archives-ouvertes

Empirical Investigation of the Web Browser Attack
Surface under Cross-Site Scripting: an Urgent Need for
Systematic Security Regression Testing
Erwan Abgrall, Sylvain Gombault, Yves Le Traon, Martin Monperrus

» To cite this version:

Erwan Abgrall, Sylvain Gombault, Yves Le Traon, Martin Monperrus. Empirical Investigation of
the Web Browser Attack Surface under Cross-Site Scripting: an Urgent Need for Systematic Secu-
rity Regression Testing. International Conference on Software Testing, Verification and Validation
Workshops, 2014, Cleveland, United States. 10.1109/ICSTW.2014.63 . hal-00979586

HAL Id: hal-00979586
https://hal.archives-ouvertes.fr/hal-00979586
Submitted on 8 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr/hal-00979586
https://hal.archives-ouvertes.fr

2014 IEEE International Conference on Software Testing, Verification, and Validation Workshops

Empirical Investigation of the Web Browser Attack
Surface under Cross-Site Scripting: an Urgent Need
for Systematic Security Regression Testing

Erwan Abgrall Yves Le Traon
Telecom-Bretagne - RSM University of Luxembourg & SNT
University of Luxembourg - SNT Kirshberg, Luxembourg
DGA-MI Email: yves.letraon@uni.lu

Email: erwan.abgrall @telecom-bretagne.eu
Martin Monperrus

Sylvain Gombault University of Lille & INRIA
Institut Mines-Telecom & Telecom-Bretagne - RSM Lille, France
Rennes, France Email: martin.monperrus @univ-lille1.fr

Email: sylvain.gombault@telecom-bretagne.eu

Abstract—One of the major threats against web applications One major difficulty to protect web clients against XSS is
is Cross-Site Scripting (XSS). The final target of XSS attacks the technical nature of each XSS: unusual HTML and JS

is the client running a particular web browser. During this last .. 0 200 triggered. Predicting which HTML and JS
decade, several competing web browsers (IE, Netscape, Chrome, . g . ..
mechanisms may be exploited by an attack is not trivial. To

Firefox) have evolved to support new features. In this paper, .
we explore whether the evolution of web browsers is done using ensure the robustness of a web browser against XSS, test
systematic security regression testing. Beginning with an analysis cases must be selected to evaluate the quality and efficiency
of their current exposure degree to XSS, we extend the empirical of security mechanisms.

study to a decade of most popular web browser versions. We The technical contribution of this paper is a method to
use XSS attack vectors as unit test cases and we propose a

new method supported by a tool to address this XSS vector systematically test the impact of a large set of XSS vectors on
testing issue. The analysis on a decade releases of most popular Web browsers, including mobile browsers (e.g. on Android).
web browsers including mobile ones shows an urgent need of Our test driver, called XSS Test Driver executes a code within
XSS regression testing. We advocate the use of a shared security the web browser equivalent to the one ran by victims under
testing benchmark as a good practice and propose a first set of xgq ;1acks. This allows us to measure the attack surface of
publicly available XSS vectors as a basis to ensure that security
is ot sacrificed when a new version is delivered. a given web browser wit respect to XSS [2]. Using this tool,
we assess two hypotheses related to the attack surface of web
browsers:
H1. Browsers belonging to two different families have
Back in 2000, the CERT released an advisory on Cross-Site different attack surfaces. In other words, they are not sensitive
Scripting (XSS) attacks, stating that XSS will be a growing to the same attack vectors. This first hypothesis is crucial to
threat for the next 10 years. Nowadays, a decade later, XSS understand whether there is a shared security policy between
attacks are still the major threat for web clients. The question web browser vendors headed against XSS attacks to protect
we ask in this paper is whether the constant evolution of clients against web attacks.
browsers leads to an overall improvement of final clients H2. Web browsers are not systematically tested w.r.t. their
security. In this paper, we analyze six different families of sensitivity to XSS vectors. This second hypothesis explores
web browsers and their evolution in terms of threat exposure whether there is a clear continuity or a convergence in the
to XSS. attack surface of a given web browser over time. The validation
Cross-Site Scripting (XSS) is a polymorphic category of of this hypothesis would mean that web browser providers do
attacks that may infect web applications as well as their not have a systematic regression strategy for improving the
clients, in many different direct and indirect ways. Many robustness of their web browser from one version to the next
countermeasures can be deployed to face this threat: these one.
security mechanisms are located in the internal parts of To assess those two hypotheses, we analyze the releases
web applications (e.g. validation checks), on external security of six families of web browsers over a decade. Our results
components (reverse-proxies, web application firewalls (WAF) validate both H1 and H2. This shows there is an urgent need
like ModSecurity [1]) or even on client-side web browsers. of systematic non-regression testing with respect to XSS. We

1. INTRODUCTION

978-0-7695-5194-4/14 $31.00 © 2014 IEEE 34 @COHE’IE[)Euter
DOI 10.1109/ICSTW.2014.63 societ

advocate the use of a shared security testing benchmark and
propose a first set of publicly available XSS vectors to ensure
that security is not sacrificed when a new version is delivered.

