
Implementing
Object-Oriented Languages

 -

Part 1
Y.N. Srikant
Computer Science and Automation
Indian Institute of Science
Bangalore 560 012

NPTEL Course on Compiler Design

Y.N. Srikant 2

Outline of the Lecture

Language requirements
Mapping names to methods
Variable name visibility
Code generation for methods
Simple optimizations
Parts of this lecture are based on the book,
“Engineering a Compiler”, by Keith Cooper and
Linda Torczon, Morgan Kaufmann, 2004,
sections 6.3.3 and 7.10.

Y.N. Srikant 3

Language Requirements

Objects and Classes
Inheritance, subclasses and superclasses
Inheritance requires that a subclass have all
the instance variables specified by its
superclass

Necessary for superclass methods to work with
subclass objects

If A is B’s superclass, then some or all of A’s
methods/instance variables may be
redefined in B

Y.N. Srikant 4

Example of Class Hierarchy with
 Complete Method Tables

n: 0

fee

fum

n: 1

fee

fum

n: 2

fee

fum

x: 5

x: 5

y: 3

z:
foe foe

fie

x: 2

y: 0

z:

y: 3

fum
...

fee
...

foe
...

fee
...

fee
...

fie
...

one
two

three
c

a
b

object

class

method

Y.N. Srikant 5

Mapping Names to Methods

Method invocations are not static calls
a.fee() invokes one.fee(), b.foe() invokes two.foe(),
and c.fum() invokes three.fum()
Conceptually, method lookup behaves as if it
performs a search for each procedure call

These are called virtual calls
Search for the method in the receiver’s class; if it fails,
move up to the receiver’s superclass, and further
To make this search efficient, an implementation places a
complete method table in each class
Or, a pointer to the method table is included (virtual tbl ptr)

Y.N. Srikant 6

Mapping Names to Methods

If the class structure can be determined wholly at
compile time, then the method tables can be
statically built for each class
If classes can be created at run-time or loaded
dynamically (class definition can change too)

Full lookup in the class hierarchy can be performed at run-
time or
Use complete method tables as before, and include a
mechanism to update them when needed

Y.N. Srikant 7

Rules for Variable Name Visibility

Invoking b.fee() allows fee() access to all of
b’s instance variables (x,y,z), (since fee and b
are both declared by class one), and also all
class variables of classes one, two, and three
However, invoking b.foe() allows foe() access
only to instance variables x and y of b (not z),
since foe() is declared by class two, and b by
class one

foe() can also access class variables of classes
two and three, but not class variables of class one

Y.N. Srikant 8

Example of Class Hierarchy with
 Complete Method Tables

n: 0

fee

fum

n: 1

fee

fum

n: 2

fee

fum

x: 5

x: 5

y: 3

z:
foe foe

fie

x: 2

y: 0

z:

y: 3

fum
...

fee
...

foe
...

fee
...

fee
...

fie
...

one
two

three
c

a
b

object

class

method

Y.N. Srikant 9

Code Generation for Methods

Methods can access any data member of any
object that becomes its receiver

receiver - every object that can find the method
subject to class hierarchy restrictions

Compiler must establish an offset for each
data member that applies uniformly to every
receiver
The compiler constructs these offsets as it
processes the declarations for a class

Objects contain no code, only data

Y.N. Srikant 10

Single Class, No Inheritance

Example:
Class giant {

int fee() {...}
int fie() {...}
int foe() {...}
int fum() {...}

static n;
int x,y;
}

%giant.new_

%giant.fee_

%giant.fie_

%giant.foe_

%giant.fum_

2

13

14

15

16

giant
class
record

joe
object
layout

fred
object
layout

x

y

y

x

0

4

8

12

16
20

method
pointer
offset

Y.N. Srikant 11

Implementing Single Inheritance

%new_

%fee_

%new_

%fee_

%new_

%fee_

%new_

x: 15

y: 16

%foe_ %fie_

2

x: 13

y: 14

...

giantmc

sc
class

joe

fred

%fum_

1

1

x: 5

jack
x: 5

y: 6

goose

class ptr
superclass ptr

methods
variables

class ptr

variablesclass object

{
z: 20

z: 30

Y.N. Srikant 12

Single Inheritance Object Layout

sc data
members

mc data
members

giant data
members

class
pointer

sc data
members (x)

mc data
members (y)

giant data
members (z)

Object layout for
joe/fred (giant)

class
pointer

sc data
members (x)

mc data
members (y)

Object layout
for goose (mc)

class
pointer

sc data
members (x)

Object layout
for jack (sc)

