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Abstract

The Web graph is a giant social network whose properties
have been measured and modeled extensively in recent
years. Most such studies concentrate on the graph structure
alone, and do not consider textual properties of the nodes.
Consequently, Web communities have been characterized
purely in terms of graph structure and not on page
content. We propose that a topic taxonomy such as Yahoo!
or the Open Directory provides a useful framework for
understanding the structure of content-based clusters and
communities. In particular, using a topic taxonomy and
an automatic classifier, we can measure the background
distribution of broad topics on the Web, and analyze
the capability of recent random walk algorithms to draw
samples which follow such distributions. In addition, we
can measure the probability that a page about one broad
topic will link to another broad topic. Extending this
experiment, we can measure how quickly topic context is
lost while walking randomly on the Web graph. Estimates
of this topic mixing distance may explain why a global
PageRank is still meaningful in the context of broad
queries. In general, our measurements may prove valuable
in the design of community-specific crawlers and link-based
ranking systems.

Categories and subject descriptors:
H.5.4 [Information interfaces and presentation]:
Hypertext/hypermedia;
H.5.3 [Information interfaces and presentation]:
Group and Organization Interfaces, Theory and models;
H.1.0 [Information systems]: Models and principles.

General terms: Measurements, experimentation.

Keywords: Social network analysis, Web bibliometry.

1 Introduction

The Web is an actively evolving social network which
brings together myriad topics into a uniform hypertextual
medium. Superficially, it looks like a giant graph where
nodes are hypertext pages and edges are hyperlinks. A
closer look reveals fascinating detail: the textual matter, tag
structure, site identity and organization, and (link) affinity
to prominent topic directories such as Yahoo! and the Open
Directory (DMoz), to name just a few. The best strategies
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for browsing, searching and foraging for Web information
are clearly predicated on our understanding of the social
processes which shape the Web. Naturally, the structure and
evolution of the Web has been under intensive measurements
and modeling in recent years.

1.1 Graph-theoretic models and
measurements

With a few notable exceptions, most studies conducted on
the Web have focused on its graph-theoretic aspects.

Barabási and Albert [3] proposed a local model for social
network evolution based on preferential attachment : nodes
with large degree are proportionately more likely to become
incident to new links. They applied it to the Web graph,
and the model predicted the power-law degree distribution
quite accurately, except for underestimating the density
of low-degree nodes. This discrepancy was later removed
by Pennock et al. [30] by using a linear combination of
preferential and random attachment.

Random graph models materialize edges independently
with a fixed probability. If the Web were a random graph,
large densely connected components and bipartite cores
would be extremely unlikely. The Web is not random, and
such subgraphs abound on the Web. A small bipartite
core is often an indicator of an emerging topic. Kumar
et al. [21] mine tens of thousands of such bipartite cores
and empirically observed that a large fraction are in fact
topically coherent, but the definition of a ‘topic’ was left
informal.

Dense bipartite subgraphs are an important indicator
of community formation, but they may not be the only
one. Flake et al. [17] propose a general definition of
a community as a subgraph whose internal link density
exceeds the density of connection to nodes outside it by some
margin. They use this definition to drive a crawler, starting
from exemplary members of a community, and verify that a
coherent community graph is collected.

Bröder et al. [7] exposed the large-scale structure of
the Web graph as having a central, strongly connected
core (SCC); a subgraph with directed paths leading into
the SCC, a component leading away from the SCC, and
relatively isolated tendrils attached to one of the three large
subgraphs. These four regions were each about a fourth
the size of the Web, which led the authors to call this the
“bow-tie” model of the Web. They also measured interesting
properties like the average path lengths between connected
nodes and the distribution of in- and out-degree. Follow-
up work by Dill et al. [15] showed that subgraphs selected
from the Web as per specific criteria (domain restriction,
occurrence of keyword, etc.) also appear to often be bow-tie-
like, although the ratio of component sizes vary somewhat.
Content-based criteria used keywords, not topics, and the
interaction between topics, or the radius of topical clusters,
were not addressed.



1.2 Content-based locality measurements

A few studies have concentrated on textual content.
Davison pioneered a study [13] over about 100,000 pages

sampled from the repository of a research search engine
called DiscoWeb. He collected the following kinds of pairs
of Web pages:

Random: Two different pages were sampled uniformly at
random (uar) from the collection.

Sibling: One page x was picked uar from the collection,
and then two distinct random outlinks u and v were
selected from among the outlinks of x.

SameDomain: A page u was sampled uar from the
collection. A random outlink v was chosen such that
u and v were from the same host (identified by name).

DiffDomain: A page u was sampled uar from the
collection. A random outlink v was chosen such that u
and v were from different hosts (identified by name).

Davison represented the text on these pages using the
standard “vector space model” from Information Retrieval
[33] in which each document u is represented by a vector u of
suitably normalized term counts in a geometric space with
an axis for each term. He measured the dot product between
each pair of document vectors as a measure of similarity, and
made the following observations. Random page pairs have
almost nothing in common. Linked pages are more similar
when the pages are from the same domain. Sibling pages are
more similar than the linked pages of different domain. More
recently, Menczer [25] has studied and modeled carefully the
rapid decay in TFIDF similarity to a starting node as one
walks away from that node.

A single starting page u0 may be a noisy indicator of
semantic similarity with pages later on in the walk, because
it may have a limited vocabulary. The pages on a short
walk (u0, u1, . . . , ui) may all be clearly about a given broad
topic c, but each page may use a negligible fraction of
the vocabulary of c. Thus, it is possible that u0 · ui is
small, whereas

∑
c

Pr(c) Pr(u0|c) Pr(ui|c) (the probability
that they are both relevant to the same topic, see §2.2) is
quite large.

It is also more informative to estimate the distance at
which topical memory is lost, rather than only measure
the rate of relevance decay for some fixed starting topics,
because there is no reference for how dissimilar u0 and ui
need to be before we agree that memory of u0 has been lost.

We also go beyond the studies of Davison and Menczer
in that we analyze the relation between different topics
rather than only model similarity between pages in a small
neighborhood.

