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1 Introduction

Consider a pendulum of length L in a gravitational field with acceleration
g > 0; the situation is depicted in Figure 1. Suppose the pendulum is

L

g

Figure 1: Pendulum.

displaced from its vertical rest position by a small amount and allowed to
swing freely. A standard analysis done in most freshman physics courses
shows that the period P of the pendulum is given approximately by

P = 2π
√

L/g (1)

assuming friction is negligible over the course of the experiment. A typical
routine homework problem would be to compute the period P for a given
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pendulum of length L and a fixed gravitational acceleration g. This typifies
what would usually be called the forward problem: We are given a physical
system (the pendulum) with certain physical parameters (g and L) specified
and the asked about some aspect of how the system behaves, in this case,
the period of the motion if the pendulum is displaced a small amount.

But in real life the situation is often reversed: we may not know all the
parameters that govern the system’s physics, and they may not be easy to
measure directly. They frequently have to be inferred from observation of the
system. As an example, we may suppose that we don’t know g, gravitational
acceleration, but we do have a real pendulum at hand with a known length
L, and we have the means to swing the pendulum and measure its period.
Can we deduce g from this information?

1.1 An Experiment

Your group has been given a pendulum; don’t break it. Instead,

1. Use the yardstick to measure the length L of the pendulum, in meters.

2. Use your stopwatch to measure the period of the pendulum, starting
with a small displacement. You’ll want to hold the string steady (maybe
brace your hand on a table or something) and have someone time ten
back-and-forth swings of the pendulum.

3. Compute P , the period, in seconds.

Now, figure out how to use equation (1) to estimate g, given that you
have measurements of L and P .

1.2 A General Framework for Inverse Problems

Inverse problems revolve around the estimation of unknown parameters that
govern a physical system’s behavior. The procedure above is fairly typical.

1. We start by developing a mathematical model of the system, treating
the various parameters as unspecified constants. For example, for the
pendulum we do the physics that leads to equation (1). The resulting
mathematical model is called the forward problem.

2. If any parameters are easy to measure directly, we generally do that.
For example, you measured L for your pendulum.
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3. We “stimulate” the real physical system of interest, then observe some
aspect of its response. For the pendulum this means giving it a small
displacement and then measuring the period of the motion.

4. From the data collected, we estimate the unknown parameter(s) in the
model.

This framework makes it look pretty cut-and-dried, but in fact some real
challenges can pop up, and they come in a variety of flavors.

1.3 Issues

The central questions of interest in any inverse problems are these:

• Existence: Given observed data for the system, is there some value
for the unknown parameter(s) that actually yields the observed data?
If not, the inverse problem has no solution. This is often the case for
more complicated problems in which the data has noise or other error,
but we can deal with this—more on that later. But in the case of the
pendulum, for any observed (positive) period it’s easy to see that we
can find a suitable g that makes equation (1) work.

• Uniqueness: Can the unknown parameter(s) in principle be uniquely
determined from the measured data? Or could two different sets of
values for the unknown parameters give rise to the same observations?
For example, from equation (1) it’s easy to see that if P and L are
known then g is determined uniquely. This isn’t quite the same as
asking for a formula for g. Silly as it sounds, you can see that g can be
determined without actually solving for it (see “Reconstruction” below,
though).

• Stability: If the measured data contains small errors, will the error in
the resulting estimates of the unknowns be correspondingly small? Of
could small measurement errors lead to huge errors in our estimates?
For the pendulum it’s easy to see that, on a percentage basis, small
errors in the measurements of L or P lead to comparable errors in the
estimate of g using equation (1); see Problem 1 below.

• Reconstruction: Is there a computationally efficient formula or pro-
cedure for actually finding the unknown parameter(s) from the data?
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For example, for the pendulum we can explicitly solve equation (1) to
find

g =
4π2L

P 2
. (2)

An inverse problem for which existence, uniqueness, and stability hold is said
to be well-posed. The alternative is an ill-posed inverse problem. Ill-posed
problems tend to be the most common, and interesting!

Problem 1 Let the true values for g, L, and P be denoted g0, L0, and P0,
respectively (so from equation (2) g0 = 4π2L0/P

2
0 , exactly). Suppose that

in measuring L and P we make small errors ∆L and ∆P ; let ∆g be the
resulting error in our estimate of g from equation (2).

a. Use equation (2) to justify the approximation

∆g ≈ 4π2∆L

P 2
0

− 8π2L0∆P

P 3
0

. (3)

(Hint: Calculus 3).

b. Use equation (3) to justify the approximation

∆g

g0
≈ ∆L

L0

− 2
∆P

P0

. (4)

How does this support the statement that “. . . on a percentage basis,
small errors in the measurements of L or P lead to comparable errors
in the estimate of g. . . ”?

c. How accurate do you think your measurement of L was? How accurate
do you think your measurement of P was? Use equation (3) and/or (4)
to bound the (worst case) error in your estimate of g.

Problem 2 Show that if both g AND L are unknown (maybe we have no
tape measure) then we can’t recover both from just a measurement of P .
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1.4 Something More “Interesting”

1.4.1 The Forward Problem

Suppose you put P0 dollars into some type of investment account. The
account pays a variable annual interest rate r(t), compounded continuously.
How much money will you have at any given time? To answer this, let P (t)
denote the amount of money in the account at time t. If we earn money with
an instantaneous interest rate r(t) then (practically by definition) we have

P ′(t) = r(t)P (t). (5)

This DE is easy to solve; separation of variables yields

P (t) = P0e
R(t)

where

R(t) =

∫ t

0

r(s) ds.

Let’s consider the above as the forward problem: given P0 and r(t) we are
to determine P (t). This means solving a differential equation.

1.4.2 The Inverse Problem

Now consider the corresponding inverse problem: If we have the function
P (t), can we determine r(t)? Equation (5) makes it clear that the answer is
“yes”, and indeed, provides the explicit reconstruction formula

r(t) = P ′(t)/P (t). (6)

This is an inverse problem for which uniqueness holds (existence too, if P is
differentiable and never zero). However, unlike in the pendulum problem, the
unknown we seek here is a function r(t), rather than a scalar like gravitational
acceleration g. Inverse problems like this in which the unknown is a function
are frequently ill-posed.

And this problem certainly fits into the ill-posed category. First note
that we don’t actually know the function P (t) for all t, but rather we have
measurements of P at discrete time intervals. For example, we may have
measurements of P (t) only every quarter (3 months). Moreover, we don’t
have an exact value for P , but rather P round to the nearest cent. How do we
estimate r(t) in this case, and does this affect the accuracy of our estimates?
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In reality, we won’t try to recover r(t) for every t, but rather estimates
of r at select times. One way to estimate r(t) at a time t0 is to use a finite
difference approximation to the derivative, say

P ′(t0) ≈
P (t0 +∆t)− P (t0)

∆t
(7)

where ∆t is the time interval from one sample of P to the next, e.g., ∆t = 0.25
if we have quarterly data and measure time in years. Of course many other
finite difference approximations to P ′(t) could be used, but this will do for
the moment.

If we use the approximation (7) in equation (6) we find that r(t) can be
approximated as

r(t0) ≈
P (t0 +∆t)− P (t0)

P (t0)∆t
. (8)

Example 1 Suppose we start with P (0) = 100 dollars, and the interest rate
r(t) is given by

r(t) = 0.04(3− 2 cos(2t) + t/3).

A graph of r(t) is shown in Figure 2 below. We take measurements of P (t)
annually over the course of 5 years, as tabulated below. The data is rounded
to the nearest cent.

t0 P (t0)
0.0 100
1.0 109.45
2.0 134.57
3.0 153.91
4.0 172.82
5.0 219.99

If we use equation (8) to estimate r(t0) at t0 = 0, 1, 2, 3, 4 we obtain the
graph on the left in Figure 2 (the solid red curve); the dashed (blue) line is
the actual graph of r(t).

The estimated r seems to “lag” the true r, which makes sense. Intuitively,
the quantity on the right in (7) should be a better estimate of P ′(t) at the
point t = t0 +∆t/2 rather than t = t0, and hence the quantity on the right
in (8) should be a better estimate of r(t0 +∆t/2). Thus to remedy the lag,
we can replace equation (8) with

r(t0 +∆t/2) ≈ P (t0 +∆t)− P (t0)

P (t0)∆t
. (9)
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Figure 2: Estimated (solid,red) and true (dashed,blue) interest rate, for one-
sided (left) and central (right) differences.

The result of applying equation (9) to the data is shown in the graph on the
right in Figure 2. It looks a bit more accurate.

Of course, if we want to track variations in r(t) more accurately, it stands
to reason that we should obtain balance data more often. The table below is
P (t) sampled at quarterly intervals t0 = k/4 for 0 ≤ k ≤ 20, again rounded
to the nearest cent:

t P (t)
0.0 100
0.25 101.13
0.5 102.84
0.75 105.53
1.0 109.45
1.25 114.62
1.5 120.85

t P (t)
1.75 127.69
2.0 134.57
2.25 140.90
2.5 146.23
2.75 150.48
3.0 153.91
3.25 157.12

t P (t)
3.5 160.86
3.75 165.90
4.0 172.82
4.25 181.93
4.5 193.19
4.75 206.15
5.0 219.99

We use equation (9) to estimate r(t0 +∆t/2) (that is, at points of the form
t0 = 0.125, 0.375, . . . , 4.875.) The result is shown in Figure 3 below; the
dashed blue line is the actual plot of r(t). More frequent sampling of P (t)
clearly yields better results.

It makes sense that tracking P (t) even more frequently will result in still
better estimates. Suppose we’re willing to bother our broker every day, sam-
pling P (t) at time t = k/365, k = 0, 1, 2, . . . (ignore the fact that the market
isn’t open every day!) Estimating r(t) with the procedure above produces the
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Figure 3: Estimated (solid) and true (dashed) interest rate.

graph on the left in Figure 4. If we could somehow obtain P (t) ten times per
day the result is even worse, as illustrated on the right in Figure 4. Clearly
something has gone drastically wrong!

Problem 3 Let r(t) = 0.08 + 0.01t(7 − t) on the interval 0 ≤ t ≤ 5, with
P (0) = 100.

a. Compute P (t).

b. Evaluate P (t) annually, at each time t = 0, 1, 2, 3, 4, 5 (so ∆t = 1.0).
Round your answer to the nearest dollar (not cent).

c. Use equation (9) to estimate r(t) at times t = 0.5, 1.5, 2.5, 3.5, 4.5, and
compare to the true values of r.

d. Repeat (b) and (c) using ∆t = 0.25 and ∆t = 0.1; you’ll want to use
Excel or other software. Plot your estimates and the true values of r.
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Figure 4: Estimated (solid) and true (dashed) interest rate, one sample per
day (left), ten samples per day (right).

1.5 Ill-Posedness

The problem of estimating r(t) is an example of an ill-posed inverse problem.
Although the formulas (8) or (9) look good on paper (especially as ∆t gets
smaller), the procedure fails if the data is noisy or contains other types of
errors. In this case, the error stems simply from the process of rounding the
balance P (t) to the nearest cent!

To see what’s going wrong in the example above, note that when we
use equation (7) to estimate P ′(t0), we don’t really have the exact value of
P (t0) or P (t0 + ∆t), but rather rounded (and so slightly erroneous) values.
Specifically, what we have instead of P (t0) is P (t0) + ϵ1 where −0.005 ≤
ϵ1 ≤ 0.005 depending on which way the rounding went. Similarly we have
P (t0+∆t)+ ϵ2 with −0.005 ≤ ϵ2 ≤ 0.005. As a result, when we use equation
(7) (or its successors, (8)/(9)) what we’re really doing is estimating

P ′(t0) ≈
P (t0 +∆t) + ϵ2 − (P (t0) + ϵ1)

∆t
.

