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Zusammenfassung

Die Extraktion der visuellen Bewegungsinformation ist ein Beispiel sensorischer Informa-
tionsverarbeitung, das typischerweise eine hohe Datenbandbreite und schnelle Verarbei-
tung verlangt. In der Natur existieren viele Beispiele von Systemen, die visuelle Bewegung
bei weitem effizienter verarbeiten als jedes von Menschen geschaffene kiinstliche System.
Biologische Systeme verwenden physikalische Berechnungsarchitekturen, die aus Netzwer-
ken von stark miteinander verkniipften, parallel arbeitenden einfachen Einheiten beste-
hen. Diese Netzwerke représentieren eine grundlegende Art der Informationsverarbeitung,
die nicht nur fiir sensorische sondern fiir jegliche informationsverarbeitenden neuronalen
Strukturen gilt — wie etwa fiir unser Gehirn. Die Motivation, die Berechnungsaspekte sol-
cher Netzwerke zu verstehen ist demzufolge zweifach begriindet: Erstens ist es eine grosse
Herausforderung unserer Zeit zu verstehen, wie unser Gehirn funktioniert. Das Studium
kleiner Netzwerke, die sehr spezifische Aufgaben 16sen, kann uns helfen, die grundlegenden
Rechenprinzipien von komplexeren Systemen besser zu verstehen. Und zweitens macht es
die offensichtliche leistungsméssige Uberlegenheit dieser biologischen Netzwerke sehr reiz-
voll, diese Rechenarchitekturen in moderne Technologie zu iibertragen um eine bestimmte
Art von angewandten Rechenproblemen effizient zu l6sen.

Die vorliegende Dissertation prasentiert und analysiert einfache Netzwerklosungen fiir
verschiedene Probleme der Bewegungswahrnehmung. Es wird postuliert, dass die Wahr-
nehmung visueller Bewegung ein Optimierungsproblem darstellt, das notwendigerweise
durch die Mehrdeutigkeit der visuellen Information in Bezug auf die Wahrnehmung der
visuellen Bewegung existiert. Der Optimierungsprozess besteht darin, eine Interpretation
der visuellen Bewegung zu finden, die der beobachteten visuellen Information am besten
entspricht, unter Beachtung der im Netzwerk konstituierten internen Bewegungsmodelle.
Eine nicht hierarchische analoge Netzwerkarchitektur wird vorgestellt, die kontinuierlich
eine optimale Schitzung der lokalen visuellen Bewegung (auch optischer Fluss genannt)
liefert. Es wird ausfiihrlich und genau gezeigt, dass sich dieses Netzwerk immer in einem
einzigartigen und klar definierten optimalen Zustand befindet, unabhéngig aller méglichen
visuellen Eingangsbedingungen, was es von anderen, vorgéngig vorgeschlagenen Lésungen
unterscheidet. Simulationen des Netzwerkes mit realistischem visuellen Eingangssignal
zeigen eine plausible und robuste Schitzung des optischen Flusses. Die Charakteristik
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des geschétzten optischen Flusses hingt dabei stark von zwei globalen Parametern ¢ und
p ab, die die isotrope Verbindungsstirke zwischen den einzelnen Elementen des Netzwerks
und den Einfluss von a priori Annahmen beziiglich der wahrgenommenen visuellen Bewe-
gung bestimmen. Je nach Wert dieser Parameter variiert die Charakteristik des optischen
Flusses kontinuierlich zwischen einer globalen Schétzung der visuellen Bewegung, wobei
in diesem Fall das Aperturproblem fiir ein einzelnes visuelles Objekt gelost wird, und der
Schitzung von senkrechtem optischen Fluss, die dann resultiert, wenn die Verbindungen
zwischen den einzelnen Elementen des Netzwerkes vollstindig unterbrochen sind.