1.3 Our contributions

We bring together two existing experimental techniques to
launch a thorough study of topic-based properties of the
Web: the ability to classify a Web page into predefined
topics using a high-speed automatic classifier, and the ability
to draw near-uniform samples from the Web graph using
random walks. We use a 482-class topic taxonomy from
DMoz (http://dmoz.org/) and a sampling and classifying
technique that we will describe in §2. By obtaining evidence

that our samples are faithful, we avoid processing large
Web crawls, although even our sampling experiments have
fetched almost 16 million pages.

Our study reveals the following properties about
communities of broad topics in the Web graph.

Convergence of topic distribution on undirected
random walks: Algorithms for sampling Web pages uar
have been evaluated on structural properties such as degree
distributions [2, 32]. Extending these techniques, we design
a certain undirected random walk (i.e., assuming hyperlinks
are bidirectional) to estimate the distribution of Web pages
w.r.t. the Dmoz topics (§3). We start from drastically
different topics, and as we strike out longer and longer
random paths, the topic distribution of pages collected
from these paths start to converge (§3.1). This gives us
strong circumstantial evidence that the Web has a well-
defined background topic distribution, even though we
cannot directly measure the fidelity of our distribution w.r.t.
the ‘whole’ Web.

Degree distribution restricted to topics: Once we
have some confidence in collecting samples which are faithful
to the Web’s topic distribution, we can measure the
degree distribution of pages belonging to each topic-based
community. We observe (§3.4) that the degree distribution
for many topics follow the power law, just like the global
distribution reported by Bröder and others. We offer a
heuristic explanation for this observation.

How topic-biased are breadth-first crawls? Several
production crawlers follow an approximate breadth-first
strategy. A breadth-first crawler was used to build the
Connectivity Server [5, 7] at Alta Vista. Najork and Weiner
[27] report that a breadth-first crawl visits pages with high
PageRank early, a valuable property for a search engine. A
crawl of over 80 million pages at the NEC Research Institute
broadly follows a breadth-first policy. However, can we be
sure that a breadth-first crawl is faithful to the Web’s topic
distribution? We observe that any bias in the seed URLs
persists up to a few links away, but the fidelity does get
slowly better (§3.2).

Representation of topics in Web directories: Al-
though we use Web directories to derive our system of
topics, they need not have fair representation of topics on
the Web. By studying the difference between the directory
and background distributions (§3.3), we can spot Web topics
and communities that have an unexpectedly low (or high)
representation on the directory, and try to understand why.

Topic convergence on directed walks: We also study
(§4) page samples collected from ordinary random walks
that only follow hyperlinks in the forward direction [18]. We
discover that these ordinary walks do not lose the starting
topic memory as quickly as undirected walks, and they do
not approach the background distribution either. Different
communities lose the topic memory at different rates. These
phenomena give us valuable insight into the success of
focused crawlers [11, 14, 31] and the effect of topical clusters
on Google’s PageRank algorithm [6, 28].

Link-based vs. content-based Web communities:
We extend the above measurements to construct a
topic citation matrix in which entry (i, j) represents the
probability that a page about topic i cites a page about topic
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j (§5). The topic citation matrix has many uses that we will
discuss later. Typically, if the topics are chosen well and if
there is topical clustering on the Web, we expect to see heavy
diagonals in the matrix and small off-diagonal probabilities.
Prominent off-diagonal entries signify human judgment that
two topics adjudged different by the taxonomy builders
are found to have connections endorsed by Web content
writers. Such observations may guide the taxonomy builders
to improve the structure of their taxonomies.

1.4 Limitations

A fixed taxonomy with coarse-grained topics has no hope
of capturing all possible information needs of Web users,
and new topics emerge on the Web all the time. Another
concern is the potentially low accuracy of a state-of-the-
art text classifier on even such broad topics. Despite these
limitations, we believe that data collected using a fixed
classification system and an imperfect classifier can still be
valuable.

We argue that new topics and communities, while
numerous, are almost always extensions and specializations
of existing broad classes. Topics at and near the top levels
of Yahoo! and Dmoz change very rarely, if at all.

As long as the automatic classifier gives us a significant
boost in accuracy beyond random choice, we need not be
overly concerned about the absolute accuracy (although
larger accuracy is obviously better). By using a held-
out data set, we can estimate which topics are frequently
confused by our classifier, and suitably discount such errors
when interpreting collected data.

Recent hypertext classification algorithms [8] may
reduce the error by using hyperlink features, but this may
produce misleading numbers: first the classifier uses link
structure to estimate classes, then we correlate the class
with link structure—the results are likely to show artificial
coupling between text and link features.

A classifier also acts as a dimensionality reduction device
and makes the collected data more dense. Since we use a few
hundred classes but Web documents collectively use millions
of term features, estimating class distributions is easier than
estimating term distributions.

2 Building blocks

2.1 Sampling Web pages

Sampling approximately uniformly at random (uar) is a
key enabling technology that we use in this work, and we
review sampling techniques in some detail here. The Web
graph is practically infinite, because URLs can embed CGI
queries and servers can map static-looking URLs to dynamic
content. We can discuss sample quality only in the context
of a finite, static graph. A small set of strict rules often
suffices to make the Web graph effectively finite, even if
unspeakably large. E.g.,

• URLs with substrings in the following list are
disallowed: ?, cgi-bin, &

• URLs with more than some maximum number of path
components (counted by slashes) are disallowed

• URLs are permitted to have some maximum number
of characters.

Suppose the Web is static and we start from a given set
of URLs and crawl as far as we can, ignoring URLs which
do not satisfy the above rules, collecting a graph G in the
process. Having fetched all of G, we can easily sample a
URL uar from G. The key question is, can we sample a
URL uar from G while fetching a subgraph much smaller
than G?

