of these types are replaced with objects of the underlying data type, and operations are similarly

linked to their underlying implementations.

Consider, as a short example, the type expr (Figure 2.1), which reflects the grammar of Lean

expressions. Lean’s library contains the declaration meta constant expr.has_var : expr → bool,

which exposes a function written in C++ that returns true when the input expression contains a

free variable. To the kernel, this term is a constant with no computational behavior, but if one

evaluates expr.has_var e (expr.var 0) in the VM, the result will be tt.

With the metaconstant tactic_state, which exposes the environment, local hypotheses, and

goals of a proof in progress, this metaprogramming framework allows users to write complex

procedures for constructing proofs. A term of type tactic A is a function tactic_state →
tactic_result A, where a result is either a success (pairing a new tactic_state with a term of

type A) or a failure. Proof obligations can be discharged by terms of type tactic unit; such a term

is executed in the VM to transform the original tactic_state into one in which all goals have been

solved. More generally, we can think of a term of type tactic A as a program that attempts to

construct a term of type A, while optionally changing the tactic state.

It is important to emphasize again that these tactics do not lower the trustworthiness of the

Lean system. While arbitrarily complex and potentially nonterminating tactics may be used to

prove a theorem, they do so by constructing a proof term in the object language. The proof is

not accepted until this term has been checked by the kernel. It is thus impossible for tactics with

“unsound” behavior to introduce inconsistencies into Lean. One could define a tactic which replaces

all goals with true, and solves them by applying true.intro, and while this tactic would execute

successfully on any goal, the resulting proof term would be rejected.

When writing tactics, the command do enables Haskell-like monadic syntax. For example, the

following tactic returns the number of goals in the current tactic state. The type of the meta

constant get_goals is tactic (list expr), where list is the standard (object-level) type defined

in the Lean library.

meta def num_goals : tactic nat :=

do gs ← get_goals,

return (length gs)

The tactic monad provides access to many low-level functions implemented in Lean’s underly-

ing language, including its elaborator and unifier. With these features exposed, it is possible to

implement many of the tactics commonly found in proof assistants in the language of Lean itself, as

they are generally built out of these atomic parts. The cores of some performance-critical tactics,

including the simplifier, are implemented in C++, but the “user-facing” wrappers for these tactics

are exposed in the tactic language.

Lean’s metalanguage also provides an API for tagging declarations with attributes, and for

retrieving the attributes associated with a particular declaration or the declarations associated

21

with a particular attribute. This allows metaprograms to be extensible. Lean’s simplifier, for

instance, will search the environment for declarations attributed as simp lemmas. Users can define

their own attributes, with or without parameters and caching behavior.

Much of the power of Lean’s metaprogramming framework comes from its integration with

the object language. Theories and automation can be developed in-line in the same environment,

ensuring a tight fit between the two. The tactics associated with a theory are thus an essential part

of the theory itself.

Relation to the object language. The metalanguage of Lean can be looked at as an extension

of the object language, where by the “object language” we mean the collection of permitted decla-

rations without the meta prefix. Any declaration in the object language lifts without modification

to one in the metalanguage. This extention is strict: not every metadefinition is valid in the object

language. Similarly, while both languages can be interpreted in the VM, kernel reduction (and its

ensuant level of trust) applies only to the object language.

Consider this simple example, which exploits the relaxed termination checking in the metalan-

guage:

meta def {u} inh_aux (α : Sort u) : unit → α

| () := inh_aux ()

meta def {u} inh (α : Sort u) : α := inh_aux α ()

It is clear that inh implies that every type, including the empty type, is inhabited, and can be

instantiated to a (meta) proof of false. To allow inh to appear anywhere in a declaration in the

object language would be unsound. We see that there is no consistent notion of a “metaproposition,”

and that only proofs written in the object language are trustworthy.

Moreover, one cannot use the object language of Lean to prove facts about metaprograms.

The consequence for the projects described in this document is that it is impossible to state and

prove formal soundness theorems in Lean. This should not reduce one’s trust in any particular

application, as the results provided by both tools are formally checked, but it leaves open the

possibility of errors that are only caught at runtime.

Since the tactic monad, expr type, and various other building blocks are metadeclarations in

Lean, it is not possible to implement these kinds of programs entirely in the object language.

In principle, it would be possible to do so nearly entirely, wrapped in a minimal collection of

metadeclarations. The object-level component could then be formally proved correct with respect

to a given semantics in Lean. This would amount to proof-by-reflection, and would carry the

attendant costs of kernel computation and a more difficult proving task. We believe that the post-

hoc nature of these tools is a blessing, not a curse, for reasons discussed in Section 1.2, and are not

concerned about the impossibility of formally proving correctness.

22

Chapter 3

A proof-producing method for

verifying inequalities1

3.1 Introduction

The real numbers are a basic building block in many areas of mathematics, as well as in the model-

ing of physical processes. Beginning in primary school algebra, students learn how to compare real

valued expressions and show that they have certain properties. No level of mathematics escapes

these kinds of arguments: for example, Hales’ proof of the Kepler Conjecture [73] involved the sys-

tematic verification of thousands of systems of real-valued inequalities. Given their omnipresence,

it is no surprise that a variety of algorithms and tools have been developed to perform many types

of symbolic computations over the reals.

Perhaps more surprising is the relative scarcity of verified algorithms focused on the real num-

bers. Certainly, general-purpose tools for rewriting, reasoning over rings or fields, and linear arith-

metic apply perfectly well. But the real numbers, as a complete ordered field, are a common and

unique structure, and verified reasoning with them in this context is computationally difficult. In

Section 1.2 we describe some of the successes and challenges in verifying systems of inequalities

over the real numbers. In summary, while TRCF is decidable, known procedures are impractical on

all but small problems. Furthermore, the most efficient techniques do not lend themselves to pro-

ducing proofs; those that do produce proofs are impractically slow even on small problems. These

procedures, both verified and unverified, are unsuited to producing proofs that fall even slightly

outside of TRCF .

For mathematicians interested in interactive theorem proving, this is a particularly noticeable

problem. Small nonlinear inferences over R are often dismissed as “obvious” outside of educational

1The prototype implementation of this project, written in Python, was described in the author’s MS thesis [94]
and in a paper published in the Journal of Automated Reasoning [14]. The work described in that paper was done in
collaboration with Jeremy Avigad and Cody Roux. Later additions to the Python version, and the entire code base
of the proof-producing version, are the work of the author.

23

settings, and while reasoning about these problems may not be entirely rote, it is usually done

mindlessly. The relative lack of automation for this domain is a burden when working with a proof

assistant.

Consider, for example, the implication

0 < x < y, u < v ⇒ 2u+ exp(1 + x+ x4) < 2v + exp(1 + y + y4)

The inference is not contained in linear arithmetic or even the theory of real closed fields. The

inference is tight, so symbolic or numeric approximations to the exponential function are of no use.

Backchaining using monotonicity properties of addition, multiplication, and exponentiation might

suggest reducing the goal to subgoals 2u < 2v and exp(1 + x + x4) < exp(1 + y + y4), but this

introduces some unsettling nondeterminism. After all, one could just as well reduce the goal to

� 2u < exp(1 + y + y4) and exp(1 + x+ x4) < 2v, or

� 2u+ exp(1 + x+ x4) < 2v and 0 < exp(1 + y + y4), or even

� 2u < 2v + 7 and exp(1 + x+ x4) < exp(1 + y + y4)− 7.

And yet, the inference is entirely straightforward. With the hypothesis u < v in mind, it is easy

to see that the terms 2u and 2v can be compared; similarly, the comparison between x and y leads

to comparisons between x4 and y4, then 1 + x+ x4 and 1 + y + y4, and so on.

The author’s MS thesis [94] describes a method, developed with Jeremy Avigad and Cody

Roux, that is based on such heuristically guided forward reasoning. While not a complete deci-

sion procedure for TRCF , this method is successful over a large class of problems; because of its

modular structure, it can solve problems over expansions of TRCF . Furthermore, unlike many

comparable tools, it can separate proof search from proof construction, and can thus be efficiently

adapted to produce proof certificates. The project can be seen as a realization and extension of

Avigad and Friedman’s approximate decision procedure for T[Q]. It systematically applies “natural

inferences”—canceling terms using addition and multiplication, instantiating axioms in “obvious”

ways—to prove theorems in expansions of the language of real closed fields.

The method has been implemented in Python, and the code is available at

https://github.com/avigad/polya.

We have named the system “Polya,” after George Pólya, in recognition of his work on inequalities

[76] as well as his thoughtful studies of heuristic methods in mathematics [119].

The Python implementation of Polya answers questions about the satisfiability of heterogeneous

systems, but it does so without justification. To trust its answer, one must assume there are no

soundness bugs in the 15,000 lines of Python code. For more concrete certainty, Polya should

produce rigorous proofs that can be verified by an independent system.

24

https://github.com/avigad/polya

Depending on one’s notion of rigor, this can be achieved in a variety of ways. Many SAT and

SMT solvers produce proof certificates by defining atomic reasoning steps and outputting a trace,

which describes the sequence of such steps needed to reach the claimed conclusion. There are only

limited standards on how “large” an atomic step can be, however, and many steps (including the

preprocessing of terms) are often left unjustified. One could follow a similar approach for a system

like Polya, but this would be subject to the same reliability concerns. Furthermore, since no other

system uses similar proof steps, a proof checker would be unique to Polya and would likely not be

trustworthy itself.

For greater rigor, one can ask for Polya to produce Lean proof terms. These can be checked

by the Lean kernel, which has been heavily tested and not found to be unsound. Integrated into

Lean, Polya could be used to discharge arithmetic assumptions that arise in proofs. Rather than

extending the Python version of Polya to do this, it is more sensible to redesign and reimplement

the system in the meta language of Lean. This is one contribution of this dissertation.

We begin this chapter by summarizing the contents of the author’s MS thesis on the unverified

implementation of Polya [94]. We then describe the implementation in Lean, focusing on the tracing

and production of proofs. We conclude with some examples and describe the behavior of the system

on a suite of test problems from KeYmaera [117].

3.2 The Polya algorithm

For a full description of the original version of Polya, we refer the reader to [94] or [15]. Here we

will summarize the architecture and the general idea of the algorithm. The details in this section

describe the original Polya.

Polya’s structure has been largely inspired by the satisfiability modulo theories (SMT) approach

to automated theorem proving, which combines “theory solver” modules with a SAT solver core.

In some sense, Polya represents a generalization of the SMT technique to theories with overlapping

signatures. In other senses, Polya is much weaker. For one, it lacks the capacity for backtracking

and conflict-driven clause learning often found in the SAT core of an SMT solver. More importantly,

restricting the common language to equality gives the SMT search a useful finite basis property: for

a fixed number of variables x1, . . . , xn, there are only finitely many ways to assign literals xi = xj

or xi 6= xj for pairs i, j. Our system lacks this property, since literals have the form xi ./ c · xj
with infinitely many possibilities for c. Nonetheless, the comparison between the two frameworks

is strong, and one can imagine fruitful improvements to Polya by thinking about SMT.

Polya consists of a complex information database (the Blackboard) that serves as a common

state between various inferential modules. These modules read the information contained in the

Blackboard and use it to derive new facts, which are themselves added to the Blackboard. The key

idea is that, while individual modules can selectively use certain types of information and ignore

others, many of the facts that the modules learn are in a shared language and can be used by

25

other modules. This allows them to exchange information and collectively reach conclusions that

individual reasoning techniques would not be able to.

The core of the Polya algorithm involves modules for additive and multiplicative arithmetic

reasoning. Considering the two domains separately avoids the complexity problems that arise in

algorithms like cylindrical algebraic decomposition. By deriving facts in the shared language of

comparisons xi ./ c · xj , information learned in one domain can be shared with the other.

3.2.1 Term canonizer

We consider terms, such as 3(5x+3y+4xy)2f(u+v)−1, that are built up from variables and rational

constants using addition, multiplication, rational powers, and function application. To account for

the associativity of addition and multiplication, we view sums and products as multi-arity rather

than binary operations. We account for commutativity by imposing an arbitrary ordering on terms

and ordering the arguments accordingly.

Importantly, we would also like to easily identify the relationship between terms t and t′ where

t = c · t′, for a nonzero rational constant c. For example, we would like to keep track of the fact that

4y + 2x is twice x+ 2y. Towards that end, we distinguish between “terms” and “scaled terms.” A

scaled term is just an expression of the form c · t, where t is a term and c is a rational constant.

We refer to “scaled terms” as “s-terms” for brevity. This distinction is needed to make precise the

following notion of canonization.

Definition 1. We define the set of terms T and s-terms S by mutual recursion:

t, ti ∈ T := 1 | x |
∑

i si |
∏
i t
ni
i | f(s1, . . . , sn)

s, si ∈ S := c · t .

Here x ranges over a set of variables, f ranges over a set of function symbols, c ∈ Q, and ni ∈ Z.

Thus we view 3(5x+ 3y+ 4xy)2f(u+ v)−1 as an s-term of the form 3 · t, where t is the product

t21t
−1
2 , t1 is a sum of three s-terms, and t2 is the result of applying f to the single s-term 1 · (u+ v).

Note that there is an ambiguity, in that we can also view the coefficient 3 as the s-term 3·1. This

ambiguity is eliminated by a notion of normal form for terms, which clarifies when such coefficients

must be considered as s-terms. The notion extends to s-terms: an s-term is in normal form when

it is of the form c · t, where t is a term in normal form. (In the special case where c = 0, we require

t to be the term 1.) We also refer to terms in normal form as canonical, and similarly for s-terms.

For details about this normal form, see [94].

3.2.2 Blackboard

The Blackboard serves as the system’s information database, through which various modules com-

municate and share information. Metaphorically, we picture a number of mathematicians trained

26

in different specialties working out problems on their own and writing results in a central location,

where the results can be used as “black boxes” by the other mathematicians. The Blackboard does

little computation itself, but tracks the information given to it in search of contradictions.

When the user asserts a comparison s1 ./ s2 to the Blackboard, s1 and s2 are first put in

canonical form, and names t0, t1, t2, . . . are introduced for each subterm. It is convenient to assume

that t0 denotes the canonical term 1. Given the example in the last section, the method could go

on to define

t1 := x, t2 := y, t3 := t1t2, t4 := t1 + (3/5) · t2 + (4/5) · t3,

t5 := u, t6 := v, t7 := t5 + t6, t8 = f(t7), t9 := t24t
−1
8

In that case, 75 · t9 represents 3(5x+ 3y + 4xy)2f(u+ v)−1.

Any subterm common to more than one term is represented by the same name. Separating

terms in this way ensures that each module can focus on only those definitions that are meaningful

to it, and otherwise treat subterms as uninterpreted constants.

Any comparison s ./ s′ between canonical s-terms, where ./ denotes any of <,≤, >,≥,=, and

6=, translates to a comparison citi ./ cjtj , where ti and tj name canonical terms. But this, in turn,

can always be expressed in one of the following ways:

� ti ./ 0 or tj ./ 0, or

� ti ./ c · tj , where c 6= 0 and i < j.

The blackboard therefore maintains the following data:

� a defining equation for each ti, and

� comparisons between named terms, as above.

Note that this means that, a priori, modules can only look for and report comparisons between

terms that have been “declared” to the blackboard. This is a central feature of our method: the

search is deliberately constrained to focus on a small number of terms of interest. The architecture

is flexible enough, however, that modules can heuristically expand that list of terms at any point

in the search. For example, our addition and multiplication modules do not consider distributivity

of multiplication over addition, beyond multiplication of rational scalars. But if a term x(y + z)

appears in the problem, a module could heuristically add the identity x(y + z) = xy + xz, adding

names for the new terms as needed.

3.2.3 Modules

A Blackboard object is a static representation of known facts, akin to a chalkboard with notes

but no note-writers. In order to produce a proof, someone or something must take these facts and

27

Blackboard
Stores definitions

and comparisons

Additive Module
Derives comparisons using

additive definitions

Multiplicative Module
Derives comparisons using

multiplicative definitions

Axiom Instantiation
Module

Derives comparisons using

universal axioms

Exp/Log Modules
Derive comparisons and

axioms involving exp and log

Min/Max Modules
Derive comparisons involving

min and max

Congruence Closure
Module

Enforces proper

interpretation of functions

Absolute Value Module
Derives comparisons and

axioms involving abs

nth Root Module
Derives comparisons and

axioms about fractional

exponents

Figure 3.1: The inferential structure.

use them to infer new ones. Our system incorporates a number of inferential modules to do this,

illustrated in Figure 3.1.

We describe some of the key modules in more detail below; here, we simply note their common

structure. Each module is equipped with an update blackboard routine, which takes as an argu-

ment a Blackboard B. This routine selectively requests information from B, computes with it, and

asserts new facts back to B. To the Blackboard, each module is a trusted black box. The modules

are generally unaware of each other, with a few exceptions: the modules for interpreting absolute

values, exponentials, and logarithms access the axiom instantiation module in order to axiomatize

their respective functions.

Running Polya thus amounts to asserting hypotheses to a Blackboard, and then repeatedly

updating the Blackboard using the various available modules. If at some point the Blackboard

receives contradictory information, the process has proven the unsatisfiability of the hypotheses.

Arithmetic modules The heart of our procedure lies in proving arithmetical facts by separating

the additive and multiplicative parts of terms. To this end, we have developed two modules that

learn new comparisons about additive and multiplicative terms respectively. In fact, we have

developed two versions of each of these modules. The first approach uses Fourier-Motzkin variable

elimination to deduce new facts; the second makes use of geometric insights to eliminate redundant

computation, and depends on external software packages to run. To illustrate the tasks of the

arithmetical modules, we will first describe the behavior of the additive routine. The multiplicative

routine is largely analogous.

28

x

z

y

(a) A polyhedral cone in R3, defined by three
half-spaces

x

y

(b) Projected to the xy plane, the polyhedron
implies x > 2y and x > − 1

3y

Figure 3.2: Variable elimination by geometric projection

Given a collection of additive term definitions {ti =
∑

0≤j<i ci,jtj}1≤i≤n and a collection of

atomic comparisons {ti ./ ci,jtj}, for ./ ∈ {<,≤,=,≥, >}, our goal is to derive the “strongest”

atomic comparisons between each pair ti and tj implied by the input. The notion of strength here

is slightly subtle. For any ti and tj , two atomic comparisons ti ./ ctj are necessary to have complete

information about their relation.2 For any set of three atomic comparisons, either one comparison

is implied by the others, or the comparisons are unsatisfiable. This is easy to see by considering

each comparison as a half-plane including the origin.

Our first approach to solving this problem uses the Fourier–Motzkin variable elimination algo-

rithm [59] [136]. For each pair of variables ti and tj , we use this algorithm repeatedly to eliminate

all other variables from the problem. It is easy to check that the remaining “reduced” inequalities

are implied by the original set, and that any inequality between ti and tj implied by the original

set is implied by the reduced set. In practice, this approach often works well, but the Fourier–

Motzkin elimination algorithm has poor asymptotic behavior (doubly exponential in the number

of variables) and this is visible on large problems.

An alternative approach uses ideas from computational geometry. The set of solutions to the

original inequalities can be seen as a polyhedral cone in Rn; the feasible region for pairs (ti, tj)

is the projection of this polyhedron to the titj plane (Figure 3.2). By converting the inequality

representation of this polyhedron to the corresponding vertex representation (c.f. [141, Section

1.1]), it is fairly easy to compute the inequalities that describe this feasible region. The halfplane-

to-vertex conversion is somewhat more efficient than repeated applications of Fourier–Motzkin, but

presents challenges for formalization.

2Here we ignore the minor but tedious complications introduced by equalities. Note also that comparisons with 0
(ti ./ 0tj) are included in this count.

29

To adapt these techniques for multiplicative inequalities, we note that the function ex witnesses

the isomorphism of ordered groups 〈R, 0,+, <〉 ∼= 〈R>0, 1, ·, <〉.