Zwei erweiterte Systeme werden vorgestellt, in denen zusétzliche Netzwerke riicklaufig
mit dem zuerst vorgestellten Netzwerk zur Schitzung des optischen Flusses verbunden
sind, um dynamisch die lokalen Werte der Parameter p und o zu kontrollieren. Das erste
dieser erweiterten Systeme, das bewegungssegmentierende Netzwerk, findet Bewegungs-
unstetigkeiten und beschréankt in Folge davon den kollektiven Schitzungsvorgang des opti-
schen Flusses auf diejenigen Elemente im Netzwerk, von denen angenommen wird, dass sie
visuelle Information desselben Objekts im Raum erhalten. Das Netzwerk ist fahig, nahezu
optimale Lésungen des rechentheoretisch harten Problems der Bewegungssegmentation zu
finden. Das zweite System, das bewegungsselektive Netzwerk, liefert die gezielte Wahr-
nehmung nur derjenigen visuellen Bewegung, die einer vorgegebenen Bewegungspriferenz
entspricht. Dies ermdglicht eine aufmerksamkeitskontrollierte Wahrnehmung der visuellen
Bewegungen.

Der zweite Teil dieser Dissertation vervollstindigt den Analyse-Synthese-Kreislauf, in-
dem gezeigt wird, wie zwei der vorgeschlagenen Netzwerkarchitekturen in einem physikali-
schen Substrat eingebettet werden kénnen. Analoge, in sehr grossem Massstab integrierte
(aVLSI) elektronische Schaltkreise des Netzwerks zur Schétzung des optischen Flusses
und des bewegungssegmentierenden Netzwerkes werden vorgestellt, die unter natiirlichen
visuellen Bedingungen voll funktionsfihig sind. Diese beiden integrierten Schaltungen
gehoren zu den wenigen Beispielen von angewandten kollektiven Berechnungsprozessen in
Sensorsystemen, wobei sie wahrscheinlich die leistungsfihigsten und komplexesten Syste-
me ihrer Art darstellen. Die gemessenen Charakteristiken der Schaltungen bestétigen die
Moglichkeit, solche analogen Netzwerke fiir die effiziente Losung bestimmter Klassen von
Problemen der Wahrnehmung in praktischen Anwendungen einzusetzen.



Abstract

The extraction of visual motion information is an example of sensory information process-
ing which typically has to deal with high data bandwidths and fast processing require-
ments. Nature provides us with many examples of visual motion processing systems that
are far more efficient than any man-made artificial system. Biological systems use a phys-
ical computational architecture that consists of networks of highly interconnected simple
units that all work in parallel. These networks represent a generic way of information pro-
cessing that applies not only to sensory processing (sub-)systems but to any processing
in neural structures such as our brain. The motivation to understand the computational
aspects of such networks is therefore two-fold: Firstly, it is one of the great challenges of
our time to understand how the brain works. Studying small networks that solve particu-
lar tasks might help us to understand the basic computational principles of more complex
systems. Secondly, the obvious superiority in performance of these networks makes it very
appealing to transfer such computational architectures into technology in order to provide
efficient solutions to a particular class of computational problems.

This thesis presents and analyzes simple network solutions for different motion per-
ception problems. It postulates that the perception of visual motion must be understood
as an optimization problem. Optimization is necessary to deal with the ambiguity be-
tween the visual information and the perception of visual motion. It is meant to find the
interpretation of visual motion that best fits the observed visual information according to
the motion model built into the network. A non-hierarchical analog network architecture
is proposed that is continuously providing an optimal estimate of the local visual motion
(also called optical flow). It is rigorously shown that this network is always in a unique
and well-determined optimal state independent of its visual input conditions, which is in
contrast to other, previously suggested solutions. Simulations of the network behavior
with realistic visual input show a plausible and robust estimation of the optical flow field.
The characteristics of the estimate depend strongly on two global parameters p and o,
that determine the isotropic connection strengths between units in the network and the
influence of some a priori assumption about the perceived visual motion. According to
the values of these parameters, the characteristics of the estimated optical flow field vary
continuously between a global motion estimate, in which case the aperture problem is
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solved for a single visual object, and a normal optical flow estimate that results when the
connections between units of the network are completely disabled.

Two extended systems are introduced where additional networks are recurrently con-
nected to the basic optical flow network in order to dynamically control the local values of
the parameters p and o. The first system, the motion segmentation network, finds motion
discontinuities and restricts the collective estimation process of the optical flow to those
units that are considered to receive visual information of the same object in space. The
network is able to provide close-to-optimal solutions for the computational hard problem
of motion segmentation. The second system, the motion selective network, provides a se-
lective perception of visual motion according to a given motion preference. This provides
the means for an attentional control of the perception of visual motion.

