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Prefix sum

Input: a binary associative operator ⊗,
and n elements: x0, x1, x2, ... xn−1.

Output: n elements: s0, s1, s2, ... si ... sn−1 ;
where si = x0 ⊗ x1 ⊗ ...⊗ xi .

Example (operator: +)

elements 16 23 7 31 9

16 16 16 16 16
+ 23 + 23 + 23 + 23

+ 7 + 7 + 7
+ 31 + 31

+ 9

prefix sums 16 39 46 77 86
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Serial algorithm

PREFIX SUM(X , n)

1: s0 ← x0

2: for i ← 1 to n − 1 do
3: si ← si−1 ⊕ xi
4: end for
5: return S

Note: (1) Run-time O(n).
(2) There is a serial dependency for calculating si on si−1.

How do we parallelize this?
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Parallel prefix algorithm

Number of elements = n
Number of processors = p

Consider the case:
n = p = 2d

Element on Pi : xi
Prefix sum on Pi : si
Total sum on Pi : Ti

Computation time= O(log p)
Communication time= O(log p)
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Pseudocode

PARALLEL PREFIX SUM(id ,Xid , p)
1: prefix sum← Xid

2: total sum← prefix sum
3: d ← log2 p
4: for i ← 0 to d − 1 do
5: Send total sum to the processor with id ′ where id ′ = id ⊗ 2i

6: total sum← total sum + received total sum
7: if id ′ < id then
8: prefix sum← total sum + received total sum
9: end if

10: end for
11: return prefix sum

Note. Run-time = O(log p) 6= sequential runtime
p = O(1)
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General solution

Realistic case:

1 n > p
2 n is not a multiple of p

Each processor has either d np e or b np c elements.

3 p is not a power of 2.

d = dlog2pe
In any communication phase, do nothing if the computed id of
the processor to communicate with is ≥ p.
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General solution

Steps (for simplicity think that each processor has n
p elements):

1 Each processor computes the prefix sums of the n
p elements it

has locally

2 Using the last prefix sum on each processor, run a p-element
parallel prefix algorithm

3 On each processor, combine the result from the parallel prefix
algorithm with each local prefix sum computed in Step 1.
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Example (n = 15, p = 4)
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Run-time complexity

Step 1: Computation of prefix sum locally of n
p elements.

Computation time = O( n
p )

Communication time = 0

Step 2: Parallel prefix using last prefix sum on each processor

Computation time = O(log p)
Communication time = O(log p)

Step 3: Updating n
p prefix sums from step 1 with results

from step 2.

Computation time = O( n
p )

Communication time = 0

Overall
Computation time = O( n

p + log p)

Communication time = O(log p)
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Applications

1 Evaluation of a polynomial

2 Solving linear recurrences

3 Random number generation

4 Sequence alignment

5 N-body problem
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Evaluation of Polynomial

Input: (1) A real number x0,
(2) n integer coefficiencts {a0, a1, a2 ... an−1}.

Output: P(x0) = a0 + a1x0 + a2x2
0 + ... + an−1xn−1

0 .

Sequential run-time: O(n).
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Solution using parallel prefix

Let a′i s be distributed evenly on p processors.

Hence processor Pi has ai n
p

to a(i+1) n
p
−1.

Local sum required on processor Pi ,

sum(i) =

n
p
−1∑

j=0
ai n

p
+j x

i n
p

+j

0

To get required powers of x0, we use parallel prefix.
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Solution using parallel prefix

P0 reads x0 and broadcasts to all processors.

Run n-element parallel prefix using x0 and operator X.

Processor Pi has x
i n
p

0 .

Each processor computes sum of n
p terms in O(n/p) time.

Run-time: O(np+ logp).
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Linear Recurrences

Input: (1) Real numbers x0, x1.
(2) Integer coefficients a, b.

Output: Sequence {x2, x3, ..., xn} such that xi = axi−1 + bxi−2

Relation can be rewritten as
[
xi xi−1

]
=
[
xi−1 xi−2

] [a 1
b 0

]
Hence

[
xi xi−1

]
=
[
x1 x0

] [a 1
b 0

]i−1

Can be extended to dependency on previous k terms.
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Random number generation

Input: (1) Integer multiplier a
(2) Integer increment b
(3) Integer modulus m

Output: Pseudo random sequence {x1, ..., xn} according to Linear
Congruential Generator: xi+1 = (axi + b)modm.[

axi + b 1
]

=
[
xi 1

] [a 1
b 0

]
modm

If all additions are modm, then[
xi+1 1

]
=
[
xi 1

] [a 1
b 0

]
Hence

[
xi 1

]
=
[
x0 1

] [a 1
b 0

]i
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Sequence alignment

An important problem in computational biology.

DNA seqs: Strings over {A,C ,G ,T}.
Goal: To find out how “well” the sequences align.

Alignment: Stacking chars of each sequence into columns.

Gaps (-) may be inserted for missing characters.
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Example alignment and score computation

Alignment has a score that shows quality.

Every column of an alignment is a match, mismatch or a gap.

Matches are preferred and hence have a positive score, others
have a negative score.