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fum_
pointer 1

class record
for class sc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%foe_
pointer 1class record

for class mc

class
pointer

superclass
pointer

%new_
pointer

%fee_
pointer

%fie_
pointer 2class record

for class giant

Y.N. Srikant 13

Single Inheritance Object Layout

Now, an instance variable has the same offset in
every class where it exists up in its superclass
Method tables also follow a similar sequence as
above
When a class redefines a method defined in one of
its superclasses

the method pointer for that method implementation must
be stored at the same offset as the previous
implementation of that method in the superclasses

class
pointer

sc data
members

mc data
members

giant data
members

Y.N. Srikant 14

Implementing Multiple Inheritance

Assume that class c inherits from classes a
and b, but that a and b are unrelated in the
inheritance hierarchy
Assume that class c implements fee, inherits
fie from a, and inherits foe and fum from b
The class diagram and the object layouts are
shown next

Y.N. Srikant 15

Implementing Multiple Inheritance

%new_
pointer

%new_
pointer

%new_
pointer

fum
...

foe
...

fee
...

fie
...

class a class b

class c

Y.N. Srikant 16

Implementing Multiple Inheritance

class
pointer

a data
members

b data
members

c data
members

object layout
for objects
of class c

class
pointer

a data
members

object layout
for objects
of class a

class
pointer

b data
members

object layout
for objects
of class b

Y.N. Srikant 17

Implementing Multiple Inheritance

When c.fie() (inherited from a) is invoked with an
object layout as above, it finds all of a’s instance
variables at the correct offsets

Since fie was compiled with class a, it will not (and cannot)
access the other instance variables present in the object
and hence works correctly

Similarly, c.fee() also works correctly (implemented
in c)

fee finds all the instance variables at the correct offsets
since it was compiled with class c with a knowledge of the
entire class hierarchy

class
pointer

a data
members

b data
members

c data
members

object layout
for objects
of class c

Y.N. Srikant 18

Implementing Multiple Inheritance

%new_
pointer

%new_
pointer

%new_
pointer

fum
...

foe
...

fee
...

fie
...

class a class b

class c

Y.N. Srikant 19

Implementing Multiple Inheritance

However, invoking c.foe() or c.fum() creates a
problem

foe and fum are inherited from b, but invoked from an
object of class c
Instance variables of class b are in the wrong place in this
object record – sandwiched between the instance variables
of classes a and c
In objects of class b, the instance variables are at the start
of the object record
Hence the offset to the instance variables of class b inside
an object record of class c is unknown

class
pointer

a data
members

b data
members

c data
members

object layout
for objects
of class c

Y.N. Srikant 20

Implementing Multiple Inheritance

To compensate for this, the compiler must
insert code to adjust the receiver pointer so
that it points into the middle of the object
record – to the beginning of b’s instance
variables
There are two ways of doing this

Y.N. Srikant 21

Implementing Multiple Inheritance
 -

Fixed Offset Method

Record the constant offset in the method
table along with the methods

Offsets for this example are as follows:
(c) fee : 0, (a) fie: 0, (b) foe : 8, (b) fum : 8,
assuming that instance variables of class a take 8
bytes

Generated code adds this offset to the
receiver’s pointer address before invoking the
method

class
pointer

a data
members

b data
members

c data
members

object layout
for objects
of class c

Y.N. Srikant 22

Implementing Multiple Inheritance

%new_
pointer

%new_
pointer

%new_
pointer

fum
...

foe
...

fee
...

fie
...

class a class b

class c

class
pointer

a data
members

b data
members

c data
members

object layout
for objects
of class c

data pointer for c.foe()

Y.N. Srikant 23

Implementing Multiple Inheritance
 -

Trampoline Functions
Create trampoline functions for each method
of class b

A function that increments this (pointer to
receiver) by the required offset and then invokes
the actual method from b.
On return, it decrements the receiver pointer, if it
was passed by reference

Y.N. Srikant 24

Implementing Multiple Inheritance

Trampolines appear to be more expensive
than the fixed offset method, but not really so

They are used only for calls to methods inherited
from b

In the other method, offset (possibly 0) was added for all
calls

Method inlining will make it better than option 1,
since the offset is a constant

Finally, a duplicate class pointer (pointing to
class c) may need to be inserted just before
instance variables of b (for convenience)

	Implementing �Object-Oriented Languages�- Part 1
	Outline of the Lecture
	Language Requirements
	Example of Class Hierarchy with�Complete Method Tables
	Mapping Names to Methods
	Mapping Names to Methods
	Rules for Variable Name Visibility
	Example of Class Hierarchy with�Complete Method Tables
	Code Generation for Methods
	Single Class, No Inheritance
	Implementing Single Inheritance
	Single Inheritance Object Layout
	Single Inheritance Object Layout
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance�- Fixed Offset Method
	Implementing Multiple Inheritance
	Implementing Multiple Inheritance�- Trampoline Functions
	Implementing Multiple Inheritance

