Lecture 1

- Introduction Course mechanics
- History
- Modern control engineering

Introduction - Course Mechanics

- What this course is about?
- Prerequisites & course place in the curriculum
- Course mechanics
- Outline and topics
- Your instructor

What this course is about?

- Embedded computing is becoming ubiquitous
- Need to process sensor data and influence physical world. This is control and knowing its main concepts is important.
- Much of control theory is esoteric and difficult
- 90% of the real world applications are based on 10% of the existing control methods and theory
- The course is about these 10%

Prerequisites and course place

- Prerequisites:
 - Linear algebra: EE263, Math 103
 - Systems and control: EE102, ENGR 105, ENGR 205
- Helpful
 - Matlab
 - Modeling and simulation
 - Optimization
 - Application fields
 - Some control theory good, but not assumed.
- Learn more advanced control theory in:
 - ENGR 207, ENGR 209, and ENGR 210

Course Mechanics

- Descriptive in addition to math and theory
- Grading
 - 25% Homework Assignments (4 at all)
 - 35% Midterm Project
 - 40% Final Project
- Notes at www.stanford.edu/class/ee392M/
- Reference texts
 - Control System Design, Astrom, posted as PDF
 - Feedback Control of Dynamic Systems, Fourth Edition, Franklin, Powell, Emami-Naeini, Prentice Hall, 2002
 - Control System Design, Goodwin, Graebe, Salgado, Prentice Hall, 2001

Outline and topics

Lectures - Mondays & Fridays Assignments - Fridays, due on Friday

Lecture topics

- 1. Introduction and history
- 2. Modeling and simulation
- 3. Control engineering problems
- 4. PID control
- 5. Feedforward
- 6. SISO loop analysis
- 7. SISO system design

8. Model identification

- 9. Processes with deadtime, IMC
- 10. Controller tuning
- 11. Multivariable control optimization
- 12. Multivariable optimal program
- 13. MPC receding horizon control

<u>Breadth</u>

- 14. Handling nonlinearity
- 15. System health management
- 16. Overview of advanced topics

Who is your instructor?

- Dimitry Gorinevsky
- Consulting faculty (EE)
- Honeywell Labs
 - Minneapolis
 - Cupertino
- Control applications across many industries
- PhD from Moscow University
 - Moscow → Munich → Toronto → Vancouver → Palo Alto

Some stuff I worked on

1-8

Lecture 1 - Control History

- Watt's governor
- Thermostat
- Feedback Amplifier
- Missile range control
- TCP/IP
- DCS

Why bother about the history?

- Trying to guess, where the trend goes
- Many of the control techniques that are talked about are there for historical reasons mostly. Need to understand that.

1788 Watt's Flyball Governor

- Watt's Steam Engine
- Newcomen's steam engine (1712) had limited success
- Beginning of systems engineering
- Watt's systems engineering addon started the Industrial Revolution
- Analysis of James Clark Maxwell (1868)
- Vyshnegradsky (1877)

From the 1832 Edinburgh Encyclopaedia

Rubs

- Mechanical technology use was extended from power to regulation
- It worked and improved reliability of steam engines significantly by automating operator's function
- Analysis was done much later (some 100 years) this is typical!
- Parallel discovery of major theoretical approaches

Watt's governor

Analysis of James Clark Maxwell (1868)

$$ml\ddot{\phi} = l(m\omega_G^2 l \sin\phi \cos\phi - mg \sin\phi - b\dot{\phi})$$

$$J\dot{\omega}_E = k\cos\phi - T_L$$
$$\omega_G = n\omega_E$$

Linearization

$$\phi = \phi_0 + x \qquad x << 1$$

$$\omega_E = \omega_0 + y \qquad y << 1$$

$$\ddot{y} + a_1 \ddot{y} + a_2 \dot{y} + a_3 y = 0$$

Watt's governor

$$\ddot{y} + a_1 \ddot{y} + a_2 \dot{y} + a_3 y = 0$$

Characteristic equation: $y = e^{\lambda t}$

$$\lambda^3 + a_1 \lambda^2 + a_2 \lambda + a_3 = 0$$

Stability condition:

Re
$$\lambda_k < 0$$
, $(k = 1,2,3)$

- Gist:
 - Model; P feedback control; linearization; LHP poles
- All still valid

1885 Thermostat

- 1885 Al Butz invented damper-flapper
 - bimetal plate (sensor/control)
 - motor to move the furnace damper)
- Started a company that became Honeywell in 1927

Damper Flapper

- Thermostat switching on makes the main motor shaft to turn one-half revolution opening the furnace's air damper.
- Thermostat switching off makes the motor to turn another half revolution, closing the damper and damping the fire.
- On-off control based on threshold

Rubs

- Use of emerging electrical system technology
- Significant market for heating regulation (especially in Minnesota and Wisconsin)
- Increased comfort and fuel savings passed to the customer customer value proposition
- Integrated control device with an actuator. Add-on device installed with existing heating systems

1930s Feedback Amplifier

- Signal amplification in first telecom systems (telephone) Analog vacuum tube amplifier technology R_2
- Feedback concept

$$\frac{V_1 - V}{R_1} = \frac{V - V_2}{R_2}$$
$$V_2 = GV$$

$$\frac{V_1}{V_2} = R_1 \left[\frac{1}{R_2} - \frac{1}{G} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \right] = -\frac{R_1}{R_2} \left[1 - \frac{1}{G} \left(1 + \frac{R_2}{R_1} \right) \right]$$

• Bode's analysis of the transients in the amplifiers (1940)

Feedback Amplifier - Rubs

- Electronic systems technology
- Large communication market
- Useful properties of large gain feedback realized: linearization, error insensitivity
- Conceptual step. It was initially unclear why the feedback loop would work dynamically, why would it not grow unstable.