Axiom module Users are allowed to define universally quantified axioms. A valid axiom has the

form (∀x1, . . . , xn)ϕ, where the quantifier free formula ϕ consists of literal comparisons ci ·yi ./ cj ·yj
joined by logical connectives ¬, ∧, ∨, and →. Variables {yi} not among the bound variables {xi}
are treated as constants. Upon definition, ϕ is immediately converted to conjunctive normal form,

its literals are canonized, and its conjuncts are split into separate axioms; thus we may assume that

each axiom has the clausal form (∀x1, . . . , xn) (
∨
yi ./ c · yj). Instantiating an axiom of this form

produces a clause that may be asserted to the Blackboard.

These uninstantiated axioms are stored in the axiom instantiation module. The main routine

of this module observes the term definitions present in the Blackboard and searches for appropriate

instantiations {xi 7→ c · tj} for each axiom. To mediate between overaggressive (inefficient) and

underaggressive (less effective) instantiation, a subset of terms in the axiom is unified with a set

of terms defined in the Blackboard, with “term-matching” performed up to linear arithmetical

equivalence.

Special function modules Polya has specialized modules for handling functions such as exp,

log, min, and floor. These modules heuristically instantiate certain identities and comparisons for

these functions that cannot be easily axiomatized in a general format. For instance, the exponential

module will assert the equality between exp(x+ y) and exp(x) · exp(y).

3.3 Implementation in Lean: definitions and API

Different approaches can be used to transform an unverified algorithm into a proof-producing one.

In some situations, algorithms are implemented in the object language of a proof assistant and

verified directly; the certification of a particular computation is then a direct application of this

verification theorem. This approach requires all computation to be done in the kernel of the proof

assistant. A related approach, proof by reflection [97], is similarly dependent on kernel computation.

Some algorithms produce results that can be certified post hoc, requiring little or no modification

to the original algorithm; see Section 4.4.2 for some examples. The approach we use in the verified

implementation of Polya most closely resembles this third option. During execution, we trace

the sources of each inference step, and store the sources along with the derived fact. When the

algorithm reaches a conclusion, we use this trace to produce a fully elaborated proof term.

Polya is well suited to this approach because its correctness does not depend on its search

method; in other words, it naturally separates proof search from proof verification. This is, in large

part, what allows the system to be modular. Changing the components or adding new ones may

30

affect whether or not it finds a proof, but as long as the additions are sound, they will not affect

the soundness of the system.

Proving by Polya is thus separated into two separate stages, search and proof term reconstruc-

tion. The search can be performed without reconstruction, and once a proof of falsity is found, it

can be turned into a proof term. The Lean version of Polya is in this sense a direct generalization

of the Python version. Users who are more concerned with speed than soundness can disable proof

reconstruction and use the system much like the Python version.

In the current implementation, small proof reconstruction steps related to the normalization of

terms are proved axiomatically. As work continues on this system and on Lean’s internal automa-

tion, these gaps will be closed.

3.3.1 General architecture

The search process involves modules, currently an additive arithmetic module and a multiplicative

arithmetic module, updating a shared Blackboard state. We can think of these update operations

as happening within a polya_state monad, a standard state monad over a Blackboard object.

Many operations on a Blackboard, including functions to add expressions and comparisons, retrieve

comparison information, and check if a comparison is implied, are exposed in the polya_state

monad. A module has type α → polya_state α, where α is the type of cached information that

the module stores. When implementing a module, one is expected to use the accessors and mutators

in the polya_state monad.

Once a Blackboard has been found to be contradictory, it remains to reconstruct a proof of

false. This reconstruction must happen within the tactic monad, for access to Lean’s unifier and

elaborator. It is possible to execute Polya outside of the tactic framework, but only if proof

reconstruction is disabled. In practice, it is rare that one would want to run the algorithm outside

of the tactic framework, and thus the primary user-facing interface is declared as

meta def polya_on_hyps (hys : list name) (rct : bool := tt) : tactic unit.

This tactic adds the provided hypotheses to a Blackboard and then cycles the additive and

multiplicative modules. If both fail to learn any additional information in a given cycle, the tactic

will fail. If a contradiction is found and rct is true, it will reconstruct the proof of contradiction

and apply it.

We also define a tactic tactic.interactive.polya, which uses interactive-mode parsing (see

Section 3.7) and applies polya_on_hyps. This allows us to write, e.g.,

example (h1 : u > 0) (h2 : u < 1*v) (h3 : z > 0) (h4 : 1*z + 1*1 < 1*w)

(h5 : rat.pow (1*u + 1*v + 1*z) 3 ≥ 1* rat.pow (1*u + 1*v + 1*w + 1*1) 5) : false :=

by polya h1 h2 h3 h4 h5.

We describe a more truly interactive method of using Polya in Section 3.7.

31

inductive gen_comp
| le | lt | ge | gt | eq | ne

inductive comp
| le | lt | ge | gt

inductive spec_comp
| lt | le | eq

Figure 3.3: Comparison data types

/--
An inequality (str, a, b) represents the halfplane counterclockwise
from the vector (a, b). If str is true, it is strict
(i.e., it doesn’t include the line bx-ay=0).
-/
structure ineq :=
(strict : bool)
(x y : Q)

meta structure ineq_data (lhs rhs : expr) :=
(inq : ineq)
(prf : ineq_proof lhs rhs inq)

Figure 3.4: Inequality data types

3.3.2 Data types

We distinguish between equalities, inequalities, and disequalities. For each type of comparison,

we define a proof datatype, which represents a justification for a particular comparison. A proof

object can be elaborated into an actual Lean proof term. A data object pairs a comparison with a

proof object, discussed below.

For any two expressions x and y, we may know inequalities, equalities, and/or disequalities of the

form x ./ c · y. Inequality information can be maximally represented by two such comparisons; any

third inequality is either contradictory, redundant, or makes one of the previous two redundant.

Alternatively, one equality of the form x = c · y makes any inequalities between x and y either

contradictory or redundant. (These inequalities may imply sign information about x and y, which

is stored elsewhere, but it is never necessary to store both an equality and an inequality between x

and y.) We use the datatype ineq_info to store inequality and equality comparisons between two

expressions.

We may also know data of the form x 6= c · y for any number of coefficients c. These are stored

in the diseq_info datatype. Finally, we may know at most one piece of sign information x ./ 0;

this information is stored in the sign_info datatype.

Every expression entered into Polya is either a sum of expressions, a product of expressions,

32

meta structure eq_data (lhs rhs : expr) :=
(c : Q)
(prf : eq_proof lhs rhs c)

meta structure diseq_data (lhs rhs : expr) :=
(c : Q)
(prf : diseq_proof lhs rhs c)

meta structure sign_data (e : expr) :=
(c : gen_comp)
(prf : sign_proof e c)

Figure 3.5: Equality, disequality, and sign data types

meta inductive ineq_info (lhs rhs : expr)
| no_comps {} : ineq_info
| one_comp : ineq_data lhs rhs → ineq_info
| two_comps : ineq_data lhs rhs → ineq_data lhs rhs → ineq_info
| equal : eq_data lhs rhs → ineq_info

meta def diseq_info (lhs rhs : expr) := rb_map Q (diseq_data lhs rhs)

meta def sign_info (e : expr) := option (sign_data e)

Figure 3.6: Information data types

or an atom. Rather than naming subexpressions as in the Python version of Polya, we operate

directly on terms of type expr themselves. Each input expression is paired with a term of type

expr_form, which decomposes it into its compound structure. The types sum_form and prod_form

are also used in the additive and multiplicative arithmetic modules, respectively.

A blackboard constitutes the basic state of the Polya process. It contains all of the informa-

tion that as yet has been derived. In particular, it contains inequality, equality, and disequality

information for any pair of expressions, and sign information for every expression. A Blackboard

also contains a list of the expressions present, along with parsed versions of those expressions. If a

Blackboard has been found to be contradictory, it also contains a contrad object tracing this proof.

To avoid duplicating symmetric information, comparisons are only stored between expressions

lhs and rhs if lhs is greater than rhs using Lean’s default expression comparison. Any piece of

information can be inverted.

3.3.3 Proof trace data types

Every piece of information entered into a Blackboard must reference its source. That is, if a

fact x ./ c · y is asserted, there must be a method to produce a Lean proof of this fact. The

ineq_proof, eq_proof, diseq_proof, sign_proof, and contrad data types contain these proof traces.

33

-- A sum is a set of summands, each with a rational coefficient.
meta def sum_form := rb_map expr Q

/- A product is a set of multiplicands, each with an integer exponent,
and a leading rational coefficient. -/

meta structure prod_form :=
(coeff : Q)
(exps : rb_map expr Z)

meta inductive expr_form
| sum_f : sum_form → expr_form
| prod_f : prod_form → expr_form
| atom_f : expr → expr_form

Figure 3.7: Expression structure data types

meta structure blackboard :=
(ineqs : hash_map (expr×expr) (λ p, ineq_info p.1 p.2))
(diseqs : hash_map (expr×expr) (λ p, diseq_info p.1 p.2))
(signs : hash_map expr sign_info)
(exprs : rb_set (expr×expr_form))
(contr : contrad)
(changed : bool := ff)

Figure 3.8: The Blackboard data type

The sum_form_proof and prod_form_proof data types represent proof traces for the structures used

in the arithmetic modules.

Each of these data types is an inductive type, whose constructors represent different ways of

proving the corresponding kind of fact. For example, given a proof that x > 0 (sign information),

one can derive a proof that x > 0 ∗ y (inequality information). Thus, there is a ineq_proof

constructor zero_comp_of_sign_proof, which takes a sign_proof as an argument.

The interplay between these proof types is intricate. For example, an equality may be justified

by two inequalities; an inequality may be justified by another inequality and sign information; sign

information might be justified by an equality and a list of inequalities. Thus, the datatypes are

mostly defined mutually. We avoid some unnecessary complexity by including an adhoc constructor

for each proof type, which requires a reconstruction tactic to be provided when it is used. A finite

list of constructors cannot account for all of the ways in which one could prove a certain kind of

information, so the adhoc constructor serves to cover all of the remainign possibilities.

We will not discuss every constructor here, but it is worth noting why the dependency between

ineq_proof and sum_form_proof is necessary. A common way to find a contradiction is to derive

three mutually unsatisfiable inequalities between two variables. For instance, we may derive that

x > y, x < 2y, and x < (1/2)y. It is easy to note that these facts are contradictory, but a general

method for producing a proof of this fact involves the same linear arithmetic that is used in the

34

additive module. It is thus helpful to allow inequality proofs to refer to linear arithmetic. We

do not need an of_prod_form_proof constructor for ineq_proof or others, as this circularity is not

present. Given a prod_form_proof, we can construct an ineq_proof or an eq_proof using the adhoc

constructors.

3.3.4 Blackboard API

Polya is designed to be easily extensible; it should be simple for users to design new modules.

Modules integrate into the broader system by processing and updating a Blackboard object. Thus,

it is important that the Blackboard provide a clean interface for these modules. Note that many of

the accessor and manipulator functions described here lift immediately to the polya_state monad.

A Blackboard provides basic tools for accessing the known information between expressions,

visible in Figure 3.11.

It also provides low-level access to its data structures, allowing information to be inserted

directly (Figure 3.12). These manipulator functions should generally be avoided, as they do not

preserve dependencies between the structures. For instance, adding the sign fact that x > 0

necessitates adding the inequality fact x > 0 ∗ y, but the low level manipulators will not do this.

Instead, the compound polya_state functions in Figure 3.13 should be used. These functions will,

for example, ensure that subexpressions are added to the list of expressions; use known disequalities

to strengthen weak inequalities to strict inequalities; and, if contradictory information is asserted,

raise the is_contr flag.

A number of relations are maintained between the Blackboard’s data structures.

� Sign information is duplicated as inequality information: that is, x < 0 is also represented as

x < 0 ·y, for each known expression y. This ensures that one can check whether an inequality

between x and y is implied by looking only at an ineq_info x y object.

� Other redundant information is removed as soon as possible. Since x > 0 implies x 6= −2,

the latter information will be deleted from the Blackboard when the former is asserted.

� In the two_comps case of an ineq_info object, we maintain that the defining ray of the first

inequality is counterclockwise to that of the second. This simplifies the computations that

determine whether a piece of information is known.

3.4 Proof search

As described in Section 3.2, Polya’s proof search proceeds by independent modules querying and as-

serting information from and to a shared Blackboard object. The two core modules learn arithmetic

information, about additive and multiplicative terms respectively. The proof-producing implemen-

tations are similar to the Fourier–Motzkin modules in the Python implementation.

35

meta mutual inductive eq_proof, ineq_proof, sign_proof, sum_form_proof
with eq_proof : expr → expr → Q → Type
| hyp : Π lhs rhs c, expr → eq_proof lhs rhs c
| sym : Π {lhs rhs c}, Π (ep : eq_proof lhs rhs c), eq_proof rhs lhs (1/c)
| of_opp_ineqs : Π {lhs rhs i}, Π c,
ineq_proof lhs rhs i → ineq_proof lhs rhs (i.reverse) → eq_proof lhs rhs c

| of_sum_form_proof : Π lhs rhs c {sf}, sum_form_proof 〈sf, spec_comp.eq〉 → eq_proof lhs rhs c
| adhoc : Π lhs rhs c, tactic expr → eq_proof lhs rhs c

with ineq_proof : expr → expr → ineq → Type
| hyp : Π lhs rhs i, expr → ineq_proof lhs rhs i
| sym : Π {lhs rhs i}, ineq_proof lhs rhs i → ineq_proof rhs lhs (i.reverse)
| of_ineq_proof_and_diseq : Π {lhs rhs i c},

ineq_proof lhs rhs i → diseq_proof lhs rhs c → ineq_proof lhs rhs (i.strengthen)
| of_ineq_proof_and_sign_lhs : Π {lhs rhs i c},

ineq_proof lhs rhs i → sign_proof lhs c → ineq_proof lhs rhs (i.strengthen)
| of_ineq_proof_and_sign_rhs : Π {lhs rhs i c},

ineq_proof lhs rhs i → sign_proof rhs c → ineq_proof lhs rhs (i.strengthen)
| zero_comp_of_sign_proof : Π {lhs c} rhs i, sign_proof lhs c → ineq_proof lhs rhs i
| horiz_of_sign_proof : Π {rhs c} lhs i, sign_proof rhs c → ineq_proof lhs rhs i
| of_sum_form_proof : Π lhs rhs i {sfc}, sum_form_proof sfc → ineq_proof lhs rhs i
| adhoc : Π lhs rhs i, tactic expr → ineq_proof lhs rhs i

with sign_proof : expr → gen_comp → Type
| hyp : Π e c, expr → sign_proof e c
| ineq_lhs : Π c, Π {lhs rhs iqp}, ineq_proof lhs rhs iqp → sign_proof lhs c
| ineq_rhs : Π c, Π {lhs rhs iqp}, ineq_proof lhs rhs iqp → sign_proof rhs c
| eq_of_two_eqs_lhs : Π {lhs rhs eqp1 eqp2},

eq_proof lhs rhs eqp1 → eq_proof lhs rhs eqp2 → sign_proof lhs gen_comp.eq
| eq_of_two_eqs_rhs : Π {lhs rhs eqp1 eqp2},

eq_proof lhs rhs eqp1 → eq_proof lhs rhs eqp2 → sign_proof rhs gen_comp.eq
| diseq_of_diseq_zero : Π {lhs rhs}, diseq_proof lhs rhs 0 → sign_proof lhs gen_comp.ne
| eq_of_eq_zero : Π {lhs rhs}, eq_proof lhs rhs 0 → sign_proof lhs gen_comp.eq
| ineq_of_eq_and_ineq_lhs : Π {lhs rhs i c}, Π c’,

eq_proof lhs rhs c → ineq_proof lhs rhs i → sign_proof lhs c’
| ineq_of_eq_and_ineq_rhs : Π {lhs rhs i c}, Π c’,

eq_proof lhs rhs c → ineq_proof lhs rhs i → sign_proof rhs c’
| ineq_of_ineq_and_eq_zero_rhs : Π {lhs rhs i}, Π c,

ineq_proof lhs rhs i → sign_proof lhs gen_comp.eq → sign_proof rhs c
| diseq_of_strict_ineq : Π {e c}, sign_proof e c → sign_proof e gen_comp.ne
| of_sum_form_proof : Π e c {sfc}, sum_form_proof sfc → sign_proof e c
| adhoc : Π e c, tactic expr → sign_proof e c

with sum_form_proof : sum_form_comp → Type
| of_ineq_proof : Π {lhs rhs iq}, Π id : ineq_proof lhs rhs iq,

sum_form_proof (sum_form_comp.of_ineq lhs rhs iq)
| of_eq_proof : Π {lhs rhs c}, Π id : eq_proof lhs rhs c,

sum_form_proof (sum_form_comp.of_eq lhs rhs c)
| of_sign_proof : Π {e c}, Π id : sign_proof e c, sum_form_proof (sum_form_comp.of_sign e c)
| of_add_factor_same_comp : Π {lhs rhs c1 c2}, Π m : Q,

sum_form_proof 〈lhs, c1〉 → sum_form_proof 〈rhs, c2〉 →
sum_form_proof 〈lhs.add_factor rhs m, spec_comp.strongest c1 c2〉

| of_add_eq_factor_op_comp : Π {lhs rhs c1}, Π m : Q, sum_form_proof 〈lhs, c1〉 →
sum_form_proof 〈rhs, spec_comp.eq〉 → sum_form_proof 〈lhs.add_factor rhs m, c1〉

| of_scale : Π {sfc}, Π m, sum_form_proof sfc → sum_form_proof (sfc.scale m)

| of_expr_def : Π (e : expr) (sf : sum_form), sum_form_proof 〈sf, spec_comp.eq〉
| adhoc : Π sfc, tactic expr → sum_form_proof sfc

Figure 3.9: Proof objects (part 1)

36

meta inductive diseq_proof : expr → expr → Q → Type
| hyp : Π lhs rhs c, expr → diseq_proof lhs rhs c
| sym : Π {lhs rhs c}, Π (dp : diseq_proof lhs rhs c), diseq_proof rhs lhs (1/c)

meta inductive prod_form_proof : prod_form_comp → Type
| of_ineq_proof : Π {lhs rhs iq cl cr},

Π (id : ineq_proof lhs rhs iq) (spl : sign_proof lhs cl) (spr : sign_proof rhs cr),
prod_form_proof (prod_form_comp.of_ineq lhs rhs cl cr iq)

| of_eq_proof : Π {lhs rhs c}, Π (id : eq_proof lhs rhs c) (lhsne : sign_proof lhs
gen_comp.ne),
prod_form_proof (prod_form_comp.of_eq lhs rhs c)

| of_expr_def : Π (e : expr) (pf : prod_form), prod_form_proof 〈pf, spec_comp.eq〉
| of_pow : Π {pfc}, Π z, prod_form_proof pfc → prod_form_proof (pfc.pow z)
| of_mul : Π {lhs rhs c1 c2}, prod_form_proof 〈lhs, c1〉 → prod_form_proof 〈rhs, c2〉 →

(list Σ e : expr, sign_proof e gen_comp.ne) →
prod_form_proof 〈lhs*rhs, spec_comp.strongest c1 c2〉

| adhoc : Π pfc, tactic expr → prod_form_proof pfc

Figure 3.10: Proof objects (part 2)

get_ineqs (bb : blackboard) (lhs rhs : expr) : ineq_info lhs rhs
get_diseqs (bb : blackboard) (lhs rhs : expr) : diseq_info lhs rhs
get_sign_info (bb : blackboard) (e : expr) : sign_info e
get_sign_comp (bb : blackboard) (e : expr) : option gen_comp
has_sign_info (bb : blackboard) (e : expr) : bool
has_strict_sign_info (bb : blackboard) (e : expr) : bool
has_weak_sign_info (bb : blackboard) (e : expr) : bool
get_expr_list (bb : blackboard) : list expr

Figure 3.11: Blackboard accessors

add_expr (e : expr) (ef : expr_form) (bb : blackboard) : blackboard
insert_sign (e : expr) (si : sign_data e) (bb : blackboard) : blackboard
insert_diseq {lhs rhs} (dd : diseq_data lhs rhs) (bb : blackboard) : blackboard
insert_ineq_info {lhs rhs} (ii : ineq_info lhs rhs) (bb : blackboard) : blackboard

Figure 3.12: Low-level Blackboard manipulators

37

get_ineq_list : polya_state (list Σ lhs rhs, ineq_data lhs rhs)
get_eq_list : polya_state (list Σ lhs rhs, eq_data lhs rhs)
get_sign_list : polya_state (list Σ e, sign_data e)

get_add_defs : polya_state (list (expr × sum_form))
get_mul_defs : polya_state (list (expr × prod_form))

add_ineq {lhs rhs : expr} (id : ineq_data lhs rhs) : polya_state unit
add_eq {lhs rhs : expr} (ed : eq_data lhs rhs) : polya_state unit
add_diseq {lhs rhs : expr} (dd : diseq_data lhs rhs) : polya_state unit
add_sign {e : expr} (sd : sign_data e) : polya_state unit

Figure 3.13: High-level Blackboard functions

meta structure sum_form_comp :=
(sf : sum_form)
(c : spec_comp)

meta structure sum_form_comp_data :=
(sfc : sum_form_comp)
(prf : sum_form_proof sfc)
(elim_list : rb_set expr)

Figure 3.14: The datatypes used for additive Fourier–Motzkin elimination

3.4.1 Additive module

A sum_form_comp object (Figure 3.14) represents a comparison of the form Σci · xi ./ 0, where ./ ∈
{≤, <,=}. Any piece of comparison data in the Blackboard that is not a disequality can be turned

into a corresponding sum_form_comp. Additively defined expressions also induce sum_form_comp

objects: for instance, the expression 3 · x2 + 4 · y induces (3 · x2 + 4 · y) + −3 · x2 + −4 · y = 0.