PageRank-based random walk: Henzinger et al. [18]
proposed an early approach to this problem using PageRank
[6, 28]. The PageRank prestige π(u) of a node u in G is
defined as the relative rate of returning to node u during an
infinite random walk on G, where each step from a node v is
taken as follows: with probability d (0 < d < 1) we jump to
a random node in G, and with probability 1−d we follow an
outlink from v uar. The steady state distribution π of this
walk is called the PageRank. Henzinger et al. first performed
a PageRank-style walk for some steps, and then corrected
the bias by sampling the visited nodes with probability
inversely proportion to their π scores. Rusmevichientong
et al. [32] have enhanced this algorithm and proved that
uniform sampling is achieved asymptotically.

The Bar-Yossef random walk: An alternative to the
biased walk followed by the correction is to modify the graph
so that the walk itself becomes unbiased. Bar-Yossef et al. [2]
achieve this by turning the Web graph into an undirected,
regular1 graph, for which the PageRank vector is known
to have identical values for all nodes. The links are made
undirected by using the link:... backlink query facility
given by search engines. This strategy parasites on other
people having crawled large sections of the Web to find the
backlinks, and is not guaranteed to find all backlinks. This
will introduce some initial bias in the sample towards pages
close to the starting point of the walk. Unfortunately, there
is no easy way around this bias until and unless hyperlinks
become bidirectional entities on the Web [9]. However we
can assess the quality of the samples through other means.
The graph is made regular by adding sufficient numbers of
self-loops at each node; see §3.

We use a variant of Bar-Yossef’s walk, with random
jumps thrown in with a small probability, which in our
empirical experience gave us faster convergence. We call
this the Sampling walk, whereas the PageRank walk with
d = 0 is called the Wander walk.

2.2 Taxonomy design and document
classification

We downloaded from the Open Directory (http://dmoz.
org) an RDF file with over 271,954 topics arranged in a
tree hierarchy with depth at least 6, containing a total of
about 1,697,266 sample URLs. Since the set of topics was
very large and many topics had scarce training data, we
pruned the Dmoz tree to a manageable frontier as described
in §3.1 of our companion paper in these proceedings [10].
The pruned taxonomy had 482 leaf nodes and a total of
144,859 sample URLs. Out of these we could successfully
fetch about 120,000 URLs.

1All nodes have equal degree in a regular graph.
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For the classifier we used the public domain BOW toolkit
and the Rainbow naive Bayes (NB) classifier created by
McCallum and others [23]. Bow and Rainbow are very
fast C implementations which let us classify pages in real
time as they were being crawled. Rainbow’s naive Bayes
learner is given a set of training documents, each labeled
with one of a finite set of classes/topics. A document d is
modeled as a multiset or bag of words, {〈t, n(d, t)〉} where t
is a term/word/token/feature. The prior probability Pr(c) is
the fraction of training documents labeled with class c. The
NB model is parameterized by a set of numbers θc,t which
is roughly the rate of occurrence of term t in class c, more
exactly, (1 +

∑
d∈Dc

n(d, t))/(|T |+
∑

d,τ
n(d, τ)), where Dc

is the set of documents labeled with c and T is the entire
vocabulary. The NB learner assumes independence between
features, and estimates

Pr(c|d) ∝ Pr(c) Pr(d|c) ≈ Pr(c)
∏
t∈d

θ
n(d,t)
c,t . (1)

Nigam et al. provide further details [24].

3 Background topic distribution

In this section we seek to characterize and estimate the
distribution of topics on the Web, i.e., the fractions of Web
pages relevant to a set of given topics which we assume to
cover all Web content.

We will use only Sampling walks here; Wander walks
will be used in §4. Bar-Yossef et al.’s random walk has a few
limitations. Apart from the usual bias towards high indegree
node and nodes close to the starting point, it may find
convergence elusive in practice if snared in densely linked
clusters with a sparse egress. One example of such a graph
is the “lollipop graph” which is a completely-connected k-
clique with a ‘stick’ of length k dangling from one node
belonging to the clique. It is easy to see that a walk
starting on the stick is doomed to enter the clique with high
probability, whereas getting out from the clique to the stick
will take a long, long time [26].

Unfortunately, lollipops and near-lollipops are not hard
to find on the Web: http://www.amazon.com/, http://

www.stadions.dk/ and http://www.chipcenter.com/ are
some prominent examples. Hence we add a PageRank-
style random jump parameter to the original Bar-Yossef
algorithm [2], set to 0.01–0.05 throughout our experiments,
i.e., with this probability at every step, we jump uar to a
node visited earlier in the Sampling walk. Berg confirms
[4] that this improves the stability and convergence of the
Sampling walks.

3.1 Convergence

Bar-Yossef et al. showed that the samples collected by a
Sampling walk have degree distributions that converge
quickly (within a few hundred distinct page fetches) to the
“global” degree distribution (obtained from the Internet
Archive). It would be interesting to see if and how
convergence properties generalize to other page attributes,
such as topics.

Our basic experimental setup starts with two URLs
u0 and v0, generally about very different topics. We now
execute the following steps:

Figure 1: Using a virtual stride on the Bar-Yossef walk to
derive a near-random sample.

1. Perform separate Sampling walks starting from each
of them. In our implementation we do not model the
self-loops for efficiency, so we get a what we call a
“physical walk” where successive URLs are generally
different.

2. We estimate an upper bound to the maximum degree
M of any node in the Web. We can pick a very loose
upper bound, such as 10,000,000—this will increase
the number of self-loops, but have no effect on the
efficiency or the quality of the sample. The self-loop
probability of a node u with total (in+out) degree du
is set to 1− du/M .

3. We turn the physical walk into a “virtual walk” by
self-looping at each URL u for a random number
of times, distributed as a geometric random variable
with mean du/M . (See Figure 1.) A geometric
random variable X with mean θ has value x with
probability Pr(X = x) = θ(1− θ)x−1, for x = 1, 2, . . ..

4. Ideally, we should use one Sampling walk for
collecting each sample page (i.e., keep only the last
page reached in every Sampling walk), but walking
is expensive (mainly because of backlink queries which
need to be polite to the search service). Therefore we
pick a sufficiently large (virtual) stride k over which
we hope “memory is lost” on the virtual walk, and
collect URL samples every k hops from the virtual
walk. We play with a range of ks to guard against too
small a choice.

