Teaching Parallel Computing through Parallel Prefix

Srinivas Aluru Iowa State University

Prefix sum

Input: a binary associative operator \otimes ,

and n elements: x_0 , x_1 , x_2 , ... x_{n-1} .

Prefix sum

Output: n elements: s_0 , s_1 , s_2 , ... s_i ... s_{n-1} ;

where $s_i = x_0 \otimes x_1 \otimes ... \otimes x_i$.

Example (operator: +)

elements	16	23	7	31	9
	16	16	16	16	16
		+ 23	+ 23	+ 23	+ 23
			+ 7	+ 7	+ 7
				+ 31	+ 31
					+ 9
prefix sums	16	39	46	77	86

Serial algorithm

$PREFIX_SUM(X, n)$

- 1: $s_0 \leftarrow x_0$
- 2: **for** $i \leftarrow 1$ **to** n-1 **do**
- 3: $s_i \leftarrow s_{i-1} \oplus x_i$
- 4: end for
- 5: **return** *S*

Note: (1) Run-time O(n).

(2) There is a serial dependency for calculating s_i on s_{i-1} . How do we parallelize this?

Parallel prefix algorithm

Number of elements = nNumber of processors = p

Consider the case:

 $n=p=2^d$

Element on $P_i: x_i$

Prefix sum on $P_i : s_i$

Total sum on P_i : T_i

Computation time= O(log p)Communication time= O(log p)

Pseudocode

PARALLEL_PREFIX_SUM(id, X_{id}, p)

- 1: $prefix_sum \leftarrow X_{id}$
- 2: total_sum ← prefix_sum
- 3: $d \leftarrow log_2 p$
- 4: **for** $i \leftarrow 0$ **to** d-1 **do**
- 5: Send $total_sum$ to the processor with id' where $id' = id \otimes 2^i$
- 6: total_sum ← total_sum + received total_sum
- 7: if id' < id then
- 8: prefix_sum ← total_sum + received total_sum
- 9: end if
- 10: end for
- 11: return prefix_sum

Note. Run-time =
$$O(\log p) \neq \frac{\text{sequential runtime}}{p} = O(1$$

General solution

Realistic case:

- 0 n > p
- n is not a multiple of p
 - Each processor has either $\lceil \frac{n}{p} \rceil$ or $\lfloor \frac{n}{p} \rfloor$ elements.
- \bigcirc p is not a power of 2.
 - $d = \lceil log_2 p \rceil$
 - In any communication phase, do nothing if the computed id of the processor to communicate with is ≥ p.

General solution

Steps (for simplicity think that each processor has $\frac{n}{p}$ elements):

- Each processor computes the prefix sums of the $\frac{n}{p}$ elements it has locally
- Using the last prefix sum on each processor, run a p-element parallel prefix algorithm
- On each processor, combine the result from the parallel prefix algorithm with each local prefix sum computed in Step 1.

Example (n = 15, p = 4)

Run-time complexity

- Step 1: Computation of prefix sum locally of $\frac{n}{p}$ elements.
 - Computation time $=O(\frac{n}{p})$
 - Communication time = 0
- Step 2: Parallel prefix using last prefix sum on each processor
 - Computation time $= O(\log p)$
 - Communication time = O(log p)
- Step 3: Updating $\frac{n}{p}$ prefix sums from step 1 with results from step 2.
 - Computation time $= O(\frac{n}{p})$
 - \bullet Communication time = 0
- Overall
 - Computation time $= O(\frac{n}{p} + \log p)$
 - Communication time = $O(\log p)$

Evaluation of Polynomial Linear Recurrences Random number generation Sequence alignment Upward/Downward accumulation N-body problem

Applications

- Evaluation of a polynomial
- Solving linear recurrences
- 8 Random number generation
- Sequence alignment
- N-body problem

Evaluation of Polynomial

Linear Recurrences Random number generation Sequence alignment Upward/Downward accumulation N-body problem

Evaluation of Polynomial

Input: (1) A real number x_0 ,

(2) n integer coefficiencts $\{a_0, a_1, a_2 \dots a_{n-1}\}$.

Output:
$$P(x_0) = a_0 + a_1 x_0 + a_2 x_0^2 + ... + a_{n-1} x_0^{n-1}$$
.

• Sequential run-time: O(n).

Solution using parallel prefix

- Let $a_i's$ be distributed evenly on p processors.
- Hence processor P_i has $a_{i\frac{n}{p}}$ to $a_{(i+1)\frac{n}{p}-1}$.
- Local sum required on processor P_i ,

$$sum(i) = \sum_{i=0}^{\frac{n}{p}-1} a_{i\frac{n}{p}+j} x_0^{i\frac{n}{p}+j}$$

• To get required powers of x_0 , we use parallel prefix.

Solution using parallel prefix

- P_0 reads x_0 and broadcasts to all processors.
- Run n-element parallel prefix using x_0 and operator X.
- Processor P_i has $x_0^{i\frac{n}{p}}$.
- Each processor computes sum of $\frac{n}{p}$ terms in O(n/p) time.