Conversely, any sum_form_comp with two or fewer components can be converted to a Blackboard-

appropriate comparison.

Suppose an expression e appears in two sum_form_comp objects s1 and s2. If either s1 or s2 is an

equality, or if the coefficient of e is positive in one and negative in the other, then s1 and s2 can be

combined to eliminate e and produce a new sum_form_comp. There are corresponding constructors

for sum_form_proof, so this elimination can be seen as an addition operator on sum_form_comp_data.

The elimination algorithm used in the proof-producing additive module is somewhat different

from the unverified version, in order to facilitate caching the state after each round. Given a set S

of sum_form_comp_data objects and a new sum_form_comp object s, we wish to extend S with all of

the comparisons obtained by adding s to comparisons in S. These additions are restricted to those

that do not reintroduce variables into a comparison from which they have already been eliminated;

the elim_list field of sum_form_comp_data allows us to track this.

A function

38

meta def new_exprs_from_comp_data_set (sfcd : sum_form_comp_data)

(cmps : rb_set sum_form_comp_data) : rb_set sum_form_comp_data

is defined to produce the set of new comparisons needed to extend S. We use this function to feed

a queue of sum_form_comp_data objects into S.

meta def elim_list_into_set : rb_set sum_form_comp_data →
list sum_form_comp_data → rb_set sum_form_comp_data

| cmps [] := cmps

| cmps (sfcd::new_cmps) :=

if cmps.contains sfcd then elim_list_into_set cmps new_cmps else

let new_gen := (new_exprs_from_comp_data_set sfcd cmps).keys in

elim_list_into_set (cmps.insert sfcd) (new_cmps.append new_gen)

Seeded with the empty set and a list of comparisons l, this algorithm produces a set of com-

parisons equisatisfiable with the result obtained running the Python Fourier–Motzkin elimination

procedure on l. By filtering out the comparisons with more than two components, we can convert

the set into a set of ineq_data and eq_data objects.

The algorithm is designed to be incremental. That is, once a list of comparisons has been

processed, it does not require any redundant computation to process one additional comparison.

This allows us to store the state of the additive module once it has terminated, and resume from

that state once more information has been learned; this is much more efficient than the former

process, which restarted each time.

This algorithm is exposed via the function

meta def add_new_ineqs (start : rb_set sum_form_comp_data := mk_rb_set) :

polya_state (rb_set sum_form_comp_data)

which extracts the relevant information from a Blackboard, computes the implied linear compar-

isons, and asserts them back to the Blackboard. An optional start argument allows it to begin

from a saved state.

It takes only a few lines of code to rearrange these functions into a “standard” Fourier-Motzkin

procedure, one which eliminates all variables from a set of comparisons in search of a proof of 0 < 0.

Since these functions are proof producing, this gives us a complete process for linear arithmetic for

free. (In fact, the Polya process is also complete for linear arithmetic, but less directly so than the

standard method.)

3.4.2 Multiplicative module

The data types prod_form, prod_form_comp, and prod_form_comp_data (Figure 3.15) used in the

multiplicative module are similar to their additive counterparts. A prod_form_comp represents a

comparison of the form 1 ./ c · Πxni
i , where ./ ∈ {≤, <,=}. Call an inequality redundant if it is

implied by the transitivity of sign information: for example, x < y is redundant if x < 0 and 0 < y.

39

meta structure prod_form_comp :=
(pf : prod_form)
(c : spec_comp)

meta structure prod_form_comp_data :=
(pfc : prod_form_comp)
(prf : prod_form_proof pfc)
(elim_list : rb_set expr)

Figure 3.15: The datatypes used for multiplicative Fourier–Motzkin elimination

meta def mul_state :=
state (hash_map expr sign_data × hash_map expr (λ e, ineq_info e rat_one))

meta instance mul_state.monad : monad mul_state := state.monad

-- returns the sign information of e
meta def si (e : expr) : mul_state (sign_data e) :=
λ hm, (hm.1.find’ e, hm)

meta def oi (e : expr) : mul_state (ineq_info e rat_one) :=
λ hm, (hm.2.find’ e, hm)

-- returns the known comparisons of e with 1 and -1
meta def oc (e : expr) : mul_state (option gen_comp × option gen_comp) :=
do ii ← oi e,

return (find_comp ii 1, find_comp ii (-1))

Figure 3.16: The multiplicative state monad

Any non-redundant, non-disequality Blackboard comparison can be turned into a prod_form_comp,

provided the signs of its variables are known.

As described in Section 3.2, the multiplicative module operates only on terms for which the signs

of all top-level variables are known. Access to this sign information is needed from within many

functions, and occasionally comparisons with 1 are needed as well. It is convenient, then, to consider

the collection of zero- and one-comparisons as a “state” and to work within the corresponding state

monad (Figure 3.16).

The basic elimination algorithm is similar to that found in the previous section. One significant

difference is that the multiplicative version is implemented within the mul_state monad, since the

constructors for prod_form_proof (Figure 3.10) require proofs of sign information.

Another difference from the additive module is seen in the conversion of prod_form_comp objects

into Blackboard-friendly data. Not every prod_form_comp corresponds to a comparison of the form

x ./ c · y. For example, in the absence of additional information, we cannot do anything with

the prod_form_comp 1 ≤ 1 · (x1y1). The mul_state monad includes information about how terms

compare with 1 and −1, when this information is available, for use in these computations.

40

-- returns none if can never lower. some tt if can always lower. some ff if can only
lower by even number

meta def can_lower (e : expr) (ei : Z) : mul_state (option bool) :=
do iplo ← is_pos_le_one e,

if iplo then return $ some tt else do
ingno ← is_neg_ge_neg_one e,
if ingno && (ei % 2 = 0) then return $ some ff else do
ilno ← is_le_neg_one e,
if ilno && (ei % 2 = 1) then return $ some ff
else return none

meta def can_raise (e : expr) (ei : Z) : mul_state (option bool) :=
do igo ← is_ge_one e,

if igo then return $ some tt else do
ilno ← is_le_neg_one e,
if ilno && (ei % 2 = 0) then return $ some ff else do
ingno ← is_neg_ge_neg_one e,
if ingno && (ei % 2 = 1) then return $ some ff
else return none

Figure 3.17: Test whether an exponent can be lowered or raised

The first step in extracting Blackboard-friendly data from a prod_form_comp with two expres-

sions is to balance the exponents of the expressions. Suppose we know that 1 ≤ c · (xmyn). We

wish to find values k such that 1 ≤ c · (xky−k). Whether we can raise or lower the exponents m and

n depends on the signs and relations to 1 of x and y, and the parities of m and n. We may be able

to raise (or lower) the exponent by any integer or by only an even integer. Functions can_raise

and can_lower are implemented in Figure 3.17.

It may be possible to changem to be−n, to change n to be−m, to do both, or to do neither. The

function balance_coeffs (lhs rhs : expr) (el er : Z) : mul_state (list (Z × Z)) computes

the possible exponent pairs. Once the exponents are balanced, we can find ./ (depending on the

sign of x or y) such that xk ./ c · yk, and c′, ./′ such that x ./ c′ · y, where c′ is either k
√
c or a

rational approximation in the correct direction.

There is also an analogue to the sign inference preprocessing done in the unverified version of

Polya. This is run before the elimination, and also occurs within the mul_state monad; the state

is reconstructed after processing to account for the consequences of the new sign information.

Computing the rational approximation. The standard nth root algorithm is not entirely

suited to our purposes. We need to implement it in a way that

� if an exact root exists, we find it;

� we can bound the size of the denominator of the result; and,

� we can force an over- or under-approximation as needed.

41

meta inductive contrad
| none : contrad
| eq_diseq : Π {lhs rhs}, eq_data lhs rhs → diseq_data lhs rhs → contrad
| ineqs : Π {lhs rhs}, ineq_info lhs rhs → ineq_data lhs rhs → contrad
| sign : Π {e}, sign_data e → sign_data e → contrad
| strict_ineq_self : Π {e}, ineq_data e e → contrad
| sum_form : Π {sfc}, sum_form_proof sfc → contrad

Figure 3.18: The datatype for tracing contradictions

Furthermore, since computing with rational numbers in the Lean VM is expensive, we would like

to perform as much computation as possible at the integer level.

Our nth root algorithm takes a rational number (in reduced form, as required by Lean’s rat

datatype). By binary search on Z, it checks if the numerator and the denominator are perfect nth

powers. If not, it seeds a standard nth root algorithm with the quotient of the closest integer roots.

When a root within the specified precision is reached, it rounds it to truncate the denominator, and

adds or subtracts the precision to correct the offset if needed. An extension of the norm_num tactic

can be used during reconstruction to confirm that the nth power of the result relates correctly to

the input value.

The Polya procedure cannot handle irrational exact roots, so in this situation, some precision

is necessarily lost. In practice, this is rarely a problem.

3.5 Proof reconstruction

The process described so far is entirely “meta.” Expression objects are only used, effectively, as

indices: we perform no object-level arithmetic, application, or evaluation.

When Polya terminates with a contradiction, many Lean users are not willing to take its answer

on faith. They would like a proof term, an expression in the object logic of type false.

Figures 3.9, 3.10, and 3.18 display the proof trace datatypes. A contradiction is represented by a

contrad object. To turn a term of type contrad into a proof of false, we define contrad.reconstruct.

Of course, we also need ineq_proof.reconstruct, eq_proof.reconstruct, and so on.

Reconstruction is relatively expensive. It is hard to avoid taxing Lean’s elaborator and type

class inference mechanism during the construction of large proofs like this. The process is designed

to avoid as much definitional unfolding as possible. The norm_num tactic is frequently used to avoid

kernel computation over rational numbers. But still, a large part of Polya’s run time is spent in

the reconstruction stage. It is for this reason that the algorithm is designed to strictly separate

search and justification. The only proof terms that are reconstructed are those that appear in the

final proof; search “tangents” that end up being unnecessary are ignored. Using proof trace data

types, rather than full proof terms themselves, makes the process much more lightweight than it

42

class comp_op (op : Q → Q → Prop) :=
(rev_op : Q → Q → Prop)
(rev_op_is_rev : ∀ {x y}, rev_op y x ↔ op x y)
(rel_of_sub_rel_zero : ∀ {x y : Q}, op (x-y) 0 ↔ op x y)
(op_mul : ∀ {x y c : Q}, c > 0 → op x y → op (c*x) (c*y))
(op_inv : ∀ {x y z : Q}, x > 0 → op z (x*y) → op ((rat.pow x (-1))*z) y)

class weak_comp_op (op) extends comp_op op :=
(strict_op : Q → Q → Prop)
(disj : ∀ {x y}, op x y ↔ x = y ∨ strict_op x y)
(ne_of_str : ∀ {x y}, strict_op x y → x 6= y)

Figure 3.19: An algebraic structure for comparisons

meta def reconstruct : Π {lhs rhs : expr} {iq : ineq}, ineq_proof lhs rhs iq → tactic expr
| _ _ _ (hyp lhs rhs iq e) := reconstruct_hyp lhs rhs iq e
| _ _ _ (sym ip) := reconstruct_sym @reconstruct ip
| _ _ _ (of_ineq_proof_and_diseq ip dp) := reconstruct_ineq_diseq @reconstruct ip dp
| _ _ _ (zero_comp_of_sign_proof rhs iq sp) := reconstruct_zero_comp_of_sign rhs iq sp
| _ _ _ (horiz_of_sign_proof lhs iq sp) := reconstruct_horiz_of_sign lhs iq sp
| _ _ _ (of_sum_form_proof lhs rhs i sp) := reconstruct_of_sum_form_proof lhs rhs i sp
| _ _ _ (adhoc _ _ _ t) := t

Figure 3.20: The main function for reconstructing inequality proofs

would otherwise be.

At the current stage, some small gaps exist in the proof reconstruction process. These are

mainly related to algebraic normalization and cancellation, for example, reducing 2x + y − 2x to

y. Lean’s simplifier is soon to be able to do this kind of operation, and it was tangential to this

dissertation to temporarily implement an alternative procedure. Proofs of this type are currently

justified by sorry, a (trivially inconsistent) axiom used for placeholders in proof terms.

In general, the constructors for each type of proof trace are chosen to be fairly fine-grained.

Justifying them should involve selecting and applying one or two lemmas from the proof recon-

struction library. This library is designed to be as generic as possible over comparison operators

(<, ≤, =, ≥, >, 6=). Many of the reconstruction theorems are stated in terms of comp_op and

weak_comp_op (Figure 3.19).

The reconstruction process is similar for each type of proof trace object, so here we will focus on

the ineq_proof and sum_form_proof examples. In fact, since many of the proof objects are mutually

defined, their reconstruction functions must be as well. We gloss over this here, and assume that

it only remains to define the functions in question.

43

3.5.1 Reconstructing inequality proofs

Inequality proofs are perhaps the most complex type of Blackboard-friendly comparison proof.

The ineq_proof type has seven constructors, visible in the definition of ineq_proof.reconstruct in

Figure 3.20.

Every piece of ineq_data has an associated normal form. The reconstruction of an ineq_proof

should be a proof of this normal form expression. A term iq : ineq can be converted to a com-

parison R and a slope, which is either a rational m in reduced form or slope.horiz. In the former

case, the normal form of an ineq_data iq lhs rhs object, where lhs and rhs are of type expr and

expr.lt rhs lhs, is lhs R c*rhs. In the latter case, the normal form is rhs R 0.

Each auxiliary function begins by (perhaps recursively) reconstructing its proof object argu-

ments. The auxiliary functions that require recursive access to ineq_proof.reconstruct receive it

as an argument.

The hyp constructor. This constructor is used when a piece of ineq_data is derived directly

from a hypothesis. The reconstruct_hyp function simply confirms that the ineq_data and the type

of the hypothesis match.

The sym constructor. This constructor turns a proof of x ./ c · y into a proof of y ./′ (1/c) · x,

where ./′ may be ./ or the reverse of ./ depending on the sign of c. Two lemmas are defined to

handle each of these cases; reconstruct_sym detects the case and applies the appropriate lemma.

The of_ineq_proof_and_diseq constructor. A weak inequality x ≥ c · y can be strengthened to

x > c · y if a disequality x 6= c · y is known. The reconstruct_ineq_diseq function simply applies a

lemma that proves this statement.

The zero_comp_of_sign_proof and horiz_of_sign_proof constructors. Sign information like

x > 0 is also stored in the Blackboard as comparison information x > 0 ∗ y for each expression y.

This redundancy simplifies the computation of implications, and makes it easier to modularize a

number of computations. These constructors produce ineq_proof objects out of the corresponding

sign_proof objects, given the new expression y. The former is used when the new variable appears

on the right hand side of the comparison, and the latter when it appears on the left. Reconstructing

these proofs is again straightforward.

The of_sum_form_proof constructor. The normal form of a sum_form_comp object is of the form

Σci · xi ./ 0, where ./ ∈ {<,≤,=}. When there are exactly two summands, a proof of such a

fact can be converted into an ineq_proof by moving one summand to the right hand side of the

inequality and normalizing the left hand coefficient. Depending on the signs of the coefficients

c0 and c1, the direction of the inequality may or may not change. The reconstruction function

44

meta def reconstruct : Π {sfc}, sum_form_proof sfc → tactic expr
| _ (of_ineq_proof ip) := reconstruct_of_ineq_proof @reconstruct ip
| _ (of_eq_proof ep) := reconstruct_of_eq_proof @reconstruct ep
| _ (of_sign_proof sp) := reconstruct_of_sign_proof @reconstruct sp
| _ (of_add_factor_same_comp m sfpl sfpr) :=

reconstruct_of_add_factor_same_comp @reconstruct m sfpl sfpr
| _ (of_add_eq_factor_op_comp m sfpl sfpr) :=

reconstruct_of_add_eq_factor_op_comp @reconstruct m sfpl sfpr
| _ (of_scale m sfp) := reconstruct_of_scale @reconstruct m sfp
| _ (of_expr_def e sf) := reconstruct_of_expr_def e sf

Figure 3.21: The main function for reconstructing sum form proofs

performs basic numeral arithmetic to do this rational normalization, and applies the correct one of

two reconstruction lemmas.

The adhoc constructor. Users are able to add modules to the core Polya system, and these

modules must have a way of adding information to the Blackboard. We cannot dynamically add

constructors to the ineq_proof data type. Instead, an external module can create an ineq_proof

object with adhoc lhs rhs inq tac, where tac is a tactic that constructs a proof of the normal form

expression of the ineq_data (lhs, rhs, inq). Reconstructing this proof simply involves executing

tac.

3.5.2 Reconstructing sum form proofs

Many of the constructors for the sum_form_proof datatype (Figure 3.21) are similar to those seen

above. In particular, of_ineq_proof, of_eq_proof, and of_sign_proof simply convert proofs to the

normal form of sum forms. Here we discuss only the constructors that are specific to the elimination

steps that occur in the additive module.

The of_add_factor_same_comp constructor. Two sum_form_comp objects s1 := Σcixi ./ 0 and

s1 := Σdiyi ./
′ 0 can be added to produce a new sum_form_comp in the obvious way, where the

new comparison is the stronger of ./, ./′. Similarly, a sum_form_comp can be scaled by a positive

coefficient m. This constructor justifies the comparison s1 +m · s2 based on the justifications of m1

and m2. In the future, this justification will be handled by Lean’s algebraic normalization module

in the simplifier. Right now, the function reconstruct_of_add_factor_same_comp checks that the

input proofs are as expected, and proves the result by sorry. The of_add_eq_factor_op_comp does

similarly for negative values of m, applicable only when the second sum_form_comp is an equality.

The of_scale constructor. This constructor, and its reconstruction function, behave similarly

to of_add_factor_same_comp, but only scale a single comparison rather than adding two.

45

The of_expr_def constructor. Given an expression e := Σn
i=1cixi, we can create a sum_form_comp

Σn
i=0cixi = 0 by setting c0 = −1, x0 = e. The sum_form_comp objects of this form are necessary

for the additive module to “decompose” additive definitions. Proofs of these equalities are by

associativity and cancellation; they will be handled by Lean’s algebraic normalizer in the future.

3.6 Examples and tests

We begin by discussing test cases from the Python implementation of Polya, to better describe the

capabilities of the algorithm. Then, we provide test data for the proof-producing version. Finally,

we discuss an integration of Polya into KeYmaera X, a system for verifying properties of hybrid

systems.

