

NODE JS PERFORMANCE TESTING

A Senior Project

presented to

the Faculty of the Liberal Arts and Engineering Studies Department

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Art

by

Massimo Siboldi

June, 2014

© 2014 Massimo Siboldi

Terms

Data: “Information processed or stored by a computer. This information may be in the form of
text documents, images, audio clips, software programs, or other types of data.”4

Program: A series of instructions for a computer to carry out. This can include playing a song,
requesting a web page, and checking the time.

Server: A computer that sends data over the internet.

Backend: A general term for servers and programs that are executed on servers.

Client: A computer used to access data from a server.

Frontend: A general term for clients and programs that are executed on clients. In the context of
web development, these programs are sent to the client’s browser by the server.

Request: A message sent from the client.

Response: Data sent to the client by the server.

HTTP: Hypertext Transfer Protocol. This allows computers to communicate over the internet
through uniform syntax.

Throughput: The average number of requests handled by a server per second.

Response Time: This is the time taken for a client to fully receive a response..

Maximum User Load: This is the number of clients that can be using a server simultaneously.

Stress Testing: Simulating a large number of clients using a server.

Load Testing: Simulating an expected number of clients using a server.

Soak Testing: Simulating an expected number of clients using a server over a long period of

time, with a goal to uncover memory leaks and other unexpected problems that may occur.

Uptime: This is the time a server continuously runs before reaching an undesirable state, such

as crashing, slowing, or producing errors.

2

JavaScript: A programming language used by browsers to provide dynamic functionality to

websites.

R: A program used for data analysis.

JMeter: A program used for simulating a number of clients using a server.

CPU: Central Processing Unit, found on all computers to execute programs.

RAM: Random Access Memory, found on computers to store data temporarily. Doing this is

faster than saving it to a hard drive.

Memory Leak: Am error in a program that results in the RAM being taken up by unnecessary

data. Over time, this causes a reduction in uptime due to crashes and unexpected errors.

CSV: Stands for Comma Separated Value, a text file containing spreadsheet information with

columns delimited by commas and rows delimited by new lines.

Node JS: A server side JavaScript implementation, gaining popularity due to programmers’

familiarity with JavaScript, low system requirements, and simplicity since its release in 2009.

3

DIAGNOSING AND AMENDING PERFORMANCE ISSUES IN NODE JS

Web applications must be functional. Developers work to accomplish this goal by

taking complex problems and breaking them into smaller, manageable chunks. They solve

these problems on organizing and sending data, displaying images and buttons, etc. The

question is: How can we make this work? In general, if a program produces the desired output

for given inputs, it is functional.

However, there is more to apps than functionality. Web apps can be pleasant or a pain

to use. They can be unresponsive or responsive. The goal of any software is to be used. In

considering the non-functional aspects of a web app, developers can create something that not

only works, but does so with ease. Reliable, speedy, beautiful websites are a joy to use.

SPEED

The internet has brought us many great things, and one of them is connectivity speeds.

This is a benefit for the free spread of information, and not a benefit for the urgent sense of

instant satisfaction everyone has now. In competing with other websites and satisfying their

customers, companies should strive to have their websites be as fast as possible. The fast sites

get the attention, users, and profit. It doesn’t matter if a site is functionally useful; consistency

and speed make or break websites.

75% of users, in a study by Akamai in 2006, reported they wouldn’t wait for a website

taking more than 4 seconds to load. 13

4

Music streaming applications suffer the same fate as any other site: They must be fast

and reliable or lose the race for customers and their satisfaction. Songs and content should be

as immediate as possible.

RELIABILITY

Unreliable websites lose customers. 99.9% uptime is desired in web applications, so

that customers have something stable to go to. Random inconveniences are hard to deal with.

Imagine a website that loaded most, but not all, of the time. If it were an email client, or

something else you rely on, it would be frustrating to not have access to something you thought

was constant. Frequent downtimes lead to customers never coming back.

To make websites reliable, they have to hold a certain amount of users for an indefinite

period of time. Assessing the maximum user rate is important here. You can’t just make a web

app fast and hope that it can serve a lot of people.

Usually, servers crash when memory leaks occur and the program crashes. To test for

this, you use a soak test18. Soak tests emulate many users on a website and report back when

the server goes down. Hopefully, this will never happen. When it does, I will analyze the logs

of what happened and will fix the problems that come up.

