Greedy algorithms

[n this lecture we will deseribe a general template for finding algorithms. It works in a
surprigingly large number of cases. lt's the method of greedy algorithms.

We will study a special type of problems. We want to make choices. Let's say that we -
make choices ¢[l], e[2], e[3], ... At each step in the algorithm we have a set of
posgible choices. When the algorithm ends we want to have a gelection ¢[l], ¢[2],
c[3], ...e[k] that in some sense is correct. We agsume that there, to each selection, is
asgociated a cost A. Let's agsume that our goalis to find a correct gelection with as

small cost ag possible.

Furthermore, we agsume that when the choice ¢[l]is made the remaining situation is
a problem of the same type. (Thig notion seems hard define in a precise way.) Then
there ig a chance that a o called greedy algorithm will work.

A greedy algorithm ig a an algorithm which make the choices following a very simple
(greedy) strategy. What this means depends on the situation. Usually there are two
sorts of greedy strategies:

. We can make the choice ¢[l] o that the cost (locally) increases as little as
possible.

2. We can make the choice ¢[l] go that the remaining problem i¢ ag “good" ag

possible.
(The first case is what we in the strictest sense meang by a greedy algorithm. But lots
of interesting problemg are covered by the second, more vague cage.)



The greedy algorithm runs like this: Assume that we have made choices ¢[l], e[2],
e[3], ..., e[m]. If this selection is correct we stop. Otherwise, make the next choice
following your greedy strategy.

The general idea with a greedy algorithm is that you don't have to spend
long time on making your choices. You don't have to look ahead and
congider the consequences. Greedy algorithm usually have low time-
complexity.

Ex:

We have the numbers [0, 5 and [. We are given the integer N. We want to write N ag 3
sum of of the numbers [0, 5, 1. (We can use a number more than one time.) That is, we
want to find numbers a,b,¢ such that N =3[0 + b 5 + ¢. Furthermore, we want to use
as few terms as possible. That is, a + b + ¢ should be as small as possible.

The solution is obvious: As long ag N ig greater than 9 we subtract [O to get a new
number N and repeat. When N is smaller than [O we subtract 5 if possible. Then we
subtract [ until we reach O. So, for ingtance, N =37 givesa=3,b=1,¢=2.
Obviougly, we can not do better than this. Thig is a greedy algorithm.



When greedy algorithms fail

A greedy algorithm can fail for two reasons:

[ It can fail to give us an optimal solution

Ex: We take the same problem ag
before, but ingtead of 10, 5, | we
use the numbers 6, 5, [. If we have
N =10, the greedy algorithm gives
us [0=6+ 1+ [+ [+ (. Butthe
best solutionis (0=5 + 5.

2.t can fail to give us a correct
solution.

Ex: The same pr.oblem but with the
numbers 6, 5, 2. If we take N =7, the
greedy algorithm subtracts 6 from 7 and
leaves ug with [. Then the algorithm fails to
reach the sum 7. The correct golution is

7=5+2.

But when do greedy algorithms work? We study some examples.

Ex:

We want to drive along a road. We represent the road as a coordinate
axie. We start at x = O and want to go to a city x[n]. Along the road there
are other cities x[l], x[2], ...x[n-1]. A full gas tank contains gas for A
kilometers. We can fill the tank in the cities but nowhere else. We want to
reach x[n] and tank ag few times ag possible. How do we do that?



We might think that we should use some complicated strategy but that
i¢ not go. [n fact, a greedy algorithm works:

If we are at x[i] and have enough gas left to
reach x[i+(] we do not fill gas. Otherwise, we get
a full tank at x[i]. lf it is at all possible to get to
x[n], this algorithm will take us there and fill gas

as few times ag possible.
Setl=0

Seti=0
SetT=A
The time-complexity is O(n). While TRUE do
While x[i+!1]- x[i]< T andi<n do
Set T=T - x[i+1] + x[i]

Seti=i+1
End while
If i =n then
Halt

If x[i+1] - x[i] A then
Return “Imposgible”

SetT=A

Put i at theend of L

We will look at some more examples:
P End while



Activity planning

Let us assume that we have n activities
ai,ay, ..., an With corresponding time intervals
[s;, fi). No intervals are allowed to overlap
each other. (The intervals are half-open. Ob-
serve that [2,4) och [4,5) do not overlap.)
How do we choose a maximal number of ac-
tivities that do not overlap each other?