3.6.1 Results from the unverified implementation

We aim to capture with our system a class of inferences that could be described as “natural” or

“intuitive,” that often come up in everyday proofs. For various reasons, Polya seems ill suited to

attack large-scale problems in hundreds or thousands of variables, such as those found in industrial

SMT applications. Smaller, heterogeneous problems make for more appropriate targets. These

problems arise frequently in mathematics, both formal and informal, and are often surprisingly

difficult for automated techniques to solve.

Here we highlight some of the noteworthy inferences that the Python implementation of Polya

proves, and compare its performance with that of other automated provers. Not wishing to mislead,

we also discuss some of the system’s shortcomings. The results indicate that Polya fills a previously

unfilled niche in the world of automated provers. We are able to prove many inferences, including

a number found in real proofs and formalizations, that no other systems manage to solve. Given

its significant shortcomings, we certainly do not expect Polya to replace these established systems,

but it seems very promising as a tool to be used alongside them.

The examples seen here are a small selection of our test suite. Further examples can be found

in the examples folder of the Polya distribution or in [94].

To start with, Polya handles inferences involving linear real inequalities, which are verified

automatically by many interactive theorem proving systems. It can also handle purely multiplicative

inequalities such as

0 < u < v < 1, 2 ≤ x ≤ y ⇒ 2u2x < vy2, (3.1)

46

which are not often handled automatically. It can solve problems that combine the two, like these:

x > 1 ⇒ (1 + y2)x > 1 + y2 (3.2)

0 < x < 1 ⇒ 1/(1− x) > 1/(1− x2) (3.3)

0 < u, u < v, 0 < z, z + 1 < w ⇒ (u+ v + z)3 < (u+ v + w)5 (3.4)

It also handles inferences that combine such reasoning with axiomatic properties of functions:

(∀x. f(x) ≤ 1), u < v, 0 < w ⇒ u+ w · f(x) < v + w (3.5)

(∀x, y. x ≤ y → f(x) ≤ f(y)), u < v, x < y ⇒ u+ f(x) < v + f(y) (3.6)

Isabelle’s auto and Sledgehammer fail on all of these but (3.5) and (3.6), which are proved by

resolution theorem provers. Sledgehammer can verify more complicated variants of (3.5) and (3.6)

by sending them to Z3, but fails on only slightly altered examples.

Moreover, when handling nonlinear equations, Z3 “flattens” polynomials, which makes a prob-

lem like (3.4) extremely difficult. It takes Z3 a couple of minutes when the exponents 3 and 5

in that problem are replaced by 9 and 19, respectively. Polya verifies all of these problems in a

fraction of a second, and is insensitive to the exponents in (3.4). It is also unfazed if any of the

variables above are replaced by more complex terms.

Polya has built-in knowledge about many functions, such as exp and log, and verifies examples

such as

z > exp(x), w > exp(y) ⇒ z3 · w2 > exp(3x+ 2y) (3.7)

a > 1, c > 0, log(b2) > 4, log(c) > 1, b 6= 0 ⇒ log(a · b2 · c3) > 7 (3.8)

While Z3 sometimes succeeds on these types of examples, it needs to have the appropriate

properties of exp or log described to it. It does not get either of the above.

Sledgehammer fails on an example that arose in connection with a formalization of the Prime

Number Theorem, discussed in [10]:

0 ≤ n, n < (K/2)x, 0 < C, 0 < ε < 1 ⇒
(

1 +
ε

3(C + 3)

)
· n < Kx (3.9)

Z3 verifies it when called directly. Sledgehammer also fails on these [12]:

0 < x < y ⇒ (1 + x2)/(2 + y)17 < (1 + y2)/(2 + x)10 (3.10)

0 < x < y ⇒ (1 + x2)/(2 + exp(y)) ≥ (2 + y2)/(1 + exp(x)) . (3.11)

47

Z3 gets (3.10) but not (3.11). Neither Sledgehammer nor Z3 get these:

(∀x, y. f(x+ y) = f(x)f(y)), a > 2, b > 2 ⇒ f(a+ b) > 4 (3.12)

(∀x, y. f(x+ y) = f(x)f(y)), a+ b > 2, c+ d > 2 ⇒ f(a+ b+ c+ d) > 4 (3.13)

Polya verifies all of the above easily.

The following problem was once raised on the Isabelle mailing list:

x > 0, y > 0, y < 1 ⇒ (x+ y) > xy . (3.14)

This inference is verified by Z3 as well as Sledgehammer, but both fail when x and y in the conclusion

are replaced by x1500 and y1500, respectively. Polya is insensitive to the exponent.

Let us consider two examples that have come up in recent Isabelle formalizations by Avigad

[13]. Billingsley [26, page 334] shows that if f is any function from a measure space to the real

numbers, the set of continuity points of f is Borel. Formalizing the proof involved verifying the

following inequality:

i ≥ 0, |f(y)− f(x)| < 1/(2(i+ 1)),

|f(z)− f(y)| < 1/(2(i+ 1)) ⇒ |f(x)− f(y)| < 1/(i+ 1) . (3.15)

Sledgehammer and Z3 fail on this, while Polya verifies it easily.

The second example involves the construction of a sequence f(m) in an interval (a, b) with the

property that for every m > 0, f(m) < a + (b − a)/m. The proof required showing that f(m)

approaches a from the right, in the sense that for every x > a, f(m) < x for m sufficiently large. A

little calculation shows that m ≥ (b−a)/(x−a) is sufficient. We can implicitly restrict the domain

of f to the integers by considering only arguments dme; thus the required inference is

(∀m. m > 0→ f(dme) < a+ (b− a)/dme),

a < b, x > a, m ≥ (b− a)/(x− a) ⇒ f(dme) < x . (3.16)

Sledgehammer and Z3 do not capture this inference, and the Isabelle formalization was tedious.

Polya verifies it immediately using only the information that dxe ≥ x for every x.

Of course, Polya fails on wide classes of problems where other methods succeed. To begin with,

it is much less efficient than the best linear solvers, and so should not be expected to scale to large

industrial problems of this type. While there are many optimizations that could be made to Polya,

we hold little hope of ever competing with established linear solvers; at its core, Polya is designed

for nonlinear, heterogeneous problems.

Recall that the multiplicative module only takes advantage of equations where the signs of all

48

terms are known. A preprocessing step to infer sign info helps with these sorts of problems. But

this preprocessing is not robust, and Polya fails on some examples like the following:

x > 0, xyz < 0, xw > 0 ⇒ w > yz (3.17)

However, problems of this sort are easily solved given a mechanism for splitting on the signs of w,

y and z.

Another shortcoming, in contrast to methods which begin by flattening polynomials, is that

Polya does not, a priori, make use of distributivity at all, beyond the distributivity of multiplication

by a rational constant over addition. Any reasonable theorem prover for the theory of real closed

fields can easily establish

x2 + 2x+ 1 ≥ 0, (3.18)

which can also be obtained simply by writing the left-hand side as (x + 1)2. But, as pointed out

by Avigad and Friedman [12], our method does not terminate on this example. Assuming the

negation, Polya will learn that x2 ≥ 0, implying 2x + 1 ≤ 0 and thus x ≤ −1/2. This implies

x2 ≥ 1/4, beginning a cycle that will find progressively tighter bounds for x around −1.

Our method is known and intended to be incomplete, and there will always be problems on

which it does not succeed. Many of these shortcomings are not worrisome—they are problems

better left to other techniques. Nonetheless, there are improvements that could be made to Polya

to help it handle difficult problems like these.

3.6.2 Results from the proof-producing implementation

In moving from an informal system to one that produces full proof terms, one generally expects a

substantial slowdown. No matter what the domain, there is significant overhead in deriving and

storing enough information for axiomatic justifications. The situation here is muddled, as both the

implementation language and scope of the system have changed.

With proof production disabled, the Lean implementation of Polya solves the “smaller” arith-

metic benchmarks in an amount of time comparable to the Python implementation. Enabling proof

production does not make the system less effective—when the proof search terminates, the recon-

struction does not time out—but in some cases, reconstruction takes noticeably more time than

search. Some reasons for this are known, and are discussed in Section 3.9.2. Performance degrades

on “large” problems, particularly those that involve computations with large rational numbers.

This is not unexpected, as again, the memory costs of producing proofs are quite high.

For a few examples, a proof trace of

u > 0, u < v < 1, 2 ≤ x ≤ y ⇒ u2x ≤ (1/2)vy2 (3.19)

49

is found in .45 seconds, and reconstruction takes an additional .4 seconds. A trace of

0 < x < 3y, u < v < 0, 1 < v2 < x ⇒ u(3y)2 + 1 < vx2 + x (3.20)

is found in less than a tenth of a second, but reconstruction takes an additional tenth.

3.6.3 Integration into KeYmaera

KeYmaera is a verification tool for hybrid systems that combines deductive, real algebraic, and

computer algebraic prover technologies [117] [118] [61]. Among other applications, it has been used

to verify control systems for transportation systems. The current version of KeYmaera uses Z3

and Mathematica as a backend for solving the algebraic problems it generates. These algebraic

problems are often well suited for Polya’s approach.

We obtained a collection of 4442 problems generated by KeYmaera. With a 3 second timeout

and case splitting disabled, the Python implementation of Polya was able to verify the unsatisfia-

bility of 4252 (96%) in about six minutes. (With case splitting enabled, Polya solves an additional

15 problems, but runs for about ten minutes.)

To compare the Lean version of Polya on the same benchmarks, we have implemented a rudi-

mentary SMTLIB parser in Lean. With the same timeout, we solve 72% of the benchmark problems.

The total time spent is just under 90 minutes, but much of this can be attributed to the fixed cost

of launching Lean for each problem. Using the link described in Chapter 4, we were also able to run

the same benchmarks in Mathematica, which implements the CAD decision procedure for TRCF .

Mathematica was able to solve 99% of the benchmark problems, but took nearly two hours (facing

the same fixed cost from repeatedly launching Lean). This fixed cost is an implementation artifact,

and we hope to significantly reduce it in the future; once this is done, the timing difference between

Polya and Mathematica will be much more extreme.

3.7 Interacting with Polya

The unverified implementation of Polya functioned mainly as a push-button prover. In some sense,

this belied the generality of the system; it can be informative for the user to inspect the prover’s

internal state, manually control the execution of modules, assert additional information during

computation, or extract intermediate steps of the proof. Exposing an API for the internals of the

system is consistent with the idea of “whitebox automation” expressed by de Moura [56].

Lean supports an “interactive” tactic mode, where expressions appearing as arguments are

auto-quoted to create a more natural proving environment. For instance, with a local expression

h : x < y, users can write apply le_of_lt h to close a goal x ≤ y. The argument h and application

le_of_lt h are interpreted as pre-expressions, elaborated, and sent to the core apply tactic. The

50

meta structure polya_cache :=
(sum_cache : rb_set sum_form_comp_data)
(prod_cache : rb_set prod_form_comp_data)
(bb : blackboard)

meta def polya_tactic := state_t polya_cache tactic

Figure 3.22: Data structures for the interactive Polya mode

-- equivalent to "by polya h1 h2 h3 h4 h5".
example (h1 : u > 0) (h2 : u < 1*v) (h3 : z > 0) (h4 : 1*z + 1*1 < 1*w)
(h5 : rat.pow (1*u + 1*v + 1*z) 3 ≥ 1* rat.pow (1*u + 1*v + 1*w + 1*1) 5) : false :=

begin [polya_tactic]
add_hypotheses h1 h2 h3 h4 h5,
additive,
multiplicative,
reconstruct

end

-- adds terms "hzw1 : z < 1*w" and "hzw2 : z > 0*w" to the local context.
example (h1 : u > 0) (h2 : u < 1*v) (h3 : z > 0) (h4 : 1*z + 1*1 < 1*w)
(h5 : rat.pow (1*u + 1*v + 1*z) 3 ≥ 1* rat.pow (1*u + 1*v + 1*w + 1*1) 5) : false :=

begin [polya_tactic]
add_hypotheses h1 h2 h3 h4 h5,
additive,
extract_comparisons_between z w with hzw1 hzw2

end

Figure 3.23: The interactive Polya mode

equivalent of this tactic in the non-interactive tactic mode would be to_expr ‘‘(le_of_lt h) >>=

apply.

This interactive mode can be extended beyond basic tactic proofs: for instance, Lean’s SMT

module includes an interactive mode. We have implemented a similar mode for Polya. The

polya_tactic monad extends the normal tactic state with a blackboard and module caches (Fig-

ure 3.22). Functions of types tactic α and polya_state α lift to polya_tactic α, and module

update functions, e.g. sum_form.add_new_ineqs and prod_form.add_new_ineqs, are also functions in

this monad.

Using the Polya interactive mode (Figure 3.23), the user can, for example, choose when to

add hypotheses to the blackboard; decide when to execute which modules; extract facts from the

blackboard, and add them to the tactic state as local hypotheses; and trace the state of all or part

of the blackboard at any given time. It is also straightforward for users to write custom Polya

strategies.

51

3.8 Producing proof traces

Users interested in fully verified proof terms can enable proof reconstruction for the highest degree

of certainty. Users who trust the system and are more interested in speed may wish to skip this

step. It is also possible to produce an intermediate level of information: the proof trace objects

can be assembled into “proof sketches,” which outline the argument found by the system without

fully verifying each step.

The arithmetic elimination steps done by the additive and multiplicative modules are easy

to understand and difficult to display; these are good candidates to eliminate in a proof trace.

Similarly, small steps such as normalization and reversing the order of a comparison can be skipped.

We implement a rough heuristic for mapping proof trace objects to proof sketch objects, which are

trees where each node is tagged with a fact and an explanation. The children of a node, stored in

a list, represent the facts that justify the parent.

meta inductive proof_sketch

| mk (fact : string) (reason : string) (justifications : list proof_sketch) :

proof_sketch

The adhoc proof constructors present a minor obstacle to this sort of tracing, as they “flatten”

the proof tree. To enable tracing, we extend the adhoc constructors with an additional argument

of type tactic proof_sketch; to sketch an adhoc proof, one simply executes this tactic.

With a simple display function, one can see proof sketches as in Figures 3.24 and 3.25. Lean

does not provide convenient tools for displaying information like this, but it is possible to format

these sketches in a more pleasant (and graphical) way using the connection between Lean and

Mathematica described in Chapter 4.

In principle, these proof sketches can serve more than just an informative purpose. With the

proper tactics to fill in the gaps between steps, a proof sketch could be turned into an actual proof

script, one which could replace the original call to Polya. Evaluating this proof script would be

faster than running Polya, as most of the proof search stage will be eliminated. This behavior is

similar to that of Isabelle’s Sledgehammer tool [114], which replaces its own invocation with an

appropriate proof script. The necessary tactics and formatting have not yet been implemented, and

Lean’s editor support for self-replacing tactics is limited, but this is a promising route for future

work.

3.9 Concluding thoughts

3.9.1 Related work

There are few systems that approach problems in the same domain as Polya, and fewer that do so

in a certified way. Non-proof-producing systems with which we can make meaningful comparisons

52

example (h1 : x > 0) (h2 : x < 1*1)
(h3 : (1*1 + (-1)*x)^(-1) ≤ 1*((1*1 + (-1)*x^2)^(-1))) : false

/-
false : contradictory inequalities
1 ≤ 1*x^2 : by multiplicative arithmetic
x^2 ≥ 1*x : by linear arithmetic
1 * 1 + (-1) * x^2 ≤ 1*1 * 1 + (-1) * x : by multiplicative arithmetic
(1 * 1 + (-1) * x)^-1 ≤ 1*(1 * 1 + (-1) * x^2)^-1 : hypothesis
1 = 1 * ((1 * 1 + (-1) * x)^-1^-1 * (1 * 1 + (-1) * x)^-1) : by definition
1 = 1 * ((1 * 1 + (-1) * x^2)^-1^-1 * (1 * 1 + (-1) * x^2)^-1) : by definition

1 = 1 * (x^2^-1 * x^2) : by definition
1 > 1*x^2 : by multiplicative arithmetic
1 = 1 * (x^2^-1 * x^2) : by definition
1 <1 * x^-1 : rearranging
x < 1*1 : hypothesis

x^2 > 0 : inferred from other sign data
-/

Figure 3.24: A formatted proof sketch

example (h1 : u > 0) (h2 : u < 1*v) (h3 : z > 0) (h4 : 1*z + 1*1 < 1*w)
(h5 : (1*u + 1*v + 1*z)^3 ≥ 1*(1*u + 1*v + 1*w + 1*1)^5) : false

/-
false : contradictory inequalities
1 * u + 1 * v + 1 * w + 1 * 1 ≤ 1*1 * u + 1 * v + 1 * z :

by multiplicative arithmetic
1 = 1 * ((1 * u + 1 * v + 1 * z)^3^-1 * (1 * u + 1 * v + 1 * z)^3) : by definition
(1 * u + 1 * v + 1 * z)^3 ≥ 1*(1 * u + 1 * v + 1 * w + 1 * 1)^5 : hypothesis
1 = 1 * ((1 * u + 1 * v + 1 * w + 1 * 1)^5^-1 * (1 * u + 1 * v + 1 * w + 1 * 1)^5)
:

by definition
1 * u + 1 * v + 1 * z > 0 : by linear arithmetic
u < 1*v : hypothesis
u > 0 : hypothesis
z > 0 : hypothesis

1 * u + 1 * v + 1 * w + 1 * 1 > 1*1 * u + 1 * v + 1 * z : by linear arithmetic
1 > 0 : hypothesis
1 > 0 : hypothesis
1 * z + 1 * 1 < 1*w : hypothesis

-/

Figure 3.25: A formatted proof sketch

53

include Z3, an SMT solver developed at Microsoft Research [51]; Mathematica, a computer algebra

system developed by Wolfram Research [137]; and MetiTarski, a resolution theorem prover by

Paulson et al [5]. The comparisons below were performed on the collection of test problems collected

for the Python implementation of Polya.

Z3 is a highly optimized SMT system that implements CAD as its nonlinear arithmetic theory

solver. It performs successfully on a large class of problems, and has won numerous theorem-proving

competitions. When restricted to problems involving linear arithmetic and axioms for function sym-

bols, the behavior of Z3 and Polya is similar, although Z3 is vastly more efficient. As the examples

above demonstrate, Polya’s advantages show up in problems that combine multiplicative properties

with either linear arithmetic or axioms. In particular, Z3 procedures for handling nonlinear prob-

lems do not incorporate axioms for function symbols. While CAD performs optimally in problems

with two variables, the procedure’s flattening and projection steps get bogged down in problems

with three or more variables and larger exponents. It is on problems like this, such as Example 3.4

below, on which Polya’s arithmetical capacity shines.

Mathematica’s strengths and weaknesses are similar to those of Z3. It is able to handle many

of the arithmetic examples in our test suite, but does so relatively slowly, and does not perform

well on those involving function symbols.

MetiTarski also relies on a CAD elimination procedure, using the QEPCAD implementation in

combination with a resolution prover. It targets theorems that involve specific real-valued operators,

such as exp, log, and trigonometric functions, by using symbolic approximations. We found that,

while MetiTarski is fairly successful on our purely arithmetical examples, it has similar weaknesses

to Z3. It does not perform well on examples with interpreted functions, including the examples

that involve tight inferences about exp.

Superposition, a proof search technique for first-order logic, can be parametrized by theory

solvers for nonlinear arithmetic to attack problems involving transcendental constants [57]. It has

been tested successfully on models of collision avoidance protocols, but does not seem to have been

tested on problems like ours; in particular, the procedure seems tuned to notice satistiability rather

than unsatisfiability.

Finally, ACL2 has support for nonlinear reasoning [86]. The method used there is locally

somewhat similar to ours, although it lacks the same global guidance. ACL2 solves some, but not

all, of the problems in our example suite; with manual configuration, it is able to solve additional

problems. It does not seem to function well as a push-button prover on our examples, but a

knowledgeable user could be able to coax it into success.