The paper is organized as follows: section 2 presents the
background related to XSS. Section 3 describes the security
test philosophy, related work and XSS Test Driver logic.
Section 4 defines the metrics we propose for the empirical
investigations and experimental setup. Section 5 motivates the
development of XSS Test Driver based on technical consid-
erations. The empirical studies of section 6 try to answer the
hypotheses and address other related issues. In particular, the
paper tackles new research issues in the domain of XSS test
selection and regression testing of web browsers.

II. BACKGROUND ON CROSS-SITE SCRIPTING (XSS)

An XSS attack typically proceeds in two main steps: putting
XSS code on a web server and then propagating the attack to
the clients by making them executing malicious code on their
browsers. In this paper, we focus on the second step and more
specifically clients’ exposure to XSS attacks. A XSS attack is
composed of an attack vector (to penetrate the system) and of
a payload (to perform the effective attack). Given the dynamic
nature of today’s web applications, and the variety of browser’s
implementations when it comes to interpreting HTML and
JavaScript (JS), it is hard to determine if a XSS vector passing
through a web application is a major threat or not for users.
Most security mechanisms work well against basic XSS but
tend to fail against sophisticated ones. Those advanced XSS
exploit rarely known behaviors from peculiar interpretations
of the HTML and other web page resources, in order to evade
known Intrusion Detection System (IDS) signatures and put
JavaScript (JS) calls in unexpected properties of some tags
like:

<DIV STYLE="width:expression (eval (
String.fromCharCode (97,108,101,114,
116,40,39,120,115,115,39,41,32)));">

In this example, one must know that a regular CSS (Cascad-
ing Style Sheet) property expression executes JavaScript (JS)
code when it is evalated in an Internet Explorer (IE) browser.
The CSS expression calls the JS function eval() that itself calls
String to convert data from decimal ASCII and produce this
simple and non-destructive payload:

<script>alert (xss)</script>

Two main techniques are used to block the propagation of
an XSS attack from the server to a client: signature-based
and behavior-based like the SWAP approaches [3]. While the
first approach cannot block new attacks (no known signature),
the second fails in detecting browser specific XSS (a known
limitation for SWAP), like the ones shown in [4]. In particular,
an XSS detection engine relying on a specific HTML and
JS parser cannot detect a browser specific XSS if it doesn’t
behave like the targeted web browser, since each browser
have a specific web engine. As a consequence, it is necessary

35

XSS Test
Driver

Vulnerable
Web Browser

XSS =vector + test payload

Payload execution PASS

XSS Test
Driver

Non Vulnerable
Web Browser

XSS = vector + test payload
Payload not

processed

Web browser refresh

FAIL

Fig. 1. XSS Test Driver Testing Logic

to focus on web browsers by estimating and analyzing their
exposure degree to XSS. As highlighted by this example,
one major difficulty to protect web clients against XSS is
the technical nature of each XSS: unusual HTML and JS
mechanisms are triggered. Predicting which HTML and JS
mechanisms may be exploited by an attack is not trivial.
Beyond this technical nature of the problem, testing is thus
helpful as a way to estimate the discrepancies in browsers
facing XSS in a systematic way.

III. ASSESSING THE XSS ATTACK SURFACE OVER TIME
A. Testing Methodology

A payload usually contains JavaScript code for the browser
to execute. It can be innocuous or it can be noxious, by
executing a redirection to an attack website. It then exploits a
flaw inside the browser, leading to arbitrary code execution on
the client like in the Aurora attack against Google employees
[5]. The payload is executed if the browser “understands” the
vector, meaning that it interprets it as expected by the attacker.
In our context, a test case is composed of an attack vector
carrying a non-destructive payload. As shown in Figure 1,
a test fails if the browser does not execute the payload or
if it crashes or hangs endlessly, preventing the JavaScript to
be executed and thus the attack. In our context, a XSS test
case “passes” if the vector is executed by the browser. This
means that a passing test case reflects a real threat for the
browser. “pass” thus means “possibly vulnerable” (where the
use of a pass verdict usually corresponds to an absence of
error in the testing domain). This is especially important since
it accurately pinpoints the exact attack surface a web browser
offers to the attacker. It also allows launching accurate test
cases that will challenge server-side countermeasures. This
testing methodology allows determining the overall security
of a system, and also to measure each layer’s contribution to
security.

B. Metrics

To provide an overview of the sensitivity of a given web
browser submitted to a set of XSS attack vectors, we define

some metrics.

Let T'S be an XSS test case set. Let verdict(tc, wb) be
the verdict of the execution of test case tc of TS against a
web browser wb. verdict(ts, wb) returns either Pass (the XSS
succeeds) or Fail. Let TR be the tests results of the execution
of T'S against a web browser wb, represented as a n-dimension
vector.

