
Prefix sum
Applications

Teaching Parallel Computing through Parallel
Prefix

Srinivas Aluru
Iowa State University

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Problem definition
Serial algorithm
Parallel Algorithm

Prefix sum

Input: a binary associative operator ⊗,
and n elements: x0, x1, x2, ... xn−1.

Output: n elements: s0, s1, s2, ... si ... sn−1 ;
where si = x0 ⊗ x1 ⊗ ...⊗ xi .

Example (operator: +)

elements 16 23 7 31 9

16 16 16 16 16
+ 23 + 23 + 23 + 23

+ 7 + 7 + 7
+ 31 + 31

+ 9

prefix sums 16 39 46 77 86

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Problem definition
Serial algorithm
Parallel Algorithm

Serial algorithm

PREFIX SUM(X , n)

1: s0 ← x0

2: for i ← 1 to n − 1 do
3: si ← si−1 ⊕ xi
4: end for
5: return S

Note: (1) Run-time O(n).
(2) There is a serial dependency for calculating si on si−1.

How do we parallelize this?

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Problem definition
Serial algorithm
Parallel Algorithm

Parallel prefix algorithm

Number of elements = n
Number of processors = p

Consider the case:
n = p = 2d

Element on Pi : xi
Prefix sum on Pi : si
Total sum on Pi : Ti

Computation time= O(log p)
Communication time= O(log p)

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Problem definition
Serial algorithm
Parallel Algorithm

Pseudocode

PARALLEL PREFIX SUM(id ,Xid , p)
1: prefix sum← Xid

2: total sum← prefix sum
3: d ← log2 p
4: for i ← 0 to d − 1 do
5: Send total sum to the processor with id ′ where id ′ = id ⊗ 2i

6: total sum← total sum + received total sum
7: if id ′ < id then
8: prefix sum← total sum + received total sum
9: end if

10: end for
11: return prefix sum

Note. Run-time = O(log p) 6= sequential runtime
p = O(1)

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Problem definition
Serial algorithm
Parallel Algorithm

General solution

Realistic case:

1 n > p
2 n is not a multiple of p

Each processor has either d np e or b np c elements.

3 p is not a power of 2.

d = dlog2pe
In any communication phase, do nothing if the computed id of
the processor to communicate with is ≥ p.

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Problem definition
Serial algorithm
Parallel Algorithm

General solution

Steps (for simplicity think that each processor has n
p elements):

1 Each processor computes the prefix sums of the n
p elements it

has locally

2 Using the last prefix sum on each processor, run a p-element
parallel prefix algorithm

3 On each processor, combine the result from the parallel prefix
algorithm with each local prefix sum computed in Step 1.

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Problem definition
Serial algorithm
Parallel Algorithm

Example (n = 15, p = 4)

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Problem definition
Serial algorithm
Parallel Algorithm

Run-time complexity

Step 1: Computation of prefix sum locally of n
p elements.

Computation time = O(n
p)

Communication time = 0

Step 2: Parallel prefix using last prefix sum on each processor

Computation time = O(log p)
Communication time = O(log p)

Step 3: Updating n
p prefix sums from step 1 with results

from step 2.

Computation time = O(n
p)

Communication time = 0

Overall
Computation time = O(n

p + log p)

Communication time = O(log p)

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Applications

1 Evaluation of a polynomial

2 Solving linear recurrences

3 Random number generation

4 Sequence alignment

5 N-body problem

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Evaluation of Polynomial

Input: (1) A real number x0,
(2) n integer coefficiencts {a0, a1, a2 ... an−1}.

Output: P(x0) = a0 + a1x0 + a2x2
0 + ... + an−1xn−1

0 .

Sequential run-time: O(n).

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using parallel prefix

Let a′i s be distributed evenly on p processors.

Hence processor Pi has ai n
p

to a(i+1) n
p
−1.

Local sum required on processor Pi ,

sum(i) =

n
p
−1∑

j=0
ai n

p
+j x

i n
p

+j

0

To get required powers of x0, we use parallel prefix.

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using parallel prefix

P0 reads x0 and broadcasts to all processors.

Run n-element parallel prefix using x0 and operator X.

Processor Pi has x
i n
p

0 .

Each processor computes sum of n
p terms in O(n/p) time.

Run-time: O(np+ logp).

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Linear Recurrences

Input: (1) Real numbers x0, x1.
(2) Integer coefficients a, b.

Output: Sequence {x2, x3, ..., xn} such that xi = axi−1 + bxi−2

Relation can be rewritten as
[
xi xi−1

]
=
[
xi−1 xi−2

] [a 1
b 0

]
Hence

[
xi xi−1

]
=
[
x1 x0

] [a 1
b 0

]i−1

Can be extended to dependency on previous k terms.

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Random number generation

Input: (1) Integer multiplier a
(2) Integer increment b
(3) Integer modulus m

Output: Pseudo random sequence {x1, ..., xn} according to Linear
Congruential Generator: xi+1 = (axi + b)modm.[

axi + b 1
]

=
[
xi 1

] [a 1
b 0

]
modm

If all additions are modm, then[
xi+1 1

]
=
[
xi 1

] [a 1
b 0

]
Hence

[
xi 1

]
=
[
x0 1

] [a 1
b 0

]i
Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Sequence alignment

An important problem in computational biology.

DNA seqs: Strings over {A,C ,G ,T}.
Goal: To find out how “well” the sequences align.

Alignment: Stacking chars of each sequence into columns.

Gaps (-) may be inserted for missing characters.

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Example alignment and score computation

Alignment has a score that shows quality.

Every column of an alignment is a match, mismatch or a gap.

Matches are preferred and hence have a positive score, others
have a negative score.