McLaughlin and Harrison’s proof-producing implementation of a decision procedure for TRCF
[103] is a theoretical comparison point for the Lean implementation of Polya. We have not run our

examples using their tool in HOL Light, but based on the benchmarks provided in their paper, it

seems unlikely to compare in efficiency, and does not handle examples involving function symbols.

We also verified a number of the following examples in Isabelle, trying to use Isabelle’s auto-

54

mated tools as much as possible. These include “auto,” an internal tableau theorem prover which

also invokes a simplifier and arithmetic reasoning methods, and Sledgehammer [106] [27], which

heuristically selects a body of facts from the local context and background library, and exports it to

various provers. Sledgehammer successfully proved most of the same theorems as Z3 (which is not

surprising, as Z3 is one of the provers it uses). The “auto” method only succeeded on the simplest

examples.

3.9.2 Future work

There are two particularly pressing future tasks for the Polya project: the completion of proof

reconstruction, and the development of a proof-producing axiom instantiation module.

Currently, proof reconstruction steps that involve algebraic normalization are done axiomati-

cally. While Lean’s simplifier is powerful and efficient, it does not have (very much) tooling for

handling numerals, and is unable to, e.g., simplify x + y + 2*x to 3*x + y or 2*x + y - x - x to y.

This type of simplification is needed for complete proof reconstruction in Polya, whether it is han-

dled by Lean’s built-in simplifier or by an independent module. The theory behind such a module

is understood [52], but there are many intricacies in implementing it, and doing so fell outside the

scope of this dissertation.

On the other hand, Lean provides support for heuristic lemma instantiation using its SMT

module. With the ematching tooling provided there, we expect that a Lean implementation of the

unverified axiom instantiation module will be fairly straightforward. As the SMT module matures

to include other common components of SMT solvers, such as new theory provers and backtracking

search guidance, we hope to take advantage of these features in Polya as well.

The Python version of Polya is somewhat more aggressive than the Lean version in its attempts

to infer the signs of variables. It also contains basic support for case splitting on comparisons.

Alongside an implementation of the axiom instantiation module, making these improvements should

endow the Lean version with the same proving capabilities as the Python version.

Finally, there are many improvements that can be made to the efficiency of the Lean implemen-

tation. Some will be quite straightforward to implement. The work described in this dissertation is

based on version 3.3.0 of Lean, but the latest development versions implement much more efficient

versions of rb_map and rb_set. These data structures are used extensively in Polya, so we expect

significant gains in efficiency by moving to a newer version of Lean.

Polya’s largest efficiency problems involve computation with large rational numbers (during

proof search) and an overreliance on Lean’s elaborator (during proof reconstruction). The former

problem is difficult to avoid, but can be somewhat ameliorated by bounding the size of denomina-

tors. The current approach fixes a bound once and for all, but it could be more efficient to start

with a low bound and gradually raise it. The latter problem has a more obvious solution. At the

moment, the library of lemmas that Polya uses for proof reconstruction makes extensive use of type

55

classes, in order to state theorems generically over comparisons (<,≤,≥, >). The reconstruction

process also forces some kernel computation of rational numbers, e.g. to confirm that 1/(−1) is

definitionally equal to 1. Redesigning the library so that lemmas are stated more concretely, and so

that equalities between coefficients are proved with the tactic norm_num rather than by definition,

is likely to make a large dent in the time spent on proof reconstruction.

56

Chapter 4

A link between Lean and

Mathematica3

4.1 Introduction

Many researchers have noted the disconnect between computer algebra and interactive theorem

proving. In the former, one typically values speed and flexibility over absolute correctness. To be

more efficient or user-friendly, a computer algebra system (CAS) may blur the distinction between

polynomial objects and polynomial functions, assume that sufficiently small terms at the end of a

series are zero, or resort to numerical approximations without warning. Such simplifying assump-

tions often make sense in the context of computer algebra; the capability and flexibility of these

systems make them indispensable tools to many working mathematicians.

These assumptions, though, are antithetical to the goals of interactive theorem proving (ITP),

where every inference must be justified by appeal to some logical principle. The strict logical

requirements and lack of familiar algorithms discourage many mathematicians from using proof

assistants. Conversely, the unreliability of many computer algebra systems, and their lack of proof

languages and proof libraries, often makes them unsuitable for mathematical justification.

Integrating computer algebra and proof assistants is one way to reduce this barrier to entry to

ITP and to strengthen the justificatory power of computer algebra. Bridges between the two types

of systems have been built in a variety of ways. We contribute another such bridge, between the

proof assistant Lean [50] and the computer algebra system Mathematica [138]. Since Mathematica

is one of the most commonly used computer algebra systems, and a user with knowledge of the

CAS can extend the capabilities of our link, we hope that the familiarity will lead to wider use.

Our connection is inspired by the architecture described by Harrison and Théry [79]. A number

3An early stage of the work described in this chapter appears in a paper published in Dubois and Paleo, eds.,
proceedings of Proof eXchange for Theorem Proving 2017 [95]. The ensuing work on connecting to Lean from within
Mathematica was done in collaboration with Minchao Wu.

57

of features of our bridge distinguish it from earlier work. CAS results imported into the proof

assistant can be trusted, verified, or used ephemerally; the translation can be extended in-line with

library development, without modifying auxiliary dictionaries or source code; the link works bi-

directionally using the same translation procedure, allowing Mathematica to access Lean’s library

and automation.

Our link separates the steps of communication, semantic interpretation, and verification: there

is no a priori restriction on the type of information that can be shared between the systems. With

the proof assistant in the “master” role, Lean expressions are exported to Mathematica, where

they can be interpreted and manipulated. The results are then imported back into Lean and

reinterpreted. One can then write scripts that verify properties of the translated results. This style

of interaction, where verification happens on a per-case basis after the computation has ended, is

called ad hoc.

By performing calculations in Mathematica and verifying the results in Lean, we relax neither

the rigor of the proof assistant nor the efficiency of the CAS. Alternatively, we can trust the CAS as

an oracle, or use it in a purely informative role, where its output does not appear in the final proof

term. We provide comprehensive tactics to perform and verify certain classes of computations, such

as factoring polynomials and matrices. But all the components of our procedure are implemented

transparently in Lean’s metaprogramming framework, and they can easily be extended or used for

one-off computations from within the Lean environment.

This range of possibilities is intended to make our link attractive to multiple audiences. The

working mathematician or mathematics student, who balks at the restrictions imposed by a proof

assistant, may find that full access to a familiar CAS is worth the tradeoff in trust. Industrial

users are often happy to trust both large-kernel proof assistants and computer algebra systems;

the rigor of Lean with Mathematica as an oracle falls somewhere in between. And certifiable

algorithms are still available to users who demand complete trust. The ease of metaprogramming

in Lean is another draw: users do not need to learn a new programming or tactic language to write

complicated translation rules or verification procedures.

The translation procedure used is symmetric and can be used for communication in the reverse

direction as well. Mathematica has no built-in notion of proof, although it does have head symbols

that express propositions. Rather than establishing an entire proof calculus for these symbols

within Mathematica, we export theorem statements to Lean, where they can be verified in an

environment designed for this purpose. The resulting proof terms are interpreted in the CAS and

can be displayed or processed as needed. Alternatively, we can skip the verification step and display

lemmas that are likely to be relevant to Mathematica’s goal. In some sense, the link is allowing

Mathematica to “borrow” Lean’s semantics, proof language, and proof library.

The source for this project, and supplementary documentation, is available at

http://www.andrew.cmu.edu/user/rlewis1/leanmm/.

In this chapter, we use Computer Modern for Lean code and TeX Gyre Cursor for Mathematica code.

58

http://www.andrew.cmu.edu/user/rlewis1/leanmm/

We begin by describing salient features of the two systems. Section 4.3 discusses the translation

of Lean expressions into semantically similar Mathematica expressions, and vice versa. Section 4.4

describes the interface for running Mathematica from Lean, and shows many examples of the link

in action. Section 4.5 explains the reverse direction. We conclude with a discussion of related and

future work.

4.2 Mathematica background

Mathematica is a popular symbolic computation system developed at Wolfram Research, imple-

menting the Wolfram Language [137] [138]. First launched in 1988, Mathematica has gone through

11 release cycles. It now exists in an ecosystem of related projects, including Wolfram Alpha, a

natural language frontend that provides easy access.

Mathematica provides comprehensive tools for rewriting and solving polynomial, trigonometric,

and other classes of equations and inequalities; solving differential equations, both symbolically and

numerically; computing derivatives and integrals of various types; manipulating matrices; perform-

ing statistical calculations, including fitting and hypothesis testing; visualizing and displaying plots

and diagrams; and reasoning with classes of special functions. Along with support for a vast range

of mathematical computations, Mathematica includes collections of data of various types and tools

for manipulating this data.

This large library of functions is one reason to choose Mathematica for our linked CAS. An-

other reason is its ubiquity: Mathematica is frequently used in undergraduate mathematics and

engineering curricula. Lean beginners who are accustomed to Mathematica do not need to learn a

new CAS language for the advanced features of this link. Mathematica is sometimes regarded by

mathematicians as a less “serious” CAS than some of its competitors, due to its relative focus on

data, visualization, and interface over mathematical precision. For our purposes, though, these are

not downsides. The design of our link means that we do not have to worry about potential sound-

ness issues in the CAS; the visualization and interface tools make the ITP-from-CAS direction of

our link easier and more interesting.

4.2.1 Mathematica syntax

The abstract syntax of the Wolfram Language is quite simple. An expression in Mathematica is

either atomic or is an application of an expression to a list of expressions. There is no privileged

notion of a binding expression, and expressions are untyped.

There are four types of atomic Mathematica expressions:

� Integers are arbitrary precision standard integers.

� Reals are floating point numbers.

59

� Strings are standard character strings. We write strings with double quotation marks, e.g.

"hello".

� Symbols are similar to strings, but serve a very different purpose in the language. We write

symbols without quotation marks, e.g. goodbye.

Users accustomed to the Mathematica frontend may find this list surprisingly short. Many data

types in Mathematica that appear atomic to the user are, in fact, compounds of these atomic types.

The rational number 2/3, for instance, is represented as an application of the symbol Rational

to the integers 2 and 3. Such applications are written using square brackets.

There is no restriction on the arity of applications. The expressions Plus, Plus[], Plus[x],

and Plus[x, y] are all well formed. It is common to see a symbol (like Plus) applied to a list

of expressions; in this situation, we refer to that symbol as the head symbol of the applications,

and the following expressions as the arguments. We generally think of this pattern as function

application, and will refer to it as such, but it is really purely structural: it is valid to write, e.g.,

2[10, 3].

Mathematica supports common notation for many functions, such as x + y + z + 2w. It

also supports postfix notation for unary application: xˆ2 - 2x + 1 // Factor is equivalent to

Factor[xˆ2 - 2x + 1]. This syntax will appear frequently in this chapter.

There is no strong distinction between defined and undefined symbols. The user is free to

introduce a new symbol and use it at will. The computational behavior of a head symbol can be

fully or partially defined via pattern matching rules, such as F[x ,y] := x+y; the underscores

indicate that x and y are patterns. Mathematica evaluates expressions by repeatedly rewriting

using these defined equalities. Performing computations in Mathematica amounts to evaluating

expressions: to factor a polynomial, we evaluate Factor[xˆ2 - 2x + 1]. Evaluation is typically

idempotent, with rare exceptions occurring when evaluation is controlled manually.

The Wolfram Language is untyped, so head symbols such as Plus and Factor can be applied

to any argument or sequence of arguments. Evaluation is often restricted to certain patterns:

Plus[2, 3] will evaluate to 5, but Plus[Factor, Plus] will not reduce. Nevertheless, both are

well formed Mathematica expressions.

4.2.2 Mathematica functions

Mathematica has a vast library of functions for various computations, mathematically or otherwise.

Here, we give some details about functions that are useful for this project.

Algebraic functions. The head symbols Plus and Times represent the normal mixed-arity

addition and multiplication operations on a commutative ring. Plus and Times are associative

and commutative, meaning that Plus[Plus[x, y], z] and Plus[x, Plus[z, y]] will both

60

evaluate to Plus[x, y, z]. The behavior of the Power symbol is similar; applying Power to

more than two arguments evaluates to an iterated binary application.

Evaluation control. The head symbol Hold does not have associated evaluation rules. In-

stead, its presence prevents the evaluation of its arguments: evaluating Hold[Plus[2, 3]] will

return the same expression. Applying ReleaseHold recursively removes applications of Hold,

so that ReleaseHold[Hold[Plus[2, 3]]] will evaluate to 5. Inactive, an operator form

of Hold, applies to head symbols. The expression Inactive[Plus][2, 3] will evaluate to it-

self, but Inactive[Plus][Plus[1, 1], 3] will evaluate to Inactive[Plus][2, 3]. Applying

Activate removes applications of Inactive from its arguments. These functions are indispens-

able when treating Mathematica expressions as pieces of syntax rather than semantic objects, as

otherwise Mathematica will eagerly evaluate all expressions.

Factor. The Factor function identifies the “variables” in an expression heuristically, by finding

the largest non-algebraic parts, and factors the expression by treating it as a polynomial in these

variables. This generality means that, if a and b are undefined symbols, Mathematica will factor

a[b]ˆ2 - 2a[b] + 1 by treating a[b] as atomic.

FullSimplify. Basic evaluation rules, such as the associativity of Plus, are built into Mathematica

by default. Others, particularly more expensive ones, can be triggered by applying FullSimplify.

This head symbol intends to produce something semantically equal to its argument, by applying a

large library of equalities and decision procedures. For instance, Cos[x]ˆ2 + Sin[x]ˆ2 is fully

evaluated, but Cos[x]ˆ2 + Sin[x]ˆ2 // FullSimplify evaluates to 1. FullSimplify can

be used to “prove” statements in trigonometry, calculus, algebra, and special function theory by

reducing these statements to True.

FindInstance. Mathematica has many heuristics and decision procedures for solving systems of

relations. FindInstance is a useful front end for these tools. Given a formula, a list of variables,

and an optional domain, FindInstance will search for an assignment over the domain that satisfies

the formula. For instance, evaluating

FindInstance[xˆ2 - 3 yˆ2 == 1 && 10 < x < 100, {x, y}]

will produce the solution {x -> Sqrt[3073], y -> -32}, and

FindInstance[xˆ2 - 3 yˆ2 == 1 && 10 < x < 100, {x, y}, Integers]

will produce {x -> 26, y -> 15}. Mathematica will attempt to detect the appropriate method

do use, but the user may also specify a method. Among others, FindInstance can attempt to solve

problems in pure logic, linear and nonlinear integer, modular, real, complex, and mixed-domain

arithmetic, and geometry.

61

4.3 The translation procedure

Our bridge can be used to import information from Mathematica into Lean, usually about some

particular Lean expression. The logical foundations and semantics of the two systems are quite

different, and we should not expect a perfect correspondence between the two. However, in many

situations, an expression in Lean has a counterpart in Mathematica with a very similar intended

meaning. We can exploit these similarities by ignoring the unsoundness of the translations in

both directions and attempting to verify, post hoc, that the resulting expression has the intended

properties.

As a running example, suppose we want to show in Lean that

x : real ` x^2 - 2x + 1 ≥ 0.

Factoring the left-hand side of the inequality makes this a one-step proof (assuming we’ve proved

that squares are nonnegative). It is nontrivial to write a reliable and efficient polynomial factoring

algorithm, but luckily, one is implemented in Mathematica. Our tool allows us to do the following:

1. Transform the Lean representation of x2 − 2x+ 1 into Mathematica syntax.

2. Interpret this into the Mathematica representation of the same polynomial.

3. Use Mathematica’s Factor function to factor the polynomial.

4. Transform this back into Lean syntax, and interpret it as a Lean polynomial.

5. Verify that the new expression is equal to the old.

6. Substitute this equality into the goal.

In Subsection 4.3.1 we describe steps 1, 2, and 4. Once we have a valid Mathematica expression,

step 3 is trivial. We discuss steps 5 and 6 in Section 4.4; since checking that a polynomial has been

factored correctly is much easier than factoring it in the first place, these are handled easily by

simplification and rewriting.

It is worth emphasizing the modularity and extensibility of this approach. Both directions of

translation are handled independently, and the translation rules can be extended or changed at

will. Translation rules may be arbitrarily complex. Results from Mathematica are recieved with

no a priori relation to the original Lean expression. (Indeed, there need not even be an original

Lean expression—one could use Mathematica as a pseudorandom number generator, for example.)

Users may choose to use alternate verification procedures, or to forgo the verification step entirely.

The same translations are used for communication in the opposite direction, as described in Section

4.5.

62

4.3.1 Translating Lean to Mathematica

The Lean expression grammar is presented in Section 2.1.1. It is exposed in Lean’s metaprogram-

ming framework through the type expr. We can define functions to manipulate Lean expressions

by recursion on this type; during execution, the virtual machine replaces terms of this type with

objects of the kernel expression datatype.

To represent the expression grammar in Mathematica, we define

mathematica.form_of_expr : expr → string

by recursion over expr. We associate a Mathematica head symbol LeanVar, LeanSort, LeanConst,

etc. to each constructor of expr. Names, levels, lists of levels, and binder information are also

represented. (Binder information, which tracks whether a variable in a declaration is marked as

implicit, explicit, or with some other properties, is very rarely relevant to the translation process.)

The functions are displayed in Figure 4.1. Macro expressions are inherently internal to Lean, and

it does not make sense to translate them to Mathematica; expressions containing macros should be

unfolded before applying the translation.

Some of the information contained in a Lean expression has little plausible use in Mathematica,

or is needlessly verbose: for example, it is hard to contrive a scenario in which the full structure of a

Lean name is used in the CAS. Nonetheless, we do not strip any information at this stage, to preserve

that an expression reflected into and immediately back from Mathematica should translate to the

original expression without having to inject any additional information. For specific performance-

critical applications, when this information is known to be unnecessary, users may wish to write

specialized representation functions that do strip it away.

In our running example, we work on the expression x2 − 2x + 1. The fully elaborated Lean

expression and its Mathematica representation are too long to print here, but they can be viewed

in the supplementary documentation. Instead, we consider the more concise example of x+ x.

If we use strings to stand in for terms of type name, natural numbers in place of universe levels,

and the string "bi" in place of the default binder_info argument, and we abbreviate

X := local_const "x" "x" "bi" (const "real" []),

the full form of x+ x is

app (app (app (app (const "add" [0]) (const "real" []))

(const "real.has_add" [])) X) X.

The corresponding Mathematica expressions are

X := LeanLocal["x", "x", "bi", LeanConst["real", {}]]

LeanApp[LeanApp[LeanApp[LeanApp[LeanConst["add", {0}],

LeanConst["real", {}]], LeanConst["real.has_add", {}]], X], X].