Greedy algorithm for activity planning

It turns out that we shall choose activities
after end times. This algorithm chooses a set
A of activities. Sort the activities such that

fl < f2 < ... < fn.
(1) A« {ay}
(2) i+ 1
(3) for j« 2ton
(4) if s; > fi
(5) A« AU {a;}
(6) i 4= ]
(7) return A

The time-complexity ig Oln).



Jobs with deadlines

Let us assume that we have n jobs which
must be done by one person. It takes time t;
to do job i. We also know that job 7 must be
finished latest at time d;. We want to plan

times for doing the jobs such that:

o f(i) = s(i) +t; for all 4.

e No intervals [s(7), f(2)], [s(), f(4)] over-
lap each other.

e f(i) <d; for all i.

A first problem is to decide if this is possible
and how the planning then looks.

If the planning is impossible to make, this
must be because f(i) > d; for some i. We can
try to minimize the failure". There are several
ways of measuring the failure. A natural idea
is the following:

Set L = max f; — d;.
1

Then try to get L as small as possible.



The algorithm is really simple. Sort the job
SO that di < dp < --- < d,. We assume that
d;, > 0 for all 7= and that the first job starts at

0.

(1)
(2)
(3)
(4)

s(1) « 0, f(1) « t;
for i <~ 2 ton
8(i) « f(i-1), f(3) « s(i)+¢;

return s, f

The Minimal Spanning Tree Problem

If G is a connected graph,then a spanning tree ig a tree that containg all

nodes in G.

Obs: fIVI=nand TeGis a tree then

T is spanning&S[El=n-1

A graph with node wetghts




A minimal spanning tree (MST)is a gpanning tree such that

W =) ce(T) W(€)

is minimal.

The MST problem:

[nput: W weighted connected graph G -
Goal: AMST inG

MST




Krugkal's algorithm

<4
Sort the edges such that wlel) S w(e2) < ...
SetA=0

For each e, in the sorted order
If Au{e,} doeg not contain any eycle A furst form

Set A=Au{e}

Endif
End for

How do we decide the complexity? How do you know if a set of
edges containg a eycle or not? We have to describe the algorithm
more in details.

Data structures for identifying cycles:

MakeSet(v) creates the set {v}
Complexity: O( 1)

FindSet(v) finds the set containing v
Complexity : O log VI)

Make Union(u,v) makes the union of the sets
containingu and v

Complexity : O(1)



Kruskal(V, E, w)

(1)
(2)
(3)
(4)

(5)

(6)
(7)
(8)
(9)

A«0
foreach ve V
MakeSet(v)
Sort FE in increasing weight or-
der
foreach (u,v) € E (in the sorted
order)
if FindSet(u) # FindSet(v)
A AU {(u,v)}
MakeUnion(u, v)
return A

Complexity: O(|E|log|E|) (due to the sor-
ting); FindSet and MakeUnion takes O(|E|||log|V|)

tid.



Another similar algorithm ig Prim's algorithm

Prim(V, E,w,s)

(1) keylv] « o for each v € V
(2) keyls] « 0

(3) Q < MakeHeap(V, key)

(4) [s] « Null

(5) while Q#10

(6) u + HeapEzxtractMin(Q)

(7) foreach neighbor v to u

(8) if v e @Qand w(u,v) < key[v)
(9) w[v] « u

(10) keylv] « w(u,v)

(11) Order the heap at v

[t can be showed that the complexity ie O( [Ellog [VI)



