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 Abstract 

As natural outcome of the Renormalization Group program, the minimal fractal manifold (MFM) describes a space-

time continuum having arbitrarily small deviations from four-dimensions 4 ,( D    << 1). Recent studies point 

out that MFM offers unexplored solutions to the challenges raised by the Standard Model for particle physics. Here 

we show that the inner connection between MFM and local conformal field theory (CFT) makes quantum spin a 

topological property of the MFM.  
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1. Introduction  

In his seminal paper of 1939, Wigner has shown that the concept of quantum spin follows 

naturally from the unitary representation of the Poincaré group [1-3]. The two invariant Casimir 

operators of the Poincaré group, 2P P m

   and ( 1)W W ms s

     supply the rest mass m  and 

the spin s  of the particle, respectively. Here P
 is the generator of translations and W   the 

Pauli-Lubanski operator defined as 

 W P J 

    (1) 

in which   stands for the four-dimensional Levi-Civita index and J   are the generators of 

the Lorentz group. The second Casimir invariant implies that the square of the spin three-vector 

of a massive particle ( S  ) relates to the Pauli-Lubanski operator via  
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Our brief analysis reveals that quantum spin may be understood outside the traditional 

framework of representation theory, specifically as emerging attribute of the so-called minimal 

fractal manifold (MFM). As inherent outcome of the Renormalization Group, MFM describes a 

space-time continuum endowed with arbitrarily small deviations from four-dimensions 

4 ,( D    << 1). As recently shown, the MFM is a source of unexplored solutions to the 

challenges raised by the Standard Model for particle physics [4]. Expanding on these ideas, here 

we suggest that the inner connection between MFM and local conformal field theory (CFT) 

makes quantum spin a topological property of the MFM.  

2. Quantum spin and the MFM 

Consider a flat four-dimensional space-time with constant metric having the standard signature

( 1,..., 1)diag    . A differentiable map ' ( )x x  is called a conformal transformation if the 

metric tensor changes as [5] 

 2' '
( )

x x
x

x x

 

    
   

 
  

 
  (3) 

in which 2( )x  represents the scale factor and Einstein’s summation convention is implied. The 

scale factor is strictly equal to unity on flat space-times ( 2( ) 1x  ), a condition matching the 

translations and rotations group of Lorentz transformations. In general, if the underlying space-

time background deviates from flatness and is characterized by a metric ( )g x  ≠  , the 

condition for local conformal transformation (3) reads 
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 2( ) ( ) ( ) ( )g x g x x g x     (4) 

where 2( )x  ≠ 1 . A nearly conformal transformation (NCT) is defined by a scale factor 

departing slightly and continuously from unity, that is, 

                                        ( ) 1 ( )x x    ≈ exp[ ( )]x  ,  ( )x  << 1                                             (5) 

Consider next infinitesimal coordinate transformations which, up to a first order in a small 

parameter ( )x  << 1 , can be presented as 

 2' ( ) ( )x x x O        (6) 

Demanding that (6) represents a local conformal transformation amounts to [5] 
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( )
D

               (7) 

The scale factor corresponding to (6) is given by 

 2 22( )
( ) 1 ( )x O

D




 
      (8) 

Any locally defined MFM is characterized by a space-time dimension ( ) 4 ( )D x x  , where 

the onset of the fractal dimension ( )x  << 1  reflects a nearly-vanishing deviation from strict 

conformal invariance expected at the fixed points of the Renormalization Group flow [4, 8]. 

Conformal behavior in flat space-time matches the scale-invariant (constant) metric  , 

whereby 2( ) 1x   and ( ) 0x   as a result of (3) and (5). In field-theoretic language, reaching 

the conformal limit on the flat four dimensional space-time means that the Renormalization 
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Group trajectories flow into stable fixed points where they settle down to steady equilibria. One 

arrives at similar conclusions by following the prescription of the dimensional regularization 

program [4, 7-8]. All these observations enable us to draw a natural connection between the 

fractal dimension ( )x  << 1  and the NCT, namely, 

 
2( ) 4 ( ) ( ) 1 ( )D x x x x        (9) 

Replacing (9) into (8) and ignoring the contribution of quadratic terms yields 

 2 ( ) ( )x x      (10) 

Furthermore, setting the fractal dimension as divergence of a locally defined “dimensional” field 

( )x   

 2 ( )x 

      (11) 

leads to the following condition for conformal invariance on the MFM 

 ( ) 0       (12) 

A typical ansatz in CFT is to assume that the infinitesimal coordinate transformations ( )x  are 

at most quadratic in x , that is, 

 ( )x a b x c x x  

         (13) 

where , ,a b c    << 1  are constant coefficients with c c  . The individual terms of 

expansion (13) describe various conformal transformations and their respective generators. In 

particular, 
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1) The constant coefficient a
 represents an infinitesimal translation 'x x a     whose 

generator is the momentum operator P i     . 

2) The next term can be split into a symmetric and an anti-symmetric contribution according to 

 b m      (14) 

where m m   . The symmetric part 
  labels infinitesimal scale transformations                   

(dilatations) of the generic form ' (1 )x x    and generator D ix

   . The anti-symmetric 

part m
 describes infinitesimal rotations ' ( )x m x   

    whose associated generator is the 

angular momentum operator ( )L i x x       . 

3) The last term at the quadratic order in x  defines the so-called “special conformal 

transformations”. 

Returning to (9) to (12), a reasonable hypothesis is to assume that the dimensional field ( )x  is 

at most linear in x , which corresponds to a nearly-constant fractal dimension ( )x  ≈ . Thus we 

take 

 ( )x d e x       (15) 

subject to the requirement of infinitesimal coefficients ,d e  <<  1 . Retracing previous steps, we 

split e  into a symmetric and anti-symmetric contribution   

 e f      (16) 
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subject to the condition f f   . The symmetric part denotes a scale transformation similar to

' (1 )x x   , whereas the anti-symmetric part defines an “intrinsic” rotation of the form 

 ' ( )x f x   

     (17) 

It follows that the “rotation-like” transformation (17) stems from the fractal topology of the 

MFM and may be associated with the generator of quantum spin S
. A favorable consequence 

of this brief analysis is that, by construction, S
 replicates the algebra of the angular momentum 

operator L
.  In closing we mention that these findings are consistent with the body of ideas 

developed in [6]. 
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