A little algebra yields

P ′(t0) ≈
P (t0 +∆t)− P (t0)

∆t
+

ϵ2 − ϵ1
∆t

. (10)

When ∆t is small the first term on the right in (10) should be a good approx-
imation to P ′(t0). The second term, however, is a disaster. We might hope
that ϵ1 and ϵ2 cancel, but that’s unlikely—these rounding errors might just as
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easily reenforce each other! All we can really be sure of is that |ϵ2−ϵ1| ≤ 0.01.
Thus when ∆t is small the term on the right actually gets larger if ϵ1 ̸= ϵ2.
Of course the inaccuracy in estimating P ′(t0) carries over into the estimate
of r(t0) via (6).

To illustrate, in the example above we know that P ′(t0) should be in the
ballpark of (0.1)(100) = 10 (based on a typical 0.1 interest rate and 100 dollar
balance). In the worst case rounding error we might have |ϵ2 − ϵ1| = 0.01.
Based on these observations and equation (10) we expect the rounding error
to be significant—say, 10 percent of the size of r′(t0) if ∆t is such that
(0.1)(10) ≈ 0.01/∆t. This yields ∆t ≈ 0.01. This is in total accordance with
the graph on the left in Figure 4.

Problem 4 Redo the computations in the paragraph above but under the
assumption that we round to the nearest dollar.

Problem 5 If ∆t is REALLY small (but still positive) then P (t0) and P (t0+
∆t) should be very close, within one, two, or a few cents of each other. Use
this observation and equation (7) to argue that our estimate of P ′(t0) will
be either 0, ±0.01/∆t, ±0.02/∆t (or maybe larger), depending on whether
P (t0) and P (t0 + ∆) round “together” or in opposite directions. Based on
this, what will be our estimate of r(t0)? Reconcile your conclusion with the
graph on the right in Figure 4.

Problem 6 Suppose a particle moves along the x-axis. The position of the
particle at any time is x = f(t) for some position function f . We are able
to measure the position of the particle at discrete times t = t0, t1, t2, . . . (so
tk = k∆t). However, our position measurements are subject a “random”
error in the range −ϵ to ϵ for some positive number ϵ. Our goal is to use this
information to estimate the velocity of the particle at each time tk.

a. Let fk denote our noisy measurement of the position of the particle at
time t = tk, so that fk = f(k∆t) + ϵk for some error ϵk lying between
−ϵ and ϵ. We’ll approximate the velocity vk = f ′(tk) of the particle at
time tk as

vk ≈
fk+1 − fk

∆t
.

Write out vk explicitly in terms of f , tk, tk+1 and the errors ϵk, ϵk+1.

b. If we know that ϵ = 0.01 and the true velocity of the particle is always
between 1 and 5, about how small can we take ∆t before the worst case
error in our estimate of vk is as large as the correct value of vk itself?
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1.6 Summary

Many ill-posed inverse problems come down to something like what we en-
countered above: to recover the unknown of interest, often a function (e.g.,
r(t)), we have to somehow differentiate measured data (e.g., P (t)). Differen-
tiation in the presence of noise is an unstable operation—small amounts of
noise in the data become arbitrarily large errors in our estimate of the deriva-
tive. Collecting more data (e.g., more frequently in time) only magnifies the
problem!

In Section 3 we’ll talk about some approaches to combat ill-posedness.

2 Some General Techniques for Inverse Prob-

lems

Inverse problems are quite varied and there’s certainly no “turn-the-crank”
technique for solving all of them, any more than there’s a general technique
for solving all ODE’s, PDE’s, or even algebraic equations. But there are
some general approaches that often work. A good way to see one in action
is to consider the following specific problem.

2.1 Gravitational Prospecting

Geodesy is a branch of the earth sciences that deals with measuring and
modeling the basic structure and geometry of the earth. One important
tool that’s been used in this science is gravimetry, precise measurements of
the earth’s gravitational field; the field is not uniform! From these kinds of
measurements the internal structure (density variations) of the earth can be
deduced. It’s an inverse problem!

2.1.1 A Simplified Forward Problem

Let’s examine a simplified but representative version of this problem. Con-
sider a ”one-dimensional” bar of length 1 meter stretching along the x-axis
from the origin to the point (1, 0, 0) in three-dimensional space. This bar has
a variable linear density of λ(x) kg per meter. Our goal is to determine λ(x)
without destroying the bar (e.g., cutting it up into pieces). The bar (red) is
represented in Figure 5.
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To do this, we place a “test mass” of 1 kg somewhere in space and measure
the gravitational force exerted on this test mass by the mass of the bar.
We repeat this experiment many times, moving the test mass around to
various locations. For each location, we measure the gravitational force.
We’ll assume there are no other masses around!

To make things simple, let’s confine our test mass to lie on the line pa-
rameterized by x = t, y = 0, z = 1 for −∞ < t < ∞, parallel to the x-axis, in
the xz-plane; refer to Figure 5, with the bar in red and the line on which we’ll
place the test mass in blue (and dashed). At each such point we measure
the gravitational force F (a vector) exerted on the test mass. Note F will
depend on the point (t, 0, 1) at which we place the test mass, so F can be
thought of as a function of t.
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Figure 5: Bar (red) and line for test mass (blue).

The forward problem would be to compute F(t) given the density λ(x).
This can be done as follows: First, we (conceptually) slice the bar into small
pieces, each of length dx; a typical slice lies at some position (x, 0, 0). The
mass of the slice is λ(x) dx (locally “constant” density times length). The
gravitational force dF that this little piece exerts on the test mass is given
by

dF =
Gλ(x) dx

((x− t)2 + 1)3/2
< x− t, 0, 1 >
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which is just Newton’s Gravitational Law F = GMm
r3

r withM = λ(x) dx,m =
1, r =< x, 0, 0 > − < t, 0, 1 >=< x− t, 0, 1 >, and r = |r| = ((x− t)2+1)1/2.
Since the gravitational field of a collection of masses is just the sum of their
individual fields, we find that the total gravitational force on the test mass
is the integral

F(t) = G

∫ 1

0

λ(x)

((x− t)2 + 1)3/2
< x− t, 0, 1 > dx (11)

(integrated component by component). This makes it easy to see that the y
component of force will always be zero, as expected from symmetry.

Let’s suppose we only measure the vertical or z component of the gravi-
tational field (this is what many gravimeters do), so we pay attention to only
the third component in equation (11). We then have

Fz(t) = G

∫ 1

0

λ(x)

((x− t)2 + 1)3/2
dx (12)

for some range of t, where Fz(t) denotes the z-component of the gravitational
field at the point (t, 0, 1). Equation (12) quantifies the forward problem:
given λ(x) for 0 ≤ x ≤ 1, we can compute the vertical component Fz(t) of
the gravitational field exerted by the bar by evaluating the integral on the
right in (12).

2.1.2 The Inverse Problem; Existence and Uniqueness

The inverse problem is to use equation (12) to recover λ(x) from knowledge
of Fz(t) where t ranges over some interval, possibly even (−∞,∞).

Equation (12) is an example of an integral equation (more specifically, a
Fredholm integral equation of the first kind). Unfortunately, integral equa-
tions don’t often make appearances in the undergraduate curriculum, but
they are a vast area of research in higher mathematics. In the present case
it’s not at all clear how to find λ(x) given the function Fz(t) in equation (12),
or whether it can even be done.

The first question to ask is whether given the function Fz(t) we can expect
a solution to equation (12) to exist. The answer is “yes” if F(t) decays to zero
fast enough as |t| → ∞ and is differentiable enough, but the proof is technical
and not of great interest at the moment—we’ll just assume an appropriate
λ(x) exists.
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Slightly more relevant is the question of uniqueness: Is λ uniquely de-
termined from knowledge of Fz(t) (whether or not we know how to find λ)?
The alternative is that two or more different choices for the density function
λ(x) could yield the same gravitational field (at least along the line we’re
measuring on). In this case the problem would be unsolvable. However, it
turns out that λ is uniquely identifiable from the given data, but the proof
uses Fourier integral transforms. You’ll have to take my word for it or work
it out yourself.

So it comes down to this: If we have the function Fz(t) (or really, mea-
surements of Fz(t) for some finite number of t) how can we determine λ?
How stable is the inverse problem, and if it’s not stable, what should we do
about it?

Example 2 Suppose λ(x) = 2 + sin(x) and we measure Fz(t) at 11 points
of the form t = −2,−1.6,−1.2, . . . , 2 (stepsize 0.4). The integral in (12) can
be worked numerically for any given t; we’ll just take G = 1 for simplicity.
A graph of the resulting values is shown in Figure 6, but it’s not easy to see
how λ is manifest in the data.

0.5

1

1.5

2

–2 –1 0 1 2

Figure 6: Vertical (z) component of gravitational field.
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How can we estimate λ(x) from these 11 data points?

2.2 Output Least-Squares

As mentioned at the start of this section, inverse problems tend to fall into
a few different classes (like DE’s), and each class has its own solution tech-
niques and theoretical issues. There aren’t many truly general techniques
for attacking inverse problems, but one approach that’s widely useful is the
method of output least-squares.

The idea is this: We have a “real” physical system with some unknown
physical parameters we’d like to estimate; think of g for the pendulum or
λ(x) for the bar above. We observe or measure some aspect of the system’s
behavior, e.g., the period of the pendulum or the gravitational field of the
bar, with the hope that the unknown is somehow encoded in this information.
The situation is graphically depicted on the left in Figure 7, where we’ll focus
on the gravitational example. We’ll use λ∗ to denote the true value of the
physical parameter, in this case the density. We might think of λ∗ as an
“input” to the real physical system, with the measured data as an output.
To estimate λ∗ from data, we construct a mathematical model of the real

Measured
Data

Real System
Physical Parameter
(lambda  )*

Hypothetical Parameter
(lambda)

Mathematical
Model

Simulated
Data

Figure 7: Real system and mathematical model.

physical system, in which we may plug hypothetical values for the density
function; we’ll use λ to denote this hypothetical or “tunable” parameter. For
any given choice of λ we can “solve” the mathematical model and generate
simulated output data, as illustrated on the right in Figure 7.

In output least-squares estimation we construct an estimate of λ∗ by ad-
justing our hypothetical λ until the output from the mathematical model
best matches the output from the real system. The resulting value of λ is
then taken as an estimate of λ∗. We quantify how well the real and hypothet-
ical outputs match in a “least squares” sense. More precisely, we estimate
λ∗ by minimizing the function

Q(λ) =
M∑
k=1

(yk(λ)− y∗k)
2 (13)

15



where y∗k is an observed data point for the real system and yk(λ) is the corre-
sponding output of the simulated system (yk depends on our hypothetical λ).
The minimization of Q is done using any standard optimization technique,
though there are optimization techniques specifically designed for these types
of problems.

Of course the hope is that if Q(λ) is small (so yk(λ) ≈ y∗k, the data are
in close agreement) then λ ≈ λ∗ in some reasonable sense. This is often
the case, but numerous problems can arise. The best way to understand
least-squares is to see it in action.

2.3 Applying Least-Squares to Gravitational Prospect-
ing: Approach 1

Minimizing Q as defined by equation (13), in which λ can be “any” function,
is too hard (it’s a problem in the Calculus of Variations). To make things
more tractable we usually assume some specific form for λ, by assuming λ can
be specified with finitely many parameters. For example, we might assume
that λ is a polynomial of given degree, or a Fourier expansion with some
specified number of terms. Minimizing Q then becomes a more standard
problem of minimizing a function of finitely many variables.

Some examples are shown below.

2.3.1 Assuming λ is a Polynomial

In order to estimate λ(x) from the data, we’re going to assume that λ(x) =
a0 + a1x + a2x

2, that is, we’re going to do the best job we can explaining
the observed data in Figure 6 under the assumption that λ is a quadratic
polynomial. The advantage of this assumption is that λ is now characterized
by just three numbers a0, a1, a2 (instead of living in an infinite dimensional
function space). Of course we can also use polynomials of higher degree for
λ(x).