The relative threat exposure of a web browser is equal to
the number of Pass verdicts. The Threat exposure degree is
defined as follows:

1) The Threat Exposure Degree ThExp(wb,TS): The
degree of threat exposure of a web browser wb to a XSS test
set T'S is defined as the rate of “Pass” verdicts when executed
against the elements of TS:

[{verdict(tc, wbd)

‘Pass'}, tc € TS|
TS|

ThExp(wb, TS) =
ey

A value of 1 means that all the test cases (XSS attack vectors)
are interpreted: the web browser is thus potentially vulnerable
to the full XSS test set. On the contrary, a value of 0 means
that the web browser is not sensitive to this XSS test set.

Symmetrically to the analysis of the exposure degree of
a particular web browser, one can be interested to study the
impact of a given XSS attack vector on a set of web browsers.
The degree of noxiousness of a test case is thus related to the
percentage of web browsers it potentially affects.

2) The Degree of Noxiousness Nox(tc, WB): of a XSS
test case tc, against a set of web browsers W B is defined as
the percentage of “Pass” verdicts among the number of tested
browsers:

[{verdict(tc,wb) = ‘Pass'}, wb € W B|

(W B

Nox(te, WB) =

2

Nox equals O if the XSS attack vector is not interpreted by
any web browser, and equals 1 if all web browsers interpret
it.

To focus on the evolution of a family of web browsers,
we need to estimate the convergence or divergence of the
attack surface from one version to another. The attack surface
distance is defined to measure how much a version differs
in behavior from another. Two versions may have the same
exposure degree while not being sensitive to the same attack
vectors.

The browser attack surface is defined, in this paper, by
the set of passing test results on a given browser. Since we
want to compare evolutions between browsers, we also need
a similarity measure:

3) The Attack Surface Distance: is defined as the hamming
distance between browsers attack surface:

3)

Attack surface distance equals O if the two versions of
a browser have exactly the same attack surface. Note that
exposure degrees may be the same while two web browsers
do not have the same exact attack surface. For instance, if

ASD(W By, W By) = Hamming(T Ry, TRs)

36

Pass(1) = {tcl,ted,tch} and Pass(2) = {tcl,tc2,tc3},
ASD(1,2) equals 4, while the threat exposure degrees are
the same. Indeed, the version 2 is no more impacted by tc4
and tc5 but is now affected by tc2 and tc3. The attack surface
distance thus reveals the number of differences between two
versions in terms of sensitivity to a set of XSS attack vectors.

C. Experimental Design

The empirical study requires executing a set of XSS test
cases on a large set of web browsers. This raises the question
of the selection of the test cases.

1) XSS Vector Set: The XSS vector set was built from
the XSS Cheat Sheet [6], the HTMLS5 Security Cheat Sheet
[7] and UTF-7 XSS Cheat sheet [8], and a few “discovered”
vectors using a n-cube test generation. To find new vectors,
we exhaustively combined HTML4 tags and property sets
with JavaScript calls and used the scalar product of those
{tag,property,call} sets to generate XSS vectors.

From this approach, only 6 vectors were effective out of
the 44 000 generated test cases, after retrieving variations of
already known vectors. With such a systematic test cases gen-
eration, we neither consider the inter-dependencies between
tags nor the related constraints to be satisfied in order to
obtain a valid vector. The resulting vectors thus are sometimes
invalid, such as calling HTMLS or SVG tags without the
proper document type/content-type declared.

We then proceeded in three steps:
union of the referenced sets
manual filtering of redundant test cases
replacement of the default payload with one payload ded-
icated to XSSTestDriver (for facilitating the elaboration of
the oracle verdict).

Test cases are different when they are exercising different JS
mechanisms. It is possible to artificially multiply the total
number of XSS test vectors; however we wanted to get the
smallest number of different test cases. This point is crucial
for the internal diversity of the test benchmark we propose.
Similar test cases would not be efficient to exhibit different
behaviors for web browsers.

The XSS test cases we use represent a large variety of
dissimilar XSS vectors. We adapted them to have a payload
dedicated to results interpretation. The resulting test set con-
tains 87 test cases, among them 6 generated by our systematic
test generation method (which were unreferenced).

2) Browser Set: The browser set consists of various ver-
sions of the browser families from July 1998 to March
2011. The qualified browsers are: Internet Explorer, Netscape,
Mozilla, Firefox, Opera, Safari and Chrome. When available,
we also consider and compare mobile versions of the web
browsers.

Browser installers were collected from oldapps.com. In-
stallation and execution was automated using the AutolT
Framework running in several Windows XP virtual machines
for compatibility purposes. Mobile versions were installed
manually either within emulators or real smartphones when
available.

3) Threats to Validity: The validity of the experiments
relies on the relevance of the test cases. As far as we know,
we have proposed the most comprehensive and compact set
of different XSS test vectors. However, as shown in section
2, it is extremely difficult to be exhaustive: new attacks are
difficult to find since they exploit very particular aspects of
JS interpreters. New attack vectors can be found everyday by
hackers, or may be still unreferenced in the literature and
the security websites. To overcome this problem, we tried
to generate new, still unreferenced, XSS test vectors: the
results were quite disappointing (6 success out of 44000 trials)
showing that the problem is similar to finding a needle in a
haystack.