Run-time:
$$O(\frac{n}{p} + \log p)$$
.

Linear Recurrences

Input: (1) Real numbers x_0, x_1 .

(2) Integer coefficients a, b.

Output: Sequence $\{x_2, x_3, ..., x_n\}$ such that $x_i = ax_{i-1} + bx_{i-2}$

- Relation can be rewritten as $\begin{bmatrix} x_i & x_{i-1} \end{bmatrix} = \begin{bmatrix} x_{i-1} & x_{i-2} \end{bmatrix} \begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix}$
- Hence $\begin{bmatrix} x_i & x_{i-1} \end{bmatrix} = \begin{bmatrix} x_1 & x_0 \end{bmatrix} \begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix}^{i-1}$
- Can be extended to dependency on previous *k* terms.

Random number generation

- **Input**: (1) Integer multiplier a
 - (2) Integer increment b
 - (3) Integer modulus m

Output: Pseudo random sequence $\{x_1, ..., x_n\}$ according to Linear Congruential Generator: $x_{i+1} = (ax_i + b) \mod m$.

- $\begin{bmatrix} ax_i + b & 1 \end{bmatrix} = \begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix} \mod m$
- If all additions are mod m, then

$$\begin{bmatrix} x_{i+1} & 1 \end{bmatrix} = \begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix}$$

• Hence $\begin{bmatrix} x_i & 1 \end{bmatrix} = \begin{bmatrix} x_0 & 1 \end{bmatrix} \begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix}^i$

Sequence alignment

- An important problem in computational biology.
- DNA seqs: Strings over {A, C, G, T}.
- Goal: To find out how "well" the sequences align.
- Alignment: Stacking chars of each sequence into columns.
- Gaps (-) may be inserted for missing characters.

Example alignment and score computation

- Alignment has a score that shows quality.
- Every column of an alignment is a match, mismatch or a gap.
- Matches are preferred and hence have a positive score, others have a negative score.
- Example: If match = 1, mismatch = 0 and gap = -1, then for the following alignment Score(ATGACC, AGAATC) = 2

Problem definition

Input: (1) Sequences $A = a_1, a_2, ..., a_m$ and $B = b_1, b_2, ..., b_n$.

(2) Scores for match (M), mismatch (M') and gap (g).

Output: Alignment with maximum score.

Dynamic programming solution:

- T = Table of size (m+1)x(n+1).
- $T[i,j] = \text{best score between } a_1...a_i \text{ and } b_1...b_j.$

$$T[i,j] = max egin{cases} T[i-1,j] - g \ T[i,j-1] - g \ T[i-1,j-1] + f(a_i,b_j) \end{cases}$$

• Sequential time = O(mn).

Solution using parallel prefix

We compute each row of T using parallel prefix

$$w[j] = max \begin{cases} T[i-1,j] - g \\ T[i-1,j-1] + f(a_i,b_j) \end{cases}$$

Hence

$$T[i,j] = max \begin{cases} w[j] \\ T[i,j-1] - g \end{cases}$$

Solution using parallel prefix

- Let x[j] = T[i,j] + jg. T[i,j] can be computed from x[j].
- Hence

$$x[j] = max \begin{cases} w[j] + jg \\ x[j-1] \end{cases}$$

• Compute x[j] using parallel prefix.

Parallel run time:
$$O(\frac{mn}{p} + m \log p)$$

= $O(\frac{mn}{p})$ (if $p \log p = O(n)$)

Upward/Downward accumulation

Input: (1) Tree with nodes $\{v_1...v_n\}$.

(2) Number x_i at node v_i .

Output(UA): At each node v_i , sum of no.s at all descendant of v_i . **Output(DA)**: At each node v_i , sum of no.s at all ancestors of v_i .

Sequential runtime = O(n)

Example

$$-UA(v_4) = x_4 + x_7 + x_8 + x_9 + x_{10}$$

-DA(v₇) = x₁ + x₄ + x₇

Euler tour

- E: v₁ v₂ v₅ v₂ v₆ v₂ v₁ v₃ v₁ v₄ v₇ v₉ v₇ v₁₀ v₇ v₄ v₈ v₄ v₁
- Tour Length = 1 + 2(|V| 1)

Solution using Euler tour

- Assume we have the Euler tour.
- For UA, Create array A, |A| = |E|, with the following rule:
 - If E[j] is the first occurance of v_i , then $A[j] = x_i$.
 - Else A[j] = 0
- A[j] can be computed using E[j-1], E[j], E[j+1].