The data points y∗1, . . . , y
∗
11 for the true density in Figure 6 are

tk −2.0 −1.6 −1.2 −0.8 −0.4 0.0
y∗k 0.12942 0.20281 0.33639 0.58837 1.04402 1.6875

tk 0.4 0.8 1.2 1.6 2.0
y∗k 2.1654 2.0597 1.4583 0.85354 0.47853
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rounded to 5 significant figures. Plugging λ(x) = a0+a1x+a2x
2 into equation

(12) and evaluating the integral at each t value t = −2,−1.6, . . . , 2 yields a
bit of a mess. But, for example, when t = −1.2 we obtain

Fz(−1.2) = 0.14215a0 + 0.055807a1 + 0.03292a2.

A similar expression holds for the other t values. Note this expression is
linear in the ak because the forward problem is linear with respect to λ.

We now minimize

Q(a0, a1, a2) =
11∑
k=1

(Fz(tk)− y∗k)
2

as a function of a0, a1, a2 (the dependence of Fz(tk) on the ak isn’t explic-
itly indicated). In this case Q is a simple quadratic function of the ak
and can be minimized with Calc 3 techniques—just find the critical point,
which involves solving a system of LINEAR equations. In more compli-
cated inverse problems, especially nonlinear problems, we’d have to use ded-
icated optimization software. For the present problem the optimal values are
a0 = 1.9923, a1 = 1.0916, a2 = −0.23532. The resulting estimate for λ(x) and
the correct density are shown together in Figure 8. The recovered density is

True and Recovered Density
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Figure 8: True (red,dashed) and recovered (blue, solid) densities.
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very close to the correct density, almost indistinguishable.
Of course, this result is based on accurate data with no noise. Also, in this

case the true density could be well-represented by a quadratic polynomial. If
we add uniformly distributed independent noise in the interval [−0.01, 0.01]
to each data point above (but keep the same λ) the recovered density is
shown in Figure 9. This answer is still pretty reasonable.
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Figure 9: True (red,dashed) and recovered (blue, solid) densities with noisy
data (left).

2.3.2 Assuming λ is a Sum of Cosines

However, this inverse problem is more ill-posed then one might be led to
believe by the above computations. One of the hallmarks of ill-posed inverse
problems and integral equations is that highly oscillatory functions are hard
to recover. To illustrate, let’s change the true density function to λ(x) =
2+x sin(8x); this function is graphed on the left in Figure 10. Also, to allow
more flexibility in representing λ, let’s assume that

λ(x) =
10∑
k=0

ak cos(kπx) (14)
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so λ is characterized now by the 11 numbers a0, . . . , a10. (Recall that any
continuous function can be represented as a cosine series; we’re just using the
11 basis functions cos(kπx) for 0 ≤ k ≤ 10.) Using Q as in equation (13),
we thus have to minimize a quadratic function of 11 parameters, a0, . . . , a10.
Doing so with noise-free data (to 10 significant figures) produces the result
on the right in Figure 10, a disaster. We can’t even see the true density on
the graph.
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Figure 10: True (left) and recovered (right) densities with noisy data (left),
11 basis functions.

This is a reflection of the underlying instability in this inverse problem. If
we’re willing to confine our parameter selections to a low-dimensional space
(e.g., quadratic polynomials) and if the true parameter is well-represented
by such a selection, the problem can be solved accurately, even with noise.
But as we increase the dimension of our parameter space the problem quickly
becomes unstable, often resulting in excessively oscillatory estimates. This
happens here even with “clean” data—the rounding error is enough. And
unfortunately, to represent arbitrary functions accurately we may need to
go to higher dimensional spaces, e.g., more Fourier basis functions or higher
degree polynomials.

Some computational techniques for addressing instability in inverse prob-
lems will be discussed in Section 3.

2.4 Pros and Cons of Least-Squares

The attractions of least-squares are obvious. If we have a data y∗k, 1 ≤ k ≤ N
for some physical system and a mathematical model that depends on the
unknown parameter λ, we just minimize Q(λ) in equation (13). All we need
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is the ability to compute yk(λ), which typically means solving an ODE, PDE,
or integral equation, and we need some kind of optimization software. If you
have these computational capabilities then least-squares provides a plug-and-
play method for solving inverse problems, with no emotional or intellectual
involvement needed!

However, least-squares has some drawbacks, especially if applied naively:

1. The least-squares function Q may have MANY local minima. Most
numerical optimization software will locate only one, and it need not
be the best fit to the data. You may well end up with estimates that
locally minimize Q but have nothing to do with correct or physically
relevant solutions (e.g., see Problem 11 above.)

A good way to partially overcome this is to start the optimizer with
a good initial guess. This requires some understanding of the inverse
problem and where the solution is likely to be in the parameter space.
You may need to use some other approximate technique on the inverse
problem to get a good initial guess.

2. Least-squares doesn’t address the ill-posedness of the inverse problem.
With no understanding of the nature or severity of the ill-posedness,
you don’t know whether if your answers mean anything, especially in
the presence of noise. Some kind of stabilization or “regularization” as
discussed in Section 3 will be needed, but doing this properly probably
requires some deeper understanding of the inverse problem.

3. Least-squares doesn’t address the uniqueness of the inverse problem. If
the data do not uniquely determine the unknown, the estimate you get
may not be the true physical parameter(s) that govern the system. For
example, in Problem 11 below, there are in fact infinitely many choices
for k that yield exactly the ten data points given. In the absence of
uniqueness you’ll need to incorporate additional information into the
process in order to pick out the correct solution (e.g., in Problem 11
maybe we know the spring constant is in the range 15 ≤ k ≤ 20 from
other considerations).

Problem 7 Suppose we are given a differentiable function f on some interval
and asked to solve the integral equation∫ t

0

ϕ(s) ds = f(t)
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for the unknown function ϕ. Verify that ϕ = f ′. That is, the ill-posed
problem of differentiating a function can be cast as that of solving an integral
equation.

Problem 8 A certain function ϕ(x) defined on 0 ≤ x ≤ 1 satisfies the
integral equation ∫ 1

0

t3e−xtϕ(x) dx = F (t) (15)

for some function F , with 0 ≤ t ≤ 1. We have data F (0) = 0, F (1/4) =
0.01855, F (1/2) = 0.12990, F (3/4) = 0.38585, and F (1) = 0.80918. Use this
data to estimate ϕ(x) as follows.

a. Let’s try constructing a solution of the form ϕ(x) = a0 + a1x + a2x
2,

a quadratic polynomial. Plug this polynomial into the left side of
equation (15) and evaluate the integral. You should obtain a function
g(t, a0, a1, a2).

b. We’d like to arrange the ak so that g(t, a0, a1, a2) = F (t) for the given
t values 0, 0.25, 0.5, 0.75, 1.0. This leads to 5 equations in just 3 un-
knowns, probably unsolvable (unless the data is perfect). Instead, min-
imize the function

Q(a0, a1, a2) =
5∑

k=1

(g(tk, a0, a1, a2)− F (tk))
2

where tk = (k − 1)/4.

c. Graphically compare your solution to the true solution ϕ(x) = 2 −
cos(πx/2).

Problem 9 Let p(t) be the population of some species at time t and suppose
p obeys the logistic DE

p′(t) = kp(t)(1− p(t)/M)

where k is the growth rate for the species and M is the carrying constant for
the environment, and let’s use initial population p(0) = 100. Our goal here
is to estimate the constants k and M from data.
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The solution to this DE is easy to find via separation of variables and is

p(t) =
100M

100 + e−kt(M − 100)
. (16)

Suppose we measure the population at times t = 10, 20, . . . , 100 and obtain

234, 441, 694, 859, 943, 988, 992, 997, 996, 1005.

a. Write out the least-squares objective function

Q(k,M) = (p(10)− p10)
2 + (p(20)− p20)

2 + · · ·+ (p(100)− p100)
2

where pk is the population at time t = k from the list above. A com-
puter algebra system like Mathematica will be helpful.

b. Minimize Q by setting ∂Q
∂k

= 0 and ∂Q
∂M

= 0 and solving these two
equations simultaneously. You’ll need to solve numerically. Try giving
the computer a reasonable initial guess at k and M .

c. With the optimal values for k and M , see how well p(t) agrees with the
measured data.

Problem 10 One interesting area of inverse problems is that of nondestruc-
tive testing, using energy in various forms to “see” inside objects without
damaging them. One technique that’s being explored is the use of heat to
find internal defects in objects, or to find internal sources of heat (which can
indicate local defects).

Here’s a simplified version of such an inverse problem. Consider a bar of
“infinite” length stretching along the x-axis, initially at zero degrees. Sitting
at the origin x = 0 is a point heat source that dumps heat (units of energy
per time) into the bar at a rate f(t). A little physics and PDE shows that (if
we set a few physical constants equals to one for simplicity) the temperature
u(x, t) in the bar at position x and any time t > 0 is given by the formula

u(x, t) =
1

2
√
π

∫ t

0

f(s)
e−

x2

4(t−s)

√
t− s

ds. (17)

Suppose we can take measurements of the temperature at position x = 1
(one unit away from the heat source) over some time interval 0 ≤ t ≤ T .
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Our goal is to determine the function f(t) on this time interval, if possible.
This means that we collect data d(t) where

d(t) =
1

2
√
π

∫ t

0

f(s)
e−

1
4(t−s)

√
t− s

ds (18)

(this is just u(1, t) from equation (17).) In summary, given d(t) in equation
(18) we want to find f .

In particular, suppose we work on the time interval 0 ≤ t ≤ 1, and have
collected data

t 0.05 0.15 0.25 0.35 0.45
d(t) 6.843× 10−5 7.992× 10−3 2.985× 10−2 6.139× 10−2 1.003× 10−1

t 0.55 0.65 0.75 0.85 0.95
d(t) 1.452× 10−3 1.955× 10−1 2.502× 10−1 3.087× 10−1 3.701× 10−1

Let’s try estimating f using a quadratic polynomial p(t) = a0 + a1t+ a2t
2.

a. Use a computer algebra system to compute the function d̃(t) given by

d̃(t) =
1

2
√
π

∫ t

0

p(s)
e−

1
4(t−s)

√
t− s

ds

in terms of t and the coefficients a0, a1, a2.

b. Write out the least-squares objective function

Q(a0, a1, a2) = (d̃(0.05)− d(0.05))2 + · · ·+ (d̃(0.95)− d(0.95))2

using your answer from part (a) and the data from the table above.
You should obtain a quadratic function of a0, a1, a2.

c. Minimize Q by setting each partial derivative to zero and solving these
three equations simultaneously.

d. With the optimal values for ak, see how well d̃(t) agrees with the mea-
sured data. Compare your estimate p(t) to the true value for f , namely
f(t) = 1 + 2 sin(1.3t).
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Problem 11 Consider an unforced, underdamped spring-mass system with
mass m = 1 and unknown spring constant and damping constants k and c,
respectively. Assume the system obeys the usual second order DE

mu′′(t) + cu′(t) + ku(t) = 0 (19)

where u(t) is the displacement of the mass from equilibrium. Let’s assume
the system starts with initial conditions u(0) = 1 and u′(0) = 0. The goal is
to identify c and k from measurements of the mass position at various times.
Indeed, suppose we have the position data

t 1.0 2.0 3.0 4.0 5.0
u(t) −0.280 −0.611 0.624 0.0750 −0.545

t 6.0 7.0 8.0 9.0 10.0
u(t) 0.299 0.237 −0.393 0.070 0.266

a. The solution to the underdamped spring-mass DE with the given ini-
tials conditions can be written

u(t) = e−ct/2 cos(ωt) +
c√

4k − c2
e−ct/2 sin(ωt) (20)

where ω =
√
4k − c2/2. Use u(t) as in equation (20) with unspecified

values for c and k to write out the least-squares objective function

Q(c, k) =
10∑
k=1

(u(k)− uk)
2 (21)

where uk is the measured value of u from the table above and u(t) is
given by equation (20). You should end up with a large and nonlinear
objective function of c and k. Of course, a computer algebra system
will be necessary.

b. Plot the objective function Q(c, k) on the range 0 < c < 1, 2 < k < 10.
You should see a (local) minimum. Find the corresponding value of c
and k (either by graphically estimating the location of the minimum or
finding the critical point; if the latter, you’ll need to use a numerical
equation solver.) After you have reasonable values for c and k, plot
u(t) from equation (20) on the range 0 ≤ t ≤ 10 and compare with the
tabled data.
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c. Try plotting on the range 0 < c < 1, 15 < k < 20; you should see
another minimum. Find the relevant values for c and k, and then plot
and compare u(t) as in part (b).

d. Repeat part (c) on the range 0 < c < 1, 65 < k < 70.

e. Of the c and k estimates you found in parts (b)-(d), which best fits the
data? (Hint: they all fit it perfectly).