1940s WWII Military Applications

- Sperry Gyroscope Company flight instruments later bought by Honeywell to become Honeywell aerospace control business.
- Servosystem gun pointing, ship steering, using gyro
- Norden bombsight Honeywell C-1 autopilot over 110,000 manufactured.
- Concepts electromechanical feedback, PID control.
- Nyquist, servomechanism, transfer function analysis,

Autopilot - Rubs

- Enabled by the navigation technology Sperry gyro
- Honeywell got the autopilot contract because of its control system expertise – in thermostats
- Emergence of cross-application control engineering technology and control business specialization.

1960s - Rocket science

- SS-7 missile range control
 - through the main engine cutoff time.

- Range $r = F(\Delta V_x, \Delta V_y, \Delta X, \Delta Y)$
- Range Error

$$\delta r(t) = f_1 \Delta V_x(t) + f_2 \Delta V_y(t) + f_3 \Delta X(t) + f_4 \Delta Y(t)$$

- Algorithm:
 - track $\delta r(t)$, cut the engine off at T when $\delta r(T) = 0$

USSR R-16/8K64/SS-7/Saddler Copyright © 2001 RussianSpaceWeb.com http://www.russianspaceweb.com/r16.html

Missile range control - Rubs

- Nominal trajectory needs to be pre-computed and optimized
- Need to have an accurate inertial navigation system to estimate the speed and coordinates
- Need to have feedback control that keeps the missile close to the nominal trajectory (guidance and flight control system)
- f_1 , f_2 , f_3 , f_4 , and f_T must be pre-computed
- Need to have an on-board device continuously computing

$$\delta r(t) = f_1 \Delta V_x(t) + f_2 \Delta V_y(t) + f_3 \Delta X(t) + f_4 \Delta Y(t)$$

1975 - Distributed Control System

- 1963 Direct digital control was introduced at a petrochemical plant. (Texaco)
- 1970 PLC's were introduced on the market.
- 1975 First DCS was introduced by Honeywell
- PID control, flexible software
- Networked control system, configuration tuning and access from one UI station
- Auto-tuning technology

DCS example

Honeywell **Experion PKS**

Integration

GUS

Experion PKS

Stations

Experion PK\$

Server Interface

EE392m - Winter 2003

Control Engineering

Distributed System Architecture

BBB

DCS - Rubs

- Digital technology + networking
- Rapid pace of the process industry automation
- The same PID control algorithms
- Deployment, support and maintenance cost reduction for massive amount of loops
- Autotuning technology
- Industrial digital control is becoming a commodity
- Facilitates deployment of supervisory control and monitoring

1974 - TCP/IP

- TCP/IP Cerf/Kahn, 1974
- Berkeley-LLNL network crash, 1984
- Congestion control -Van Jacobson, 1986

TCP flow control

Transmission rate: $x = \frac{W}{W}$ packets/sec

Here:

- Flow control dynamics near the maximal transmission rate
- From S.Low, F.Paganini, J.Doyle, 2000

TCP Reno congestion avoidance

```
for every loss {
      W = W/2
for every ACK {
      W += 1/W
```

- packet acknowledgment rate: x
- lost packets: with probability q $\Delta x_{lost} = -xW/2$
- transmitted: with probability (1-q) $\Delta x_{sont} = x/W$

$$\dot{x} = q \frac{\Delta x_{lost}}{\tau} + (1 - q) \frac{\Delta x_{sent}}{\tau} \qquad x = \frac{W}{\tau}$$

$$\dot{x} = \frac{1 - q}{\tau^2} - \frac{1}{2} q x^2$$
• x - transmission rate
• τ - round trip time

- x transmission rate
- *q* loss probability

TCP flow control - Rubs

- Flow control enables stable operation of the Internet
- Developed by CS folks no 'controls' analysis
- Ubiquitous, TCP stack is on 'every' piece of silicon
- Analysis and systematic design is being developed some
 20 years later
- The behavior of the network is important. We looked at a single transmission.
- Most of analysis and systematic design activity in 4-5 last years and this is not over yet ...

Modern Control Engineering

- What BIG control application is coming next?
- Where and how control technology will be used?
- What do we need to know about controls to get by?

Modern Control Engineering

• This course is focused on **control computing** algorithms and their relationship with the overall system design.

Modern control systems

- Why this is relevant and important at present?
- Computing is becoming ubiquitous
- Sensors are becoming miniaturized, cheap, and pervasive.
 MEMS sensors
- Actuator technology developments include:
 - evolution of existing types
 - previously hidden in the system, not actively controlled
 - micro-actuators (piezo, MEMS)
 - control handles other than mechanical actuators, e.g., in telecom

Measurement system evolution. Navigation system example

•Mechanical gyro by Sperry – for ships, aircraft. Honeywell acquired Sperry Aerospace in 1986 - avionics, space.

HeNe Laner

• Laser ring gyro, used in aerospace presently.

 MEMS gyro – good for any vehicle/mobile appliance.

- (1") ³ integrated navigation unit

Vi Stra

1-33

Actuator evolution

• Electromechanical actuators: car power everything

• Adaptive optics, MEMS

Communication - digital PLL

Control computing

- Computing grows much faster than the sensors and actuators
- CAD tools, such as Matlab/Simulink, allow focusing on algorithm design. Implementation is automated
- Past: control was done by dedicated and highly specialized experts. Still the case for some very advanced systems in aerospace, military, automotive, etc.
- Present: control and signal-processing technology are standard technologies associated with computing.
- Embedded systems are often designed by system/software engineers.
- This course emphasizes practically important issues of control computing