MUSIC PUTTY

I am the lead developer for Music Putty, and will be doing performance tests for Music

Putty’s server. Music Putty is a platform for emerging musicians and their fans. For listeners,

Music Putty provides a way to listen to ad-free music of your favorite musicians. For

musicians, Music Putty provides a platform for receiving crowdfunding, music sales, and a

5

community for them to gain supporters and fans. A central aspect of Music Putty is its music

service, where listeners can add songs to playlists or use the radio service to discover new local

bands. Eventually, we will have the ability to find local shows of people on Music Putty.

IN ADDRESSING THE CONCERNS OF SPEED AND RELIABILITY

I will attempt to solve the problems of testing for flaws, assessing code / server setup,

and developing and implementing potential solutions. I will focus on improving the speed and

reliability of web applications to compete with or surpass that of other companies.

I will be assessing Music Putty’s server technology and implementing solutions to

bottlenecks in speed and reliability. This involves first running diagnostic tests. Then assessing

these results, and lastly, through research and code examination, implementing improvements

to current server side builds.

In a startup environment, there are limited resources to accomplish much-needed goals.

Without money, it is difficult to hire professional web developers who are willing to spend the

time to develop a platform. Many times founders must do roles outside of what they’re used to.

In Music Putty, the CEO Arash Namvar is also designing web pages, testing code, signing up

bands, and writing legal documents such as our terms of use. This being said, teams are usually

small and dedicated to the cause.

Although my primary responsibilities include programming the frontend and backend

of Music Putty’s web application, I also have to do various kinds of tests that would usually be

deferred to others. I am performing performance tests on Music Putty’s Node JS backend

server, implementing improvements, and reporting the results of these tests. My deliverable is

6

an analysis on Node JS performance improvement strategies, as well as the scripts and files

used to test and analyze the server.

MEASUREMENTS OF SUCCESS

I am testing in a local environment to avoid complications and costs that aren’t

necessary for the scope of this project. There are many variables that can affect the speed of a

request. These include the server’s CPU speed and the network strength or connection quality

of a user. In that this senior project is intended to discuss the changes in node.js code that result

in performance increases, not server setup or connectivity, I will be basing my success on

improvements from initial tests, rather than on industry standards for professional web

applications. I plan on testing for performance improvements locally to reduce uncertain

factors beyond the scope of this project. Comparing a local server with a real world server to

measure the success of this project is unrealistic.

There are a few measures of server performance that I will be testing for. As reported

by Dr.Kumar Ramakanth16, three quantitative measures of server performance are:

❖ Resource Utilization
❖ Response Time
❖ Throughput

He went on to name a few methods of approaching performance tests:

❖ Load Testing
❖ Stress Testing
❖ Strength Testing (also known as Soak Testing)

I will be testing Node JS for throughput, response time, and uptime. I will basing my success

off a percent improvement of response time and throughput, and a goal of 12 hours uptime.

7

These were determined from talking with my Music Putty team and coming up with numbers

we thought would be qualified as successful.

Quantitative Measurements of Success

Failure Improvement Success

Response Time 0 - 10% decrease 10-50% decrease > 50% decrease

Throughput 0 - 10% increase 10-50% increase > 50% increase

Uptime < 6 hours 6 - 12 hours > 12 hours

LITERATURE REVIEW

From my research, I have found that most articles written about Node JS discuss the

possibilities of the language without discussing techniques in getting an intended result. Those

that do have been found to not be reputable for various reasons. There are also articles on

improving server side technologies in general, these being theoretical and discussing concepts

rather than real world techniques in overcoming problems revealed through performance

testing. There is a noticeable lack of reputable articles that discuss performance issues and

solutions for Node JS itself.

I have found few academic articles on the performance testing of specific web

applications. Most have to do with the theories behind testing. For example, Dr. Kumar

Ramakanth wrote an article published by the International Journal on Computer Science and

Engineering (IJCSE) . In this, he defined criteria for testing web applications.16

He also discussed the importance of WAN simulation in testing environments. Since it

is costly to perform testing on actual servers, and thusly is preferred to do tests on a LAN

8

environment, he recommends simulations situations in poor network reception, latency, packet

loss, and bandwidth. Doing these tests will reveal problems otherwise not known to developers

testing in less imperfect circumstances.