3 Regularization

The idea behind regularization is to replace an unstable problem with a
closely related stable problem, or really a family of stable problems. We re-
fer to these as the “regularized” problems. The regularized problems should
be indexed by some kind of “tunable” parameter α. As α → 0+ the regular-
ized problem converges to the unstable original problem, and as α increases
the regularized problem becomes more and more stable—but at the cost of
differing markedly from the original problem we want to solve. This is best
seen via an illustration.

3.1 Differentiation of Noisy Data

Suppose we have measurements f(tk) of a differentiable function f(t) on the
interval [0, 1], where tk = k∆t for k = 0, 1, 2, . . . for some interval ∆t > 0.
Our goal is use this data to estimate f ′. However, our measurements of f
are subject to some kind of error. If fk denotes our measured value for f(tk)
then what we really have is fk = f(tk) + ϵk, where ϵk is the error; ϵk might
be random, or it might be something like round-off error (e.g., in the interest
rate problem of Section 1.4). We can estimate f ′(tk) as

f ′(tk) ≈
fk+1 − fk

∆t
=

f(tk+1)− f(tk)

∆t
+

ϵk+1 − ϵk
∆t

. (22)

This is of course just equation (10) all over again. As ∆t goes to zero the
first term on the right in (22) approaches f ′(tk), exactly what we want, but
the second term blows up (we can’t count on ϵk+1 = ϵk if it’s noise!)

To illustrate, let f(t) = t + sin(t) and let’s take ∆t = 0.01. For noise
we’ll choose ϵk to be uniformly distributed between −0.005 and 0.005, all ϵk
independent. The results are shown in Figure 11. The effect of the second
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Figure 11: True (dashed) and estimated (solid) derivative of f(t) = t+sin(t),
no regularization.

term on the right in equation (22) is to introduce wild oscillations into the
estimate of f ′, because the quantity ϵk+1 − ϵk is of “random” size and sign,
so division by a small ∆t is a disaster.

3.2 Regularizing the Estimate of f ′

In some sense we could argue that the estimate of f ′ produced above is the
best we can do—it agrees with the measured data perfectly—but in reality
we often know that the underlying function we’re trying to estimate should
be smooth (think of the interest rate function r(t)). In light of this fact,
and knowing that our data is noisy and the estimation procedure unstable,
we should accept that the wild oscillations above are not real, but artifacts.
What we want is some way to produce estimates dk of f ′(tk) in which the dk
are in reasonable agreement with the measured data, but at the same time
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the dk are “encouraged” to not oscillate wildly from index k to index k + 1.
Here’s one approach. Take ∆t = 1/M for some integer M , so we have

measurements of f at points tk = k∆t, where 0 ≤ k ≤ M . Our goal is to
produce estimates dk of f ′(tk) at times t0, t1, . . . , tM−1 (our one-sided differ-
ence formula (22) doesn’t cover the right endpoint tM .) Consider finding the
dk by minimizing the quadratic functional

Q(d1, . . . , dM−1) =
1

2

M−1∑
k=0

(
dk −

fk+1 − fk
∆t

)2

with respect to d1, d2, . . . , dM−1 (the 1/2 in front isn’t important, it just
makes things prettier later.) It’s easy to see that the optimal choice for the
dk is dk = (fk+1 − fk)/∆t, exactly the horrible result produced by equation
(22). So let’s modify Q to encourage the minimizing dk to not oscillate so
wildly, by taking

Q(d1, . . . , dM−1) =
1

2

M−1∑
k=0

(
dk −

fk+1 − fk
∆t

)2

+
α

2

M−2∑
k=0

(
dk+1 − dk

∆t

)2

(23)

where α ≥ 0 is a parameter we can choose. As before, we’ll produce our esti-
mates dk of f ′(tk) by minimizing Q in (23). The addition of the second term
on the right in (23) is an example of what is called Tikhonov regularization.

To see why this might produce better estimates, look at the second term
on the right in (23). When α > 0 this term “wants” to take dk+1 = dk when
we minimize. That is, this terms gets large if the estimates dk vary wildly.
When we minimize Q for a given α > 0 the wild oscillations in the dk tend
to be damped out (depending on how big α is), at the expense of making the
first term on the right larger (the dk don’t agree with the data as well.) The
trade-off between fidelity to the raw data and smoothness is illustrated in
figures below. The second term on the right in (23) is often called a penalty
term, since in the optimization this term penalizes solutions in which the dk
vary wildly.

Minimizing Q is straightforward, since Q is quadratic. At a minimum we
have ∂Q/∂dj = 0 for j = 0, . . . ,M −1, and it’s easy enough to compute that
for 1 ≤ j ≤ M − 2 we obtain

∂Q

∂dj
= (dj − (fj+1 − fj)/∆t) + α/∆t2(−dj−1 + 2dj − dj+1) = 0
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while when j = 0 or j = M − 1 (oddball endpoint cases) we have

∂Q

∂d0
= (d0 − (f1 − f0)/∆t) + α/∆t2(d0 − d1) = 0

∂Q

∂dM−1

= (dM−1 − (fM − fM − 1)/∆t) + α/∆t2(dM−1 − dM−2) = 0.

This is a system of LINEAR equations for d0, . . . , dM−1, and it can be written
conveniently in matrix form as Ad = b where A is the M ×M matrix

A = I+
α

∆t2



1 −1 0 · · · 0 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0

...
0 · · · 0 −1 2 −1
0 0 · · · 0 −1 1


(24)

and bj = (fj − fj−1)/∆t with 1 ≤ j ≤ M .
In a nutshell, we solve Ad = b for some choice of α > 0 and take dj as

the estimate of f ′(tj). What we should take for α is discussed a bit below.
Here are some examples of this regularization procedure in action. For

the choices α = 0.001 and α = 0.01 we obtain the graphs in Figure 12. The
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Figure 12: True (dashed) and estimated (solid) derivative of f(t) = t+sin(t),
α = 0.001 (left) and α = 0.01 (right).

choice α = 0.001 is an example of “under-regularization,” while α = 0.01
looks pretty good, perhaps still a bit under-regularized.
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Figure 13 shows two examples of over-regularization, with α = 0.1 and
α = 1.0 on the left and right, respectively. With larger values of α the
minimization of Q puts a premium on keeping the second term on the right
in equation (23) small (non-oscillatory dk) at the expense of making the first
term small (good agreement with the data).
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Figure 13: True (dashed) and estimated (solid) derivative of f(t) = t+sin(t),
α = 0.1 (left) and α = 1.0 (right).

3.3 Regularization for the Gravitational Prospecting
Problem

Let’s revisit the gravitational prospecting problem, in particular, the cosine
expansion approach of Section 2.3.2, to see how these ideas might be applied
there. As with differentiating data, the goal here is to regularize the recon-
struction by “encouraging” the estimate not to oscillate so much. To the
objective function Q(a0, . . . , a10) we obtain from equation (13) (and λ of the
form in equation (14)) we add a regularizing or “penalty term” to encour-
age the solution not to oscillate excessively. An appropriate term would be
something like

R =

∫ 1

0

 d

dx

(
10∑
k=0

ak cos(kπx)

)2
 dx = a20 +

π2

2

10∑
k=1

k2a2k

(the right side above follows easily from working the integral). The inte-
gral that defines R is large if the derivative of the function λ is large in a
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mean square sense, so adding a multiple αR to the objective function should
encourage the minimizing solution to be smoother. Moreover, since R is
quadratic the function Q+R is quadratic and the normal equations are still
linear, so easy to solve. Again, the addition of the term “R” above to the
objective function is an example of Tikhonov regularization.

Adding this regularization or penalty term with α = 10−8 produces the
result in Figure 14, a vast improvement over that on the right in Figure 10.
If we then add a small amount of noise as above, the same regularization
parameter yields the reconstruction in Figure 15, still pretty good.
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Figure 14: True (red,dashed) and recovered (blue, solid) densities with noise-
less data (left), 11 basis functions.

3.4 Choosing the Regularization Parameter

In each example above the natural question is “what should we choose for
the regularization parameter α?” There are a large number of techniques
designed to get at this problem—people devote entire careers to the selection
of regularization parameters. It depends on what a priori information we have
about the unknown function we’re trying to estimate, e.g., “its derivative
is always between 1.2 and 2.3,” and the noise level in the data is also an
important factor. Such information or assumptions can be used to help

30



True and Recovered Density

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

0 0.2 0.4 0.6 0.8 1
x

Figure 15: True (red,dashed) and recovered (blue, solid) densities with noisy
data (left), 11 basis functions.

dictate the value of α. In practice, one often does simulations with “made
up” functions and realistic noise levels to see what range of α works best.
We then use this value of α on the “real” problem.

Problem 12

a. Consider the interest rate problem of Section 1.4 with true interest rate
r(t) = 0.1(2 + sin(t)) and P (0) = 100. In this case the true balance at
any time is

P (t) = 100e0.1(1+2t−cos(t)).

We can simulate measuring P (t) over a 5 year period at M = 100 time
intervals of width ∆t = 5/M and rounding to the near cent with the
Matlab commands

M = 100

dt = 5/M

P = inline(′100 ∗ exp(0.1 ∗ (1+ 2. ∗ t− cos(t)))′)

tk = [0 : M] ∗ 5/M;
Pdat = P(tk);
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We can then round the P (tk) to the nearest cent with

Pdatr = round(Pdat ∗ 100)/100;

We can estimate the interest rate r(tk) for 0 ≤ k ≤ M − 1 by using
equation (9) with the command

rest = (Pdatr(2 : M+ 1)− Pdatr(1 : M))/dt./Pdatr(1 : M);

To compare the estimated and true interest rates graphically execute

r = inline(′0.1 ∗ (2+ sin(t))′)

rtru = r(tk(1 : M));

plot(tk(1 : M), rtru, tk(1 : M), rest)

Repeat this for M = 500, 1000, 5000.

b. The graph in part (a) should look pretty bad when M ≥ 1000. Of
course, the heart of the problem is the estimation of P ′(t) lurking in
equation (9). Regularize the results of part (a) as follows. First, form
“raw” estimates of P ′(tk) with

Pdest = (Pdatr(2 : M+ 1)− Pdatr(1 : M))/dt;

then choose a value of α, e.g., alpha = 0.01. Construct the regularized
estimates d0, . . . , dM−1 of P ′(tk) by solving Ad = b where A is as in
equation (24). This can be done with

A0 = 2 ∗ diag(ones(1, M))− diag(ones(1, M− 1), 1)− diag(ones(1, M− 1),−1);

A0(1, 1) = 1; A0(M, M) = 1;

A = eye(M) + alpha/dt2 ∗ A0;
d = A\Pdest′;

Finally, a regularized estimate of (tk) for 0 ≤ k ≤ M − 1 is obtained
and plotted as

rreg = d./Pdatr(1 : M)′;

plot(tk(1 : M), rtru, tk(1 : M), rreg)

Experiment with different values for α.
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4 The Singular Value Decomposition and Reg-

ularization

4.1 Introduction

Many inverse problems, for example, the gravitational prospecting problem,
lead to linear systems of equations, Ax = b. The ill-posedness of the inverse
problem is reflected in the fact that the resulting matrix A is almost singular.
This means that small changes in the right hand side vector b (e.g., noise
in the data) produce huge changes in the solution x. Even inverse problems
that lead to nonlinear equations ultimately require the numerical solution
of linear systems, since nonlinear solution methods (e.g., Newton’s method)
require the solution of linear systems as a subproblem. Regularizing the
solution of almost singular linear systems of equations is thus an important
topic in inverse problems. One elegant approach is to use the singular value
decomposition.