In the second part of this thesis, the analysis-synthesis loop is closed by demonstrating
how some of the proposed network architectures can be embedded in a physical substrate.
Analog Very Large Scale Integrated (aVLSI) circuit implementations of the optical flow
and motion segmentation networks are presented that are fully functional under real-world
conditions. The two circuits are among the few examples of sensory systems that apply
collective computation and represent probably the most powerful and complex implemen-
tations of their kind. The measured characteristics of these circuits prove the feasibility
of using physical analog network architectures to solve a particular class of perceptual
problems efficiently in practical applications.



Chapter 1

Introduction

Our world is a visual world; our visual sense is by far the most important one to gather
information from our environment. Light reflected from objects in our environment is a
very rich source of information. The short wavelength and high transmission speed of light
allow a spatially accurate and fast localization of the reflecting surfaces in space. Spectral
variations in wavelength and intensity of the reflected light resemble the physical properties
of objects and provide means to recognize them. The light-sources we are exposed to are
usually inhomogeneous. Thus shadows and reflectances are highly correlated with the
spatial dimension of the objects which help us to identify our environment.

Our world is also a world of motion. We are moving creatures. We have to be able to
navigate successfully through our environment in order to survive. And we predominantly
use our visual perception to do so. It is crucial for us to have a sense of motion, to perceive
our own motion in relation to the environment as well as the relative motion of objects to
each other. We need to determine quickly what is moving where, in which direction, and
at which speed. It is clear that there is a strong requirement for a motion system that is
able to process visual information quickly and extract the important motion information.
Therefore it is not surprising that the visual system in general, and its motion processing
stage in particular, occupy a substantial fraction of our central processing unit, the brain.

When mankind started the enterprise to build artificial autonomously behaving agents,
it was a common believe that by year 2001, autonomous agents would be part of our
everyday life in various aspects as proposed in numberless science-fiction stories and movies
(e.g. 'R2-D2’ in star wars)'. We now are wiser. Whoever pursued NASA’s recent mars
Pathfinder mission?, or demonstrations of ’artificial pets’®, immediately acknowledges that
these brittle and slow ’state-of-the-art’ agents are far from fulfilling our expectations.

There are two key reasons that are strongly interrelated which are responsible for the

lwww.starwars.com

Zhttp:/ /sse.jpl.nasa.gov/missions/mars missns/mp.html
3e.g. the robot-dog AIBO from SONY ,http://www.world.sony.com/Electronics/aibo/index.html
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poor advances so far. Firstly, it is not yet clearly understood what it means to perceive;
what the computational basis of perception is and, so what intelligence is. And secondly,
it seems that the computational machinery used in artificial autonomous agents is not ef-
ficient in solving perceptual tasks. Up to now, computer vision and robotics have almost
exclusively relied on sequential and binary computational architectures that are based on
von Neumann’s [von Neumann 1945] general purpose computing device. Presumably, all
computable problems can be formulated such that they are solvable by such computing
devices. However, it has to be seriously doubted that such devices are computationally
efficient in solving perceptual tasks. In particular, nature provides us with various ex-
amples of wonderfully engineered, efficient systems that are the existence proof of other
means of computation and computational architectures. Efficiency is crucial in biological
systems and promotes solutions that consume the smallest amount of resources available,
namely time, space and energy. Biological computational structures simply cannot
afford to have a centralized structure where memory and hardware, algorithm and com-
putational machinery are physically separated. Here, the function is the architecture —
and vice versa. A fair amount of the computational power and efficiency is due to the
collective computation in networks of single processing elements. Furthermore neuronal
structures use the intrinsic physical properties of their single units and connections, their
membrane capacitances and resistances as computational primitives to solve computa-
tionally demanding tasks.

These insights motivated scientists about 15 years ago to begin the endeavor of neuro-
morphic engineering, in which they aim not only to understand the nature of physical
computation in biological networks but also to exploit these principles and create artificial
electronic systems able to solve tasks such as visual motion perception computationally
efficiently.