In our first experiment, we pick some 20 topics from our
482-topic Dmoz collection and one representative URL from
each topic as a starting point for a Sampling walk. Each
page visited in a walk is classified using Rainbow and its
class histogram as well as in- and out-neighbors stored in a
relational database. Then we consider pairs of walks, turn
them into virtual walks and sample at a given stride on the
fly.

Suppose we have thus collected two sets of documents
D1 and D2. Each document d has a class probability vector
p(d) = (Pr(c|d)∀c), where

∑
c

Pr(c|d) = 1. E.g., if we have
only two topics /Arts and /Sports, a document may be
represented by the vector (0.9, 0.1). The topic distribution
of D1 (likewise, D2) is simply the average.

p(D1) =
1

|D1|
∑
d∈D1

p(d). (2)
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This is a form of soft counting. The ‘hard’ analog would be
to assign each d to its highest scoring class and count up
the number of documents assigned to each class. Lewis [22]
notes that soft counting gives better estimates than hard
counting for small sample sizes.

We characterize the difference between p(D1) and
p(D2) as the L1 difference between the two vectors,∑

c
|pc(D1) − pc(D2)|. This difference ranges between 0

and 2 for any two probability vectors over the classes. We
had to avoid the use of the more well-known Kullback-
Leibler (KL) divergence

KL(p(D1)||p(D2)) =
∑
c

pc(D1) log
pc(D1)

pc(D2)
(3)

because of two problems: it is asymmetric, and more
seriously, it cannot deal with zero probabilities gracefully.
The symmetric Jensen-Shannon (JS) divergence [12] also has
problems with zeroes.

Bar-Yossef et al. found that an undirected random walk
touching about 300 physically distinct pages was adequate
to collect a URL sufficiently unbiased to yield a good degree
distribution estimate. We use this number as a guideline
to set the virtual hop size so that at least this number of
physical pages will be skipped from one sample to the next.

Figure 2 shows pairwise class distribution differences
starting from a few pairs of very dissimilar topics; the x-
axis plots the number of samples drawn from the respective
virtual walks, and different curves are plotted for different
virtual hop sizes. We never seem to get complete
convergence (distance zero) but the distance does rapidly
reduce from a high of over 1 to a low of about 0.19 within
1000–1500 virtual hops, which typically includes about 300–
400 distinct physical pages. A larger virtual stride size leads
to a slightly faster rate of convergence, but curiously, all
pairs converge within the same ballpark number of virtual
strides.

Convergence of this nature is a stronger property than
just a decay in the similarity between u0 and ui on a walk
(u0, u1, . . .) as i increases. It indicates that there is a well-
defined background topic distribution and we are being able
to approach it with suitably long Sampling walks.

Obviously, the rate at which the topic probability
vectors converge depends on the granularity of the topic
specification, if only because it will take a larger number
of documents to fill up a larger number of topic buckets
adequately to make a reliable reading. We repeat the above
experiment with a coarser version of Dmoz which is obtained
by lifting all the 482 leaf classes of our Dmoz topic set
to their immediate parents. Figure 3 shows the results.
Because topic bins are populated more easily now, the
distance is already small to start with, about 0.2, and this
decreases to 0.05. But the number of virtual hops required
is surprisingly resilient, again within the 1000–1500 range.

There are some anomalous drops in distance at a small
number of virtual hops in the graphs mentioned above. This
is because we did not preserve the page contents during
the walks but re-fetched them later for pages classification.
Some page fetches at small hop count timed out, leading to
the instability. For larger hop counts the fraction of timeouts
was very small and the result became more stable.

In Figure 4, we show an estimate of the background
distribution of Web pages into the 12 top-level topics in our
taxonomy. Computer-related topics lead the show. This

Figure 2: Topic convergence of Sampling walks using the
detailed Dmoz topics. Starting from several pairs of very
distinct topics, Sampling walks converge to each other
(which hints that it is also the Web’s background topic
distribution) within a few thousand virtual hops. The
virtual hop width is varied between 30000 and 75000, the
number of virtual hops is the x-axis, and the y-axis is the
L1 distance between the two topic probability vectors.

is completely understandable (if only because of rampant
mirroring of software manuals).

3.2 The background distribution vs
breadth-first crawls

Many production crawlers follow an approximate breadth-
first link exploration strategy which gives them some basic
robustness against overloading a small set of servers or going
depth-first into a bottomless “spider pit”. The crawler which



Figure 3: Topic convergence of Sampling walks using a
version of Dmoz topic obtained by coarsening each leaf
topic to its immediate parent. The number of virtual hops
required is the same order of magnitude as with the detailed
topics, but the L1 inter-walk distance achieved is much
lower.

Figure 4: An estimate of the background distribution across
the 12 top-level topics in our taxonomy.

populates Alta Vista’s Connectivity Servers follows largely
a breadth-first strategy [5, 7]. Najork and Weiner [27] have
demonstrated that a breadth-first crawler also tends to visit
nodes with large PageRank early (because good authorities

tend to be connected from many places by short paths). A
crawler of substantial scale deployed in NEC Research uses
breadth-first scheduling as well.

Level Sampled Unique Fetched
0 50000 49274 23276
1 500000 491893 45839
2 5000000 4857239 109544

Figure 5: Some statistics of our sample of the three-level
breadth-first NEC crawl.

The NEC crawl was started from URLs taken from
Dmoz. These URLs were placed in level zero. We collected
URL samples from levels 0, 1 and 2. Details are shown in
Figure 5. Figure 6(a) shows the pairwise distance between
the three levels of the NEC crawl. The distances are fairly
small, which indicates that the aggregate class distribution
drifts quite slowly as one strikes out from the seed set.
Therefore any significant bias in the seed set will persist
for quite a few levels, until the frontier size approaches a
sizable fraction of the reachable Web.

(a)

First URL set Second URL set L1 distance
NEC0 NEC1 0.28202
NEC1 NEC2 0.23273
NEC0 NEC2 0.37231

(b)

URL set L1 distance from background
NEC0 0.65902
NEC1 0.55181
NEC2 0.58630

Figure 6: The topic composition of a breadth-first crawl
changes slowly, showing small distance between adjacent
layers. Consequently, if the first layer is biased, the bias
persists for some depth. (a) Pairwise distances between the
first three layers of the NEC crawl. (b) Distance between
NEC crawl layers and our background estimate.