Consider the prototypical problem in linear algebra, the analysis and
solution of a system of m equations in n unknowns,

Ax = b

where A is an m × n matrix, b ∈ Rm, and the vector x ∈ Rn. It may
be the case that the system is consistent but underdetermined (usually the
case if m < n, i.e. more unknowns than equations), or the system may
be overdetermined (usually the case if m > n, i.e., more equations than
unknowns.) Even if the system is uniquely solvable, it may be “close” to
underdetermined or overdetermined, if the matrix A is close to singular.

If the system is consistent but underdetermined then we have infinitely
many solutions. Which one should we pick? In many cases an argument
can be made that we should take that solution x of minimal norm. On the
other hand, if the system is inconsistent there is no solution. An argument
can often be made that we should then settle for that vector x that “comes
closest” to solving the system, in that x minimizes the usual Pythagorean
norm ∥Ax−b∥. If there are many vectors that minimize ∥Ax−b∥ then we
take that (unique) such x of minimal norm.

There is a powerful tool in linear algebra that lets us tackle all of these
issues in a unified framework, and do a great deal more. It’s called the
singular value decomposition or “SVD” for short.
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4.2 The Singular Value Decomposition

Let A be an m × n matrix with (for simplicity) real-valued entries. The
singular value decomposition of A is the factorization

A = USVT (25)

where the “T” superscript denotes matrix transpose. Here U is an m × m
orthogonal matrix, V an n×n orthogonal matrix, and S is an m×n matrix
(same shape as A) with all diagonal entries Sii non-zero; we usually just use
one subscript to refer to these entries, i.e., Si for the entry in the (i, i) position.
These diagonal entries are called the singular values of A. Conventionally
the singular values are non-negative and appear in descending order, i.e.,
Si ≥ Si+1. Under this convention the singular values of A are uniquely
determined, though the matrices U and V are not (for example, we could
flip the sign of all elements in both U and V without changing the value of
the product on the right in (25). Nonetheless, we’ll refer to “the” SVD of a
matrix, rather than “an” SVD. A proof that the SVD exists for any matrix
and a description of efficient algorithms for computing the SVD can be found
in [3].

Depending on the relative values of m and n, the matrix S may take
several slightly different forms. If m < n, e.g., m = 3, n = 5 then S would
look like

S =

 S1 0 0 0 0
0 S2 0 0 0
0 0 S3 0 0

 (26)

while if m > n, e.g., m = 5, n = 3, then S would look like

S =


S1 0 0
0 S2 0
0 0 S3

0 0 0
0 0 0

 (27)

In the square case S would simply be a diagonal matrix. In any of these
cases we may some Si = 0.

Problem 13 Let
A =

[
1 1

]
.
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Verify that the SVD of A is given by

U = 1, S =
[ √

2 0
]
, VT =

[
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

]
.

Problem 14 If A has SVD A = USVT , what is the SVD of AT ? Use this
with the information in Problem 13 to compute the SVD of the transpose of
A in that problem.

Problem 15 If an m × n matrix A has SVD A = USVT and Q is an
orthogonal m×m matrix, what the SVD of QA?

4.2.1 Geometry of the SVD

Before discussing the geometric significance and utility of the SVD, it’s worth
recalling a couple special properties of orthogonal matrices. First, if M is a
k × k orthogonal matrix (that is, MTM = I) we have

1. M is invertible (immediate from MTM = I.)

2. ∥Mx∥ = ∥x∥ for any x ∈ Rk. The proof is simply that

∥Mx∥2 =< Mx,Mx >=< x,MTMx >=< x,x >= ∥x∥2.

Thus multiplication of a vector by an orthogonal matrix preserves
length.

3. More generally, < Mx,My >=< x,y > for any x,y ∈ Rk. The proof
is almost the same as above, but easier.

< Mx,My >=< x,MTMy >=< x,y > .

Thus multiplication by an orthogonal matrix preserves inner products
or angles.

4. The columns of M (or MT ) form an orthonormal basis for Rk. This is
immediate from MTM = I.

To see the geometric significance of the SVD, consider the product Ax =
USVTx. The first step in computing the product y = Ax is the computation
of the product VTx. Let’s define a vector x′ as

x′ = VTx. (28)
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Because V (and so VT ) is orthogonal, the operation preserves norms. In
fact, since x = Vx′ we see that x′ is the representation of the vector x with
respect to the orthogonal basis formed by the columns of V, and ∥x∥ = ∥x′∥.

In the same vein, let’s define the vector y′ := UTy, so that y′ is the
representation of the vector y with respect to the orthogonal basis formed
by the columns ofU. With this notation the equation y = Ax can be written
as

y′ = Sx′. (29)

Equation (29) lays bare how multiplication by A maps a vector in Rn to a
vector in Rm: after an orthogonal changes of coordinates in each space, the
matrix multiplication is simply a rescaling of some of the components of x′

by the diagonal entries of S.

4.2.2 Range and Nullspace of A

Let’s take a look at how multiplication by S affects the vector x′ in a few
simple cases. Consider the case in which S (and hence also A) is a 3 × 5
matrix like that in equation (26). Under multiplication by S the vector
x′ = (x′

1, x
′
2, x

′
3, x

′
4, x

′
5) becomes the vector y′ = (S1x

′
1, S2x

′
2, S3x

′
3). The

values of x′
4 and x′

5 are “lost” in the multiplication. Moreover, if any of the
singular values Sj = 0 then the corresponding x′

j component is also zeroed
out and the corresponding entry in y is zero. It’s easy to see that dimension
of the range of S is the number of non-zero singular values. The dimension
of the nullspace of S will be 5 minus the number of NON-ZERO singular
values. Similar remarks will hold whenever m ≤ n.

Now consider the case in which S (and hence also A) is a 5×3 matrix like
that in equation (27). Under multiplication by S the vector x′ = (x′

1, x
′
2, x

′
3)

becomes the vector y′ = (S1x
′
1, S2x

′
2, S3x

′
3, 0, 0).The last two components of y′

are zero regardless of x′. Moreover, if any of the singular values Sj = 0 then
the corresponding x′

j component is also zeroed out and the corresponding
entry in y is zero. Again, it’s easy to see that the dimension of the range
of S is the number of non-zero singular values, while the dimension of the
nullspace of S will be 5 minus the number of NON-ZERO singular values.
Similar observations holds whenever m ≥ n.

The remarks just made about the dimension of the range and nullspace
of S also hold for A. For example, if x′ = VTx is in the nullspace of S then,
by definition, Sx′ = 0. But this is equivalent to SVTx = 0, or USVTx = 0,
that is, Ax = 0. In short, the nullspace of A is just the image of the
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nullspace of S under the action of the orthogonal (hence invertible) matrix
V. Both nullspaces thus have the same dimension. Similar remarks hold for
the dimensions of the range (see Problem 17).

In summary

1. The dimension of the range ofA equals the number of non-zero singular
values for A.

2. The dimension of the nullspace of A equals the number of columns of
A minus the number of non-zero singular values.

Problem 16 Based on the SVD given in Problem 13, what is the dimension
of the nullspace of the matrix A in that problem? What is the dimension of
the nullspace of A?

Problem 17 Show that the range of S and A are of the same dimension.
Hint: argue that y′ = Uy is an orthogonal transformation of the range of A
to the range of S.

Problem 18 Suppose A is square and invertible with SVD A = USVT .
Show that all of the singular values of S are nonzero, and write out the SVD
of A−1 in terms of the matrices U,S,V.

4.3 Solving Ax = b with the SVD

Consider the problem of solving the equation Ax = b for x. From the SVD
we can write this as

USVTx = b. (30)

Multiply both sides above by UT on the left and as above let x′ = VTx. We
obtain

Sx′ = b′ (31)

where b′ = UTb. If x′ that satisfies equation (31) then x = Vx′ will satisfy
Ax = b, and conversely. Solutions to Ax = b and (31) are thus in a one-to-
one correspondence via x = Vx′. Also note that ∥x∥ = ∥x′∥.

Problem 19 Let

A =

[
1 1
−1 1

]
.
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The SVD of A is given by

U =

[
−1/

√
2 1/

√
2

1/
√
2 1/

√
2

]
, S =

[ √
2 0

0
√
2

]
, VT =

[
−1 0
0 1

]
.

Use the procedure above (in particular, equation (31)) to solve Ax = [1, 2]T .

4.3.1 Consistent Equations

Consider first the case in which m ≤ n. Equation (31) yields m equations
of the form Six

′
i = b′i, 1 ≤ i ≤ m. If all of the Si > 0 then the x′

i are
uniquely determined as x′

i = b′i/Si, while x′
m+1, . . . , x

′
n are free variables. In

this case there are infinitely many solutions to (31), except when m = n;
then there are no free variables and the solution is uniquely determined. For
the case m < n, among all solutions, the solution x′

0 that has minimum norm
is clearly obtained by take all free variables equal to zero,

x′
0 = (b′1/S1, b

′
2/S2, . . . , b

′
m/Sm, 0, . . . , 0)

(n −m zeros at the end.) This means that the minimum norm solution to
Ax = b is obtained as x0 = Vx′

0.
Another way to write this is to first note that x′

0 = S†b′ where S† is the
n×m matrix

S† =


1/S1 0 0
0 1/S2 0
0 0 1/S3

0 0 0
0 0 0


at least for the m = 3, n = 5 case, and assuming all Si > 0. In general the
matrix S† has dimensions n×m. Now since x′

0 = S†b′ as well as b′ = UTb
and x0 = Vx′

0 we see that the minimum norm solution to Ax = b is given
by

x = A†b (32)

where
A† = VS†UT (33)

The matrix A† is called the Moore-Penrose pseudoinverse of the matrix A.
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Problem 20 Let A as in Problem 13. Find the Moore-Penrose pseudoin-
verse for A, and use the pseudoinverse to find the minimum norm solution
to Ax = b where b is any scalar. Verify directly (using elementary calculus)
that the resulting solution is the minimum norm solution.

Problem 21 SupposeA is a square invertible matrix. Show thatA† = A−1.

Problem 22 In the argument above we assumed that all Si > 0. Suppose
now that A has only r non-zero singular values, so Sr+1 = Sr+2 = · · ·Sm = 0.
Suppose also that all of b′r+1, . . . , b

′
m are zero (so the system (31) is consistent.)

Show that the same solution procedure still works to find the minimum norm
solution, if we modify S† by replacing entries 1/Sk with zero when k ≥ r+1.

4.3.2 Inconsistent Equations

Generically, the case m > n yields an inconsistent system of equations
(though certainly not necessarily.) In any case, as above the system Ax = b
can be written in the form of (31) with b′ = UTb and x′ = VTx. The
matrix S will look something like that in equation (27). The system (31) is
inconsistent unless it so happens that b′n+1 = · · · b′m = 0; if any Sk = 0 for
k ≤ n then we also need the corresponding b′k = 0.

Consider the case when the system is inconsistent, say with m > n and
non-zero singular values S1, . . . , Sr. We want to find a “best solution” to
Ax = b by finding a vector x that minimizes the quantity ∥Ax−b∥2. Note
that

Ax− b = USVTx− b = U(Sx′ − Tb′) (34)

where as previously, x′ = VTx and b′ = UTb. Since U is orthogonal we
conclude from equation (34) that

∥Ax− b∥2 = ∥Sx′ − b′∥2. (35)

Based on equation (35) we see that a vector that minimizes ∥Ax− b∥2 can
be obtained as x = Vx′ with x′ as a minimizer of ∥Sx′ − b′∥2.

