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Abstract

In this paper we present a novel learning based method for
restoring and recognizing images of digits that have been
blurred using an unknown kernel. The novelty of our work
is an iterative loop that alternates between recognition and
restoration stages. In the restoration stage we model the
image as an undirected graphical model over the image
patches with the compatibility functions represented as non-
parametric kernel densities. Compatibility functions are
initially learned using uniform random samples from the
training data. We solve the inference problem by an ex-
tended version of the non-parametric belief propagation al-
gorithm in which we introduce the notion of partial mes-
sages. We close the loop by using the confidence scores of
the recognition to non-uniformly sample from the training
set in order to retrain the compatibility functions. We show
experimental results on synthetic and license plate images.

1. Introduction
Restoration is a neat showcase of ill-posedness of com-
puter vision. Given a blurred image there can be several
sharp natural images which, when blurred, will generate
the original image. The inherent ambiguities in restoration
are usually overcome using regularization or the Bayesian
remedy. In several important applications like surveillance,
tracking and license plate recognition systems, images may
be severely blurred. Hence, recognition strongly depends
on restoration performed either as an independent step or
jointly with some other computer vision or learning tasks.

There are numerous methods for inferring the sharp im-
age from the blurred input. A reasonable estimate of the
high resolution image may be obtained if we have a priori
knowledge about the blurring kernel. If no additive noise is
present, Wiener filter is the optimal filter. In the noisy case,
Wiener filter gives the MMSE solution. Restoration can be
made easier by incorporating several images as in [2]. Fur-
ther, image restoration can be thought of as a special case
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of super-resolution and as such image deblurring and super-
resolution have been treated concurrently by many authors.
Super-resolution algorithms can be classified into many cat-
egories based on different criteria such as frequency/image
domain, single/multiple images etc. Earlier works in this
field utilized the band limitedness of the images to interpo-
late sub pixel values from a series of aliased images. Re-
cently, time domain methods have been the principal re-
search fields. Among the time domain methods, two broad
sections are iterative methods and learning based methods.
Iterative methods [8, 10], mostly use a Bayesian framework
wherein an initial guess about the high resolution frame is
refined at each iteration. The image prior is usually assumed
to be a smoothness prior.

However, it seems that machine learning and specifi-
cally, probabilistic inference techniques are currently the
most promising line of research. The principal idea of the
machine learning approach is to use a set of high resolu-
tion (sharp) images and their corresponding low resolution
(blurred) images to build a compatibility model. The im-
ages are stored as patches or as coefficients of other feature
representations. Recently, an impressive amount of work
has been reported in this field [1, 4, 11, 5, 3], to name a
few. In [11], PCA based techniques were used to capture
the relationship between the high resolution and low res-
olution patches while nonparametric modeling was used to
estimate the missing details. In [5], an example based learn-
ing method was employed for super resolving natural im-
ages up to a zoom factor of 8. Along the same lines, Bishop
et al. [3], performed video superresolution by considering
additional priors to take into account the temporal coher-
ence between successive frames. Machine learning based
restoration methods can be made more powerful and robust
if the images are restricted to be of the same type, as in [1],
where face images are hallucinated. We note that the hal-
lucinated images need not be realistic. In [1], Baker et al.
proposed a hallucination technique based on the recognition
of generic local features. The local features are then used to
predict a recognition based prior rather than a smoothness
prior as is the case with most iterative techniques. The spirit

1



of our work is similar to the work of Freeman et. al [5], with
several important differences. Two unique features of our
work are partial message propagation and the restoration-
recognition loop. Our algorithm is built on the notion of
partial message propagationwherein we propose that any
given patch is only partially influenced by its neighbor, de-
pending on the mutual spatial orientation of the two neigh-
bors. The recognition phase is performed inside the loop
with restoration as it helps in the localization of the search
space. Eg. the search space for an image of the digit “8” can
be greatly minimized, if we introduce the recognition based
prior which reduces the search space to the set{0, 3, 6, 8,
9}. Finally, our method is not an example-based method,
thus removing the restriction of [5] that the reconstructed
high-resolution image must be a candidate from the train-
ing set whose low-resolution version is the most similar to
the input low-resolution patch.

The organization of this paper is as follows. In Sec. 2 we
describe the image model and review the details of the non-
parametric belief propagation (NBP) algorithm. In Sec. 3,
we elaborate our framework for performing recognition and
restoration in a loop and introduce the features and the po-
tential functions. In Sec. 4, we present experimental results
of restoration and recognition on synthetic digit images and
license plate images. We conclude in Sec. 5, with a discus-
sion about our work and directions for future research.