Example: If match = 1,mismatch = 0 and gap = −1, then for
the following alignment Score(ATGACC, AGAATC) = 2

A T G A - C C
A – G A A T C
1 -1 1 1 -1 0 1
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Problem definition

Input: (1) Sequences A = a1, a2, ..., am and B = b1, b2, ..., bn.
(2) Scores for match (M), mismatch (M ′) and gap (g).

Output: Alignment with maximum score.

Dynamic programming solution:

T = Table of size (m + 1)x(n + 1).

T [i , j ] = best score between a1...ai and b1...bj .

T [i , j ] = max


T [i − 1, j ]− g

T [i , j − 1]− g

T [i − 1, j − 1] + f (ai , bj)

Sequential time = O(mn).
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Solution using parallel prefix

We compute each row of T using parallel prefix

T[i,j]

w[j]i−1,j−1 i−1,j

i,j−1

w [j ] = max

{
T [i − 1, j ]− g

T [i − 1, j − 1] + f (ai , bj)

Hence

T [i , j ] = max

{
w [j ]

T [i , j − 1]− g
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Solution using parallel prefix

Let x [j ] = T [i , j ] + jg . T [i , j ] can be computed from x [j ].

Hence

x [j ] = max

{
w [j ] + jg

x [j − 1]

Compute x [j ] using parallel prefix.

Parallel run time: O(mn
p + mlogp)

= O(mn
p ) (if plogp = O(n))
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Upward/Downward accumulation

Input: (1) Tree with nodes {v1...vn}.
(2) Number xi at node vi .

Output(UA): At each node vi , sum of no.s at all descendant of vi .
Output(DA): At each node vi , sum of no.s at all ancestors of vi .

Sequential runtime = O(n)
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Example

-UA(v4) = x4 +x7 +x8 +x9 +x10

-DA(v7) = x1 + x4 + x7

v1

v2 v3 v4

v5 v6 v7 v8

v9 v10
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Euler tour

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

Tour Length = 1 + 2(|V | − 1)
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Solution using Euler tour

Assume we have the Euler tour.

For UA, Create array A, |A| = |E |, with the following rule:

If E [j ] is the first occurance of vi , then A [j ] = xi .
Else A [j ] = 0

A [j ] can be computed using E [j − 1], E [j ], E [j + 1].

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

A: x1 x2 x5 0 x6 0 0 x3 0 x4 x7 x9 0 x10 0 0 x8 0 0
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Solution using Euler tour

Apply parallel prefix on A.

if : Index of first occurance of vi in E .

il : Index of last occurance of vi in E .

UA(vi ) = A [il ]− A [if − 1].

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

A: x1 x2 x5 0 x6 0 0 x3 0 x4 x7 x9 0 x10 0 0 x8 0 0
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Solution using Euler tour

For DA, Create array B, |B| = |E |, with the following rule:

If E [j ] = vi and vi is a leaf, then B [j ] = 0.
If E [j ] = vi and vi is the first occurance of vi , B [j ] = xi .
If E [j ] = vi and vi is the last occurance of vi , B [j ] = −xi .
For every thing else, A [j ] = 0

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

B: x1 x2 0 0 0− x2 0 0 0 x4 x7 0 0 0− x7 0 0− x4 − x1
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Solution using Euler tour

Apply parallel prefix on B.

if : Index of first occurance of vi in E .

If vi is a leaf, DA(vi ) = B [if ] + xi .

Else DA(vi ) = B [if ].

E: v1 v2 v5 v2 v6 v2 v1 v3 v1 v4 v7 v9 v7 v10 v7 v4 v8 v4 v1

B: x1 x2 0 0 0− x2 0 0 0 x4 x7 0 0 0− x7 0 0− x4 − x1
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N-body problem

Input: - n particles {p1...pn} at time t.
- Mass of pi : mi .
- Position Vector (P.V.) of pi at time t: −→ri
- Velocity Vector (V.V.) of pi at time t: −→vi

- Time interval t ′.
Output: P.V. of all pi ’s at t + t ′
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Sequential solution

Acceleration −→ai on pi is assumed constant for interval ∆t.

Compute P.V. after time ∆t for each particle.

Total

(
n
2

)
computations.

Repeat for t′

∆t iterations.

Run-time: O(n2 t′

∆t )
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Octree

Split the space into octants (quadrants for 2-D) till each cell has
one element.
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Octree
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Octree
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Solution using Upward/Downward accumulation

Each leaf represents a single particle.

Each internal node represents a cluster (cell).

For two clusters of size si and sj , acceleration can be
calculated using si ∗ sj computations.

If clusters are far away, approx. acceleration can be calculated
using one computation using centers of masses.
−→aij = −GM

||−→ri −−→rj ||3
.(−→ri −−→rj )
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Solution using Upward/Downward accumulation

We need collective mass
∑

mi and center of mass −→rcm at
every cell.
−→rcm =

∑
mi
−→ri∑

mi
.

Both numerator and denominator can be evaluated using
upward accumulation
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Solution using Upward/Downward accumulation

If parents of two cells are far away, then acceleration can be
calculated between parents.

One computation instead of 16.
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Solution using Upward/Downward accumulation

If two cells are very near, acceleration has to be calculated
between children.

Acceleration between two cells is calculated if one falls in
doughnut region of other.
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Solution using Upward/Downward accumulation

Compute partial acceleration due to cells in the doughnut
region for each node.

Compute total accelerations using downward accumulation.
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