Minimizing ∥Sx′ − b′∥2 as a function of x′ is easy. This quantity can be
written explicitly as

Q(x′
1, . . . , x

′
n) =

r∑
j=1

(Sjx
′
j − b′j)

2 +
m∑

j=r+1

(b′j)
2.
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Clearly we can’t do anything with x′ to change the value of the second
summation. The best we can do to minimize Q is to take x′

j = b′j/Sj for
all j ≤ r (so the first sum is zero), but the remaining x′

j can be “anything”.
However, if we choose the remaining x′

j = 0 for j > r we obtain that least-
squares solution x′

0 to Sx′ = b′ that has the smallest possible norm. If we
then take x0 = Vx′

0 (so ∥x0∥ = ∥x′
0∥) we see that x0 will minimize ∥Ax0−b∥,

and if such a minimizer is not unique then x0 will be the minimizer with the
smallest possible norm.

If you chase through the previous argument, you see that in fact the
vector x′

0 can be obtained as x′
0 = S†b′, just as in the consistent case. By

the argument given there we see that equation (32), in particular, the Moore-
Penrose inverse, again provides the solution.

In summary we have shown (at least after you do Problem 23 below)

Theorem 1 If an m × n matrix A has singular value decomposition A =
USVT then the minimum-norm least-squares solution to Ax = b is given
by x = A†b where A† = VS†UT . Here S† is the n ×m matrix with entries
S†
ij = 0 for i ̸= j, S†

i,i = 1/Si if Si ̸= 0, and S†
i,i = 0 if Si = 0.

Problem 23 Verify that the argument in this section works perfectly well
if m ≤ n.

Problem 24 Suppose that

A =

 1 1
−1 1
1 0

 .

Verify that the SVD of A has factors

U =

 −1/
√
3 −1/

√
2 −1/

√
6

1/
√
3 −1/

√
2 1/

√
6

−1/
√
3 0 2/

√
6

 , S =

 √
3 0

0
√
2

0 0

 , VT =

[
−1 0
0 −1

]
.

Compute A†. Use this to find the least-squares solution to Ax = b with
b = [1, 2, 4]T .

Problem 25 Suppose an m×n matrix A has singular value decomposition
A = USVT . Verify that we can write the SVD of A in the alternate form

A =
r∑

j=1

Sjujv
T
j (36)
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where r is the number of non-zero singular values, uj denotes the jth column
of U (as an m× 1 matrix) and similarly for vj (so vT

j is a 1× n matrix).

4.4 Stability and Regularization Using the SVD

4.4.1 Ill-Posed Linear Systems and the SVD

The Moore-Penrose pseudoinverse in equation (33) as computed via the SVD
allows us to solve Ax = b in a very general and flexible way. As it turns out,
this procedure is also very useful even when Ax = b has a unique solution
(e.g., A is square, invertible), especially when A is very close to singular.
This is often the case if the equation Ax = b arises as the discretization of
some inverse problem; often A is singular or nearly so, and the vector b is
usually generated from data, which may be noisy. In this case small amounts
of noise in b may yield huge changes in x.

4.4.2 Ill-Posedness Example

Let

A =

[
1.01 100
0.01 1

]
and b =

[
201.01
2.01

]
.

(This matrix is nearly singular). The exact solution to Ax = b is the vector
x0 = [1, 2]T . Suppose that we change b by a small amount, to simulate
“noise” in the problem. We let

be = b+

[
0.01
0.02

]
= b+ e (37)

(a change in the vector norm of about one part in 100), where e = [0.01, 0.02]T .
In this case the solution to Ax = be is vector xe = [202,−0.03]T . The differ-
ence ∥xe − x0∥ ≈ 201.01 is rather large, despite the fact that ∥e∥ ≈ 0.0224
is a rather small change in the right side.

The heart of the problem in this example is illustrated well by looking at
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the SVD of A, which has approximate factors

U =

[
−0.99995 −0.0099995
−0.0099995 0.99995

]
,

S =

[
100.01 0

0 9.999× 10−5

]
,

VT =

[
−0.0101 −0.99995
−0.99995 0.0101

]
.

If we let x′
e = Uxe, x

′
0 = Ux0, b

′ = Vb, and e′ = Ve then the equation
Axe = be can be written as

Sx′
e = b′ + e′. (38)

Of course without the error term e′ we obtain the exact solution for x′
0 (and

hence x0), with magnitude ∥x′
0∥ ≈ 2.236. Now ∥e′∥ = ∥Ve∥ = ∥e∥ ≈ 0.0224

is small in relation to x′
0, but consider what happens to this error when we

solve equation (38). We compute the second component (x′
e)2 of x′

e as

(x′
e)2 =

b′2 + e′2
10−4

.

Though e′2 is small (comparable to ∥e′∥ ≈ 0.0224) the division by S2 = 10−4

inflates this small error dramatically. The result is that (x′
e)2 is way off,

perhaps by as much as 104(0.0224) = 224.0. Of course this error will be
reflected in xe = Vx′

e.

4.4.3 Ill-Posedness and Singular Values

Let’s now consider the stability issue in a more general setting. The essence
of the problem in the previous example is the disparity between the largest
and smallest singular values. To see this, consider the equations

Sx′
0 = b′ (39)

Sx′
e = b′ + e′. (40)

in which the first equations contains the true “noiseless” right hand side
vector b′ from which we can obtain the ”true” solution x′

0; for simplicity
assume x′

0 is uniquely determined. In the second equation the right side
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vector contains noise e′, and this yields an erroneous solution x′
e. We’d like

to obtain a bound on the proportional error (∥x′
e − x′

0∥)/∥x′
0∥ in terms of

∥b∥ and ∥e∥.
If we subtract (39) from (40) we obtain S(x′

e−x′
0) = e′. If Sr denotes the

smallest singular value in S then it’s easy to see that ∥x′
e − x′

0∥ ≤ ∥e′∥/Sr.
From (39) it’s easy to see that ∥x′

0∥ ≥ ∥b′∥/S1. We thus have an upper
bound

∥x′
e − x′

0∥
∥x′

0∥
≤ S1

Sr

∥e′∥
∥b′∥

. (41)

That is, the proportional error in x′
e is bounded by the ratio S1/Sr times the

proportional error in the right side. If S1/Sr is small then the error in x′
e will

be comparable to the error in b′, on a proportional basis. If S1/Sr is large,
e.g., as in the last example in which S1/S2 ≈ 106, then the worst case error
in the solution can be comparable to this ratio times the proportional error
in b′. All of these error estimates hold for the original problem Ax = b and
its true and approximate solutions x0 and xe, since U and V are orthogonal.

The ratio S1/Sr is called the condition number of the matrix A. If the
vector x in the system Ax = b is uniquely determined but the ratio S1/Sr is
large (here “large” depends on the context) then the linear system is said to
be ill-conditioned. Thus, for example, if S1/Sr ≈ 1015, even round-off error
in the vector b (in double precision arithmetic, 15 to 16 significant figures)
may render the solution x meaningless. In the example of subsection 4.4.2
above the condition number of that matrix was around 106; the error of order
10−2 in the right side b was inflated dramatically, but not quite as much as
the worst case amount of 10−2 × 106 = 104. Nonetheless, the resulting error
in the right side completely destroys our ability to accurately recover x.

4.4.4 Regularization with the SVD

The singular value decomposition can be used to combat ill-conditioned sys-
tems, by allowing us to solve the linear system in a controllably regularized
fashion.

Consider the alternate version of the SVD in equation (36) of Problem
25. Since the Moore-Penrose pseudoinverse for A is given by A† = VS†UT

we see from equation (36) that

A† = VS†UT =
r∑

j=1

1

Sj

vju
T
j (42)
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where the sum is over only the non-zero Sj, which we assume are indexed by
1 ≤ j ≤ r.

When we solve Ax = b we obtain x =
∑r

j=1
1
Sj
vju

T
j b, which can be

written as

x =
r∑

j=1

cjvj (43)

where cj = uT
j b/Sj. The solution x is thus synthesized as a linear combi-

nation of the vectors vj, the columns of V. However, as discussed above, if
a singular value Sk is very close to zero and b contains any error then the
solution x may be way off. What can we do about this? One method is to
omit from the sum on the right (43) any term for which the singular value
Sj is too small, to prevent a large and highly erroneous multiple of vj from
being incorporated into the estimate of x. Here “too small” depends on the
size of x and the amount of error in b.

Let’s quantify all of this. Let x0 be the true solution to Ax = b when
no noise is present and let xe be the solution when the right side is b+ e for
some error vector e. Then Ax0 = b and Axe = b + e. In light of equation
(43) we conclude

x0 =
r∑

j=1

cjvj and xe =
r∑

j=1

c̃jvj (44)

where cj = uT
j b/Sj and c̃j = uT

j (b+ e)/Sj. Subtract the above equations to
find

xe − x0 =
r∑

j=1

(c̃j − cj)vj.

Since the vj form an orthonormal set we have

∥xe − x0∥2 =
r∑

j=1

(c̃j − cj)
2.

Use c̃j − cj = uT
j e/Sj to conclude that

∥xe − x0∥2 =
r∑

j=1

(uT
j e/Sj)

2. (45)

Now in most applications we’d have SOME idea of ∥x0∥; let X0 denote
this value. Let’s suppose we’re willing to tolerate a proportional error of no
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more than a fraction q in our estimate of x0, i.e., an absolute error of size
qX0. We’d also likely have some idea of the magnitude of the error in our
data vector b; if each bk might be off by an amount at most σ (that is, if each
ek satisfies |ek| ≤ σ) then we can estimate ∥e∥ ≤ σ

√
m. Finally, note that

uT
j e ≤ ∥uj∥∥e∥ = σ

√
m (since each uj is a unit vector.) We can use this

with equation (45) to regularize the solution of Ax = b as follows: Replace
uT
j e on the right in (45) with the upper bound σ

√
m to obtain

∥xe − x0∥2 ≤ mσ2

r∑
j=1

1

S2
j

. (46)

Since we want to be sure that ∥xe − x0∥2 ≤ q2X2
0 let’s try to enforce the

inequality

mσ2

p∑
j=1

1

S2
j

≤ q2X2
0 (47)

by taking the upper summation limit p as large as possible while maintaining
the inequality. (It’s possible it fails even when p = 1, if the data is noisy
enough or the problem sufficiently ill-conditioned.) The idea is that by omit-
ting the really small singular values we omit those terms in (43) that could
inflate the error in b enough to violate ∥xe−x0∥ ≤ qX0. The maximum value
for p in (47) depends on m (the number of equations) but more importantly
on the error level σ (bigger σ clearly causes p to decrease), as well as q and
X0. And of course the singular values play an essential role. Note that in
the noiseless case σ = 0 we can take p = r, all the singular values, and get a
perfect solution.

4.4.5 Regularization Example

Consider the problem of solving a first kind integral equation of the form∫ b

a

K(s, t)u(s) ds = f(t) (48)

for an unknown function u defined on the interval [a, b], where the kernel
function K(s, t) is known for a ≤ s, t ≤ b and the right side function f(t) is
known for a ≤ t ≤ b. In particular, let’s consider the specific case K(s, t) =

e−st and f(t) = 2π(1−e−t)
t2+4π2 , in which case the true solution is u(s) = sin(2πs)
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(but pretend we don’t know that.) We thus want to find (or approximate) a
function u(s) that satisfies∫ 1

0

e−stu(s) ds =
2π(1− e−t)

t2 + 4π2
. (49)

We discretize the problem and turn it into a finite set of linear equations
as follows. First, we’ll approximate u with a piecewise constant function ũ
of the form ũ(s) = uj if (j − 1)/N ≤ s < j/N , where 1 ≤ j ≤ N . In this
case equation (48) becomes

N∑
j=1

Aj(t)uj = f(t) (50)

where

Aj(t) =

∫ j/N

(j−1)/N

e−st dt =
e−jt/N(et/N − 1)

t
.