Example: If match = 1,mismatch = 0 and gap = −1, then for
the following alignment Score(ATGACC, AGAATC) = 2

A T G A - C C
A – G A A T C
1 -1 1 1 -1 0 1

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Problem definition

Input: (1) Sequences A = a1, a2, ..., am and B = b1, b2, ..., bn.
(2) Scores for match (M), mismatch (M ′) and gap (g).

Output: Alignment with maximum score.

Dynamic programming solution:

T = Table of size (m + 1)x(n + 1).

T [i , j] = best score between a1...ai and b1...bj .

T [i , j] = max


T [i − 1, j]− g

T [i , j − 1]− g

T [i − 1, j − 1] + f (ai , bj)

Sequential time = O(mn).

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using parallel prefix

We compute each row of T using parallel prefix

T[i,j]

w[j]i−1,j−1 i−1,j

i,j−1

w [j] = max

{
T [i − 1, j]− g

T [i − 1, j − 1] + f (ai , bj)

Hence

T [i , j] = max

{
w [j]

T [i , j − 1]− g

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using parallel prefix

Let x [j] = T [i , j] + jg . T [i , j] can be computed from x [j].

Hence

x [j] = max

{
w [j] + jg

x [j − 1]

Compute x [j] using parallel prefix.

Parallel run time: O(mn
p + mlogp)

= O(mn
p) (if plogp = O(n))

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Upward/Downward accumulation

Input: (1) Tree with nodes {v1...vn}.
(2) Number xi at node vi .

Output(UA): At each node vi , sum of no.s at all descendant of vi .
Output(DA): At each node vi , sum of no.s at all ancestors of vi .

Sequential runtime = O(n)

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Example

-UA(v4) = x4 +x7 +x8 +x9 +x10

-DA(v7) = x1 + x4 + x7

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Euler tour

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

Tour Length = 1 + 2(|V | − 1)

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using Euler tour

Assume we have the Euler tour.

For UA, Create array A, |A| = |E |, with the following rule:

If E [j] is the first occurance of vi , then A [j] = xi .
Else A [j] = 0

A [j] can be computed using E [j − 1], E [j], E [j + 1].

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

A: x1 x2 x5 0 x6 0 0 x3 0 x4 x7 x9 0 x10 0 0 x8 0 0

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using Euler tour

Apply parallel prefix on A.

if : Index of first occurance of vi in E .

il : Index of last occurance of vi in E .

UA(vi) = A [il]− A [if − 1].

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

A: x1 x2 x5 0 x6 0 0 x3 0 x4 x7 x9 0 x10 0 0 x8 0 0

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using Euler tour

For DA, Create array B, |B| = |E |, with the following rule:

If E [j] = vi and vi is a leaf, then B [j] = 0.
If E [j] = vi and vi is the first occurance of vi , B [j] = xi .
If E [j] = vi and vi is the last occurance of vi , B [j] = −xi .
For every thing else, A [j] = 0

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

B: x1 x2 0 0 0− x2 0 0 0 x4 x7 0 0 0− x7 0 0− x4 − x1

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using Euler tour

Apply parallel prefix on B.

if : Index of first occurance of vi in E .

If vi is a leaf, DA(vi) = B [if] + xi .

Else DA(vi) = B [if].

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

B: x1 x2 0 0 0− x2 0 0 0 x4 x7 0 0 0− x7 0 0− x4 − x1

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

N-body problem

Input: - n particles {p1...pn} at time t.
- Mass of pi : mi .
- Position Vector (P.V.) of pi at time t: −→ri
- Velocity Vector (V.V.) of pi at time t: −→vi

- Time interval t ′.
Output: P.V. of all pi ’s at t + t ′

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Sequential solution

Acceleration −→ai on pi is assumed constant for interval ∆t.

Compute P.V. after time ∆t for each particle.

Total

(
n
2

)
computations.

Repeat for t′

∆t iterations.

Run-time: O(n2 t′

∆t)

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Octree

Split the space into octants (quadrants for 2-D) till each cell has
one element.

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Octree

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Octree

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Octree

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Octree

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using Upward/Downward accumulation

Each leaf represents a single particle.

Each internal node represents a cluster (cell).

For two clusters of size si and sj , acceleration can be
calculated using si ∗ sj computations.

If clusters are far away, approx. acceleration can be calculated
using one computation using centers of masses.
−→aij = −GM

||−→ri −−→rj ||3
.(−→ri −−→rj)

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using Upward/Downward accumulation

We need collective mass
∑

mi and center of mass −→rcm at
every cell.
−→rcm =

∑
mi
−→ri∑

mi
.

Both numerator and denominator can be evaluated using
upward accumulation

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using Upward/Downward accumulation

If parents of two cells are far away, then acceleration can be
calculated between parents.

One computation instead of 16.

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using Upward/Downward accumulation

If two cells are very near, acceleration has to be calculated
between children.

Acceleration between two cells is calculated if one falls in
doughnut region of other.

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Solution using Upward/Downward accumulation

Compute partial acceleration due to cells in the doughnut
region for each node.

Compute total accelerations using downward accumulation.

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

Prefix sum
Applications

Evaluation of Polynomial
Linear Recurrences
Random number generation
Sequence alignment
Upward/Downward accumulation
N-body problem

Acknowledgements

Indranil Roy
Graduate Student, ISU

iroy@iastate.edu

Rahul Nihalani
Graduate Student, ISU

rahuln@iastate.edu

Srinivas Aluru Iowa State University Teaching Parallel Computing through Parallel Prefix

	Prefix sum
	Problem definition
	Serial algorithm
	Parallel Algorithm

	Applications
	Evaluation of Polynomial
	Linear Recurrences
	Random number generation
	Sequence alignment
	Upward/Downward accumulation
	N-body problem