This information is of great use to the world of web developers seeking the perform

these testing, but provides no access point or applicable techniques for doing these things. He

goes over the importance of creating cheap but realistic systems, but offers no

recommendations in this regard.

There have been articles published in journals about Node Js. Node.js: Using JavaScript

to Build High-Performance Network Programs, released by IEEE, S. Tilkov explores the

possibilities of Node JS in brief overview. He goes over the theoretical differences between

Node JS and other server side technologies. He compares multithreading, a popular solution to

handling IO requests used in commonplace languages such as PHP, to event-based

asynchronous execution. 20

He also presents a solution to utilize the server’s full processing power while developed

in Node JS. Using multi-node, multiple instances of one Node JS application can listen to the

same port, creating an effect similar to a load balancer. He asserts that Node JS doesn’t

sacrifice performance in his conclusion, but doesn’t include data on this. It’s more of a

theoretical assumption. As Node JS is an emerging technology, as is using Javascript for

backend programming, many articles like these are more likely to discuss possibilities rather

than solutions. Because of this hype, it is hard to accurately discuss the limitations of Node JS

and overcoming them.

9

There are blog articles released by reputable companies. In a tech blog released by Ebay7,

Senthil Padmanabhan discussed the company’s first ever departure from Java and the JVM. His

team’s decisions to use Node JS are similar to many articles about Node JS, like Tilkov’s.

Tilkov, along with the Ebay, references Node JS’s ability to handle non-blocking execution and

handle live communication with its servers. Where Java didn’t perform how they expected it

to, Node JS and server-side Javascript could take on these challenges. He noted its ease of

deployment. They use a shell script that builds Node JS’s packages and pushes the code to their

deployment servers. As long as Node JS’s interpreter is installed, servers written in the

language are highly portable. I have had similar experiences running production code on my

laptop and having it work flawlessly on Music Putty’s servers. In general, this article goes over

the decision making process of choosing a reputable language to design server-side

technologies in, and notes the possibilities of Node JS, but doesn’t cover issues in deployment

or other problems that had to be overcome.

In a similar article written by Ryan Paul for Ars Technica about LinkedIn’s mobile

engineering technologies 15, Paul discusses the building of a scalable backend. He described his

team’s objectives as designing a technology that was “fast, easy to work with, and reliable”15.

Upon choosing and building the application with Node JS, they found it to use less memory

and offer better performance, sometimes as fast as 20 times the performance of other

considered solutions. They were able to spend less money on the servers, reducing their count

from 30 to 3, and could spend less time worrying about scalability. Articles like these solidify

the concept of Node JS being suitable as a scalable solution for web apps, but doesn’t go into

detail about the implementation or problems that may occur.

10

There are less than reputable sources on cheaply testing server environments. Much of

the available Node JS performance and scalability tests are run as blog posts, which do not

have the authority of peer-reviewed documents. Aaron “Caustik” Robertson wrote a post of

testing the scalability of Node JS using Amazon’s EC2 service, for example17. Because of this

informality and the lack of academic scrutiny, he is able to freely discuss real world solutions

he used to perform performance tests on servers using Node JS. Unfortunately, also as a result

of this informality, he is able to perform tests without validating their integrity. We have no

analysis of results of his tests, and so his concerns don’t hold as much weight as they otherwise

would.

From my lack of finding a reputable article articulating the needs of performance

testing and real-world techniques and recommendations on doing so on a budget, I have found

this project to cover an interesting area of computer science that deals with non ideal situations

that come with being a startup with limited human resources and capital. Much good has been

said about the potential benefits of using Node JS, but this general optimism doesn’t help solve

problems.

TECHNOLOGY USED

NODE JS

There are many ways to implement a backend server. In general, because of the

bottlenecks presented through network connections, database queries, and program executions,

there must be a way to keep executing code while waiting for a response. In dealing with this,

many languages such as PHP and Java adopt the concept of multithreading. This is when

multiple threads of execution are utilized, running concurrently on multiple cores. In this way,

11

threads waiting for a server response can create a new thread and continue execution until the

response is received 12.

The other method of dealing with this bottleneck is through what is called

asynchronous execution. In one thread, a piece of code initializes an operation and waits for an

event to complete it, allowing execution of other pieces of code. Javascript follows this pattern,

which allows low memory usage and simpler code5.