We’ll now substitute in each of the values t = 1/2N, 3/2N, 5/2N, . . . , (2N −
1)/2N into equation (50) to obtain a system of N linear equations in N
unknowns, of the form

N∑
j=1

Ajkuj = bk (51)

where Ajk = Aj((2k − 1)/2N) and bk = f((2k − 1)/2N). We now solve the
N ×N linear system (51) to obtain u1, . . . , uN , in which uk is considered to
be an estimate of u((2k − 1)/2N).

The graph on the left in Figure 16 shows the result with N = 4 when we
solve the system (51) using traditional unregularized methods. The choice
N = 4 gives a rather crude, low resolution estimate of u. The natural thing
to do to improve the resolution is to increase N . On the right in Figure 16 is
the estimate recovered using N = 10 with no regularization. This is pretty
clearly a disaster. The problem is that when N = 10 the singular values for
the 10× 10 matrix A in equation (51) are

0.809, 0.0641, 2.05× 10−3, 4.00× 10−5, 5.33× 10−7,

5.05× 10−9, 3.52× 10−11, 7.48× 10−12, 2.36× 10−12, 1.46× 10−13.

The ratio of the largest to smallest is S1/S10 ≈ 5.54× 1012. Since the arith-
metic was carried out using 10 significant figures, it’s not surprising that the
results are poor.
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Figure 16: True solution (red, dashed) and recovered estimate (blue, solid),
N = 4.

Consider now what happens if we regularize the solution to (51) using the
ideas above. We’ll assume the true solution has magnitude of about X0 = 1
(anything in the ballpark will do), that σ = 10−11 (the values f((2k−1)/2N)
are around 0.1, so 10 significant figures corresponds to error of about 10−11).
Finally, let’s take q = 0.1 for the allowable fractional error. In this case the
largest value of p we can take in (47) is p = 6. We estimate the solution
using equation (43) but with upper summation limit 6. The result is shown
on the left in Figure 17. The result for N = 20 is shown on the right, where
again we have p = 6.

4.4.6 Another Approach to Regularization with the SVD

Let’s return to the problem of solving Ax = b in which the right side vector
b is corrupted by noise. Let x0 be the true solution i.e., Ax0 = b, and let xe

be the solution to the noisy problem Axe = b+e. Then x0 and xe are given
by equation (44) with cj = uT

j b/Sj and c̃j = uT
j (b + e)/Sj. However, as

we’ve seen, when Sj is close to zero it’s likely that c̃j is far from the correct
value of cj. We’re going to regularize the solution in the presence of noise by
instead taking

c̃j =
uT
j (b+ e)

S̃j

(52)
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Figure 17: True solution (red, dashed) and recovered estimate (blue, solid),
N = 10 and N = 20, regularized.

in equation (44), in which the singular values Sj have been altered; we’ll use
all r terms, however. This is slightly different than what we did in Section
4.4.4, in which the sum for xe in equation (44) was simply truncated when
the singular values got too small.

How should we alter the singular values? For simplicity we’ll assume that
the components of the vector e are independent normal random variables
with zero mean and variance σ2. In this case the error ∥xe − x0∥2 is itself
a random variable whose distribution depends on the choice of S̃j. We’ll
choose the S̃j to minimize E(∥xe −x0∥2), the expected mean square error in
the reconstruction.

It’s easy to see that since the vj are orthonormal vectors we have

∥xe − x0∥2 =
r∑

j=1

(c̃j − cj)
2

=
r∑

j=1

(
uT
j b

S̃j

−
uT
j b

Sj

)2

+
r∑

j=1

(
uT
j e

S̃j

)2

+
r∑

j ̸=k

(
uT
j b

S̃j

−
uT
j b

Sj

)(
uT
k e

S̃k

)
. (53)

Because the ek are independent with zero mean and variance σ2 it’s easy to
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compute

E(uT
k e) = 0 and E((uT

k e)
2) = σ2

m∑
j=1

(uk)
2
j = σ2

since the uk are unit vectors. If we take the expected value of both sides of
equation (53) we then obtain

E(∥xe − x0∥2) =
r∑

j=1

(uT
j b

S̃j

−
uT
j b

Sj

)2

+
σ2

S̃2
j

 . (54)

In particular, the cross terms from (53) drop out. Minimizing E(∥xe−x0∥2)
as a function of the S̃j is easy: simply differentiate both sides of equation
(54) with respect to each S̃j to obtain

∂

∂S̃j

(uT
j b

S̃j

−
uT
j b

Sj

)2

+
σ2

S̃2
j

 =
2

S̃2
j

(
(uT

j b)
2

Sj

−
(uT

j b)
2

S̃j

− σ2

S̃j

)
= 0.

A little algebra shows that the optimal choice for S̃j is

S̃j =
(uT

j b)
2 + σ2

(uT
j b)

2
Sj. (55)

Of course with no noise (σ = 0) we obtain S̃j = Sj. If it so happens that
uT
j b = 0 then we could take “S̃j = ∞,” that is, omit the corresponding terms

in (44), since then c̃j = 0.
From a practical standpoint, note that when we actually seek a regularized

solution to Ax = b we almost always have some reasonable idea of the noise
level σ. Also, we can compute uT

j b (or really, uT
j (b+ e) as a stand in) when

we do the SVD. As a result, we can compute the S̃j in equation (55).

4.5 Example: Gravitational Prospecting Again

Let’s revisit the gravitational prospecting problem of Section 2.3.2 using the
technique of Section 4.4.6. In particular, our tentative λ will be represented
as in equation (14), which we use in equation (13) to form a least-squares
functionQ(a0, . . . , a10). We form the normal equations ∂Q/∂aj = 0, a system
of 11 equations in 11 unknowns. The result obtained by simply solving this
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system without regularization was shown on the right in Figure 10. In this
case the 11× 11 matrix A that governs the system has largest singular value
S1 ≈ 5.443 and smallest singular value S11 ≈ 2.79 × 10−15, for a condition
number of about 1.95× 1015, pretty bad. The computation of the right side
vector b was carried out to 10 digit precision, so we shouldn’t be surprised to
see this error magnified to values in the range 103 to 104, much larger than
the solution itself.

However, if we apply the technique of Section 4.4.6 with estimated noise
level σ = 10−10 the results are much better, as illustrated on the left in Figure
18. On the right in Figure 18 is the reconstruction obtained from data to
which independent normal random noise with standard deviation 10−4 has
been added. The reconstruction was done using σ = 10−4 in equation (55).
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Figure 18: True (red, dashed) and recovered (blue, solid) densities, for noise-
less and noisy data.

5 The Radon Transform and CT Scans

5.1 Introduction

The first practical CT (“computed tomography”, or “computed axial to-
mography” for the “CAT” acronym) scanners were developed in the late
1960’s. This technology allows physicians to create detailed images of two-
dimensional cross sections of a human body, non-invasively. Moreover, mod-
ern computer power allows such images to be amalgamated into detailed 3D
images that can be manipulated in real-time, and provide a powerful diagnos-
tic tool in medicine. The mathematical ideas behind CT scans date back to
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the early part of the 20th century and were developed by Johann Radon. It’s
yet another example of mathematics that greatly pre-dated its incorporation
into technology.

5.2 Attenuation of x-rays

A CT scan works by passing x-rays through the body at many different angles
and positions. The situation is depicted in Figure 19. Depending on the

Output intensity

x-rays input

x-rays input

Output intensity

Figure 19: X-rays passing through at various angles, offsets.

tissues and length of path encountered, the beam is attenuated (i.e., dimmed
or diminished) more or less. By measuring the attenuation of the beam for
“all” angles and positions, we seek to form an image of the interior of the
body by using the fact that different tissues attenuate x-rays differently.

Let’s begin with a simple model of how x-rays are attenuated as they
pass through the body. Let an x-ray move along some line parameterized by
L(s) for a ≤ s ≤ b. We’ll assume the parameterization is with respect to arc
length, so |L′(st)| = 1. The standard model for the attenuation of the x-ray
is

I ′(s) = −λ(L(s))I(s) (56)

where λ ≥ 0 is a function of position and is called the attenuation coefficient
of the tissue, while I(s) ≥ 0 denotes the intensity of the x-ray. Equation
(56) posits that the x-ray is attenuated in proportion to its current intensity,
with the constant of proportionality dependent on the type of tissue through
which the beam is passing at that point.
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If the intensity of the x-ray at s = a is Ia then the solution to (56) is

I(s) = Ia exp

(
−
∫ s

a

λ(L(t)) dt

)
. (57)

Let us parameterize the line so that L(a) corresponds to a point outside the
body, before the x-ray enters, and we’ll assume the attenuation in the air is
zero. Let s = b correspond to a point after which the x-ray has emerged and
Ib = I(b) denote the intensity of the x-ray after it emerges from the body. If
we plug s = b into equation (57) and solve for the value of the integral we
obtain

− ln(Ib/Ia) =

∫ b

a

λ(L(s)) ds (58)

If we know the “input” Ia and measure the “output” Ib, we can recover the
line integral of the attenuation function λ (the right side of (58)) over the
line L through the body.

Problem 26

a. Suppose λ ≡ 0. What is the solution I(t) to (56) with initial condition
I(a) = Ia? Why does that make perfect sense?

b. Suppose I(b) = I(a) (with a < b). What can we conclude about λ on
the line between the points L(a) and L(b), especially given that λ ≥ 0?

5.3 The Radon Transform

5.3.1 Geometry

For convenience, let’s assume that the cross-section of the body we seek to
image is contained in the unit diskD in R2 (but the cross section need not BE
the unit disk!) Refer to Figure 20 below. Let L(s) parameterize a line through
D with unit normal vector n =< cos(θ), sin(θ) >; note n lies at an angle θ
with respect to horizontal. Then the vector < − sin(θ), cos(θ) > (which is
just n rotated 90 degrees counter-clockwise) is parallel to the line. We’ll take
θ to lie in the range 0 ≤ θ < π. For any given θ in this range that point p
on the line closest to the origin is of the form p = rn = r < cos(θ), sin(θ) >
where −1 < r < 1 (if the line goes through the disk D). This line L(s) can
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Figure 20: Geometry for CT scan computations.

thus be parameterized as

L(s) = r < cos(θ), sin(θ) > +s < sin(θ),− cos(θ) > . (59)

In non-parametric form the line is given by n· < x, y >= r, or more explicitly,

cos(θ)x+ sin(θ)y = r. (60)

Indeed, it’s easy to see that there’s a one-to-one correspondence between
lines through D and parameterizations of the form (59) with −1 ≤ r < 1,
0 ≤ θ < π.

With this geometry and notation we can take integration limits a =
−
√
1− r2 and b =

√
1− r2 in equations (57)/(58).

5.3.2 The Forward Transform and Sinogram

To perform a CT scan, mathematically anyway, we fire x-rays through D for
all r ∈ (−1, 1) and θ ∈ [0, π). For each such x-ray we measure or control the
input intensity Ia and measure the output intensity Ib. From this information
and equation (58) we can recover the integral

d(θ, r) =

∫
Lr,θ

λ ds =

∫ √
1−r2

−
√
1−r2

λ(r cos(θ)+s sin(θ), r sin(θ)−s cos(θ)) ds (61)

53



where Lr,θ denotes the line parameterized by (59) and ds is arc length. Equa-
tion (61) defines the Radon Transform in two dimensions. This transform
takes a function λ(x, y) of two variables and turns it into a new function
d(θ, r) in two variables.

Problem 27

a. Suppose λ(x, y) = 1+ x2. Use equation (61) to compute d(θ, r) explic-
itly.

b. Suppose the unit disk D has zero attenuation everywhere except for a
circular “block of lead” of radius R < 1 centered at the origin (that
completely blocks the x-rays). What λ would model this situation?
Find a formula for d(θ, r) in this case.