D. Technical Issues and Details

Existing frameworks, such as JS unit and JS test driver, do
not meet fundamental requirements for systematic testing of
web browsers: being non intrusive (the test environment must
not impact on the test results), being compatible with any web
browser (for systematic benchmarking) and allowing the test
results to be easily interpreted (test oracle). The developed
testing framework for XSS is called XSS Test Driver. Anyone
can test his/her own browser here: [9] and source code is
available here on github [10].

An XSS execution comes in two parts: the browser parses
the HTML, identifying the parts of the Document Object
Model and building an internal representation of it. Then it
calls the identified JavaScript (from < script >tags or tags
properties) and executes it if necessary (it is not always the
case when it comes to onevent properties such as onload or
onmouseover). In the technical report [11], we fully explain
the reason why JSUnit and JS TestDriver were inadapted
for launching all types of XSS test vectors on any kind of
web browsers. We summarize the difficulty met when using
JSTestDriver (intrusiveness of the testing framework).

IV. EMPIRICAL RESULTS

The empirical study we present targets two objectives:

D
2)

validating the applicability of our testing framework and
investigating to what extent main web browser families
are tested by their developers with respect to a regression
testing policy.

A. Testing Hypothesis HI

To test H1, we execute 84 XSS attack vectors against three
categories of web browsers: modern/recent versions, mobile
versions and some still used legacy versions of web browsers.

The result is a snapshot of main web browser’s threat
exposures. Table I and II shows the test results: On table I, we
present the results against XSS test cases 3 to 45, and table
II presents results from 45 to 87 (result 45 is repeated for
presentation reasons). A black cell represents a Pass verdict.
The three families of browsers appear, and for each of the
web browser the threat exposure degree is presented in the
first row (30 for IE8 means 30% of threat exposure degree).
The noxiousness degree for each XSS test case is given on the

37

last column, right. We provide these degrees considering all
browsers in the web browser set. Test cases #53, #54 and #59
are based on HTMLS tags and properties, thus making them
ineffective against legacy browsers.

Some XSS vectors pass with the majority of the browsers,
while others pass only with a specific version. This is due
to the implementation of various norms, and the quality of
parser’s behavior toward the norm (Ex: between IE6 and IE7
a significant effort was done toward the implementation of
standards). Only few test cases are effective within the whole
browser set. Vectors number #3 to #6 are basic < script> tag
based XSS with various payloads delivery. #12 and #13 are
< body > tags based XSS with an OnLoad event set to execute
the payload. #17 is a < script > tag with doubled brackets to
evade basic filters. Test data #19 offers a very interesting form
of evasion based on a half-opened < iframe> tag loading the
payload from a dedicated HTML page:

<iframe src=/inc/l6/payload.html <

We observed that 29 collected vectors were not executed by
any of the selected browsers for the following reasons:

some browser specific vector affects a precise version,
like #15 from the XSS Cheat Sheet[6] which works only
with specific version of firefox 2.0 and Netscape 8.1.
Some failed due to improper test context like the char-
acter set used for the test suite, or the wrong DTD or
content type, showing that context-dependent and context
independent vectors exists.
Some vectors made the browser unstable or crash, like
<DIV STYLE="width:expression (
eval (String[’ fromCharCode’]
(97,108,101,114,116,40, 39,
120,115,115,39,41, 32)

)) ">
which plunge IE in a some kind of polling loop against
the server

Some web browsers have similar behaviors. However, we
can remark that all columns are different, meaning that each
web browser has a different “signature” when submitted to
our testing benchmark. When the signature is very similar,
this reveals a JS interpretation engine that is based on the
same initial implementation. Most popular web browsers are
not exactly sensitive to the same attack vectors, and many of
them have very different signatures.

1) Application to test cases selection: This snapshot opens
a new perspective for security test cases selection. As shown,
each web browser has its own threat exposure, and each attack
vector is carrying a potential noxiousness degree. The table
offers a very simple way to select a subset of web browsers
enabling a maximum number of attacks. We can thus use this
matrix to select the test cases that can be used for testing a web
application for a given category of web browsers. For instance,
test cases (#10, #23, #40, #80) are not noxious for modern web
browsers. The fast-paced development of nowadays browsers
makes difficult to track the effectiveness of a XSS vector, and

TABLE I
TEST RESULTS FOR VECTORS 1 TO 42

TABLE II
TEST RESULTS FOR VECTORS 42 TO 84

when a new vector is discovered, it can be quite tedious to
test it against several browsers. XSS Test Driver solves this
issue, and eases comparisons.

2) Modern browsers have similar behaviors: With the
considered modern browsers, 32 of the 84 test cases pass.
We observe similar behaviors for some web browsers. Safari
and Chrome’s behaviors against the 84 test cases are exactly
the same except for test #16 and #83. This could be easily
explained because Chrome uses Apple Webkit 534.3 as render-
ing engine, when the Safari version we tested uses the version
533.21.1 (version depicted by the User-Agent). This confirms
that the HTML Parser matters for XSS execution.