E: v_1 v_2 v_5 v_2 v_6 v_2 v_1 v_3 v_1 v_4 v_7 v_9 v_7 v_{10} v_7 v_4 v_8 v_4 v_1 A: x_1 x_2 x_5 0 x_6 0 0 x_3 0 x_4 x_7 x_9 0 x_{10} 0 0 x_8 0 0

Solution using Euler tour

- Apply parallel prefix on A.
- i_f : Index of first occurance of v_i in E.
- i_l : Index of last occurance of v_i in E.
- $UA(v_i) = A[i_I] A[i_f 1].$

E: v_1 v_2 v_5 v_2 v_6 v_2 v_1 v_3 v_1 v_4 v_7 v_9 v_7 v_{10} v_7 v_4 v_8 v_4 v_1 A: x_1 x_2 x_5 0 x_6 0 0 x_3 0 x_4 x_7 x_9 0 x_{10} 0 0 x_8 0 0

Solution using Euler tour

- For DA, Create array B, |B| = |E|, with the following rule:
 - If $E[j] = v_i$ and v_i is a leaf, then B[j] = 0.
 - If $E[j] = v_i$ and v_i is the first occurance of v_i , $B[j] = x_i$.
 - If $E[j] = v_i$ and v_i is the last occurance of v_i , $B[j] = -x_i$.
 - For every thing else, A[j] = 0

E: v_1 v_2 v_5 v_2 v_6 v_2 v_1 v_3 v_1 v_4 v_7 v_9 v_7 v_{10} v_7 v_4 v_8 v_4 v_1 B: x_1 x_2 0 0 0 $-x_2$ 0 0 0 x_4 x_7 0 0 0 $-x_7$ 0 0 $-x_4$ $-x_1$

Solution using Euler tour

- Apply parallel prefix on B.
- i_f : Index of first occurance of v_i in E.
- If v_i is a leaf, $DA(v_i) = B[i_f] + x_i$.
- Else $DA(v_i) = B[i_f]$.

E: v_1 v_2 v_5 v_2 v_6 v_2 v_1 v_3 v_1 v_4 v_7 v_9 v_7 v_{10} v_7 v_4 v_8 v_4 v_1 B: x_1 x_2 0 0 0 $-x_2$ 0 0 0 x_4 x_7 0 0 0 $-x_7$ 0 0 $-x_4$ $-x_1$

N-body problem

```
Input: - n particles \{p_1...p_n\} at time t.

- Mass of p_i: m_i.

- Position Vector (P.V.) of p_i at time t: \overrightarrow{r_i}

- Velocity Vector (V.V.) of p_i at time t: \overrightarrow{v_i}

- Time interval t'.

Output: P.V. of all p_i's at t + t'
```

Sequential solution

- Acceleration $\overrightarrow{a_i}$ on p_i is assumed constant for interval Δt .
- Compute P.V. after time Δt for each particle.
- Total $\binom{n}{2}$ computations.
- Repeat for $\frac{t'}{\Delta t}$ iterations.
- Run-time: $O(n^2 \frac{t'}{\Delta t})$

Evaluation of Polynomial Linear Recurrences Random number generation Sequence alignment Upward/Downward accumulation N-body problem

Octree

Split the space into octants (quadrants for 2-D) till each cell has one element.

Evaluation of Polynomial Linear Recurrences Random number generation Sequence alignment Upward/Downward accumulation N-body problem

Octree

J

Evaluation of Polynomial Linear Recurrences Random number generation Sequence alignment Upward/Downward accumulation N-body problem

Octree

Evaluation of Polynomial Linear Recurrences Random number generation Sequence alignment Upward/Downward accumulation N-body problem

Octree

Evaluation of Polynomial Linear Recurrences Random number generation Sequence alignment Upward/Downward accumulation N-body problem

Octree

- Each leaf represents a single particle.
- Each internal node represents a cluster (cell).
- For two clusters of size s_i and s_j , acceleration can be calculated using $s_i * s_j$ computations.
- If clusters are far away, approx. acceleration can be calculated using one computation using centers of masses.

$$\bullet \ \overrightarrow{a_{ij}} = \frac{-GM}{\left|\left|\overrightarrow{r_i} - \overrightarrow{r_j}\right|\right|^3} . \left(\overrightarrow{r_i} - \overrightarrow{r_j}\right)$$

- We need collective mass $\sum m_i$ and center of mass $\overrightarrow{r_{cm}}$ at every cell.
- $\bullet \ \overrightarrow{r_{cm}} = \frac{\sum m_i \overrightarrow{r_i}}{\sum m_i}.$
- Both numerator and denominator can be evaluated using upward accumulation

- If parents of two cells are far away, then acceleration can be calculated between parents.
- One computation instead of 16.

- If two cells are very near, acceleration has to be calculated between children.
- Acceleration between two cells is calculated if one falls in doughnut region of other.

Evaluation of Polynomial Linear Recurrences Random number generation Sequence alignment Upward/Downward accumulation N-body problem

- Compute partial acceleration due to cells in the doughnut region for each node.
- Compute total accelerations using downward accumulation.

Evaluation of Polynomial Linear Recurrences Random number generation Sequence alignment Upward/Downward accumulation N-body problem

Acknowledgements

Indranil Roy

Graduate Student, ISU iroy@iastate.edu

Rahul Nihalani

Graduate Student, ISU rahuln@iastate.edu