For Music Putty’s server, I chose to use Node JS, which is a server side Javascript

implementation. Due to its asynchronous nature, Javascript turns out to be ideal for starting

many processes and waiting for responses before continuing. In sequential programming

languages, code is executed line by line. If a request is made to another server, it waits for that

response before continuing execution. This time spent waiting could be better used for

executing more code, which is what Javascript does. As a server is always making requests to a

database, which is a separately running program, Node JS can be speedy and do multiple things

at once.

It is still a developing language, which makes it interesting to test its performance. In

theory, it should be reliable and quick, but we will not know for sure until many people have

used it for an extended period of time. During this time, it is necessary to question and test

Node JS so that it can improve.

TESTING ENVIRONMENT AND DATA COLLECTION

There are services and programs made for doing various performance on servers. In

general, services are owned by businesses and provide a variety of features, but at a high cost,

with a clientele of businesses. Examples of these are LoadImpact.com and Loader.io.

12

Programs are usually freely distributed software that anyone can run. They are more

customizable, but because of his also need more time to get set up. Also, there are

considerations of how to host the instances of the program when dealing with load tests.

For testing speed and reliability, we need a load generating program. These simulate

multiple users requesting information from a server. I am looking for one that could simulate

conditions to test for maximum user load, average response time, average load time, and server

reliability over time.

I have decided to use JMeter for these tests for a variety of reasons, most documented

in an article published by the International Journal of Emerging Technology and Advanced

Engineering, titled “Identification of Performance Improving Factors for Web Application by

Performance Testing.” It describes JMeter as an open source testing platform that can be used

to carry on performance tests. It is modular and capable of handling static and dynamic

requests, as well as support for cookies, headers, and constructs to process server responses. It

is also capable of graphically representing results in real time, which allows for quick

debugging and verification of tests during test creation.27

JMeter was useful in its abilities to simulate an actual user, create non ideal network

situations, and simulate a web browser through using a concurrent testing system that emulates

the way browsers request files linked through HTML.

I will not be explaining the details of using JMeter. You can find helpful tutorials and

complete documentation from JMeter’s homepage1.

JMeter was used for all data collection. JMeter’s listeners can save samples in .csv

format.

13

SETUP

For these tests, I am using Linux, a UNIX-based open source operating system. It

follows the other technologies used in that it is free, accessible, and widely used as the OS for

production servers.

These tests were run on one Linux Machine running Ubuntu 14.04. JMeter and my

Node JS server were run simultaneously. Due to limitations of my router and complications

facing reliable LAN setup, this solution was used. Benefits to this decision is the elimination of

a variety of unknown parameters affecting latency, such as WLAN signal strength,

interference, and limitations regarding packet size. For some tests, an Nginx 1.6.0 was used as

a static file server.

HARDWARE

Desktop Computer with:

Athlon X2 7750 (2.7GHz) CPU
4GB DDR2 500GB HDD RAM
NVIDIA GeForce 9500 GT GRAPHICS CARD

DATA ANALYSIS

LibreOffice is an open source office suite9 which is similar to Microsoft Office. Using

Calc, their spreadsheet program, I was able to calculate T distributions to statistically verify

claims on decreased response time and increased throughput.

R is a scripting program tailored for data analysis. R was used to generate graphs and

means of soak tests due to their large sample size (over 1 million samples per soak test), which

LibreOffice couldn’t handle.

14

IMPLEMENTATION

DEVELOPING TESTS

The first step in doing performance tests is to determine and create the methods used

for testing. According to Nicolas Vahlas, a lead software architect for Quality & Reliability

A.E., to make tests, you need to first clearly state your objectives23. Mine is to discover

bottlenecks in a Node JS system and software, to expose them for future developers who are

building back end server technologies. Without any technical training in networks, it was hard

for me to find best practices, and I spent most of my time developing. I want to provide a guide

for future developers to get a sense of improving network scalability.

Vahlas says “a good methodology is always to try and implement scenarios that are as

close as possible to real and typical use cases of the system you are willing to test.”23 Using

JMeter, I have built a system that closely emulates the behavior of users assuming various

roles, such as a guest user, who navigates to the homepage, looks at it, and leaves. Another role

is a registered user, who navigates to the homepage to register for or log into an account. The

last role I determined for our alpha release is that of a musician, who would be registering for

or logging into an account, editing their band’s information, and uploading new albums to

Music Putty.