2. Model
2.1. Problem Statement and Notation
Consider a training set of pairs of images of sizen given
by {(X1,Y1), (X2,Y2), . . . , (Xn,Yn)}. Let there be an
unknown kernelf(Xi) that maps fromXi to Yi. The ob-
jective of the learning algorithm is given the training set,
to learn a model which can be used to infer the imageX
from an observed imageY which is not present in the train-
ing set. We model the imageX as an undirected graph-
ical model or more specifically a Markov Random Field
(MRF) [5]. MRF is a factorable distribution defined by the
graphG = {V, E} where each node represents a random
variablexi, i ∈ [1 . . . N ] corresponding to a patch in the
unknown, sharp image, which is associated with an obser-
vation nodeyi which represents the corresponding patch
in the observed image (Fig. 1). An edge between nodexi

and nodexj indicates that they are spatial neighbors. The
interaction between neighboring patchesxi andxj is mod-
eled using a potential function represented asψ(xi,xj) and
commonly called the interaction potential. The association
between the image patchxi and its observed blurred ver-
sionyi is modelled as a pairwise potential represented by
φ(xi,yi) called the association potential. The probability
distribution over the particular image and its blurred obser-
vationp(X,Y) can now be expressed in a factorized form
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Figure 1: Image Model.xi’s are the non-overlapping hid-
den image patches,yi’s are the observed patches.

as

p(X,Y) =
1
Z

∏

{i,j}∈E

ψ(xi,xj)
∏

i∈V

φ(xi,yi) (1)

Modeling with an MRF involves two phases, namely the
learning and the inference phase. In the learning phase,
interaction and association potentials are learned from the
training data. The inference phase computes the marginals
of posterior distributionp(xi|Y), for all nodesi ∈ V . In
the next two sub-sections, we review the belief propagation
(BP) algorithm that will be used in the restoration part of
the proposed restoration-recognition loop.

2.2. Belief Propagation
For acyclic graphs, the conditional distributions can be cal-
culated exactly by a local message passing algorithm known
as belief propagation (BP) [12] or the sum-product algo-
rithm. The message propagated from nodei to nodej in
thenth iteration represented asmn

ij(xj) is given by:

mn
i,j(xj) = α

∫

xi

ψ(xi,xj)φ(xi,yi)
∏

h∈Γ(i)\j
mn−1

h,i (xi)

(2)

whereΓ(i) indicates the neighborhood of the nodexi and
α is an arbitrary proportionality constant. The messages
computed can be combined to obtain the belief at each node.
For tree structured graphs, the beliefs converge to the actual
marginal distributions once the messages from each node
have been propagated to every other node. For such a case
the marginalsp(xi|Y) are given by,

p(xi|Y) = αφ(xi,yi)
∏

h∈Γ(i)

mn
h,i(xi) (3)

In the case of graphs with cycles, the BP algorithm is not
exact. The iterative version of BP algorithm produces be-
liefs which do not converge to true marginals. But, it was
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empirically shown that loopy BP produces excellent results
for several hard problems. Recently, Yedidia et al. [16] es-
tablished the link between the fixed points of belief prop-
agation algorithm and stationary points of ”variational free
energy” defined on the graphical model. This important re-
sult shed more light on convergence and optimality proper-
ties of loopy BP approximation.

In our setup, the messages computed using Eqn. 2
are mixtures of Gaussians and computing a message
mn

i,j(xj) involves the product of the interaction potential
ψ(xi,xj), the association potentialφ(xj ,yj) and the mes-
sagesmn−1

hi (xi), h ∈ Γ(i) \ j where each term is a mixture
of Gaussians. Hence, in order to evaluate Eqn. 2, the mix-
ture components in the potentials and the messages have to
be pruned so that the number of components in the prod-
uct is within tractable limits to solve the integral. Such an
approximation is unsuitable for the restoration problem and
alternatively, we use the nonparametric extension indepen-
dently proposed by [14] and [9].

2.3. Nonparametric Belief Propagation (NBP)
The interaction potential can be decomposed into a mar-
ginal influence term given byξ(xi) :=

∫
xj

ψ(xi,xj) and

a conditional interaction termψ(xm
i ,xj). The message up-

date rule (Eqn. 2) can be computed in two phases. The first
phase involves computing the productπn

i,j(xi) given by

πn
i,j(xi) := φ(xi,yi)ξ(xi)

∏

h∈Γ(i)\j
mn−1

h,i (xi). (4)

The second phase involves integrating the product of
πn

i,j(xi) and the conditional interaction term. [14, 9] pro-
posed Gibbs sampling to solve the first phase and handled
the second phase using stochastic integration. The mes-
sages are represented nonparametrically using a kernel den-
sity estimate as,

mi,j(xj) =
M∑

m=1

wm
j N

(
xj ; µm

j ,Λm
j

)
(5)

where,wm
j , µm

j , Λm
j correspond to the weight, mean and

covariance associated with themth kernel.