Of course when we perform a CT scan we’re really implementing a Radon
Transform physically. The goal in CT imaging is to invert the transform, that
is, use d(r, θ) for r ∈ (−1, 1), θ ∈ [0, π) to reconstruct the function λ(x, y).

Here’s an illustration. On the left in Figure 21 is a synthetic “target”
for our CT scan. The default attenuation in the disk is 0, while the darker
areas indicate a higher attenuation (up to a maximum of 1). Even though
the only area of interest is the interior of the disk D, I colored the outside
of D black solely for contrast. On the right is a plot of d(θ, r) (θ down the
vertical axis, r across.) This plot is called the sinogram for the target on the
left. The lighter areas indicate a larger value for the line integral over the
line corresponding to the (θ, r) pair. If you exam the sinogram closely you
can “see” the higher attenuation regions.

But does the data in the sinogram (or the function d(θ, r)) uniquely de-
termine the attenuation function λ(x, y)? If so, how do we quantitatively
invert the Radon transform to construct an actual image?

5.4 Inverting the Radon Transform I

Let’s start by looking at an easy special case for inverting the Radon Trans-
form. Specifically, we’ll assume that the attenuation function λ is a function
of radius only, that is, λ(x, y) = λ(

√
x2 + y2), so λ is effectively a function of

a single variable. It’s then easy to see that d(θ, r) in equation (61) will not
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Figure 21: CT target (left) and sinogram (right).

depend on θ (think about it geometrically). In this case equation (61) can
be written

d(r) =

∫ √
1−r2

−
√
1−r2

λ(
√
r2 + s2) ds (62)

since (−r sin(θ) + s cos(θ))2 + (r cos(θ) + s sin(θ))2 = r2 + s2. Our goal is to
recover the function λ on the interval [0, 1] from knowledge of the quantity
d(r) for 0 ≤ r ≤ 1.

First, symmetry makes it clear that (62) can be written as

d(r) = 2

∫ √
1−r2

0

λ(
√
r2 + s2) ds. (63)

Make a substitution u =
√
r2 + s2, so that s =

√
u2 − r2, ds = u/

√
u2 − r2 du.

Equation (63) becomes

d(r) = 2

∫ 1

r

uλ(u)√
u2 − r2

du (64)
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if we adjust the limits in the integral appropriately. Write equation (64) in
the form

d(r) = 2

∫ 1

r

uλ(u)√
(1− r2)− (1− u2)

du. (65)

Now define z = 1 − r2 (so r =
√
1− z) and substitute t = 1 − u2 (so

u =
√
1− t, du = − 1

2
√
1−t

dt.) Equation (65) becomes

d(
√
1− z) =

∫ z

0

λ(
√
1− t)√
z − t

dt (66)

again, after changing the limits in the integral and replacing all r’s on the
left and right with

√
1− z.

Finally, define functions

g(z) = d(
√
1− z) and ϕ(t) = λ(

√
1− t) (67)

(note if we know g we know d and vice-versa, ditto for λ and ϕ. Equation
(66) becomes a first kind Volterra integral equation,∫ z

0

ϕ(t)√
z − t

dt = g(z) (68)

for 0 ≤ z ≤ 1. In fact, equation (68) is called Abel’s equation.
As it turns out, Abel’s equation has a simple closed form solution! You

can verify directly that

ϕ(t) =
1

π

d

dt

(∫ t

0

g(z) dz√
t− z

)
. (69)

In summary then, in the radial case we can in principle recover the attenua-
tion function λ(r) from the function d(r) as follows:

1. Let g(z) = d(
√
1− z) for 0 ≤ z ≤ 1.

2. Use equation (68) to compute the function ϕ(t) for 0 ≤ t ≤ 1.

3. Recover λ as λ(r) = ϕ(1− r2).
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5.5 Inversion Example

Let’s use λ(z) = 2− z + sin(4z) as an example target attenuation function,
and pretend we’ve measured the quantity d(r) at n = 10 offsets of the form
rk = k/n for 0 ≤ k ≤ n−1. The data (computed by evaluating the right side
of equation (62) numerically) is given in the table below, to three significant
figures.

r 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
d(r) 3.827 3.843 3.797 3.624 3.297 2.822 2.234 1.593 0.972 0.445

We can also use the value d(1) = 0, a given. But to use equation (69) what
we really need are the values of g(z) = d(

√
1− z), which yields the data

below (just use r =
√
1− z, so z = 1 − r2 to transform the independent

variable):

z 1.0 0.99 0.96 0.91 0.84 0.75 0.64 0.51 0.36 0.19
g(z) 3.827 3.843 3.797 3.624 3.297 2.822 2.234 1.593 0.972 0.445

We also have g(0) = 0. Our goal is to use this data to estimate ϕ with
equation (69).

One simple approach is to assume that g is piecewise linear, or perhaps
a cubic spline, in between the z values listed above. We plug such a g into
equation (69), evaluate the integral, differentiate to obtain ϕ(t), then change
variables back to λ as λ(u) = ϕ(1 − u2). The result of interpolating the
data for g(z) above with a piecewise linear function and carrying out this
procedure is shown in Figure 22.

Problem 28 Suppose the attenuation is radial and given by λ(t) = 1+t2/3.

a. Compute the sinogram data d(r) using equation (62), in closed form.

b. Find the function g(z) explicitly using equation (67).

c. Use formula (69) to compute ϕ(t), then use (67) to find λ. Of course,
you should get back what you started with.

Problem 29 Here’s an alternate way to estimate λ in the example above,
using equation (68) directly. Assume that ϕ(t) = a0+ a1t+ a2t

2, a quadratic
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Figure 22: True (blue, dashed) and estimated (red, solid) attenuation func-
tions.

polynomial (you can go higher if you like). Plug this choice for ϕ(t) into
equation (68) and evaluate the integral in terms of a0, a1, a2, and z; indeed,
let

g̃(a0, a1, a2, z) =

∫ z

0

a0 + a1t+ a2t
2

√
t− z

dt.

In computing g̃ you might find is useful to note that∫ z

0

tk√
t− z

dt = ckz
k+1/2

with c0 = 2, c1 = 4/3, c2 = 16/15. Then choose the ak to minimize the
least-squares functional

Q(a0, a1, a2) =
10∑
j=1

(g̃(a0, a1, a2, zj)− gj)
2
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a quadratic optimization problem, where the zj, gj are from the tabled val-
ues for g above. Finally, form the estimate λ(u) = g̃(a0, a1, a2, 1 − u2) and
compare to the true λ.

5.6 Inverting the Radon Transform II

Let’s start with a very simple example that leads to an intuitive idea for
inverting the Radon Transform, as defined by equation (61). Consider the
target as illustrated below on the left in Figure 23, consisting of a zero at-
tenuation background in the unit disk with a single circular “inclusion” of
higher attenuation. The sinogram is shown on the right.
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Figure 23: Sample CT target and sinogram.

Forget for a moment about the fact that we know where the inclusion
is, and instead think about what we’d see if we fired x-rays through the
unit disk. Each x-ray that passes through this inclusion is attenuated more
than comparable x-rays that don’t pass through the inclusion. The result is
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that the corresponding line integrals of the attenuation function λ are larger
(refer back to equation (58)) whenever the line passes through this area of
high attenuation, smaller when the line passes through region of smaller
attenuation. The situation in illustrated in Figure 24, where the (solid) red
lines pass through the high-attenuation inclusion while the (dashed) green
lines do not. We expect the line integrals for the solid red lines to be larger
than those for the green dashed lines.

This suggests a way to invert the Radon transform, at least approxi-
mately: For any give point (x0, y0) in the disk, estimate λ(x0, y0) by doing
some kind of average of all the line integrals corresponding to lines that pass
through (x0, y0). That is, average the value of d(θ, r) over all θ, r pairs that
correspond to a line that passes through (x0, y0). The intuitive idea is that
the line integrals for lines that pass through high attenuation regions will be
larger, and so will have a larger average. Conversely, the line integrals for
lines that pass through low attenuation regions will be smaller, and so will
have a smaller average.

From equation (60) it’s easy to see that for any given angle θ the line
with normal vector n =< cos(θ), sin(θ) > through the point (x0, y0) has r
value

r = cos(θ)x0 + sin(θ)y0. (70)

Averaging d(θ, r) over all such θ, r pairs gives

λ̃(x0, y0) =
1

π

∫ π

0

d(θ, cos(θ)x0 + sin(θ)y0)d θ. (71)

I call the integral on the right in (71)“λ̃(x0, y0)” because it’s an estimate of
the value of λ at (x0, y0).

The procedure above—in particular, the integral on the right in (71)—is
called the back projection of d(θ, r). This terminology stems from another
interpretation of the operation above: For any given choice of θ and r we
back project (“smear”) the value of d(θ, r) uniformly over the line x cos(θ)+
y sin(θ) = r. We repeat this for all lines through the disk, overlaying each
smeared value on top of the others. The result is that we build up an image
that’s an estimate of the true attenuation function λ.

Example 3 We’ll use the attenuation function on the left in Figure 23, and
the accompanying data for the sinogram on the right. The picture on the
left in Figure 25 shows what we obtain if, at each point (x0, y0) in the disk,
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Figure 24: Solid (red) lines pass through high attenuation inclusion (blue),
while dashed (green) lines do not.

choose 10 lines through the point at angle θ = 0, π/10, 2π/10, . . . , 9π/10,
compute the corresponding value of r from equation (70), then average the
corresponding values of d(θ, r) (a discrete approximation to the back projec-
tion integral.) The picture on the left in Figure 25 shows the result for 20
integrals. Figure 26 shows the results for 50 and 300 line integrals through
each point.

Back projection seems very promising, but it looks like the final image
is a slightly blurred version of the original attenuation function (it doesn’t
get better after 300) . This is in fact correct—back projection provides only
an approximate inversion for the Radon transform. The result is a slightly
blurred version of the original.

The exact inverse for the Radon transform is obtained by applying a
“high-pass” or “ramp” filter to the sinogram d(θ, r), in the r variable, prior
to performing back projection. It’s a very simple operation, quite akin to
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Figure 25: Reconstruction from 10 line integrals (left) and 20 (right).

differentiating d(θ, r) with respect to r, but the proof that this then yields
an exact inverse requires the use of the Fourier integral transform, a bit
beyond the scope of the present discussion. However, this is the standard
procedure for inverting the Radon transform and is called, not surprisingly,
filtered back projection.

To illustrate, in Figure 27 we show on the left the result of back projecting
the sinogram from Figure 21, with no filtering. On the right is the filtered
back projected image.

As a last example, on the left in Figure 28 is an attenuation function, my
version of a standard simulated CT target called the Shepp-Logan phantom
(it’s supposed to look vaguely anatomical). On the right is the sinogram
for the target on the left. Figure 29 shows the unfiltered and filtered back
projected reconstructions.

Problem 30 Let λ(x, y) = 1 in the unit disk.

a. Compute d(θ, r) explicitly.

b. Use equation (71) to back project your d(θ, r) from part (a) and com-
pute λ̃(x0, y0). To make things easier, note that since λ is radial, d will
depend only on r. Thus you may as well stick to computing λ̃(x0, 0).
But a computer algebra system is still helpful!
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Figure 26: Reconstruction from 50 line integrals (left) and 300 (right).

c. If back projection were the exact inverse we’d hope in this case that
λ̃(x0, 0) would equal λ(x0, 0), or at least be a constant multiple of
λ(x0, 0). Show that this is not the case (i.e., λ̃ isn’t constant).

Problem 31 Based on the above discussion, where do you think ill-posedness
might pop up in inverting a Radon transform?
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Figure 27: Back projection image (left) and filtered back projection (right)
for sinogram in Figure 21.
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Figure 28: Original target and sinogram.

Figure 29: Unfiltered back projection and filtered back projection.
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