Figure 6(b) shows the distance of the NEC collections at
the three levels and our approximation to the background
topic distribution. We see some significant distance between
NEC collections and the background distribution, again
suggesting that the NEC topic distributions carry some bias
from the seed set. The bias drops visibly from level 0 to
level 1 and then rises very slightly in level 2. It would be of
interest to conduct larger experiments with more levels.

3.3 Faithful representation of topics in Web
directories

Many Web users implicitly expect topic directories to be
a microcosm of the Web itself, in that pages of all topics
are expected to be represented in a fair manner. Reality is
more complex, and commercial interests play an important
role in biasing the distribution of content cited from a
topic directory. Armed with our sampling and classification
system, we can easily make judgments about the biases in
topic directories, and locate topics which are represented out
of proportion, one way or another.

The L1 distance between the Dmoz collection and the
background topic distribution is quite high, 1.43, which
seems to indicate that the Dmoz sample is highly topic



Topics OVER-represented in Dmoz
compared to the background
Games.Video_Games.Genres
Society.People
Arts.Celebrities
Reference.Education.Colleges_and_Universities.North_America...
Recreation.Travel.Reservations.Lodging
Society.Religion_and_Spirituality.Christianity.Others
Arts.Music.Others
Reference.Others

Topics UNDER-represented in Dmoz
compared to the background
Computers.Data_Formats.Markup_Languages
Computers.Internet.WWW.Searching_the_Web.Directories
Sports.Hockey.Others
Society.Philosophy.Philosophers
Shopping.Entertainment.Recordings
Reference.Education.K_through_12.Others
Recreation.Outdoors.Camping

Figure 7: Some of the largest discrepancies between the
Web’s background topic distribution and our selection from
Dmoz.

biased. Where are the biases? We show some of the
largest deviations in Figure 7. In continuing work we
are testing which among these are statistically significant.
This is not a direct statement about DMoz, because our
sample of DMoz differs from its original topic composition.
Over-representation could be caused by our sampling, but
the under-represented topics are probably likewise under-
represented in DMoz. In any case, it is clear that
comparisons with the background distribution gives us
a handle on measuring the representativeness of topic
directories.

3.4 Topic-specific degree distributions

Several researchers have corroborated that the distribution
of degrees of nodes in the Web graph (and many social
networks in general [16, 34]) asymptotically follow a power
law distribution [1, 7, 21]: the probability that a randomly
picked node has degree i is proportional to 1/ix, for some
constant ‘power’ x > 1. The powers x for in- and
out-degrees were estimated in 1999 to be about 2.1 and
2.7, respectively, though the fit breaks down at small i,
especially for out-degrees [7]. Barabási and Albert [3] gave
an early generative model called “preferential attachment”
and an analysis for why millions of autonomous hyperlinking
decisions distributed all over the Web could lead to a power-
law distribution. Dill et al. [15] showed that subgraphs
selected from the Web as per specific criteria (domain
restriction, occurrence of a given keyword, etc.) also appear
to satisfy power-law degree distributions. Pennock et al. [30]
found that certain topic-specific subsets of the web diverge
markedly from power-law behavior at small i, though still
converge to a power law for large i; the authors explain
these observed distributions using an extension of Barabási’s
model.

We conduct more general tests for power law behavior
across a broad array of topics: if we fix a topic and measure
the degree of nodes relevant to that topic, will the resulting
degree distribution also follow a power law? We can use
the same soft-counting technique to answer this question.
Using a Sampling walk, we derive a sample D of pages. If
a page d has degree ∆d and class vector p(d), it contributes
a degree of ∆d pc(d) to class c. Note that ∆d includes all
links incident on d.

Figure 8: Total degree and out-degree, restricted to a
random sample from various topics, also show a power-
law behavior just like degree over all topics, at least
for degree greater than about ten. The distribution of
well-connected communities like Web directories is shifted
slightly to the right (larger degree) than relatively less
connected communities like Hockey. Anomalies near 100–
200 links are due to link spamming.

Figure 8 shows that topic-specific degree distributions
also follow the power law over many orders of magnitude.
We cannot explain this by claiming that “social networking
within a topic mimics social networking on the Web at
large”, because ∆d includes off-topic links, for which there
is no known analysis of social networking processes.

Log-log plots of degree distributions for various topic
look strikingly similar at first glance, but a closer
examination shows that, for example, pages about Web
directories generally have larger degree than pages about
hockey, which matches our knowledge of the Web. We
observe that the degree distribution restricted to members of
a specific topic have a power law tail, but with a significant
divergence from power law at small numbers of links, in
agreement with the Pennock et al. findings [30], and in
contrast to the global in-degree distribution which is nearly
a pure power law [7].

An empirical result of Palmer and Steffan [29] may help
explain why we would expect to see the power law upheld by
pages on specific topics. They showed through experiments



that the following simple “80-20” random graph generator
fits power-law degree distributions quite well:

1. Assume for simplicity that the number of nodes N is
a power of 2, and M edges are desired.

2. Partition the graph into two node sets V1 and V2 each
of size N/2. Let fraction pij of edges go from some
node in Vi to some node in Vj , i, j = 1, 2. P = (pij)
are provided as parameters. The idea is to favor intra-
community links by having p11 and p22 larger than p12

or p21, hence the name “80-20”.

3. Using P , pick one of the four possible types of edges.

4. Recurse within the 1/4 of edges that are consistent
with the above choice; continue recursing with the
same parameters P until a specific edge is materialized
(i.e., until the number of remaining nodes equals 1 or
2).

5. Repeat until M edges are added to the graph.

That this “fractal” style of construction produces graphs
following power-law degree distributions hints that some of
the recursive diagonal blocks in the adjacency matrix might
well represent topic-specific subgraphs. In other words, the
construction of Palmer and Steffan seems to indicate that if
we constructed separate, topic-specific subgraphs according
to their recipe, and used another P matrix to drive the
formation of links across communities, the power-law degree
distribution would be preserved. (The inter-community
linkage would just be the outermost level of their recursion.)
Further simulation and/or analysis is needed to confirm this
theory.