Using what are called thread groups, JMeter can concurrently run the requests

associated with these roles. A thread group is a group of elements such as conditional elements,

samplers, timers, settings, and listeners, which all work to emulate the requests of a type of

user. For example, you can use a conditional element to randomly decide if a user will sign up

for an account or log into an existing one. Samplers are used to make HTTP requests, through

specifying a URL, port, body content, and files to send in a multipart form upload. Timers are

15

used to create a more realistic delay for user navigation. The default setting is to send requests

as quickly as possible, but this is unrealistic in that it’s not what regular users would do. The

settings can be configured to send HTTP headers and cookies along with each request. Finally,

listeners are used to the record the results of these tests. You can get the data associated with

every request, an aggregate report of throughput, latency, response time, and graphs of various

parameters. For my tests, I used a plugin by JMeter-Plugins to monitor the server’s memory

and CPU usage, as well as a plugin by the same group called “Response Times Over Timer”,

which compiles a graph of each response time for each sampler used. I used these plugins to

get additional functionality out of JMeter.

Overview of settings, thread groups, and listeners.

Once realistic tests were produced, I went on to set the load of each thread group for

each type of test. In thread groups, you can set various parameters of the test.

16

The “Number of Threads” parameter corresponds to the number of simultaneous

connections made to the target address. It simulates a specific number of users making requests

to the server. 23

The “Ramp Up Time” is the time for JMeter to reach its specified number of threads.

During this time, the theoretical number of simultaneous connections is tn/T, where t is current

time elapsed, n is the “Number of Threads” parameter, and T is the “Ramp Up Time”

parameter.23

The “Number of Loops” parameter corresponds to the number of times each thread will

execute the specified scenario.23

 In changing these settings, we can effectively create load, stress, and soak tests needed

to evaluate the server’s reliability. To create a load test, supply an estimated number of users

for some amount of time. For a stress test, you can specify a large concurrent user base with a

long ramp up time, recording the number of active threads upon a server crash. For a soak test,

you can supply an estimated number of concurrent users for an infinite duration, stopping the

test upon a crash, or when the established soak time is reached.

In addition to these basic settings, I found it important to parse the HTML of each

request to properly emulate a browser. This will fetch images, css, and javascript necessary to

load a page.

You can do this by checking the “Retrieve All Embedded Files” option, and by selecting the

option to use concurrent pooling.2 This is the method regular browsers use, so in doing this you

can more closely simulate real conditions 22.

17

JMeter allows listeners to write data to a file, allowing you to analyze it later. By

checking all of the parameters you want saved, and choosing the file destination, you can open

the results in Microsoft Excel or a similar spreadsheet program.

IMPLEMENTING SOLUTIONS

Once these tests have been initially completed, I implemented various changes to Music

Putty’s Node JS code and software setup. Most of these proved to decrease response time and

increase throughput and uptime.

1. Operating System Settings

At first, load tests were crashing due to Ubuntu’s maximum file limit. For each

connected user, a TCP connection is made. Each TCP socket established creates a new file in

Linux systems 8. In having a high concurrent user load, enough TCP sockets, in adittion to

other files, will be created to break the server. Linux stores the set maximum number of files

and reveals them through the command “ulimit”. Through this command, I was able to set the

maximum number of files from 1000 to 1000000, reducing the possibility of reaching that

limit.

Additionally, JMeter was initially running out of memory from generating the requests

necessary to simulate 210 concurrent users.

18

JMeter OutOfMemory Error

To fix this, I set Java’s maximum heap size to 2GB through JMeter’s configuration file.

It defaults to 512MB, which isn’t enough for larger, more complicated tests.

2. Debugging and Increasing Reliability

Performance testing led me to discover bugs in the codebase that adversely affect the

server when under a regular expected load over a substantial period of time. These bugs would

have otherwise gone unrecognized.

The initial soak tests, with 210 concurrent users over a substantial period of time (>1

hour) was initially crashing after 1.8 hours. This was due to an ENOSPC error. This error is

thrown when there isn’t enough space on the destination drive25. It was discovered that Music

Putty’s server wasn’t correctly handling the deletion of temporary files. Upon fixing this by

19

deleting the temporary files as they were moved to their intended destination, the server was

able to last at least 6 hours.

Soak test, showing crash after 1.8 hours due to ENOSPC error.