2.3.1 Parallel Sampling

The first phase of computing the messages corresponds to
evaluating the productπn

i,j(xi). We observe that each term
in the product is a mixture of Gaussians and exact evalu-
ation is not feasible because of the exponential growth in
computational complexity with number of mixture compo-
nents. Pruning of the mixture components can be performed
to restrict the number of computations, but it turns out to
be a very coarse approximation for the restoration problem.

Sequential Gibbs sampling [6], and importance weighting
were used in [14, 9] to generateM asymptotically unbiased
samples without explicitly computing the product.

In this work, we use alternating Gibbs sampling [7], to
obtain samples from the productπn

i,j(xi). The procedure
for alternating Gibbs sampling to sample from a product of
the form

∏L
l=1

∑M
m=1 wl,mN (z; µl,m,Λl,m) is as follows,

1. Pick a data vector,z, randomly.

2. Compute the posterior probabilityPl,m =
wl,mN (z;µl,m,Λl,m) for each of the M mix-
ture component in every term of the product, given the
data vector,z.

3. Pick a mixture componentml for each term in the
product based on the posterior probability distribution.

4. Compute the resulting distribution obtained by
multiplying the picked mixture components, i.e.∏L

l=1N (z; µl,ml
,Λl,ml

).

5. Sample from this resulting distribution to obtain the
new data vectorz.

6. Go back to 2.

The above technique can be used to obtain asymptoti-
cally unbiased samplesx1

i ,x
2
i , . . . ,xM

i fromπn
i,j(xi). Fur-

ther, the same sampling approach can be used to obtain sam-
ples for the posteriorp(xi|Y) given by Eqn. 3 after each
iteration of the message passing algorithm.

2.3.2 Message Updates

The second phase of message update is to integrate the com-
bination of the samples obtained from alternating Gibbs
sampling and the conditional interaction potential. This is
performed using stochastic integration where every sam-
ple xm

i is propagated to nodej by samplingxm
j from

ψ(xm
i ,xj). Now, nonparametric density estimation is used

to obtain a kernel density estimate (Eqn. 5) for the mes-
sagemn

i,j(xj) where the means of the kernels are the prop-
agated samples. Covariances are chosen to be diagonal and
identical and are obtained using the leave-one-out cross-
validation technique [13].

3. Restoration and Recognition in a
loop

In this section, we elaborate the application of the NBP al-
gorithm for restoring the blurred image of a digit. From
our modeling perspective, the observationY corresponds
to a blurred version of the original imageX with an un-
known kernel functionf(X). The training set comprises of
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Figure 2: The vectorized pixels in patchxi are appended
onto the vectorized pixels in the patchyi to obtain a feature
vector. The association potentialφ(xi,yi) is a function over
this feature vector.

several instances of sharp-blurred image pairs{X,Y}. As
elaborated in Sec. 2.1,X is modeled as a Markov random
field over a patch based representationxi, i ∈ [1 . . . N ].
The choice of the patch size is often a critical parameter,
as small sized patches do not capture the local information
well, while bigger sized patches result in block effects and
increased computational complexity. In this work we em-
pirically determined that the patch size4× 4 is optimal.

3.1. Learning the Association and Interaction
Potential

One of the features of this work is in usingnon-parametric
kernel density estimation for learning the potentialsto avoid
the averaging effects in parametric methods which is against
the spirit of a restoration problem.

We model the association potentialφ(xi,yi) as a func-
tion over the vectorized patch association (Fig. 2).

φ(xi,yi) =
1
M

M∑
m=1

N ([xi,yi]T ;µm,Λm) (6)

where M is the number of components and
N ([x,y]T ; µ,Λ) is the multivariate normal distribu-
tion with meanµ and covarianceΛ over the random vector
[x,y]T . From the training images, the patch association
vectors[x,y]T corresponding to the image and its blurred
version are constructed as shown in Fig. 2. The patch
association vectors are pruned to avoid redundancy. The
potential is constructed by considering a kernel with the
mean chosen as the patch association vector and the covari-
ances are chosen using the leave one out cross validation
technique [13]. The interaction potentialψ(xi,xj) is a
function over the vectorized two pixel thick non overlap-
ping patch boundary as shown in Fig. 3, and is learned
using the non-parametric estimation technique.