3) Mobile versus desktop browsers: For mobile browsers,
43 test cases pass among the 84 ones for at least one mobile
browser, but the passing test cases are quite different from the
set of passing ones for modern web browsers. If we compare
the results of the Safari mobile with the desktop version, we
can see that the results are the same, since they use the same
codebase (table III).

2. g - 2|, g -
50812 =1% 3 2 5182 |=1% x g 2
E1S|2 |k 2|38 18|22k 8 21238
S|=|2|2|= gla|<|g|g]s 1212123, lzl8|3|2|8lg|e|~ o
SR IEE I P SIRE1E (=229 8 |22 9 8|8
=812z 1z 2|2 2|8lzlz|c|s O HEIRRHEOIH R EE R IER
S| E|=|g|g|¢E SlE|2|8|°|® Sl E|m| &2 |E|S |22 8128|5183 F|2
215|860 | e || E|E|B|E | O |EH|O |0 |2 |a || < |E|E|B|E|Z |75
3 I LT 1 45000]0]0[0]0]|0]O0O|0O][O0O[O0O]O0O]O0]O
7 1 111 46 [0 [0 [0 |0 [0][0 |0 WMMO0[0[0[0[0][0]O0
3 —1 T 1 70 0 [0 [0[0[0|0|0[0][O0O[O0]O0]O0]O
5) L1 8]0 0 |0 MO0 [0[0|0 [0 WMO0[0][0]0
7 T010] 0 | 49 70 O[O0 JOJOTO[O[O[O W O/[O]O]O
3 F0 1 U1 & 11 1 11 1 1] 1 K1
5 N 0 0]0]0|0[]0]0]0O]0O|]O|]O|]O[O]O
10| 0 00][0|0]0]0[0]0|0]0O]|0O][0]O
En B MR
- 000 0]0|0]0]0]0
| 0 0][0]0[0]0]0O[]O|O]O|O][O0O]O
0 0][0]0]0]0[0O]O0O]JO]O]|O]O]O
0 0] 0][0|0]0]0[0]0|0O]O0O|0O|O0]O
0 00][0|0]0]0[0]0|0]0O]|0][0]O
1 N " BNEEEEEEER ° (0 [0 [0 [0
0] 0 0]0|0[0]0|]0|]0O|O]O|O]|O0]O
01010 0 [0 QM 0 0000 [0 [0[0[0][000
0]010 0700000000 [0[0]0][0[0]0
01010 0700 0[0]0[0[0[0[0[0]0[0]0]0
010710 I
01010 O MM 0 | 0 | 0|0 [0]|0|0|0O NEEO|0]0]0O0
221 0]0[07]0 0 0 0 0]o0]ojo]o]o oM 00|00
241 0]0]07}0 0 0 0 [0 [0][0[0[0]0[0]0][0[0][0]0
25101070710 0 0 0 |0 O 0|00 oMM Oo|0 0O
26101010710 0 0 00 |0[0[0[0O[0]O[O0O]O[O0O]O][O
271 0]0]0 10 0 0 0 [0O M ©°(0 0[O0 [0 MO][0]0]O0
280 0 | 0] O OO0]O0O]JO]JO]JO[O]O]O]|O]O0]O 0 OOOOOOOOOEO
290 mEoj0]j]0]JO0O]O 010 0 72]010]0[]0]0[0[]O0O[O]O[O]O[O]O]O][O
3000 0 [0][0 00 0 73] 0]0]0]0]0[0]0]0[0]0]0]O0O]O0O][0]O
1 0 0 000 0|00 |O0OMMO|[O0O|O0[0]O0]O0]O
0] 0 0 0 0 [0 [0 [0 [O0[O0[0]O0OJO[O0O[O0O[O0O[O0[O0]O
33 1 I Lt 11 1 1|1 1t t[1 1 1 [l ©
0 0 0 0 0O MO |O0[0]0]o0 I O 1 I
0 0 780000]0O]JOJO[O0O[]O0]O 0 0] 0
0 0 79000]0][0[0[0][0]0]O0 0 0] 0
0 0 80 | 00| 0] 0 [0|0[0]0|0]0 0 00
33 0 Il 0 | 0 8T [0 |0 0]0 [0|0[0]0[0]O0 0 0] 0
39]0|0| 00 8200 0]0[0[0[0]0]0]0 0 00
0[0[0[0]0 8100100 GGG Il °
21101010 0 8 [0J0JOJOoJOoJoJoJO]O] 0] O
210l0] 010 S o0Jo]J 0] 0000 1] [l 0
3]0 0 0 0 0 86 [0| 0] O] O0O]|O0O|0]|O0 0
24101010 01010 0 g7 10 [0| O] O]O0O|O0O]O 0
5[0[0][0]0]0[0]0][0]O[0O|O]O]O]O]O

38

4) Parsing engine and mobile browsers: When comparing
mobile and desktop versions of the same browser’s family,
we can observe slight differences, like between Opera mobile
and desktop, or Firefox 4 mobile and desktop (table III). H1
is also verified, meaning that, even with very close browsers,
the behaviors are not exactly the same. Between Opera mobile
and desktop, only one vector execution changes:

<input onfocus=javascript:eval (
String[’ fromCharCode’] (
97,108,101,114,116, 40,
39,120,115,115,39, 41,
32)
) autofocus>

Since they embed the same Presto engine, they recognize
the same vectors, but the JavaScript events are interpreted
differently due to specificity of mobile browsing, here the
onfocus event. The same behavior can be observed between
Firefox desktop and the mobile versions: the results are closed
but different. Mobile browsers like Android’s default browser

offer a “normal version” browsing function by changing the
user-agent for a desktop one. When testing both mobile and
standard version on XSS Test Driver, test results are the same,
indicating that no specific rendering is done, relying only
on the server’s behavior. If we modify the mobile browser’s
options, we can impact its interpretation of vectors. As you
can see in figure IV, the IE Mobile browser was set with a
loose policy, and so he rendered more vectors than the version
used in the table I and table II.

5) Legacy browsers are more exposed: While it is still
broadly used in corporate environment, IE6 offers the highest
threat exposure, with 45% ThEzp.

B. Testing Hypothesis H2

Figure 8 presents the evolution of the threat exposures
ThExp over time. It clearly appears that no continuous im-
provements appear; many curves are chaotic and the exposure
often increases. Figure 2 presents this evolution for Opera,
which is released every six months. The number of XSS
vectors that pass is given in dark columns. The AS D between
the current version and the previous one is presented in grey
columns (attack surface distance). Between Opera 10.50 (n)
and 10.10 (n-1), while the number of passing vectors is close
(23 and 17), the ASD(TROperaloﬁoaTROperalO.lO) is hlgh
(12). It reveals a strong instability between these two minor
versions instead of a stabilized behavior. It also reveals a lack
of systematic regression testing from one version to another.
This cannot be explained only by new norms implementations
for HTML. As a result, there is no convergence, no strict
decreasing or stabilization of the ThFExp from one version
to another.

The same observations can be done related to Firefox
(Figure 5), and IE (Figure 6). For IE, there are distances
that are higher than the new number of passing XSS vec-
tors (ASD(TR1E5,TR1E6) and ASD(TR[E6,TR[E7)) It
means that, from one version to the next one, the same web
browser reacts in a different way to XSS attack vectors.
This limit case reveals a lack of systematic regression testing
methodology related to XSS attack vectors.

For Android (Figure 7), the evolution seems more straight-
forward, with a more or less constant threat exposure degree
and small variations of distance values. To conclude, since
in all cases there is no constant improvement for any web
brother, we consider that the hypothesis H2 is validated: web
browsers are not systematically tested w.r.t. their sensitivity to
XSS vectors.

Web browser attack surface main evolutions from one
version to another cannot be due only to external factors, such
as changes in HTML standard definition or JavaScript. If these
changes force the web browser implementations to evolve,
they do not explain the chaotic evolutions of attack surfaces.
The attack surface is not strictly decreasing or stabilizing from
one version to another.

Most of the validation efforts from w3c are focusing on the
HTML standard, but not on the browser’s behavior. One reason
is the difficulty to automate testing and make it cost-efficient.

39

mNb
BASD

2

ol AT

22

@ 6” B @ w” e° K %6” «a” ‘? o~ w‘ KKK x
2’ %
P
« OQ OQ o OQ° QQ' OQ OQ oQ oQ & oQ & oQ OQ OQ OQ(& oq S
Fig. 2. Opera regression. passing vectors / ASD(T Ry, TRn—1)

-
ey

Fig. 3.

Netscape regression. passing vectors / ASD(T Ry, TRn—1)

-
B

Fig. 4. Mozilla regression. passing vectors / ASD(T' Ry, TRy—1)

XSS Test Driver can be used to ensure such regression testing.
It allows determining, for a given web browser:

e its exposure to XSS vectors over time

« its behavioral stability from a version to another.
This experiment shows that systematic regression testing is
feasible with XSS Test Driver and opens new research issues
for test selection and diagnosis of web browsers.

V. RELATED WORK

As far as we know, no previous work studies how to auto-
matically execute and compare a set of XSS test cases. How-
ever, several work, including ones by the authors, proposed
techniques and tools for automatically testing the security
policies (access control policies) [12],[13],[14],[15]. Others

TABLE III
MOBILE BROWSER VS DESKTOP BROWSER COMPARISON

o 1 2 3 8 9 10 13 14 16 26 28 30 34 35 36 40 42 43 47 48 50 51 53 56 69 70 72 74
Opera 11 Desktop 1 1 1 1 0 1 1 1 1 1 0 1 (] 0 0 0 1 0 1 0 1 (] 1 0 0 0 1
Opera 11 Mobile 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1
Firefox 4 desktop 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0
Firefox 4 mobile 1 1 1 1 0 1 1 1 1 1 (] 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0
TABLE IV