Another problem that was discovered was a 10-20% error on each band request past

sign up. Through using JMeter’s Result Tree listener, which records all attempted requests and

their responses, I traced the error back to the band thread groups. During the band’s account

creation, there was a function was using global variables to relate users to their bands. These

variables changes as users were created simultaneously. A table exists in our database called

20

band_member, where the member’s ID and band’s ID is inserted. This table is later used to

authenticate a user trying to modify a band or upload an album.

The global variable was storing the band’s ID, and through handling more than one

band creation by the time an insert statement was executed, the band’s ID belonged to a

different member, causing subsequent authentication errors.

In this soak test, the effects of this bug are prominent. The high density of response

times at 120,000 ms is due to the timeout of the improperly handled errors that relied on the

user being a member of a band. Through the addition of error-handling code, I limited the

possibility of these timeouts occurring in future bugs.

Soak test, with 120 second timeouts, long song upload time.

21

In addition to these errors, the mean response time was 9758 ms. The mean response

time for the “home page” and “sign up page” requests took an average of around 17800 ms.

output from R, analyzing initial soak tests

Other requests, such as getting a band’s basic information, were faster.

output from R, analyzing specific request types from initial soak tests

This was determined to be because of the number of files loaded due to the ‘nav to the

home’ and ‘nav to signup’ requests. The resolution of this is discussed in “Minifying Files”.

Upon fixing these errors, the percentage of request errors fell below 0.5% and the average

response time decreased substantially.

22

Soak test after debugging code and minifying scripts.

3. Minifying Files

The next technique applied was putting served script files through a process called

minification. This is when function names are shortened to single letter names, and white space

is eliminated. Although this adversely affects the readability of the code, it is usually a good

idea because it reduces the amount of data sent. 6

Minification also concatenates, or combines the script files into one large file.

Concatenating files reduces the total overhead time by reducing the number of requests to

make.24 I used node-minify19, which utilizes Google’s Closure Compiler, or GCC, to minify and

concatenate the files.

23

To test the throughput before and after minification, JMeter was run with 300

concurrent threads, making as many requests as possible for five minutes. This was repeated

five times with the Initial and Minified builds.

StressTests, average mean of initial tests against the average mean of minified tests.

Using Student’s T Test 21, it was analyzed that, with >95% certainty, the throughput of

Music Putty’s home page increased. Initially, there was a sample mean (x) of 17.21 requests

per second. After minifying the code, the sample mean increased to 77.4 requests per second.

To test response time, an estimated number of concurrent users during Music Putty’s

beta was determined to be 210 users. The team expected 100 registered users, 100 anonymous

guests, and 10 bands to be using Music Putty simultaneously, at most, during the private beta.

Once this was determined, load tests lasting approximately 15 minutes were executed.

24

Load Tests, average mean of initial response time against the average mean of minified
response time.

I found with >95% probability that the population mean(u) of minified response times is

significantly less than the population mean of the response times of initial tests.

4. Using a Static File Server

Node JS can be used as a simple HTTP server20. Dedicated, lightweight HTTP servers

such as Nginx can potentially be used in place to Node JS to handle static requests, such as

sending images, stylesheets, and scripts to the client. Node JS can then be dedicated to

handling dynamic requests that require user validation, database interaction, and dynamically

generated content.

This actually was inspired by an answer on StackOverflow, a site dedicated to

answering computer science problems. A user named “m33lky” suggested Nginx as a solution

for hosting static files, itself passing dynamic requests to Node JS10. Nginx is widely used

HTTP server software focused on speed and simplicity26.

I set Nginx to listen on another port than my Node JS application, and used Nginx as a

proxy to the app when it doesn’t catch a request for a static source.

25

http://stackoverflow.com/users/130111/m33lky

Upon installing and setting up Nginx to handle all static file requests, I ran tests with

my application’s Minified build and compared these with the results from the original Minified

tests.

Nginx configuration file

26

The same methods were used in these tests that were used for validating the

minification of files in the previous section.

StressTests, average mean of initial tests against the average mean of minified tests.

Load Tests, average mean of initial response time against the average mean of minified
response time.

It was determined with >95% probability that using the Nginx HTTP server along with

Node JS on the same machine raised the response time and throughput. Remember, a higher

response time is an undesirable quality. This is likely due to competing resources on the host

27

computer. It is useful to note that Nginx, when used on the same machine as a Node JS server,

performed much worse at scaling. When running the Initial build with Nginx serving the static

files, it frequently timed out at 120 seconds.