4 Topical locality and link-based
prestige ranking

In this section we use the Wander walk to see how fast
the memory of the topic of a starting page fades as we
take random forward steps along HREFs. (No backlinks
or self-loops are permitted.) It is actually quite difficult in
practice to sustain forward walks. Figure 9 shows that if we
start a large set of Wander walks, very few survive with
each additional hop, owing to no outlink, broken outlinks,
or server timeout. Note that this experiment is different
from the study of the NEC crawler, because here, only
one random outlink is explored from each page, whereas
the NEC crawler tried to fetch as many outlinks in every
subsequent level as possible.

4.1 Experiments and results

At this point we have a reference background topic
distribution. We consider several classes in DMoz. Because
forward walks die fast, we picked some Dmoz classes which
were very well-populated, say with more than 10000 URLs.
We start one Wander walk from each URL. The starting
pages are at distance 0. For each topic, we collect all the
pages Di found at distance i, i ≥ 0, and find the soft
class histogram p(Di) as before. Next we find the distance
between p(Di) and our precomputed baseline, as well as the
distance between p(Di) and p(D0) to monitor the drift rate.

Figure 9: Very few Wander walks survive for long, making
it difficult to compare topic distributions for diverse walk
radii as with Sampling walks. This may explain why the
random jump paradigm is so important in PageRank.

Figure 10: Forward walks without jumps retain topical
locality well beyond the inverse of the jump parameter d
in PageRank. The distance from the reference background
topic distribution changes slowly (red squares). Also,
in stark contrast to Figures 2 and 3, there is no
sign of convergence to the background distribution (blue
diamonds).

Figure 10 shows the results for four topics as starting
points. Because all the starting points in each group were
taken from a specific topic, the topic histogram at distance
0 is quite dissimilar from the background. Even 20 hops
seem inadequate to bring the distribution closer to the
background. But this is not because the walks stay perfectly
on-topic. They clearly do start drifting away, but not too
badly within the first 5–10 hops. Thus it is clear that a
sampling-type walk is critical to topic convergence. The
rate of drift away from the starting topic also varies from
topic to topic: ‘Soccer’ seems to be very drift-prone whereas
‘Photography’ drifts much less. Such prior estimates would
be valuable to a focused crawler, and explain in part
why focused crawling along forward links is already quite
successful [11]. We also confirm our intuition that our



estimate of drift w.r.t. broad topics seems generally lower
than what Davison and Menczer have characterized in terms
of cosine similarity with the starting point.

4.2 Implications

Two families of popularity-based ranking of Web pages
have been very successful in recent years. Google (http:
//google.com) uses as a subroutine the PageRank algorithm
[6, 28], which we have already reviewed in §2.1. Kleinberg
proposed the HITS algorithm [20] which has many variants.

Unlike PageRank, HITS does not analyze the whole Web
graph, but collects a subgraph Gq = (Vq, Eq) of the Web
graph G in response to a specific query q. It uses a keyword
search engine to collect a root set Rq, includes Rq in Gq
and then further includes in Gq any node linked from or
linking to some node in Rq (a radius-one link expansion). In
matrix terms, we can reuse Eq to denote the node adjacency
matrix: Eq(i, j) = 1 if i links to j, and 0 otherwise. HITS
assigns two scores a(v) and h(v) with each node, reflecting
its authority and its hubness (the property of compiling a
number of links to good authorities), and solves the following
mutually recursive equations iteratively, scaling a and h to
unit norm every step:

a← ETq h and h← Eqa. (4)

It has been known that the radius-one expansion
improves recall; good hubs and authorities which do not
have keyword matches with the query may be drawn into
Gq this way. Some irrelevant pages will be included as well,
but our experiments confirm that at radius one the loss of
precision is not devastating. Davison and Menczer [13, 25]
have proposed that topical locality is what saves Gq from
drifting too much, but they did not use a reference set of
topics to make that judgment.

Unlike HITS, PageRank is a global computation on the
Web graph, which means it assigns a query-independent
prestige score to each node. This is faster than collecting
and analyzing query-specific graphs, but researchers have
hinted that the query-specific subgraphs should lead to more
faithful scores of authority [20].

PageRank has a random jump parameter d, which is
empirically set to about 0.15–0.2. This means that typically,
every sixth to eighth step, the random surfer jumps rather
than walks to an out-neighbor, i.e., the surfer traces a
path of typical length 6–8 before abandoning the path and
starting afresh. The key observation is this: if topic drift is
small on such short directed random paths, as Figure 10
seems to indicate, the global nature of the PageRank
computation does not hurt, because endorsement to any
node (apart from jumping to it uar, which treats all nodes
equally) comes from a small neighborhood which is topically
homogeneous anyway!

All this may explain why PageRank is an acceptable
measure of prestige w.r.t. any query, in spite of being
a global measure. Confirming this intuition will not be
easy. Perhaps one can build synthetic graphs, or extract
large graphs from the Web which span multiple topic
communities, and tweak the jump probability d so that the
average interval between jumps ranges from much less than
directed mixing radius to much more that mixing radius,
and see if the largest components of the PageRank vector
leaves a variety of topic communities to concentrate in some

dominant communities featuring “universal authorities”
such as http://www.yahoo.com/, http://www.netscape.

com/, http://www.microsoft.com/windows/ie/, or http:

//www.adobe.com/prodindex/acrobat/readstep.html.

5 Relations between topics

According to the ordinary graph model for Web pages, a
link or edge connects two nodes which have only graph-
theoretic properties such as degree. Given our interest in
the content of pages, it is natural to extend our view of a
link as connecting two topics. The topic of a potential link
target page v is clearly the single most important reason
why the author of another page u may be motivated to link
from u to v.

This view is clearly missing from preferential attachment
theory, where the author picks targets with probability
proportional to their current indegree, regardless of content
or topic. It would be very interesting to see a general,
more realistic theory that folds some form topic affinity with
preferential attachment and matches our observations.