63

meta def form_of_name : name → string
| anonymous := "LeanNameAnonymous"
| (mk_string s nm) := "LeanNameMkString[\"" ++ s ++ "\", " ++ form_of_name nm ++ "]"
| (mk_numeral i nm) := "LeanNameMkNum[" ++ to_string i ++ ", " ++ form_of_name nm ++

"]"

meta def form_of_lvl : level → string
| zero := "LeanZeroLevel"
| (succ l) := "LeanLevelSucc[" ++ form_of_lvl l ++ "]"
| (max l1 l2) := "LeanLevelMax[" ++ form_of_lvl l1 ++ "," ++ form_of_lvl l2 ++ "]"
| (imax l1 l2) := "LeanLevelIMax[" ++ form_of_lvl l1 ++ "," ++ form_of_lvl l2 ++ "]"
| (param nm) := "LeanLevelParam[" ++ form_of_name nm ++ "]"
| (mvar nm) := "LeanLevelMeta[" ++ form_of_name nm ++ "]"

meta def form_of_lvl_list : list level → string
| [] := "LeanLevelListNil"
| (h :: t) := "LeanLevelListCons[" ++ form_of_lvl h ++ ", " ++ form_of_lvl_list t ++

"]"

meta def form_of_binder_info : binder_info → string
| binder_info.default := "BinderInfoDefault"
| implicit := "BinderInfoImplicit"
| strict_implicit := "BinderInfoStrictImplicit"
| inst_implicit := "BinderInfoInstImplicit"
| other := "BinderInfoOther"

meta def form_of_expr : expr → string
| (var i) := "LeanVar[" ++ (format.to_string (to_fmt i) options.mk)

++ "]"
| (sort lvl) := "LeanSort[" ++ form_of_lvl lvl ++ "]"
| (const nm lvls) := "LeanConst[" ++ form_of_name nm ++ ", "

++ form_of_lvl_list lvls ++ "]"
| (mvar nm nm’ tp) := "LeanMetaVar[" ++ form_of_name nm ++ ", "

++ form_of_expr tp ++ "]"
| (local_const nm ppnm bi tp) := "LeanLocal[" ++ form_of_name nm ++ ", " ++

form_of_name ppnm ++ ", " ++ form_of_binder_info bi
++ ", " ++ form_of_expr tp ++ "]"

| (app f e) := "LeanApp[" ++ form_of_expr f ++ ", " ++ form_of_expr e
++ "]"

| (lam nm bi tp bod) := "LeanLambda[" ++ form_of_name nm ++ ", "
++ form_of_binder_info bi ++ ", "
++ form_of_expr tp ++ ", " ++ form_of_expr bod ++ "]"

| (pi nm bi tp bod) := "LeanPi[" ++ form_of_name nm ++ ", "
++ form_of_binder_info bi ++ ", " ++ form_of_expr tp
++ ", " ++ form_of_expr bod ++ "]"

| (elet nm tp val bod) := form_of_expr $ expand_let $ elet nm tp val bod
| (macro mdf mlst) := "LeanMacro"

Figure 4.1: Representing Lean expression syntax in Mathematica.

64

Since the head symbols LeanApp, LeanConst, etc. are uninterpreted in Mathematica, this

representation is not yet useful. We wish to exploit the fact that many Lean terms have semantically

similar counterparts in Mathematica. For instance, the Lean constants add and mul behave similarly

to the Mathematica head symbols Plus and Times; both systems have notions of application,

although they handle the arity of applications differently; and Mathematica’s concept of a “pure

function” is analogous to lambda abstraction in Lean.

We thus define a translation function LeanForm in Mathematica that attempts to interpret the

syntactic representation. Mathematica functions are typically defined using pattern matching. The

LeanForm function, then, will look for familiar patterns (e.g. add A h x y, in Mathematica syntax)

and rewrite them in translated form (e.g. Plus[LeanForm[x], LeanForm[y]]). Users can easily

extend this translation function by asserting additional equations; a default collection of equations

is loaded automatically.

For our factorization example, we want to convert Lean arithmetic to Mathematica arithmetic.

Among other similar rules, we will need the following:

LeanForm[LeanApp[LeanApp[LeanApp[LeanApp[LeanConst["add",_],

_], _], x_], y_]] := Inactive[Plus][LeanForm[x],LeanForm[y]]

Note that this pattern ignores the type argument and type class instance in the Lean term.

These arguments are irrelevant to Mathematica and can be inferred again by Lean in the back-

translation. We block Mathematica’s computation with the Inactive head symbol; otherwise,

Mathematica would eagerly simplify the translated expression, which can be undesirable. The

function Activate strips these annotations, allowing reduction.

Numerals in Lean are type-parametric and are represented using the constants zero, one, bit0,

and bit1. To illustrate, the type signature of the latter is

bit1 {u} : Π {A : Type u}, [has_add A] → [has_one A] → A → A

and the numeral 6 is represented as bit0 (bit1 one); the type of this numeral is expected to be

inferable from context. We can use rules similar to the above to transform Lean numerals into

Mathematica integers:

LeanForm[LeanApp[LeanApp[LeanApp[LeanApp[LeanConst["bit1", _],

_], _], _], t_]] := 2*LeanForm[t]+1.

Applying LeanForm will not necessarily remove all occurrences of the head symbols LeanApp,

LeanConst, etc. This is not a problem: we only need to translate the “concepts” with equiv-

alents in Mathematica. Unconverted subterms—for instance X, which contains applications of

LeanLocal and LeanConst—will be treated as uninterpreted constants by Mathematica, and the

back-translation described below will return them to their original Lean form.

In our running example (keeping the abbreviation X), applying the LeanForm and Activate

functions produces the expression Plus[1, Times[-2, X], Power[X, 2]]. Applying Factor

produces Power[Plus[-1, X], 2].

65

inductive mmexpr
| sym : string → mmexpr
| mstr : string → mmexpr
| mint : int → mmexpr
| app : mmexpr → list mmexpr → mmexpr
| mreal : float → mmexpr

Figure 4.2: Mathematica expression kinds

4.3.2 Translating Mathematica to Lean

Mathematica expressions are composed of various atomic number types, strings, symbols, and

applications, where one expression is applied to a list of expressions, as described in Section 4.2.1.

We represent this structure in Lean with the data type mmexpr (Figure 4.2).

The result of a Mathematica computation is reflected into Lean as a term of type mmexpr. This

is analogous to the original export of our Lean expression into Mathematica. It remains to interpret

it as something meaningful.

A pre-expression in Lean is a term where universe levels and implicit arguments are omitted. It is

not expected to type-check, but one can try to convert it into a type-correct term via elaboration.

For instance, the pre-expression ‘‘(add nat.one nat.one) elaborates to add.0 nat nat.has_add

nat.one nat.one. The notation ‘‘(. . .) instructs Lean’s parser to interpret the quoted text as a

term of type pexpr. Pre-expressions share the same structure as expressions.

Mathematica expressions are analogous to pre-expressions: they may be type-ambiguous and

contain less information than their Lean counterparts. Thus we normally expect to interpret terms

of type mmexpr as pre-expressions, and to use the Lean elaborator to turn them into full expressions.

However, in rare cases an mmexpr may already correspond to a full expression: the unmodified

representation of a Lean expression, sent back into Lean, should interpret as the original expression.

We provide two extensible translation functions, expr_of_mmexpr and pexpr_of_mmexpr, to handle

both of these cases. Since the implementations are similar, we focus on the latter here.

The function

pexpr_of_mmexpr : trans_env → mmexpr → tactic pexpr

takes a translation environment and an mmexpr, and, using the attribute manager, attempts to

return a pre-expression. (Since the tactic monad includes failure, the process may also fail if

no interpretation is found.) Interpreting strings as pre-expressions, or, indeed, as expressions, is

straightforward. Since Mathematica integers may be used to represent numerals in many different

Lean types, expressions built with the mint constructor are interpreted as untyped numeral pre-

expressions.

The sym and app cases are more complex: this part of the translation procedure is extensible

by the user. We define three classes of translation rules:

66

� A sym-to-pexpr rule, of type string × pexpr, identifies a particular Mathematica symbol

with a particular pre-expression. For example, the rule ("Real", ‘‘(real)) instructs the

translation to replace the Mathematica symbol Real with the Lean pre-expression const

"real".

� A keyed app-to-pexpr rule is of type string × (trans_env → list mmexpr → tactic pexpr).

When the procedure encounters an mmexpr of the form app (sym head) args—that is, the

Mathematica head symbol head applied to a list of arguments args—it will try to apply

all rules that are keyed to the string head. The rules for interpreting arithmetic expressions

follow this pattern: a rule keyed to the string "Plus" will interpret Plus[t1, ..., tn] by

folding applications of add over the translations of t1 through tn.

� An unkeyed app-to-pexpr rule is of type trans_env → mmexpr → list mmexpr → tactic

pexpr. If the head of the application is a compound expression, or if no keyed rules execute

successfully, the translation procedure will try unkeyed rules. One such rule attempts to

translate the head symbol and arguments independently, and fold application over these

translations. Another removes instances of the symbol Hold, which blocks evaluation of

sequences of expressions. The Lean translation of Plus[Hold[x, y, z]] should reduce to

the translation of Plus[x, y, z], but since Hold[x, y, z] translates to a sequence of

expressions, this does not match either of the previous rule types.

Rules of these three types can be declared by the user and tagged with the corresponding

attribute. The translation procedure uses Lean’s caching attribute manager to collect relevant

rules at runtime. The mechanism for extending the translation procedure is thus integrated into

theory development; translation rules are first-class members of mathematical libraries, and any

project importing a library will automatically have access to its translation rules.

Returning to our example, we have translated the expression x^2 - 2x + 1 and factored the

result, to produce Power[Plus[-1, X], 2]. This is reflected as the Lean mmexpr

app (sym "Power") [app (sym "Plus") [mint -1, X], mint 2],

where again

X := app (sym "LeanLocal") [str "17.27", str "x", str "bi",

app (sym "LeanConst") [str "real", []]].

Applying pexpr_of_mmexpr produces the pre-expression pow_nat (add (neg one) x) (bit0 one),

which elaborates to the expression

pow_nat real real_has_pow_nat (add real real_has_add (neg real real_has_neg (one real

real_has_one) x) (bit0 nat nat_has_add one nat nat_has_one) : real.

Formatted with standard notation and implicit arguments hidden, we have constructed the

term x : real ` (x + -1)^2 : real as desired.

67

4.3.3 Translating binding expressions

Lean’s expression structure uses anonymous bound variables to implement its pi, lam, and elet

binder constructs. Mathematica, in contrast, has no privileged notion of a binder. The Lean

pre-expression λ x, x + x is analogous to the Mathematica expression Function[x, x+x], but

the underlying representation of the latter is an application of the Function head symbol to two

arguments, the symbol x and the application expression Plus[x, x]. Structurally it is no different

from List[x, x+x].

To properly interpret binder expressions, both translation routines need a notion of an environ-

ment. We extend the Mathematica function LeanForm with another argument, a list of symbols

env tracking binder depth. When the translation routine encounters a binding expression, it cre-

ates a new symbol, prepends it to the env, and translates the binder body under this extended

environment; a bound variable LeanVar[i] is interpreted as the ith entry in env.

In the opposite translation direction, a translation environment is a map from strings (names of

symbols) to expressions, that is, trans_env := rb_map string expr. When translating a Mathemat-

ica expression such as Function[x, x+x], the procedure extends the environment by mapping x

to a placeholder variable, translates the body under this extended environment, and then abstracts

over the placeholder. Unlike in Lean, where pi, lam, and elet expressions are the only expressions

that encode binders, there are many Mathematica head symbols (e.g. Function, Integrate, Sum)

that must be translated this way.

4.4 Querying Mathematica from Lean

4.4.1 Connection interface

Because of the cost of launching a new Mathematica kernel, it is undesirable to do so every time

Mathematica is queried from Lean. Instead, we implement a simple server in Mathematica, which

receives requests containing expressions and returns the results of evaluating these expressions.

Lean communicates with this server by calling a Python client script. This short script is the only

part of the link that is implemented neither in Lean nor in Mathematica.

This architecture ensures that a single Mathematica kernel will be used for as long as possible,

across multiple tactic executions and possibly even multiple Lean projects. To preserve an illusion

of “statelessness,” each Mathematica evaluation occurs in a new context which is immediately

cleared. While this avoids accidental leaks of information, it is not a watertight seal, and users who

consciously wish to preserve information between sessions can do so.

The translation procedure is exposed in Lean using the tactic framework via the declaration

meta def mathematica.execute : string → tactic mmexpr.

68

This tactic evaluates the input string in Mathematica, and returns a term with type mmexpr rep-

resenting the result of the computation. From this basic tactic, it is easy to define variants such

as

run_command_using : (string → string) → expr → string → tactic pexpr.

The first argument is a Mathematica command, including a placeholder bound variable, which is

replaced by the Mathematica representation of the expr argument. The string argument is the

path to a file which contains auxiliary definitions, usable in the command. This variant will apply

the back-translation pexpr_of_mmexpr to produce a pexpr.

Another variant, execute_global : string → tactic mmexpr, evaluates its input in Mathemat-

ica’s global context.

Going back to our running example from Section 4.3, assuming e is the unfactored expression,

we would call

run_command_on (λ s, s ++ " // LeanConvert // Activate // Factor") e

to produce a pre-expression representing the factored form of e. (Recall that the Mathematica

syntax x // f reduces to f[x].) In fact, we can define

meta def factor (e : expr) : tactic pexpr :=

run_command_on (λ s, s ++ " // LeanConvert // Activate // Factor") e,

or a variant that elaborates the result into an expr with the same type as e.

4.4.2 Verification of results

So far we have described how to embed a Lean expression in Mathematica, manipulate it, and

import the result back into Lean. At this point, the imported result is simply a new expression: no

connection has been established between the original and the result. In our factoring example, we

expect the two expressions to be equal; if we were computing an antiderivative, we would expect

the derivative of the result to be equal to the original. More complex return types can lead to more

complex relations. For example, an algorithm using Mathematica’s linear arithmetic tools to verify

the unsatisfiability of a system of equations may return a certificate that must be converted into a

proof of falsity.

Users may simply decide to trust the translation and CAS computation, and assert without

proof that the result has an expected property. An example using this approach is given at the

end of this section. Of course, the level of trust needed to do this is unacceptably high for many

situations. We are often interested in performing certifiable calculations in Mathematica, and using

this certificate to construct proofs in Lean.

It would be hopeless to expect one tool to verify all results. Rather, for each common computa-

tion, we will have a tactic script to (attempt to) prove the appropriate relation between input and

output. “Uncommon” or one-off computations can be verified in-line by the user. This method of

69

separating search (or computation) and verification is discussed at length by Harrison and Théry

[79] and by many others. It turns out that a surprising number of algorithms are able to generate

certificates to this end.

The tactics used in this section, along with more examples, are available in the supplementary

information online. These examples are not meant to be exhaustive, but rather to illustrate the

ease with which Mathematica can be accessed; with the possible exception of the linear arithmetic

tactic, each is fairly simple to implement. The Lean library is still under development, and some

types and functions used here are in fact axiomatized constants, but the implementation of these

constants is not relevant to the behavior of our link.

Factoring. In our running example, we have used Mathematica to construct the Lean expression

(x + -1)^2 : real. We expect to find a proof that x^2 - 2*x + 1 = (x + -1)^2. This type of proof

is easy to automate with Lean’s simplifier:

meta def eq_by_simp (l r : expr) : tactic expr :=

do gl ← mk_app ‘eq [l, r],

mk_inhabitant_using gl simp <|> fail "unable to simplify"

Using this machinery, we can easily write a tactic factor that, given a polynomial expression,

factors it and adds a constant to the local context asserting equality. (The theorem sq_nonneg

proves that the square of a real number is nonnegative.)

example (x : R) : x^2-2*x+1 ≥ 0 :=

by factor x^2-2*x+1 using q; rewrite q; apply sq_nonneg

We provide more examples of this tactic in action in the supplementary material, including one

in which x^10-y^10 factors into

(x + -1 * y) * (x + y) * (x^4 + -1 * x^3 * y + x^2 * y^2 + -1 * x * y^3 + y^4) * (x^4 +

x^3 * y + x^2 * y^2 + x * y^3 + y^4).

In general, factoring problems are easily handled by this type of approach, since the results

serve as their own certificates. Factoring integers is a simple example of this (to verify, simply

multiply out the prime factors); dually, primality certificates can be checked as in Pratt [120].

Factoring matrices is slightly more complex. Mathematica implements a number of common

matrix decomposition methods, whose computation can be verified in Lean by re-multiplying the

factors. We can use these tools to, e.g., define a tactic lu_decomp which computes and verifies the

LU decomposition of a matrix.

example : ∃ l u, is_lower_triangular l ∧ is_upper_triangular u

∧ l ** u = [[1, 2, 3], [1, 4, 9], [1, 8, 27]] :=

by lu_decomp

70

Solving polynomials. Mathematica implements numerous decision procedures and heuristics

for solving systems of equations. Many of these are bundled into its Solve function. Over some

domains, it is possible to verify solutions in Lean using the simplifier, arithmetic normalizer, or

other automation. Lean’s norm_num tactic, which reduces arithmetic comparisons between numerals,

is well suited to verifying solutions to systems of polynomial equations. The tactic solve_polys

uses Solve and norm_num to prove theorems such as

example : ∃ x y : R, 99/20*y^2 - x^2*y + x*y = 0

∧ 2*y^3 - 2*x^2*y^2 - 2*x^3 + 6381/4 = 0 :=

by solve_polys.

Users familiar with Mathematica may recall that Solve outputs a list of lists of applications

of the Rule symbol, each mapping a variable to a value. Each list of rules represents one solution.

A Rule has no general correspondent in Lean, and it would involve some contortion to translate

this output and extract a single solution in the proof assistant. However, it is easy to perform

this transformation within Mathematica, and processing the result of Solve before transporting it

back to Lean makes the procedure much simpler to implement. This type of consideration appears

often: some transformations are more easily achieved in one system or the other.

Linear arithmetic. Many proof assistants provide tools for automatically proving linear arith-

metic goals, or equivalently for proving the unsatisfiability of a set of linear hypotheses. There

are various techniques for doing this, including building proof terms incrementally using Fourier–

Motzkin elimination [136]. Alternatively, linear programming can be used to generate certificates

of unsatisfiability. In this setting, a certificate for the unsatisfiability of {pi(x̄) ≤ 0 : 0 ≤ i ≤ n} is

a list of rational coefficients {ci : 0 ≤ i ≤ n} such that
∑

0≤i≤n ci · pi = q > 0 for some constant

polynomial q; equivalently, this list serves as a witness for Farkas’ lemma [122]. A slight gener-

alization of Farkas’ lemma that allows equalities and strict inequalities is known as the Motzkin

transposition theorem.

Given a set of hypotheses in Lean that express linear inequalities, we can prove their unsatisfi-

ability by generating a list of such coefficients (in Mathematica), automatically proving (in Lean)

that these coefficients have the necessary properties, and applying a verified proof of the Motzkin

transposition theorem.

While passing a list of inequalities to Mathematica may seem different from passing an expres-

sion such as x^2 - 2*x + 1, we are able to use the same translation procedure. The expression

x + 1 ≤ 2*y has type Prop, which is to say it is a type living in the lowest universe level Sort 0. A

term of this type is a proof of the claim x + 1 ≤ 2*y. In our factorization example, we translated

a term of type real, whereas here we translate the type of a hypothesis. But in dependent type

theory, types are terms themselves, and we are able to represent any term in Mathematica. In Lean

we define

le {u} : Π {A : Type u} [has_le A], A → A → Prop.

71

We reduce this in Mathematica using the rule

LeanForm[LeanApp[LeanApp[LeanApp[LeanApp[LeanConst["le", _],

_], _], x_], y_]] :=

Inactive[LessEqual][x, y]

and define similar rules for <, ≥, >, and =.

Once the hypotheses have been translated to Mathematica, we must set up and solve the

appropriate linear program. (Note that we are not trying to solve the hypotheses as given, but

rather to find a certificate of their unsatisfiability.) A program provided in the supplementary

materials to this paper shows how to use the Mathematica function FindInstance to produce the

desired list of rational coefficients. This list is translated back to Lean, where it can be elaborated

with type list rat. Once this list is confirmed to meet the requirements of Farkas’ lemma, the

lemma is applied to produce a proof of false.

example (x y : R) (h1 : 2*x + 4*y ≤ 4) (h2 : -x ≤ 1) (h3 : -y ≤ -5) : false :=

by not_exists_of_linear_hyps h1 h2 h3

Sanity checking. Even non-certifiable computations can sometimes be useful for proof assistant

users. Mathematica’s FindInstance function, for example, can sometimes be used to check the

plausibility of a goal. We define a tactic sanity_check, which fails if Mathematica is able to find a

variable assignment that satisfies the local hypotheses and the negation of the current goal. This

tactic is similar to a very lightweight version of Isabelle’s Nitpick [28]. The first example below fails

when Mathematica decides that the goal does not follow; the second succeeds.