The mission of this thesis is to investigate the possibilities to perform 2D visual
motion processing in analog networks of simple computational units. It proposes a general
understanding of perception as solving optimization problems. Furthermore, the thesis
tries to demonstrate that these networks can successfully be implemented in analog VLSI
hardware to provide computationally efficient solutions to solve the tasks. Emulating
rather than simulating such networks confronts us directly with the physical constraints
of the computational substrate and thus forces a different consideration of, and a better
understanding of, physical computation in analog networks.



Chapter 2

Visual Motion Processing

Visual motion processing extracts information about the relative motion between an ob-
server and its environment using the visual information the observer can access from
the environment. In general, the visual information is provided by an imaging device,
embodied in the observer. Since there is a causal relationship between the brightness
distribution in the image and the objects in space, the spatiotemporal brightness changes
induce a perception of relative motion in the image which in the following will be referred
to as visual or apparent motion!.

The representation or encoding of apparent motion can be arbitrary and depends on
the computational machinery, the affordable bandwidth and the needs of further process-
ing stages. A dense and thus very flexible form of representation is a vector field v(z, y, t)
that characterizes the direction and speed of apparent motion at each particular time and
image location. According to [Gibson 1950] such a flow field is referred to as optic or
optical flow.

The interdependence between apparent motion and the two-dimensional projection
(or 2D motion) of the real three-dimensional motion is not a direct mapping. Only in
particular cases is the mapping identical [Verri and Poggio 1989]. The reasons are two-
fold: Firstly, the information provided by the spatiotemporal brightness changes might
be ambiguous or missing altogether. Secondly, the spatiotemporal brightness changes do
not have to originate from real physical motion alone. Consider for example a static scene
illuminated by a light-beam from outside the visual field of the observer such that shadows
of the objects are generated. If the light-beam is moving, the shadows will also move and
induce apparent motion, although no real motion is taking place. In general, reflectance
properties and scene illumination are dominant factors for how well apparent motion
matches 2D motion. However, this also raises the question what a possible benchmark for

1 This definition is in contrast to some of the psychophysical literature where apparent motion is referred
to as the perception of continuous motion of a sequence of image frames with discrete displacements
[Braddick 1980].
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visual motion system should be. Is a best possible matching of the 2D motion [Barron et al.
1994] the preferred goal? Obviously, the apparent motion of the moving shadows in the
above example provides useful information to the observer, namely that the light source
is moving. Hence, resolving such ambiguities of apparent motion should be performed
preferably in higher level stages.

It is well-known that specified areas of primate’s visual cortex encode local image mo-
tion in a manner similar to optical flow. The dominant motion sensitive Medial Temporal
(MT) area in macaque monkeys, for example, is retinotopically organized in columns of
directional and speed sensitive neurons very similar to the orientation columns in the
primary visual cortex V1 (see Lappe [2000] for a review). Thus with respect to the
computational power of such biological systems it seems rather fair to assume that the
estimation of optical flow is a sensible step in the process of building a complete visual
processing system.

2.1 Matching Models

In order to define a representation of apparent motion we have to apply some computa-
tional model that extracts a quantitative measure given the image data.

Optical flow cannot be observed, it must be computed.

The basic assumption of every visual motion processing system is that a feature in the
image at some point in time will also be present somewhere in the image at a later time.
Thus, a quantitative description of apparent motion requires a matching process that
measures the local image displacements between two successive moments in time. In the
following we will distinguish two different classes of models.

2.1.1 Explicit matching models

The first class includes all those models that apply matching explicitly: They extract
features and track them in time. The displacement per time unit in image space serves
as the measure for apparent motion. Features can be thought of as being extracted
on different levels of abstraction, starting from the raw brightness patches to low-level
features like edges and up to objects. Typically, these models can be described by the
following matching operation:

M(xvya dmv dy) = ¢(E($, yatO)a E(iC + daca Yy + dy: tl)) (2]‘)

where E' is the representation of some features in image space and time, d, and d, are
the displacement in image space and ¢ is some correlation function that is maximal if
E(z,y,t) and E(z + d,,y + dy,11) are most similar. The task reduces to find d, and
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dy such that M(z,y; d,,d,) is maximal. Knowing the relative time difference, the image
velocity is directly proportional to the displacements.