We model topic affinity using a topic citation matrix,
which is constructed using soft-counting as follows:

1. Suppose there are N topics at the desired level of
detail. Initialize a N × N topic citation matrix C
with all zeroes.

2. Repeat the following steps as long as the estimate C
‘improves’. (E.g., if ` links have been sampled, we
want C/` to converge.)

(a) Sample a page u nearly uar from the Web
using the Sampling walk and the virtual hop
technique.

(b) Sample an outlink v of u uar.

(c) Fetch and classify u and v, getting class
probability row vectors p(u) and p(v).

(d) For every position (i, j) in C, increase C(i, j)
by pi(u) pj(v). In matrix terms, assign C ←
C + p(u)Tp(v).

The hard-counting counterpart would classify u and v
to their best-matching classes γu and γv, and increment
C(γu, γv) by one. If rows of C are scaled to 1, the entry
C(i, j) gives the empirical probability that a random outlink
from a page about topic i will link to a page about topic j.

5.1 Experimental results

We experimented with our 482-leaf taxonomy at two levels of
detail: the top level with 12 topics and the third level with
191 topics. This is partly because data at the 482 × 482
level was very sparse. In Figure 11(a), we show the 12-
class top-level citation matrix. Dark colors (in the HTML
version, hot colors) show higher probabilities. The diagonal
is clearly dominant, which means that there is a great deal of
self-citation among topics. This natural social phenomenon
explains the success of systems like HITS and focused
crawlers. It is also worthwhile to note that the matrix is
markedly asymmetric, meaning that communities do not
reciprocate in cross-linking behavior.

http://google.com
http://google.com
http://www.yahoo.com/
http://www.netscape.com/
http://www.netscape.com/
http://www.microsoft.com/windows/ie/
http://www.adobe.com/prodindex/acrobat/readstep.html
http://www.adobe.com/prodindex/acrobat/readstep.html


Apart from the prominent diagonal, there are two hor-
izontal bands corresponding to /Computers and /Society,
which means that pages relevant to a large variety of topics
link to pages about these two topics and their subtopics.
Given that these are the two most dominant top-level topics
on the Web (Figure 4), it is conceivable that preferential
attachment will lead to such behavior.

However, these inferences may be specious if it turns
out that our classifier is biased in favor of /Computers and
/Society when it guesses the class of test documents. To
avoid this problem, we use a held-out labeled data set from
DMoz to calibrate the classifier. The result is a confusion
matrix E where E(i, j) is the number of documents in class
i labeled with class j by the classifier. Depending on the
application, we can scale either the row (true class) or the
column (guessed class) of E to 1. In either case, an ideal
classifier’s confusion matrix will be the identity matrix. We
show both scaled versions Et and Eg in Figure 12. Although
the color scales were designed for maximum contrast, we
note that the diagonal elements are generally large, hinting
that the classifier is doing well.

The entries corresponding to guessed class j in the
“guess-normalized” version Eg may be regarded as the
empirical Pr(true = i|guess = j) for all i. Information from
Eg can be folded into the soft counting process as follows.
After we fetch and classify u and v, getting class probability
row vectors p(u) and p(v), we find the corrected probability
vector p∗(u) (similarly, p∗(v)) by computing the corrected
probability that u ‘truly’ belongs to class i as

p∗i(u) =
∑
j

Eg(i, j)pj(u), (5)

under certain technical assumptions on the sampling process
that we omit mentioning for lack of space. The citation
matrices can be corrected accordingly. In fact, this
technique can/should also be used to correct the background
distribution (Figure 4). Although the sharp notches at
/Computers and /Society get somewhat subdued, our broad
observations remain valid.

Returning to the citation matrix, we present the
corrected citation matrix in Figure 11(b). Generally
speaking, the correction smears out the probability mass
slightly, but the corrected data continues to show a higher
than average rate of linkage to documents about /Computers
and /Society.

We can now extend the experiments to more detailed
levels in the taxonomy. Figure 13 shows the citation
matrix at the third level of our DMoz sample, with 191
topics. This diagram is a drill-down into the earlier 12-class
citation diagram, and we see a telltale block-diagonals and
other block-structure in the larger matrix, which align with
the broad 12-topic boundaries. (They are not all equally
wide, because the top-level topics have different numbers of
descendants.)

The diagonal remains dominant, which is good news for
topic communities and focused crawling. Finer horizontal
lines emerge, showing us the most popular subtopics under
the popular broad topics. Zooming down into /Arts,
we find the most prominent bands are at /Arts/Music,
/Arts/Literature and /Arts/Movies. Within /Computers,
we find a deep, sharp line about a fourth of the way down,
at /Computers/DataFormats. This is partly an artifact of
badly written HTML which confounded our libxml2 HTML

parser, making HTML tags part of the classified text. Other,
more meaningful target bands are found at /Computers/

Security, /Recreation/Outdoors, and /Society/Issues.
We found many meaningful isolated hot-spots, such as
from /Arts/Music to /Shopping/Music and /Shopping/

Entertainment/Recordings.
Because the ‘height’ at various pixels is not very clear

from a 2d rendering, we also show a 3d contour-plot of
the 191 × 191 citation matrix in Figure 14. Although
the excessive smoothing and the slope introduced between
adjacent pixels is artificial, the contour-plot does reveal how
strongly self-citing the topics are, even at the third level of
DMoz.

5.2 Implications and applications

The topic citation matrix, similar in spirit to a spectrogram,
is fascinating in its own right in showing the strongest
(single-link) inter-topic connections on the Web, but it also
has a variety of practical applications. We touch upon a few
here.

Improved hypertext classification: Standard Bayesian
text classifiers build a class-conditional estimate of docu-
ment probability, Pr(d|c), in terms of the textual tokens
appearing in d. Pages on the Web are not isolated entities,
and the (estimated) topics of the neighbors N(u) of page
u may lend valuable evidence to estimate the topic of u
[8, 19]. Thus we need to estimate a joint distribution for

Pr
(
c(u), c(N(u))

)
, which is a direct application of the topic

citation matrix.