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0) : x = 0 :=

by sanity_check; admit

example (x : R) (h1 : sin x = 0) (h2 : cos x > 0)

(h3 : -pi < x ∧ x < pi) : x = 0 :=

by sanity_check; admit

Axiomatized computations. Since it is possible to declare axioms from within the Lean tactic

framework, we can axiomatize the results of Mathematica computations dynamically. This allows us

to access a wealth of information within Mathematica, at least when we are not concerned about

complete verification. One interesting application is to query Mathematica for special function

identities. While these identities may be difficult to formally prove, trusting Mathematica allows

us to find some middle ground. The prove_by_full_simp tactic uses Mathematica’s FullSimplify

function to reduce the Bessel function expression on the left, and after checking that it is equal to

the one on the right, adds this equality as an axiom in Lean:

72

example : ∀ x, x*BesselJ 2 x + x*BesselJ 0 x = 2*BesselJ 1 x :=

by prove_by_full_simp

We can also define a tactic that uses Mathematica to obtain numerical approximations of

constants, and axiomatizes bounds on their accuracy:

approx (100 * BesselJ 2 (13 / 25)) (0.001 : R)

declares an axiom stating that

75977 / 23000 < 100 * BesselJ 2 (13 / 25) ∧ BesselJ 2 (13 / 25) < 76023 / 23000.

4.5 Querying Lean from Mathematica

The scope of use of computer algebra in mathematics is largely limited to exploration and discovery.

Finished proofs often avoid using these tools to justify claims, or even fail to mention them entirely.

Outside of a few very specific domains, systems like Mathematica have no internal notion of proof or

correctness. There are many documented instances of bugs and unexpected behavior in computer

algebra systems [17], making concerns about this black-box nature more than just theoretical. Even

the semantics for certain computations can be vague; reducing (xˆ2 - 1)/(x - 1) to x + 1

is correct when considered as polynomial division, but computer algebra systems use this same

notation to refer to a function of x.

Integrating a proof system into a mature CAS such as Mathematica is an enormous engineering

task. A more realistic approach is to use a translation procedure to “borrow” a proof language and

semantics from a proof assistant, on translatable domains. A proposition relating the input and

output of a CAS evaluation can be exported to and proved in the proof assistant, which can return

a proof term. This is morally similar to the ad hoc verification described in the previous section;

while no general guarantee is claimed, individual computations can be checked.

4.5.1 Connection interface

We establish a connection to Lean from Mathematica using Mathematica’s external command

interface RunProcess. It is not necessary to replicate the server–client architecture of Section

4.4.1, since the cost of launching Lean is low. Lean already implements a server for communication

with its editors, and using this interface would be particularly useful for applications requiring a

persistent, changing environment. However, this does not apply to the applications described here,

so we have opted for the simpler approach.

We implement a function ProveUsingLeanTactic[e , tac String] which takes an arbitrary

Mathematica expression e. It exports this expression to Lean and interprets it as a proposition. If

successful, it attempts to prove the proposition using the tactic script tac, and returns the resulting

73

proof term to Mathematica. While the tactic script may be arbitrarily complex, it will often be

just a proof by simp, by eblast, or by other general-purpose automation.

A similar function, ProveInteractively, opens an interactive Lean session with the trans-

lation of e as the goal. When the session is terminated, the proof is checked and returned to

Mathematica.

More generally, the function RunLeanCommand[e , cmd String] will evaluate a given Lean

command on an expression e and return the result if successful. This is useful when the desired

output is not a proof term.

4.5.2 Applications

Interpreting propositional proofs. Mathematica’s built-in TautologyQ and FullSimplify

functions serve as complete SAT solvers. However, both are black boxes: they produce no certificate

or justification. Indeed, the system has no established proof language for propositional logic. On

the other hand, Lean comes equipped with a number of proof-producing decision procedures for this

domain. (For this example, we use intuit, as it produces proofs containing few extra constants.)

We define a minimal propositional proof calculus in Mathematica that mirrors the calculus in

Lean. That is, we introduce head symbols AndIntro, OrIntroLeft, FalseElim, etc., and add

LeanForm translation rules that map Lean’s and.intro, or.inl, false.elim, etc. to their corre-

sponding symbols. We can then state a propositional theorem in Mathematica, prove it in Lean,

and interpret the resulting proof term in our calculus. While it would certainly be possible to

implement the Lean proof search procedure in Mathematica directly, this approach ensures that

the proof is correct, as it has been checked by Lean.

The resulting Mathematica proof object can be computed with in any number of ways. We

implement a function which displays the proof as a natural deduction diagram, as in Figure 4.3.

There is no fundamental reason why this approach cannot be extended to richer logics, such as

first-order logic; the difficulties lie in representing a calculus for these logics in Mathematica, and

generating proofs in Lean that can be translated to such a calculus. (Many proof tools in Lean use

higher-order constructs that may be difficult to directly translate.)

Displaying significant proof steps. Interpreting arbitrary proofs in Mathematica may be too

much to ask for, as the target language and translation rules may become arbitrarily complicated.

An easier task is to interpret lemmas or relevant steps used to produce a proof. Lean’s simplifier,

heuristic quantifier instantiation procedure, and other general-purpose proof tactics search for lem-

mas in the Lean library to solve a goal. It is possible to inspect the proof terms generated by these

tactics and extract theory lemmas, or in some cases, to implement versions of these tactics that

produce a list of lemmas used. The types of the instances of these lemmas appearing in a proof term

can be interpreted in Mathematica and displayed. Finding all and only the “interesting” lemmas

74

Figure 4.3: Natural deduction diagrams generated from Lean proof terms

75

is a difficult and poorly specified problem, but it is reasonable to implement a first-pass heuristic.

As an example, we do so in the context of set normalization. Mathematica has no built-in

handling for arbitrary sets, but proofs of propositions such as A ∩ (B ∪ Ā) = A ∩ B are easily

found with Lean’s simplifier. Noting that the relevant lemmas used by simp state that A ∩ (B ∪
-A) = (A ∩ B) ∪ (A ∩ -A), A ∩ -A = ∅, and (A ∩ B) ∪ ∅ = A ∩ B, we can return these lemmas

to Mathematica and display them as a “proof sketch.” Note that there is no need to add transla-

tion rules for these lemmas themselves; alignments between the constants for union, intersection,

complement, and equality are enough. This limits the need for a long list of translations and makes

the procedure relatively robust to the introduction of new simplifier rules.

A similar application involves the use of a relevance filtering algorithm. Given a target expres-

sion, such an algorithm will return a list of declarations in the environment that, heuristically, may

be useful to prove the target. Both symbolic and probabilistic relevance filters have been imple-

mented in other systems, and are used for lemma selection for tools such as Isabelle’s Sledgehammer

[31]. We have implemented a rudimentary relevance filter in Lean. Using this tool, one can state

a conjecture in Mathematica and receive a list of facts that may be of use to prove it, without

depending on automation in Lean to actually find a proof.

A soft typing system for Mathematica. The Wolfram Language is untyped, and its notion

of a well formed expression is very permissive. Unexpected evaluation, and the lack of expected

evaluation, due to “ill-typed” expressions are common issues for Mathematica users, and can be

difficult to diagnose. There is interest and preliminary work in establishing a soft typing system on

some subset of Mathematica functions, particularly the mathematically oriented functions. Such

a system would give a better notion of meaningful Mathematica expressions; by exploiting the

Curry–Howard correspondence, a sufficiently strong type system could also provide an internal

proof language.

In order to be usable in practice, such a type system requires algorithms for type checking and

elaboration. If we construct a type system in Mathematica that is compatible with Lean’s, we can

avoid reimplementing these components by using those in the ITP. Indeed, a prototype presented at

the 2016 Wolfram Technology Conference [43] implements a version of the calculus of constructions

in Mathematica, along with a rudimentary type checker. We establish translation rules between

this implementation and Lean, which allow us to elaborate Mathematica “pre-expressions” in the

proof assistant and type-check the resulting terms in either system. The soft typing system is still

at an early stage, and will certainly change in the future, but by maintaining this connection, we

will reduce the number of auxiliary tools needed to make the type system useful.

76

4.6 Concluding thoughts

4.6.1 Related work

The following discussion is not meant to be comprehensive, but rather to indicate the many ways

in which one can approach connecting ITP and computer algebra.

Harrison and Théry [79] describe a “skeptical” link between HOL and Maple that follows a

similar approach to our bridge. Computation is done in a standard, standalone version of the CAS,

and sent to the proof assistant for certification. The running examples used are factorization of

polynomials and antiderivation. The discussion is accompanied by an illuminating comparison of

proof search to proof checking, and the relation to the class NP. Delahaye and Mayero [53] provide

a similar link between Coq and Maple, specialized to proving field identities. Both projects tackle

only the scenario in which the proof assistant drives the CAS.

Ballarin and Paulson [19] provide a connection between Isabelle and the computer algebra

library ΣIT [34] that is more trusting than the previous approach. They distinguish between sound

and unsound algorithms in computer algebra: roughly, a sound algorithm is one whose correctness

is provable, while an unsound algorithm may make unreasonable assumptions about the input

data. Their link accepts sound algorithms in the CAS as oracles. A similarly trustful link between

Isabelle and Maple, by Ballarin, Homann, and Calmet [18], allows the Isabelle user to introduce

equalities derived in the CAS as rewrite rules. A third example by Seddiki, Dunchev, Khan-Afshar,

and Tahar [123] connects HOL Light to Mathematica via OpenMath, introducing results from the

CAS as HOL axioms.

A related, more skeptical, approach is to formally verify CAS algorithms and incorporate them

into a proof assistant via reflection. This approach is taken by Dénès, Mörtberg, and Siles [54],

whose CoqEAL library implements a number of algorithms in Coq.

Kerber, Kohlhase, and Sorge [92] describe how computer algebra can be used in proof assistants

for the purpose of proof planning. They implement a minimal CAS, which is able to produce high-

level sketch information. This sketch can be processed into a proof plan, which can be further

expanded into a detailed proof.

Alternatively, one can build a CAS inside a proof assistant without reflection, such that proof

terms are carried through the computation. Kaliszyk and Wiedijk [90] implement such a system in

HOL Light, exhibiting techniques for simplification, numeric approximation, and antiderivation.

Going in the opposite direction, CAS users may want to access ATP or ITP systems. One

example of a link in this direction is Adams et al. [4], who use PVS to verify side conditions

generated in computations in Maple; Gottliebsen, Kelsey, and Martin [68] make use of similar ideas.

Systems such as Analytica [22] and Theorema [35] provide ATP- or ITP-style behavior from within

Mathematica. Axiom [47] and its related projects provide a type system for computer algebra,

which is claimed to be “almost” strong enough to make use of the Curry–Howard correspondence.

77

4.6.2 Future work

There is much room for an improved interface under the current ITP–CAS relationship. We imag-

ine a link integrated with Lean’s supported editors, where the user effectively has access to the

Mathematica read–evaluate–print loop augmented by the current Lean environment. The REPL

is a standard way of interacting with computer algebra systems, and contributes to their utility in

exploration and discovery. Allowing this kind of interaction within Lean would greatly advance the

goals of this project.

The server interface described in Section 4.4.1 only supports sequential evaluation of Mathemat-

ica commands. Both systems support parallel computation, and integrating the two could increase

the utility of this link for large projects. Similarly, the physical connection between Mathematica

and Lean can be strengthened by communicating with a Lean server. This would avoid the (small)

cost of launching many instances of Lean, and would allow the possibility of maintaining state.

With the exception of the server running in Mathematica, the components of this link are

generally adaptable to other computer algebra systems. More broadly, we see this project as part

of a general trend. The various computer-based tools used in mathematical research, by and large,

are independent of each other. It requires quite a lot of copying, pasting, and translating to (for

example) compute an expression in Magma, verify its side conditions in Z3, visualize results in

Mathematica, and export relevant formulas to LaTeX. Unified frameworks have been proposed

and implemented [121], but are not widely used. Because they provide a strict logical foundation,

precise semantics, and possibility of verification, proof assistants are strong candidates to center

translation networks between systems.

78

Chapter 5

Conclusion

This dissertation has presented two tools that aim to support the formalization of mathematics.

There is still a long way to go before the average mathematician is willing to pick up a proof assistant

and start formalizing, but very slowly, the day is getting closer. The difficulties of formalization

present themselves differently at various stages of proof, and for wider adoption, it is necessary to

address all of these stages.

Simple proofs, the kind that mathematicians barely see as mathematical problems, are perhaps

the most visible barrier. Outside of a few specific undergraduate lectures, nobody recognizes a

difference between the rational number 3 and the real number 3, or between a vector of length

n + 1 and one of length 1 + n; these distinctions matter to a proof assistant, and sometimes

create issues that are frustrating for beginners to diagnose. Similarly, converting between Σn
i=0f(i)

and Σn+1
i=1 f(i − 1), or moving between representations of the rational numbers, can take more

effort than intuition might suggest. The intricacies of dependent types can lead newcomers down

paths of hopeless confusion. Many of these problems can be addressed with library design and

straightforward automation, such as Lean’s simplifier, and in some sense they appear more dire

than they really are. Nevertheless, they look frightening enough to quickly scare away mathematical

users. A proof assistant that is able to handle these situations truly transparently will be much

more palatable.

Mid-level proofs, the type of problem attacked by the tools in this dissertation, are another chal-

lenge. There are many kinds of mathematical processes—solving inequalities, computing derivatives

and integrals, rewriting combinatorial expressions—that fall between “trivial” and “hard.” It is

perhaps this level of difficulty at which proof assistants have the most to offer. Lean’s metapro-

gramming framework allows simple proof methods to be integrated into its libraries, so that tools

for approaching these problems are accessible and extensible. A proof step summarized in a paper

as “integrating by parts” or “by induction and arithmetic” could be formalized in as many words,

with the right tactics available. It is a substantial task to develop these tactics, and an interest-

ing line of research to determine what sorts of processes will be most helpful for which fields of

79

mathematics. We hope that the contributions of this dissertation make some movement in this

direction.

Perhaps the biggest difficulty in formalizing high-level proofs, proofs of the sort that appear in

research mathematics, is in library development. In recent large-scale formalization efforts, much

of the work involved has been in forming background theories that are robust enough to build up

to the desired result. Of course, designing such a library requires one to address the issues above,

and for mathematicians who wish to start using a proof assistant in their work, the lack of libraries

is a major deterrent. In addition, high-level automated proof search is generally quite weak; while

hammer tools try to automate lemma search and logical manipulations, they do not help much

with the creative proof steps that are the bread and butter of human mathematics.

Progress is being made at all of these levels, and perhaps one day, it will reach a critical point.

However, it was not just development in usability that convinced academics to write papers in

LaTeX; it was the incredible benefit that the system provided over all alternatives. Alongside

improvements in the areas described here, emphasizing the upsides of formalized proofs is a path

toward wider adoption. Whether for educational purposes [16], for simplifying the refereeing process

[72], or for avoiding (sometimes catastrophic) mistakes in reasoning [133], if mathematicians see

sufficient value in the use of proof assistants, they will learn to formalize.

80

82

Bibliography

[1] Automath archive. http://www.win.tue.nl/automath/.

[2] The Lean Theorem Prover (website). https://leanprover.github.io/.

[3] The QED manifesto. In Automated Deduction - CADE-12, 12th International Conference on

Automated Deduction, Nancy, France, June 26 - July 1, 1994, Proceedings, pages 238–251,

1994.

[4] A. Adams, M. Dunstan, H. Gottliebsen, T. Kelsey, U. Martin, and S. Owre. Computer

algebra meets automated theorem proving: Integrating Maple and PVS. In Proceedings of

the 14th International Conference on Theorem Proving in Higher Order Logics, TPHOLs ’01,

pages 27–42, London, UK, UK, 2001. Springer-Verlag.

[5] B. Akbarpour and L. C. Paulson. MetiTarski: An Automatic Prover for the Elementary

Functions. In AISC/MKM/Calculemus, pages 217–231, 2008.

[6] K. Appel, W. Haken, et al. Every planar map is four colorable. part i: Discharging. Illinois

Journal of Mathematics, 21(3):429–490, 1977.

[7] A. Asperti, W. Ricciotti, C. S. Coen, and E. Tassi. The Matita interactive theorem prover.

In CADE, volume 6803, pages 64–69. Springer, 2011.

[8] J. Avigad. Mathematical method and proof. Synthese, 153(1):105–159, 2006.

[9] J. Avigad, L. de Moura, and S. Kong. Theorem proving in Lean.

https://leanprover.github.io/theorem proving in lean, 2016.

[10] J. Avigad, K. Donnelly, D. Gray, and P. Raff. A formally verified proof of the prime number

theorem. ACM Trans. Comput. Logic, 9(1):2, 2007.

[11] J. Avigad, G. Ebner, and S. Ullrich. The Lean reference manual.

https://leanprover.github.io/reference/, 2017.

[12] J. Avigad and H. Friedman. Combining decision procedures for the reals. Log. Methods

Comput. Sci., 2(4):4:4, 42, 2006.

83

http://www.win.tue.nl/automath/
https://leanprover.github.io/

[13] J. Avigad, J. Hölzl, and L. Serafin. A formally verified proof of the central limit theorem.

CoRR, abs/1405.7012, 2014.

[14] J. Avigad, R. Y. Lewis, and C. Roux. A heuristic prover for real inequalities. In G. Klein and

R. Gamboa, editors, Interactive Theorem Proving, volume 8558 of Lecture Notes in Computer

Science, pages 61–76, 2014.

[15] J. Avigad, R. Y. Lewis, and C. Roux. A heuristic prover for real inequalities. Journal of

Automated Reasoning, 2016.

[16] J. Avigad, R. Y. Lewis, and F. van Doorn. Logic and proof. http://avigad.github.io/logic -

and proof/, 2017.

[17] D. H. Bailey, J. M. Borwein, V. Kapoor, and E. W. Weisstein. Ten problems in experimental

mathematics. American Mathematical Monthly, 113(6):481–509, 2006.

[18] C. Ballarin, K. Homann, and J. Calmet. Theorems and algorithms: An interface between

Isabelle and Maple. In Proceedings of the 1995 International Symposium on Symbolic and

Algebraic Computation, ISSAC ’95, pages 150–157, New York, NY, USA, 1995. ACM.

[19] C. Ballarin and L. C. Paulson. A pragmatic approach to extending provers by computer

algebra. Fund. Inform., 39(1-2):1–20, 1999. Symbolic computation and related topics in

artificial intelligence (Plattsburg, NY, 1998).

[20] D. Barton. A scheme for manipulative algebra on a computer. The Computer Journal,

9(4):340–344, 1967.

[21] S. Basu, R. Pollack, and M. Roy. Algorithms in real algebraic geometry, volume 10 of Algo-

rithms and Computation in Mathematics. Springer-Verlag, Berlin, 2003.

[22] A. Bauer, E. Clarke, and X. Zhao. Analytica – an experiment in combining theorem proving

and symbolic computation. Journ. Autom. Reas., 21(3):295–325, 1998.

[23] M. Ben-Or, D. Kozen, and J. Reif. The complexity of elementary algebra and geometry. In

Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages 457–464.

ACM, 1984.

[24] A. Bentkamp, J. C. Blanchette, and D. Klakow. A formal proof of the expressiveness of deep

learning. In International Conference on Interactive Theorem Proving, pages 46–64. Springer,

2017.

[25] Y. Bertot and P. Castéran. Interactive theorem proving and program development: Coq’Art:

The calculus of inductive constructions. Springer-Verlag, Berlin, 2004.

84

[26] P. Billingsley. Probability and measure. Wiley Series in Probability and Mathematical Statis-

tics. John Wiley & Sons Inc., New York, third edition, 1995. A Wiley-Interscience Publication.

[27] J. Blanchette, S. Böhme, and L. Paulson. Extending Sledgehammer with SMT solvers. Au-

tomated Deduction–CADE-23, pages 116–130, 2011.

[28] J. Blanchette and T. Nipkow. Nitpick: A counterexample generator for higher-order logic

based on a relational model finder. Interactive Theorem Proving, pages 131–146, 2010.

[29] J. C. Blanchette, M. Haslbeck, D. Matichuk, and T. Nipkow. Mining the archive of formal

proofs. In Conferences on Intelligent Computer Mathematics, pages 3–17. Springer, 2015.

[30] J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel. Truly mod-

ular (co) datatypes for Isabelle/HOL. In International Conference on Interactive Theorem

Proving, pages 93–110. Springer, 2014.