In implementing these fixes to our production server, I have decided to leave out

implementing the Nginx server and proxy. At this time, we feel that it’s more important to have

a low response time than a high throughput. However, if this changes, we will know a possible

method of improving the server.

OVERVIEW OF RESULTS

Key:
Requirements not met. Best result. Requirements met.Requirements partially met.

All of the requirements (50% increase in throughput, 50% decrease in response time, 12+

uptime) have been met.

28

FUTURE WORK

First of all, I will implement these changes to our production server. Knowing the

benefits of the various implementations I have executed during this project, I believe Music

Putty can greatly benefit. Over the next few weeks, I will be implementing these changes to

production.

Additionally, I will explore the possibilities of testing for a maximum user load. This

was attempted for this project, but was abandoned due to the testing environment set up. The

host machine, due to memory limitations, could not produce a load with JMeter that could

break the server. Therefore, a maximum user load could not be determined. A maximum user

load is the number of users a server can serve while maintaining stability.

Doing online performance testing is another next step. Now that the server code itself is

improved, I can explore the possibilities of improving our deployment setup. I plan on

performance testing Music Putty’s server using a cloud-based service such as Amazon’s AWS.

This costs more and has a higher initial setup, but is closer to our EC2 server than doing tests

on a local machine.

SOCIETAL IMPACT / CONCLUSION

This senior project can be used as a resource for web developers with limited resources

and experience wanting to test their Node JS server. I have detailed the usefulness of testing to

improve current code, and explored the possibilities of changing a server’s setup to increase its

performance. These techniques can be applied to a variety of projects.

29

This senior project also ties into Music Putty’s success. We feel that we are making a

positive contribution to the world of music through empowering musicians and freeing them

from record labels, while simultaneously providing listeners with free independent musician

streaming. We have been talking about raising money to support rock artists in countries that

condemn free expression through music, and in doing these kinds of activities hope to improve

musicians’ lives.

30

Sources Cited

1. Apache JMeter - Apache JMeter™. Apache Software Foundation, n.d. Web. 11 June 2014.

<http://jmeter.apache.org/>.

2. "Apache JMeter - User's Manual: Component Reference." Apache JMeter - User's Manual:

Component Reference. Apache Software Foundation, n.d. Web. 11 June 2014.

<http://jmeter.apache.org/usermanual/component_reference.html#HTTP_Request>.

3. "Custom Plugins for Apache JMeter." JMeter Plugins. N.p., n.d. Web. 11 June 2014.

<http://jmeter-plugins.org/>.

4. "Data." TechTerms. TechTerms, 2014. Web. 11 June 2014.

<http://www.techterms.com/definition/data>.

5. Dewan, Prasun. "Synchronous vs Asynchronous." COMP 242 Class Notes. University of

North Carolina, 2 Feb. 2006. Web. 11 June 2014.

<http://www.cs.unc.edu/~dewan/242/s07/notes/ipc/node9.html>.

6. "Google/closure-compiler." GitHub. Google, 3 June 2014. Web. 11 June 2014.

<https://github.com/google/closure-compiler>.

7. "How We Built EBay’s First Node.js Application." EBay Tech Blog. EBay, 17 May 2013.

Web. 11 May 2014. <http://www.ebaytechblog.com/2013/05/17/how-we-built-ebays-

first-node-js-application/#.U5iS5HXKqll>.

8. Krzyzanowski, Paul. "Introduction to Sockets Programming." CS 417 Documents. Rutgers,

2014. Web. 11 June 2014. <http://www.cs.rutgers.edu/~pxk/rutgers/notes/sockets/>.

31

9. LibreOffice, The Do23cument Foundation. 2014. Web. 11 June 2014.

<http://www.libreoffice.org/>

10. M33lky. "Node.js Itself or Nginx Frontend for Serving Static Files?" Stackoverflow. Stack

Overflow, 2 Apr. 2012. Web. 11 June 2014.

<http://stackoverflow.com/questions/9967887/node-js-itself-or-nginx-frontend-for-

serving-static-files>.

11. "Managing Your Files as Units." Working with

Https://pangea.stanford.edu/computing/unix/files/units.phpthe File System. Stanford

School of Earth Sciences, 3 Aug. 2004. Web. 11 June 2014.