Enhanced focused crawling: A focused crawler is given
a topic taxonomy, a trained topic classifier, and sample
URLs from a specific topic. The goal is to augment this
set of relevant URLs while crawling as few irrelevant pages
as possible. Currently, focused crawlers use the following
policies:

• If page u is relevant, an outlink v is also likely to be
relevant [11].

• Given the text of a page u, we can estimate the link
distance to a relevant goal node [14].

• Given features from near outlink (u, v) on page
u, estimate the ‘reward’ that may be accrued by
following the link [10, 31].

In addition to learning the above patterns, it may be very
valuable for a focused crawler to have access to the topic
linkage matrix. Consider the topic /Shopping/Consumer_

Electronics. Examples of this topic are often competing
sites which do not wish to link to each other. But they
sell cameras, and are therefore cited by pages about /Arts/
Photography, many of which are not owned by businesses
and are heavily linked up. Such patterns can help the
focused crawler traverse between relevant islands on the
Web.

Reorganizing topic directories: We had to discard
the /Regional and /News subtrees, not only because of
severe classification error, but also because of overwhelming
interlinkage between these and other topics. /News is
almost always about some other topic, such as /Sports or
/Science. The structure within the /Regional or even the



/Shopping subtree mirrors many broad topics outside. E.g.,
mountain biking fits under recreation and sports, but to buy
biking gear, one must move up and then descend down the
/Shopping path. A tree is a rather inadequate structure to
connect areas of human endeavor and thought, and such
artificial structures have compelled Yahoo! to include a
number of “soft links” connecting arbitrary points in their
topic ‘tree’.

The limitations of a tree representation are responsible
for many long-range off-diagonal elements in the topic
citation matrix, and arguably makes directory browsing less
intuitive. It may also make focused crawling and automatic
cataloging more difficult. We claim that such phenomena
warrant careful consideration of taxonomy inversion and
better metadata annotation. E.g., let commercial interests
related to biking be contained in the subtree dedicated
to biking, rather than collect diverse commercial interests
together. We can envisage advanced user interfaces through
which taxonomy editors can point and click on a topic
citation map or a confusion matrix to reorganize and
improve the design of a taxonomy.

6 Concluding remarks

The geography of the Web, delineating communities and
their boundaries in a state of continual flux, is a fascinating
source of data for social network analysis (see, e.g., http://
www.cybergeography.org/). In this paper we have initiated
an exploration of the terrain of broad topics in the Web
graph, and characterized some important notions of topical
locality on the Web. Specifically, we have shown how to
estimate the background distribution of broad topics on the
Web, how pages relevant to these topics cite each other, and
how soon a random path starting from a given topic ‘loses’
itself into the background distribution.

We believe this work barely scratches the surface w.r.t.
a new, content-rich characterization of the Web, and opens
up many questions, some of which we list below.

PageRank jump parameter: How should one set the
jump probability in PageRank? Is it useful to set topic-
specific jump probabilities? Does an understanding of
mixing radius help us set better jump probabilities? Is there
a useful middle ground between PageRank’s precomputed
scores and HITS’s runtime graph collection?

Topical stability of distillation algorithms: How can
we propose models of HITS and stochastic variants that are
content-cognizant? Can content-guided random walks be
used to define what a focused crawler should visit and/or
collect? Can we validate this definition (or proposal) on
synthetic graphs? Can such a theory, coupled with our
measurements of topic linkage, predict and help avoid topic
drift in distillation algorithms?

Better crawling algorithms: Given that we can
measure mixing distances and inter-topic linkage, can we
develop smarter federations of crawlers in which each
concentrates on a collection of tightly knit topics? Can this
lead to better and fresher coverage of small communities?
Can we exploit the fact that degrees follow power laws both
globally and locally within topic contexts to derive better,
less topic-biased samples of URLs from the Web?
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(a) Raw citation (b) Confusion-adjusted

Figure 11: (a) Citation matrix for the 12 top-level topics.
The source topic runs horizontally to the right, the target
topic runs vertically down. (b) Confusion-adjusted citation
matrix, see text later.

True-normalized Guess-normalized

Figure 12: The confusion matrix between topics at the
top level. “True-normalized” means that the number of
test documents from each class is scaled to 1. “Guess-
normalized” means that the number of documents tagged
with each class by the classifier is scaled to 1.

Figure 13: Citation matrix at the third level with 191 topics.

http://www.neci.nec.com/~lawrence/papers/web-computer02/bib.html
http://www.neci.nec.com/~lawrence/papers/web-computer02/bib.html
http://www9.org/w9cdrom/88/88.html
http://research.microsoft.com/~sdumais/SIGIR2001-LinksRevisedSubmitted.pdf
http://research.microsoft.com/~sdumais/SIGIR2001-LinksRevisedSubmitted.pdf
http://www.cs.cornell.edu/home/kleinber/auth.ps
http://www.cs.cornell.edu/home/kleinber/auth.ps
http://www8.org/w8-papers/4a-search-mining/trawling/trawling.html
http://www8.org/w8-papers/4a-search-mining/trawling/trawling.html
http://www.cs.cmu.edu/~mccallum/bow/
http://www.cs.cmu.edu/~knigam/papers/multinomial-aaaiws98.pdf
http://www.cs.cmu.edu/~knigam/papers/multinomial-aaaiws98.pdf
http://arxiv.org/abs/cs.IR/0108004
http://arxiv.org/abs/cs.IR/0108004
http://www10.org/cdrom/papers/208
http://google.stanford.edu/~backrub/pageranksub.ps
http://google.stanford.edu/~backrub/pageranksub.ps
http://www.cs.cmu.edu/~steffan/items/globecom.ps
http://www.cs.cmu.edu/~steffan/items/globecom.ps
http://www.neci.nec.com/homepages/dpennock/publications.html
http://www.neci.nec.com/homepages/dpennock/publications.html
http://www.cs.cmu.edu/~mccallum/papers/rlspider-icml99s.ps.gz
http://www.cs.cmu.edu/~mccallum/papers/rlspider-icml99s.ps.gz


Figure 14: Contour plot of the 191-topic citation matrix.
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