[31] J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards QED.

Journal of Formalized Reasoning, 9(1):101–148, 2016.

[32] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user language.

Journal of Symbolic Computation, 24(3):235–265, 1997.

[33] E. Brady. Idris, a general-purpose dependently typed programming language: Design and

implementation. Journal of Functional Programming, 23(5):552–593, 2013.

[34] M. Bronstein. σit—a strongly-typed embeddable computer algebra library. In International

Symposium on Design and Implementation of Symbolic Computation Systems, pages 22–33.

Springer, 1996.

[35] B. Buchberger, T. Jebelean, T. Kutsia, A. Maletzky, and W. Windsteiger. Theorema 2.0:

Computer-assisted natural-style mathematics. Journal of Formalized Reasoning, 9(1):149–

185, 2016.

[36] B. F. Caviness and J. R. Johnson, editors. Quantifier elimination and cylindrical algebraic

decomposition, Texts and Monographs in Symbolic Computation, Vienna, 1998. Springer-

Verlag.

[37] B. Chachuat and M. Villanueva. Bounding the solutions of parametric ODEs: When Taylor

models meet differential inequalities. In I. D. L. Bogle and M. Fairweather, editors, 22nd

European Symposium on Computer Aided Process Engineering, volume 30 of Computer Aided

Chemical Engineering, pages 1307 – 1311. Elsevier, 2012.

85

[38] C. C. Chang and H. J. Keisler. Model theory. North-Holland Publishing Co., Amsterdam-

London; American Elsevier Publishing Co., Inc., New York, 1973. Studies in Logic and the

Foundations of Mathematics, Vol. 73.

[39] B. W. Char, K. O. Geddes, W. M. Gentleman, and G. H. Gonnet. The design of Maple:

A compact, portable, and powerful computer algebra system. In European Conference on

Computer Algebra, pages 101–115. Springer, 1983.

[40] P. J. Cohen. Decision procedures for real and p-adic fields. Communications on Pure and

Applied Mathematics, 22:131–151, 1969.

[41] C. A. Cole and S. Wolfram. Smp-a symbolic manipulation program. In Proceedings of the

fourth ACM symposium on Symbolic and algebraic computation, pages 20–22. ACM, 1981.

[42] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decompo-

sition. In Automata theory and formal languages (Second GI Conf., Kaiserslautern, 1975),

pages 134–183. Lecture Notes in Comput. Sci., Vol. 33. Springer, Berlin, 1975. Reprinted in

[36].

[43] L. Cong, Y. Dong, I. Ford, R. Y. Lewis, J. Mart́ın-Garćıa, and J. Mulnix. Progress in pure

mathematics. Wolfram Technology Conference, 2016.

[44] T. Coquand and G. Huet. The Calculus of Constructions. Inform. and Comput., 76(2-3):95–

120, 1988.

[45] T. Coquand and C. Paulin. Inductively defined types. In COLOG-88 (Tallinn, 1988), volume

417 of Lec. Notes in Comp. Sci., pages 50–66. Springer, Berlin, 1990.

[46] L. Cruz-Filipe, M. J. H. Heule, W. A. Hunt, M. Kaufmann, and P. Schneider-Kamp. Efficient

certified rat verification. In L. de Moura, editor, Automated Deduction – CADE 26, pages

220–236, Cham, 2017. Springer International Publishing.

[47] T. Daly. Axiom: The 30 year horizon. Lulu Incorporated, 2005.

[48] J. H. Davenport and J. Heintz. Real quantifier elimination is doubly exponential. J. Symbolic

Comput., 5(1-2):29–35, 1988.

[49] N. G. de Bruijn. AUTOMATH, a Language for Mathematics, pages 159–200. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1983.

[50] L. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The Lean theorem

prover. http://leanprover.github.io/files/system.pdf, 2014.

86

[51] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In TACAS, pages 337–340,

2008.

[52] D. Delahaye and M. Mayero. Field, une procédure de décision pour les nombres réels en Coq.

In JFLA, pages 33–48, 2001.

[53] D. Delahaye and M. Mayero. Dealing with algebraic expressions over a field in Coq using

Maple. Journal of Symbolic Computation, 39(5):569 – 592, 2005. Automated Reasoning and

Computer Algebra Systems (AR-CA).

[54] M. Dénès, A. Mörtberg, and V. Siles. A refinement-based approach to computational algebra

in Coq. In Interactive theorem proving, volume 7406 of Lecture Notes in Comput. Sci., pages

83–98. Springer, Heidelberg, 2012.

[55] J. Duracz, A. Farjudian, M. Konečnỳ, and W. Taha. Function interval arithmetic. In Inter-

national Congress on Mathematical Software, pages 677–684. Springer, 2014.

[56] G. Ebner, S. Ullrich, J. Roesch, J. Avigad, and L. de Moura. A metaprogramming framework

for formal verification. Proceedings of the ACM on Programming Languages, 1(ICFP):34,

2017.

[57] A. Eggers, E. Kruglov, S. Kupferschmid, K. Scheibler, T. Teige, and C. Weidenbach. Super-

position modulo non-linear arithmetic. In C. Tinelli and V. Sofronie-Stokkermans, editors,

Frontiers of Combining Systems, pages 119–134, Berlin, Heidelberg, 2011. Springer Berlin

Heidelberg.

[58] C. Engelman. MATHLAB: a program for on-line machine assistance in symbolic computa-

tions. In Proceedings of the November 30–December 1, 1965, fall joint computer conference,

part II: computers: their impact on society, pages 117–126. ACM, 1965.

[59] J. Fourier. Histoire de l’académie, partie mathématique. Mémoires de l’Académie des sciences

de l’Institut de France, 7, 1827.

[60] I. Frick. The computer algebra system sheep, what it can and cannot do in general relativity.

Technical report, 1977.

[61] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer. Keymaera X: an axiomatic tacti-

cal theorem prover for hybrid systems. In International Conference on Automated Deduction,

pages 527–538. Springer, 2015.

[62] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.8.8, 2017.

[63] K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra. Springer

Science & Business Media, 1992.

87

[64] G. Gonthier. Formal proof–the four-color theorem. Notices of the AMS, 55(11):1382–1393,

2008.

[65] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. Le Roux, A. Mah-

boubi, R. O’Connor, S. O. Biha, et al. A machine-checked proof of the odd order theorem.

In International Conference on Interactive Theorem Proving, pages 163–179. Springer, 2013.

[66] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: a mechanized logic of computa-

tion, volume 78 of lecture notes in computer science, 1979.

[67] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A theorem proving environment

for higher-order logic. Cambridge University Press, 1993.

[68] H. Gottliebsen, T. Kelsey, and U. Martin. Hidden verification for computational mathemat-

ics. Journal of Symbolic Computation, 39(5):539 – 567, 2005. Automated Reasoning and

Computer Algebra Systems (AR-CA).

[69] F. Haftmann and M. Wenzel. Constructive type classes in Isabelle. In International Workshop

on Types for Proofs and Programs, pages 160–174. Springer, 2006.

[70] T. Hales. Dense Sphere Packings: A Blueprint for Formal Proofs. Cambridge University

Press, Cambridge, 2012.

[71] T. Hales, M. Adams, G. Bauer, T. D. Dang, J. Harrison, H. Le Truong, C. Kaliszyk, V. Ma-

gron, S. McLaughlin, T. T. Nguyen, et al. A formal proof of the Kepler conjecture. In Forum

of Mathematics, Pi, volume 5. Cambridge University Press, 2017.

[72] T. Hales et al. Formal abstracts. https://github.com/formalabstracts/

formalabstracts.

[73] T. C. Hales. A proof of the Kepler conjecture. Ann. of Math. (2), 162(3):1065–1185, 2005.

[74] T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and R. Zumkeller. A revision

of the proof of the Kepler conjecture. Discrete Comput. Geom., 44(1):1–34, 2010.

[75] A. D. Hall Jr. The Altran system for rational function manipulation—a survey. Communi-

cations of the ACM, 14(8):517–521, 1971.

[76] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge university press, 1952.

[77] J. Harrison. HOL light: a tutorial introduction. In M. Srivas and A. Camilleri, editors,

Proceedings of the First International Conference on Formal Methods in Computer-Aided

Design, pages 265–269, 1996.

88

https://github.com/formalabstracts/formalabstracts
https://github.com/formalabstracts/formalabstracts

[78] J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University

Press, Cambridge, 2009.

[79] J. Harrison and L. Théry. A skeptic’s approach to combining HOL and Maple. J. Automat.

Reason., 21(3):279–294, 1998.

[80] R. Hersh. What is mathematics, really? Oxford University Press, 1997.

[81] M. Heule, W. A. H. Jr., M. Kaufmann, and N. Wetzler. Efficient, verified checking of propo-

sitional proofs. In Interactive Theorem Proving - 8th International Conference, ITP 2017,

Braśılia, Brazil, September 26-29, 2017, Proceedings, pages 269–284, 2017.

[82] M. Heule, O. Kullmann, and V. W. Marek. Solving and verifying the boolean pythagorean

triples problem via cube-and-conquer. In Theory and Applications of Satisfiability Testing -

SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings,

pages 228–245, 2016.

[83] J. Hohenwarter, M. Hohenwarter, and Z. Lavicza. Introducing dynamic mathematics software

to secondary school teachers: The case of GeoGebra. Journal of Computers in Mathematics

and Science Teaching, 28(2):135–146, 2009.

[84] L. Hörmander. The analysis of linear partial differential operators. II, volume 257 of

Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences]. Springer-Verlag, Berlin, 1983. Differential operators with constant coefficients.

[85] W. A. Howard. The formulae-as-types notion of construction. To HB Curry: essays on

combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

[86] W. A. Hunt, R. B. Krug, and J. Moore. Linear and nonlinear arithmetic in ACL2. In D. Geist

and E. Tronci, editors, Correct Hardware Design and Verification Methods, Proceedings of

CHARME 2003, number 2860 in Lecture Notes in Computer Science, pages 319–333. Springer-

Verlag, 2003.

[87] F. Immler. A verified enclosure for the Lorenz attractor (rough diamond). In International

Conference on Interactive Theorem Proving, pages 221–226. Springer, 2015.

[88] F. Immler and J. Hölzl. Numerical analysis of ordinary differential equations in Isabelle/HOL.

In International Conference on Interactive Theorem Proving, pages 377–392. Springer, 2012.

[89] W. Jeffreys. Trigman. ACM SIGSAM Bulletin, (24):20–21, 1972.

[90] C. Kaliszyk and F. Wiedijk. Certified computer algebra on top of an interactive theorem

prover. In Proceedings of the 14th Symposium on Towards Mechanized Mathematical As-

sistants: 6th International Conference, Calculemus ’07 / MKM ’07, pages 94–105, Berlin,

Heidelberg, 2007. Springer-Verlag.

89

[91] M. Kaufmann and J. S. Moore. ACL2: An industrial strength version of Nqthm. In Com-

puter Assurance, 1996. COMPASS’96, Systems Integrity. Software Safety. Process Security.

Proceedings of the Eleventh Annual Conference on, pages 23–34. IEEE, 1996.

[92] M. Kerber, M. Kohlhase, and V. Sorge. Integrating computer algebra into proof planning. J.

Automat. Reason., 21(3):327–355, 1998.

[93] P. Lammich. Efficient verified (UN)SAT certificate checking. In L. de Moura, editor, Auto-

mated Deduction – CADE 26, pages 237–254, Cham, 2017. Springer International Publishing.

[94] R. Y. Lewis. Polya: a heuristic procedure for reasoning with real inequalities. MS Thesis,

Dept. of Philosophy, Carnegie Mellon University, 2014.

[95] R. Y. Lewis. An extensible ad hoc interface between Lean and Mathematica. In Proof

eXchange for Theorem Proving, 2017.

[96] A. Mahboubi and E. Tassi. Mathematical Components.

[97] G. Malecha, A. Chlipala, and T. Braibant. Compositional computational reflection. In

International Conference on Interactive Theorem Proving, pages 374–389. Springer, 2014.

[98] P. Mancosu. The philosophy of mathematical practice. Oxford University Press on Demand,

2008.

[99] W. A. Martin and R. J. Fateman. The MACSYMA system. In Proceedings of the second

ACM symposium on Symbolic and algebraic manipulation, pages 59–75. ACM, 1971.

[100] P. Martin-Löf and G. Sambin. Intuitionistic type theory, volume 9. Bibliopolis Napoli, 1984.

[101] R. Matuszewski and P. Rudnicki. Mizar: the first 30 years. Mechanized Ma, 4(1):3–24, March

2005.

[102] C. McBride and J. McKinna. Functional pearl: I am not a number–I am a free variable. In

Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell ’04, pages 1–9, New

York, NY, USA, 2004. ACM.

[103] S. McLaughlin and J. Harrison. A proof producing decision procedure for real arithmetic.

In R. Nieuwenhuis, editor, Automated Deduction – CADE-20. 20th International Conference

on Automated Deduction, Tallinn, Estonia, July 22-27, 2005, Proceedings, volume 3632 of

Lecture Notes in Artificial Intelligence, pages 295–314, 2005.

[104] N. Megill. Metamath. The Seventeen Provers of the World, pages 88–95, 2006.

[105] G. Melquiond. Coq-interval, 2011.

90

[106] J. Meng and L. C. Paulson. Lightweight relevance filtering for machine-generated resolution

problems. J. Applied Logic, 7(1):41–57, 2009.

[107] B. Mishra. Computational real algebraic geometry. In Handbook of discrete and computational

geometry, CRC Press Ser. Discrete Math. Appl., pages 537–556. CRC, Boca Raton, FL, 1997.

[108] R. Nederpelt and H. Geuvers. Type Theory and Formal Proof: An Introduction. Cambridge

University Press, 2014.

[109] T. Nipkow, G. Bauer, and P. Schultz. Flyspeck I: Tame Graphs. In Automated Reasoning

(IJCAR 2006), volume 4130 of Lecture Notes in Computer Science, pages 21–35. Springer,

2006.

[110] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL. A proof assistant for higher-order

logic, volume 2283 of Lecture Notes in Computer Science. Springer Verlag, Berlin, 2002.

[111] U. Norell. Towards a practical programming language based on dependent type theory, vol-

ume 32. Chalmers University of Technology, 2007.

[112] S. Obua and T. Nipkow. Flyspeck II: the basic linear programs. Ann. Math. Artif. Intell.,

56(3-4):245–272, 2009.

[113] L. C. Paulson. Set theory for verification: I. from foundations to functions. Journal of

Automated Reasoning, 11(3):353–389, Oct 1993.

[114] L. C. Paulson and J. C. Blanchette. Three years of experience with Sledgehammer, a practical

link between automatic and interactive theorem provers. In PAAR@ IJCAR, pages 1–10,

2010.

[115] B. C. Pierce. Types and programming languages. MIT press, 2002.

[116] A. Platzer. The complete proof theory of hybrid systems. In Proceedings of the 2012 27th An-

nual IEEE/ACM Symposium on Logic in Computer Science, pages 541–550. IEEE Computer

Society, 2012.

[117] A. Platzer and J.-D. Quesel. Keymaera: A hybrid theorem prover for hybrid systems. In Ar-

mando, Baumgartner, and Dowek, editors, IJCAR 2008, pages 171–178. Springer, Heidelberg,

2008.

[118] A. Platzer, J.-D. Quesel, and P. Rümmer. Real world verification. In Automated deduction—

CADE-22, volume 5663 of Lecture Notes in Comput. Sci., pages 485–501. Springer, Berlin,

2009.

91

[119] G. Polya. How to solve it. Princeton Science Library. Princeton University Press, Princeton,

NJ, 2004. A new aspect of mathematical method, Expanded version of the 1988 edition, with

a new foreword by John H. Conway.

[120] V. R. Pratt. Every prime has a succinct certificate. SIAM Journal on Computing, 4(3):214–

220, 1975.

[121] F. Rabe. The MMT API: a generic MKM system. In International Conference on Intelligent

Computer Mathematics, pages 339–343. Springer, 2013.

[122] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience Series in Discrete

Mathematics. John Wiley & Sons Ltd., Chichester, 1986. A Wiley-Interscience Publication.

[123] O. Seddiki, C. Dunchev, S. Khan-Afshar, and S. Tahar. Enabling Symbolic and Numerical

Computations in HOL Light, pages 353–358. Springer International Publishing, Cham, 2015.

[124] A. Seidenberg. A new decision method for elementary algebra. Ann. of Math. (2), 60:365–374,

1954.

[125] D. Selsam and L. de Moura. Congruence closure in intensional type theory. In International

Joint Conference on Automated Reasoning, pages 99–115. Springer, 2016.

[126] N. Shankar, S. Owre, J. M. Rushby, and D. W. Stringer-Calvert. Pvs prover guide. Computer

Science Laboratory, SRI International, Menlo Park, CA, 1:11–12, 2001.

[127] A. Solovyev. Formal Computation and Methods. PhD thesis, University of Pittsburgh, 2012.

[128] W. Stein and D. Joyner. Sage: System for algebra and geometry experimentation. ACM

SIGSAM Bulletin, 39(2):61–64, 2005.

[129] A. Tarski. A Decision Method for Elementary Algebra and Geometry. University of California

Press, 2nd edition, 1951.

[130] T. Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Math-

ematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[131] J. Urban, P. Rudnicki, and G. Sutcliffe. ATP and presentation service for Mizar formaliza-

tions. J. Automat. Reason., 50(2):229–241, 2013.

[132] F. van Doorn, J. von Raumer, and U. Buchholtz. Homotopy Type Theory in Lean, pages

479–495. Springer International Publishing, Cham, 2017.

[133] V. Voevodsky. The origins and motivations of univalent foundations. The Institute Letter,

pages 8–9, 2014.

92

https://homotopytypetheory.org/book

[134] J. Von Zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press,

2013.

[135] F. Wiedijk. Formalizing Arrow’s theorem. Sādhanā, 34(1):193–220, 2009.

[136] H. Williams. Fourier’s method of linear programming and its dual. The American Mathe-

matical Monthly, 93(9):681–695, 1986.

[137] S. Wolfram. The Mathematica Book. Number v. 1. Wolfram Media, 2003.

[138] S. Wolfram. An Elementary Introduction to the Wolfram Language. Wolfram Media, Incor-

porated, 2015.

[139] B. Zhan. Auto2, a saturation-based heuristic prover for higher-order logic. In International

Conference on Interactive Theorem Proving, pages 441–456. Springer, 2016.

[140] B. Zhan. Formalization of the fundamental group in untyped set theory using auto2. In

International Conference on Interactive Theorem Proving, pages 514–530. Springer, 2017.

[141] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics. Springer-

Verlag, New York, 1995.

93

	Introduction
	Interactive theorem proving
	Mathematical computation
	Inequalities over real closed fields
	Computer algebra
	Verified computation

	The Lean theorem prover
	The Calculus of Inductive Constructions
	Lean-specific foundations

	Proving in Lean
	Metaprogramming in Lean

	A proof-producing method for verifying inequalities
	Introduction
	The Polya algorithm
	Term canonizer
	Blackboard
	Modules

	Implementation in Lean: definitions and API
	General architecture
	Data types
	Proof trace data types
	Blackboard API

	Proof search
	Additive module
	Multiplicative module

	Proof reconstruction
	Reconstructing inequality proofs
	Reconstructing sum form proofs

	Examples and tests
	Results from the unverified implementation
	Results from the proof-producing implementation
	Integration into KeYmaera

	Interacting with Polya
	Producing proof traces
	Concluding thoughts
	Related work
	Future work

	A link between Lean and Mathematica
	Introduction
	Mathematica background
	Mathematica syntax
	Mathematica functions

	The translation procedure
	Translating Lean to Mathematica
	Translating Mathematica to Lean
	Translating binding expressions

	Querying Mathematica from Lean
	Connection interface
	Verification of results

	Querying Lean from Mathematica
	Connection interface
	Applications

	Concluding thoughts
	Related work
	Future work

	Conclusion
	Bibliography