<https://pangea.stanford.edu/computing/unix/files/units.php>.

12. Martin; Roth. “Unit 12: Multithreading”. CIS 501: Introduction to Computer Architecture.

University of Pennsylvania. Web. 10 May 2014.

<http://www.cis.upenn.edu/~milom/cis501-Fall05/lectures/12_smt.pdf >.

13. Munch, Chris. "Effect of Website Speed on Users." MunchWeb. MunchWeb, 29 Sept. 2010.

Web. 11 June 2014. <https://munchweb.com/effect-of-website-speed>.

14. Neilson, Jakob. “Response Times: The 3 Important Limits.” Nielson Norman Group: Jan 1.

1993. Web. 11 Jun. 2014. <http://www.nngroup.com/articles/response-times-3-important-

limits/ >.

15. Paul, Ryan. "A Behind-the-scenes Look at LinkedIn's Mobile Engineering." Ars Technica.

Condé Nast, 2 Oct. 2012. Web. 11 May 2014. <http://arstechnica.com/information-

technology/2012/10/a-behind-the-scenes-look-at-linkedins-mobile-engineering/2/>.

16. Ramakanth, Kumar. “A Survey on Performance Testing Approaches of Web

Application and Importance of WAN Simulation in Performance Testing”.

32

International Journal on Computer Science and Engineering. Vol 4 N.5, May 2012.

Web. 11 Jun. 2014. <http://www.enggjournals.com/ijcse/doc/IJCSE12-04-05-159.pdf>.

17. Robertson, Aaron H. "Node.js Scalability Testing with EC2." Caustiks Blog. N.p., 6 Apr.

2012. Web. 11 June 2014. <http://blog.caustik.com/2012/04/06/node-js-scalability-

testing-with-ec2/>.

18. "Soak Testing." RPM Solutions. RPM Solutions Pty Ltd, 4 Aug. 2004. Web. 11 June 2014.

<http://www.loadtest.com.au/types_of_tests/soak_tests.htm>.

19. Srod. "Srod/node-minify." GitHub. Github, 19 Mar. 2014. Web. 11 June 2014.

<https://github.com/srod/node-minify>.

20. Tilkov, S.; Vinoski, S., "Node.js: Using JavaScript to Build High-Performance Network

Programs," Internet Computing, IEEE , vol.14, no.6, pp.80,83, Nov.-Dec. 2010 doi:

10.1109/MIC.2010.145

21. Uebersax, John. “Tests of 2 Sample Means”. Statistics 312. Google Drive, 2014. Web.

Accessed 11 Jun. 2014.

<https://drive.google.com/file/d/164XM5UtSGfk06AXKlMn3r2WcPionVC59TfM7f4A

KumRnxEzHwWkv4nMdb9EH/edit?usp=sharing>.

22. "Using Concurrent Pool Size - JMeter 2.5+." Using Concurrent Pool Size. BlazeMeter, n.d.

Web. 11 June 2014. <http://community.blazemeter.com/knowledgebase/articles/64301-

using-concurrent-pool-size-jmeter-2-5>.

23. Vahlas, Nico. "Some Thoughts on Stress Testing Web Applications with JMeter (Part 1)."

Nicolas Vahlas's Blog. N.p., 17 Mar. 2010. Web. 11 June 2014.

<http://nico.vahlas.eu/2010/03/17/some-thoughts-on-stress-testing-web-applications-

with-jmeter-part-1/>.

33

24. Williams, Matt. "How Does Reducing JavaScript Requests & Minifying JavaScript Impact

Site Performance?" Yottaa. Yottaa, 16 Jan. 2013. Web. 11 June 2014.

<http://www.yottaa.com/blog/bid/259514/How-Does-Reducing-JavaScript-Requests-

Minifying-JavaScript-Impact-Site-Performance>.

25. "Write(2)." Linux Man Pages. Die.net, n.d. Web. 11 June 2014.

<http://linux.die.net/man/2/write>.

26. Zhu, Joshua. “Nginx Internals.” Slideshare. Slideshare, 19 September 2009. Web. 11 June

2014. <http://www.slideshare.net/joshzhu/nginx-internals>.

27. Patel, S. (2014). Identification of Performance Improving Factors for Web Application by

Performance Testing. IJETAE, 2(5), pp.433-436.

34

