
                               
Greedy algorithms                              

In this lecture we will describe a general template for finding algorithms. It works in a 
surprisingly large number of cases. It's the method of greedy algorithms.                              

We will study a special type of problems. We want to make choices. Let's say that we 
make choices c[1], c[2], c[3], ...  At each step in the algorithm we have a set of 
possible choices. When the algorithm ends we want to have a selection c[1], c[2], 
c[3], ...c[k] that in some sense is correct.  We assume that there, to each selection, is 
associated a cost A. Let's assume that our goal is to find a correct selection with as 
small cost as possible.                              

Furthermore, we assume that when the choice c[1] is made  the remaining situation is 
a problem of the same type. (This notion seems hard define in a precise way.) Then 
there is a chance that a so called greedy algorithm will work.                

A greedy algorithm is a an algorithm which make the choices following a very simple 
(greedy)  strategy. What this means depends on the situation. Usually there are two 
sorts of greedy strategies:

               
1. We can make the choice c[1] so that the cost (locally) increases as little as 
possible.



2. We can make the choice c[1] so that the remaining problem is as "good" as 
possible.               
(The first case is what we in the strictest sense means by a greedy algorithm. But lots 
of interesting problems are covered by the second, more vague case.)               



                    The greedy algorithm runs like this:  Assume that we have made choices c[1], c[2], 
c[3], ..., c[m]. If this selection is correct we stop. Otherwise,  make the next choice 
following your greedy strategy.                       

The general idea with a greedy algorithm is that you don't have to spend 
long time on making your choices. You don't have to look ahead and 
consider the consequences. Greedy algorithm usually have low time-
complexity.                

Ex: 

We have the numbers 10, 5 and 1.  We are given the integer N. We want to write N as a 
sum of  of the numbers  10, 5, 1. (We can use a number more than one time.) That is, we 
want to find numbers a,b,c such that N = a 10 + b 5 + c. Furthermore, we want to use 
as few terms as possible. That is, a + b + c should be as small as possible.                    

The solution is obvious: As long as N is greater than 9 we subtract 10 to get a new 
number N and repeat. When N is smaller than 10 we subtract 5 if possible. Then we 
subtract 1 until we reach 0. So, for instance,  N = 37 gives a = 3, b = 1, c = 2. 
Obviously, we can not do better than this.  This is a greedy algorithm.                    



                                                
When greedy algorithms fail                                               

A greedy algorithm can fail for two reasons:



                                               

Ex:  The same problem but with the 
numbers 6, 5, 2. If we take N = 7, the 
greedy algorithm subtracts 6 from 7 and 
leaves us with 1. Then the algorithm fails to 
reach the sum 7. The correct solution is 
7= 5 + 2.                                              

1. It can fail to give us an optimal solution                                               2. It can fail to give us a correct 
solution.                                               

Ex:  We take the same problem as 
before, but instead of 10, 5, 1 we 
use the numbers 6, 5, 1.  If we have 
N = 10,  the greedy algorithm gives 
us 10 = 6 + 1 + 1 + 1+ 1.  But the 
best solution is 10 = 5 + 5.                                               

But when do greedy algorithms work? We study some examples.                                             

Ex:

We want to drive along a road. We represent the road as a coordinate 
axis. We start at x = 0 and want to go to a city x[n]. Along the road there 
are other cities x[1], x[2], ...x[n-1]. A full gas tank contains gas for A 
kilometers. We can fill the tank in the cities but nowhere else. We want to 
reach x[n] and tank as few times as possible. How do we do that?

                                           



                                                         We might think that we should use some complicated strategy but that 
is not so. In fact, a greedy algorithm works:                                                        

                       

We will look at some more examples:                   

If we are at x[i] and have enough gas left to 
reach x[i+1] we do not fill gas. Otherwise, we get 
a full tank at x[i]. If it is at all possible to get to 
x[n], this algorithm will take us there and fill gas 
as few times as possible.                                                   

The time-complexity is O(n).                    

Set L = ∅ 
Set i = 0

Set T = A

While TRUE do

 While x[i+1]- x[i]    T and i   n  do

                 Set T = T - x[i+1] + x[i]

                 Set i = i + 1

 End while

        If i = n then

                 Halt

        If x[i+1] - x[i]   A then

                 Return "Impossible"

        Set T = A

 Put i at the end of L

End while                    



                 

The time-complexity is O(n).             



                                    



           

The Minimal Spanning Tree Problem          

If G is a connected graph,then a spanning tree is a tree that contains all 
nodes in G.          

Obs:  If | V | = n and  T   G is a tree then



T is spanning       | E | = n - 1          

A graph with node weights          



           

MST        

A minimal spanning tree  (MST) is a spanning tree such that          

The MST problem:



Input: W weighted connected graph G

Goal: A MST in G          

is minimal.          



                 Kruskal's algorithm                

Sort the edges such that w(e₁) ≤ w( e₂) ≤ ...

Set A = ∅ 
For each eᵢ in the sorted order

 If A∪{eᵢ} does not contain any cycle

  Set A = A∪{eᵢ}

 End if

End for


A first form              

How do we decide the complexity? How do you know if a set of 
edges contains a cycle or not? We have to describe the algorithm 
more in details.              

Data structures for identifying cycles:



MakeSet(v) creates the set {v}

                Complexity: O( 1 )



FindSet(v) finds the set containing v

               Complexity : O( log |V| )



Make Union(u,v) makes the union of the sets 
containing u and v

              Complexity : O( 1 )              



           



                      

Another similar algorithm is Prim's algorithm   

It can be showed that the complexity is O( |E| log |V|)   