The drawback of using the non-parametric approach is
that the number of componentsM in the association poten-
tial is equal to the total number of samples which results
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Figure 3: The vectorized boundary pixels of patchesxi and
xj are appended to obtain a feature vector. The interaction
potentialψ(xi,xj) is a function over this feature vector.

in computational issues while performing inference. Thus,
one is restricted to use only a few images from the train-
ing set to learn the potentials. The novelty of this work
is in overcoming the above problem by aniterative loop
which alternates between recognition and restoration, as il-
lustrated in Fig. 4. The confidence scores obtained from
recognition are used to sample from the training data set
and these representative samples are then used to learn bet-
ter potential functions. The recognition approach is further
elaborated in Sec. 3.3. In the first iteration, both poten-
tials are learned from the patches randomly cropped from
the sample images in the training set. In the following it-
erations the confidence scores are turned into multinomial
distribution used to generate the new training set. In order
to avoid overconfidence and zero probabilities, we used the
Laplacian estimator (smoother), [15].

Sampler
Training

Data

Recognition

Learning
Association

and
Interaction

Potential

Restoration
Blurred

Image

Scores
Confidence

Figure 4: Block diagram illustrating our framework for per-
forming recognition and restoration in a loop. During the
first iteration, the potentials are learned from a random set
of images from the training set. After the first round, the
confidence scores are used to sample from the training set
and these samples are used for learning the potentials.

3.2. Restoration using Nonparametric Belief
Propagation

Another novel contribution of this work is this notion of
passingpartial messagesto a node. We note that the mes-
sagemi,j(xj) is a function of the two pixel thick bound-
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Figure 5: We assume that the interaction between the left
and the center patch is only through the shaded regions.
Proposed partial message passing algorithm is based on the
partial influence of the neighboring patches.

ary pixels because of the structure of the interaction poten-
tial. The idea is illustrated in Fig. 5 where we have indi-
cated the partial influence of the left neighbor on the central
patch. This modeling is crucial to ensure good interaction
between adjacent patches and it is based on the intuition
that neighboring patches are more likely to have influences
on the boundary pixels rather than on the whole patch. We
introduce the notatioñxi,j to represent the two pixel thick
boundary of the patchxj which interacts with the patchxi.
Consequently, the messages are denoted asmn

i,j(x̃i,j). The
alternating Gibbs sampling procedure can still be used to
generate samples fromπn

i,j(xi) with a simple modification
of Step.4 of the algorithm. In the restoration problem setup,
the product in Step.4 corresponds to,

N (xi;µ,Λ)︸ ︷︷ ︸
φ(xi,yi)

N (x̃j,i; µ̃j,i, Λ̃j,i)︸ ︷︷ ︸
ξ(x̃i)

∏

h∈Γ(i)\j
N (x̃h,i; µ̃h,i, Λ̃h,i)︸ ︷︷ ︸

mn−1
h,i (x̃h,i)

where the function indicated under the braces
(φ(xi,yi),ξ(x̃i) or mn−1

h,i (x̃h,i)) is the term inπn
i,j(xi)

from which the component was picked. Except for the first
term which is a normal overxi, the rest – the component
from the marginal influence term and the component from
the messages – are normal distributions over subsets of
the components of the random vectorxi. Such a product
of Gaussians can be solved for computing the products of
normal distributions over different subsets of the compo-
nents of a random vector. The rest of the alternating Gibbs
sampling procedure remains unchanged and can be used to
generate samples fromπn

i,j(xi) and further these samples

are propagated to nodej as explained in Sec. 2.3.2. The
message update algorithm is run for several iterations for
all the nodes in the graph and at the end of each iteration
the posteriorp(xi|Y) given in Eqn. 3, is computed using
the alternating Gibbs sampling procedure.

3.3. Recognition
The key contribution of this work is the iterative loop which
alternates between restoration and recognition as shown in
Fig. 4. This feedback feature allows us to perform sam-
pling from the training set in a way which ensures that
the data used for learning the potentials are similar to the
test data. This technique resembles a boosting procedure
wherein the distribution over the class labels is modified in
order to boost the performance of the restoration method.

The algorithm used for recognition of the digits is based
on thek-nearest neighbor algorithm. The Euclidean dis-
tance metric is used to compute the distances between
the test imageX and the images in the database. Based
on the distance, the topk closest points from the dataset
{X1,X2 . . .Xk} are picked. Let us denote the distances
corresponding to the topk points to be{D1, D2, . . . , Dk}
and denote the class index of theith closest image to beci,
whereci ∈ [0 . . . 9]. Now, we arrive at a confidence esti-
mate for each class using,

C(class = c|X) =
1
Z

exp(−
k∑

i=1

DiIc(ci)) (7)

whereZ is a normalizing constant andIc(ci) is an indicator
function. The decision rule for recognition is given by,

c∗ = argmax
c

C(class = c|X) (8)

The confidence scores of each object class are turned into
the multinomial distributiion over the class labels. We sam-
ple the pool of training data according to this distribution to
generate the novel training set used to retrain the association
and interaction potentials.