MOBILE BROWSER RESULT COMPARISON
Browser/Vector 345679111213 14 16 17 18 20 21 22 26 31 33 34 35 36 37 38 41 42 43 46 48 50 53 54 56 59 61 64 68 70 71 74 76 77 83 85
iemobile 1 171111 11 1111111110111 11111 10110000011 T1TT1TO0T1T1T1FO0
Opera mobile 11 Android 1 11100 0 0 1 0 1 1.0 0 0001 0O0O0OO0OO0OOOOOOOTILIO0OOOT1110O0O0O0OT1TO0OTO0O0
iPad2 111100 1 1 1 001 O0O0O0OO0OO0OTI110O0O0OO0OCO0OO0OO0OO0OO0OOTI! 1 101O01O0O0O0O0T1QO0T1FO0
NokiaE6511 1100 0 1 1.0 01 000001 0O0OO0OO0OO0OOOOOOOTILTOOOOOTILTOOOOTI1OOO
iPhone3GSs 111100 1 1 1 0 0 1 00O0OOOT1TT1O0OOOOOOOOOTIL1T11O01O01O0O0O0O0T1O0T1FP0
n810 tablet browser 1 11100 1 1 1 0 1 1.0 0 0 0 O0O0O1O0O0OOOOOOOOOTIL1OOOOOTI1OOOOT1UO0OT1O0
Firefox 4.0.2 Android 111100 1 1 1 0 1 10 0O0O0OOOT1O0OOOOOOOOOOT11111010O0O0O0T1O0TO0O0
Opera mobile Emulator 1 11100 0 1 1 0 1 1 0 00001 000O0OO0OO0OO0OOOOOTI1O0OOOTIL>110O0O0O0T1O0TO0O0
iPhone3Gs 111100 1 1 1 0 0 1 00 O0O0OOT1T1O0O0OO0OOO0OO0OOOOOTI1T1101O01O0O0O0O0T1O0T1FO0
Android 2.2 (Htc desirez) 111100 1 1 1 0 01 00O0O0O0OT11O0O0OO0OO0OO0OO0OO0OOOTI1O0OTL1T1TT1O01O010O0O0T1T1O0T11

3
mAsD

Fig. 5. Firefox regression. passing vectors / ASD(T' Ry, TRy—1)

Fig. 6.

Internet Explorer regression. passing vectors / ASD(T Ry, TRp—1)

offer frameworks and techniques to test the systems from
its interfaces [16],[17]. Closer to the XSS testing technique
we propose is the approach of bypass testing proposed by
Offutt et al. [12][18]. We go along the same lines in this
paper, but with a specific focus on XSS test selection and
systematic benchmarking through testing (and we do not
bypass client-side browser mechanisms since it’s a part of the
XSS target). Similarly to Su’s statements [19], Huang et al.

40

Fig. 7. Android regression. passing vectors / ASD(T Ry, TRy, —1)

Fig. 8. Browsers’ XSS Exposure over Time

[20] propose to mutate and inject faulty inputs, including SQL
injection and XSS against web application (WAVES tool), but
do not provide a diagnosis technique to distinguish the various
security layers and validate the capacity of an XSS vector
to pass in a web browser or not. The only XSS test case
evaluation methodology we found was done using mutation
based testing [21]: a test data set was qualified by mutating

the PHP code of five web applications. XSS attacks were used
to kill the mutants. In their study, they do not consider the
impact of the browser on the efficiency of an XSS vector,
thus introducing a bias in their experiments. They also used
similar sources for the XSS vectors, and used them without
adapting them to the specific injection point. Doing this, you
introduce a bias in the efficiency of the attacks. Attacks should
be tailored to the injection point to be effective like in Duchene
et al. approach[22]; otherwise, depending on the injection
point, your XSS attack can be rendered useless (while with the
same vector, an attacker can succeed). Most of XSS research
works focus either on detection of XSS attacks [1],[3], or
on finding XSS vulnerabilities [23],[24]. Other related papers
study XSS vulnerabilities or XSS worms [25],[26]. A state of
the art on XSS issues and countermeasures is available in [25].
Undermining the influence of charset, doctype and browser
behavior in an xss attack can lead to false positives in web
application vulnerability scanners. Some testing strategies rely
on one instrumented web browser [22],[27] to assess XSS
Vulnerabilities, thus ignoring vulnerabilities related to XSS
vectors bound to a specific web browser. The only exception
in this topic is the xenotix XSS testing tool[28] wich embeds
3 different browser engines (Trident from IE, Webkit from
Chrome/Safari and Gecko from Firefox) to deal with browser-
specific XSS vectors.

VI. CONCLUSION

In this paper, we present a methodology and a tool for
accurately testing web browsers against XSS vectors. The XSS
Test Driver framework is a building block to address this issue.
To demonstrate the feasibility of the approach, we execute a
set of XSS test cases against popular web browsers.

We performed a first experiment that compares current web
browsers and leads to the conclusion that they do not exactly
behave the same way under XSS, even when they embed
the same JS interpretation engine. The second investigation
addresses the question of the improvement of web browsers
on a 10 years period. We observe that there is neither a clear
systematic reduction or stabilization of the attack surface nor
any logic in the way the web browsers react to the XSS test
cases. This result pleads for a systematic use of security test
regression technique. For that purpose, we provide a first set
of test cases [9] and a set of practices that can be used both
by web browser developers and by their users.

VII. ACKNOWLEDGMENTS

Authors would like to thanks KEREVAL's CTO Alain
Ribault who gave the XSS Test Driver code to the com-
munity; DGA-MI; Ingrid Kemgoum from Telecom-Bretagne.
The sla.ckers community, RSnake and .mario for the initial
vectors. All the reviewers. This publication is a part of the
DALI (Design and Assessment of application Level Intrusion
detection systems) project (2008-2012) funded by the French
national research agency (ANR ARPEGE 2008).

41

[17]

[18]

[19]

[20

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

“Mod security,” http://www.modsecurity.org/.

P. K. Manadhata and J. M. Wing, “An attack surface metric,” Software
Engineering, IEEE Transactions on, vol. 37, no. 3, pp. 371-386, 2011.
P. Wurzinger, C. Platzer, C. Ludl, E. Kirda, and C. Kruegel, “Swap:
Mitigating xss attacks using a reverse proxy,” in Proceedings of the 2009
ICSE Workshop on Software Engineering for Secure Systems. 1EEE
Computer Society, 2009, pp. 33-39.

E. Nava and D. Lindsay, “Abusing internet explorer 8’s xss filters,”
BlackHat Europe, 2010.

“détails de I’attaque aurora,” http:/fr.wikipedia.org/wiki/Op%C3%
A9ration_Aurora.

“Xss cheat sheet,” http://ha.ckers.org/xss.html.

“html5 security cheat sheet,” http://htmlSsec.org/.

“Utf7 xss cheat sheet,” http://openmya.hacker.jp/hasegawa/security/
utf7cs.html.

“Xss test driver demo,” http://xss.labosecu.rennes.telecom-bretagne.eu/.
“Xss test driver sources,” https://github.com/g414drim/xss_test_driver.
“Xss test driver technical report,” http://xss.labosecu.rennes.
telecom-bretagne.eu/doc/.

J. Offutt, Y. Wu, X. Du, and H. Huang, “Bypass testing of web
applications,” in Proc. of ISSRE, vol. 4.

E. Martin and T. Xie, “Automated test generation for access control
policies via change-impact analysis,” in Proceedings of the Third Inter-
national Workshop on Software Engineering for Secure Systems. TEEE
Computer Society, 2007, p. 5.

Y. Le Traon, T. Mouelhi, and B. Baudry, “Testing security policies:
Going beyond functional testing,” 2007.

T. Mouelhi, F. Fleurey, B. Baudry, and Y. Le Traon, “A model-based
framework for security policy specification, deployment and testing,”
Model Driven Engineering Languages and Systems, pp. 537-552, 2008.
H. Liu and H. Kuan Tan, “Testing input validation in web applications
through automated model recovery,” Journal of Systems and Software,
vol. 81, no. 2, pp. 222-233, 2008.

A. Tappenden, P. Beatty, and J. Miller, “Agile security testing of web-
based systems via httpunit,” 2005.

J. Offutt, Q. Wang, and J. Ordille, “An industrial case study of bypass
testing on web applications,” in 2008 International Conference on
Software Testing, Verification, and Validation. IEEE, 2008, pp. 465—
474.

Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in ACM SIGPLAN Notices, vol. 41, no. 1. ACM,
2006, pp. 372-382.

Y. Huang, S. Huang, T. Lin, and C. Tsai, “Web application security
assessment by fault injection and behavior monitoring,” in Proceedings
of the 12th international conference on World Wide Web. ACM, 2003,
pp. 148-159.

H. Shahriar and M. Zulkernine, “Mutec: Mutation-based testing of cross
site scripting,” in Proceedings of the 2009 ICSE Workshop on Software
Engineering for Secure Systems. 1EEE Computer Society, 2009, pp.
47-53.

F. Duchene, R. Groz, S. Rawat, and J. Richier, “Xss vulnerability
detection using model inference assisted evolutionary fuzzing,” in
Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on. 1EEE, 2012, pp. 815-817.

J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art:
Automated black-box web application vulnerability testing,” in 2070
IEEE Symposium on Security and Privacy. 1EEE, 2010, pp. 332-345.
G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Software Engineering, 2008. ICSE’0S8. ACM/IEEE
30th International Conference on. IEEE, 2008, pp. 171-180.

D. Jayamsakthi Shanmugam1, “Cross site scripting-latest developments
and solutions: A survey,” Int. J. Open Problems Compt. Math, vol. 1,
no. 2, 2008.

M. Faghani and H. Saidi, “Social networks’ xss worms,” in 2009
International Conference on Computational Science and Engineering.
IEEE, 2009, pp. 1137-1141.

“Owasp xelenium,” https://www.owasp.org/index.php/OWASP_
Xelenium_Project.

“Owasp xenotix xss exploit framework,” https://www.owasp.org/index.
php/OWASP_Xenotix_XSS_Exploit_Framework.