4. Experiments and Results
We illustrate the performance of the proposed method for
the task of recognition of blurred license plate images. The
high-resolutuion (sharp) training set consists of digits from
20 different font families. The digits are represented by
same-size, center-aligned binary images. The low resolu-
tion training dataset consists of corresponding gray-scale
images obtained by convolution with the Laplacian kernel.
The testing dataset consists of blurred registration plate im-
ages. We manually segmented the digits from the registra-
tion plates to create the testing set. The evaluation of the
joint restoration and recognition method is done by subjec-
tively analyzing the quality of the deblurred images and by
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monitoring the improvement in the recognition rate and the
recognition confidence.

In the first experiment, we verify the training procedure
by testing the restoration on the images used to learn the
potentials. As expected (Fig. 6), the reconstructed images
are almost indistinguishable from the originals (for digits
“1” and “6”) or very close to the originals (for digit “2”).

Figure 6: Restoration of blurred testing samples taken from
the training ensemble. Left image is the input to the system.
Center image is the sharpened image using deconvolution
methods. Right image is the output of our algorithm.

In the second experiment, we chose the training set to
consist only of images of one digit (“1”) and the testing set
consist only of images of single, yet different, digit (“2”).
The expected artifacts in the reconstructed image patches
shown in Fig. (7) that resemble the training set are clearly
visible.

In the third experiment, we trained the potentials on a set
of 150 synthetic images consisting of15 images for each
digit. The testing set consists of50 images consisting of
5 images for each digit. We monitored the improvement
of visual quality of reconstructed images after each of five
iterations of NBP algorithm (Fig. 8). We note that the ver-
tical and horizontal strokes of digit “5” become thinner and
clearer as the iterations proceed. For the digit “9” the recon-
struction becomes less spiky and the semicircular regions
become thinner and smoother.

Next, we test the recognition accuracy and confidence of
the proposed alternating restoration and recognition algo-
rithm. For this experiment the training set consists of200
synthetic images and the test set is composed of200 real
images from the blurred license plates. We present results
of recognition accuracy and the improvement in confidence
scores (before and after restoration) given by 7, after5 runs
of the restoration and recognition loop. There was a signif-
icant improvement in recognition rate92% after restoration

Figure 7: Restoration after three iterations of the NBP al-
gorithm performed on the blurred image of digit “2”. The
potentials were learned on a single image of digit “1”.

Figure 8: Restoration result obtained after second, third,
fourth and fifth iteration of the NBP algorithm for “5” and
“9”.

compared to the40% recognition rate before restoration.
In Fig. 9, we present the average confidence scores corre-
sponding to the true digit class before and after restoration.
We observe that there is a clear improvement in the confi-
dence score for most of the digits (“0”,“3”,“4”,“5”,“6”,“8”).
In some cases (“1”,“7”) , we observe that the gain is not sig-
nificant, as the confidence scores are already high.

Figure 9: Confidence Scores vs True Digit Class, before and
after restoration.

Finally, we present test results on real license plate im-
ages as shown in Fig. 10. The original license plate, the
blurred version of the digits, the deconvolution based de-
blurring results as well as our results are shown. It is evi-
dent from the experiments that our method works well for
this scenario.

5. Conclusion and Future Work
In this work we have proposed a novel method for simul-
taneous restoration and recognition of blurred license plate
images. We treat the restoration and recognition as two sep-
arate blocks and introduce the sampling of the training data
based on the outcome of the recognition stage to better learn
the potentials in the restoration block. This key contribution
significantly improves the restoration by sampling from the
relevant part of the distribution space. To the best of our
knowledge this is the first attempt to simultaneously address
restoration and recognition problems for object class spe-
cific images. This problem cannot be consistently solved
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Figure 10: Left: The original License Plate. Right: (top to
bottom) Blurred input, deblurred using deconvolution meth-
ods, our method.

using normal MRFs due to the lack of strong priors and the
computational challenges of learning large datasets. It is
also highly unlikely that pure recognition methods would
work in the cases of severely blurred images. This work
has potentially very interesting extensions. One of them is
to overcome the need for manually segmented images by
performing the segmentation jointly with recognition and
restoration. This would be a potentially significant contri-
bution to the active area of joint recognition and segmenta-
tion.
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