Unfortunately, maximizing M might be an ambiguous problem and mathematically
ill-posed?. That is, there may be several solutions maximizing M. We are faced with the
so-called correspondence problem [Ullman 1979]: A single location on an object in our
environment is not necessarily expressed by an unique image feature in our projection.
One can object that the application of a competitive selection mechanism always ensures
a solution. However, in this case the correspondence problem is just hidden in a way that
the selection of the motion estimate in an ambiguous situation is driven by noise and thus
ill-conditioned. Unfortunately, the extraction and tracking of higher level spatial features
does also not circumvent the problem. The correspondence problem is in this case just
partially shifted to the extraction process which is ill-posed by itself [Bertero et al. 1987]
and partially to the tracking depending on the level of feature extraction; e.g. tracking
edges might be ambiguous if occlusion happens.

The extraction of optical flow in 2D image space is at least an ill-conditioned
if mot an ill-posed problem.

Several reasons do not favor a complex spatial feature extraction stage for low-level
motion estimation. Fault tolerance decreases because once a complex feature is misclassi-
fied, the motion information related to the complete feature is wrong; whereas outliers on
low level features might be discarded by some confidence measure, or simply averaged out.
Furthermore, since spatial feature extraction takes place before any motion is computed,
motion cannot serve as a cue to enhance the feature extraction process.

2.1.2 Implicit matching models

The second class of models contains those that rely on the continuous interdependence
between apparent motion and the spatiotemporal pattern observed at some image location.
The matching process is only implicitly present.

Gradient based methods assume that the brightness of an image point remains
constant while undergoing visual motion [Fennema and Thompson 1979]. Let E(z,y,t)
describe the brightness distribution in the image on a Cartesian coordinate system. The
Taylor expansion of E(x,y,t) leads to

E(z,y,t) = E(xq, Yo, t0) + g—fdaj + aa—fdy + aa—fdt +e (2.2)
where € contains higher order terms that are neglected. Assuming the brightness of a
moving image point to be constant i.e. F(z,y,t) = E(xg,yo,%0), and dividing by dt leads

2see Appendix A
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to

0 0 0

where u = dx/dt and v = dy/dt represent the two components of the local optical flow
vector.

Equation (2.3) represents the brightness constraint equation,® which was first intro-
duced in this form by Horn and Schunck [1981]. Obviously, the brightness constraint
equation is almost never true. For example, it requires that every change in brightness
is due to motion and thus the illumination to remain constant; that object surfaces are
opaque and scatter light equally in all directions; and that no occlusions occur. Many
of these objections are inherent problems of the estimation of optical flow. Even if the
brightness constraint were to hold perfectly, we could not extract a dense optical flow
field because Equation(2.3) contains two unknowns u and v. The computation of visual
motion using the brightness constraint is thus said to be ill-posed, as are many other tasks
in visual processing [Poggio et al. 1985]. Nevertheless, the brightness constraint equa-
tion grasps the basic relation between apparent motion and brightness variations and has
shown to be a valid first order model. It provides a constraint that continuously relates
apparent motion to the spatiotemporal structure of the image data.

A second group of implicit matching models characterize the spatiotemporal nature
of visual motion by the response to spatially and temporally oriented filters. A relatively
simple model in one spatial dimension was proposed by Hassenstein and Reichardt [1956]
after studying the visual motion system of the beetle species Chlorophanus. This cor-
relation method, which turns out to be of general nature in insect vision, correlates
the temporally low-pass filtered response of a spatial feature detector with the temporally
high-pass filtered output from its neighbor. Correlation will be maximal if the observed
stimulus matches the time constant of the filters. A similar arrangement was also found
in the rabbit retina [Barlow and Levick 1965]|. Here the output of a particular detector is
inhibited by the delayed output of its neighbor located in the preferred moving direction.
A stimulus moving in the preferred direction will thus elicit a response which is shut down
after the output of the neighboring detector signals the arrival of the stimulus and passed
the delay element. In the null direction, the detector is inhibited by its neighbor if the
stimulus matches the time constant of the delay element. Correlation methods do not
explicitly report velocity. Furthermore, their motion response is phase-dependent.

It has been shown that the correlation based models are computationally equivalent to
the first stage of a more general family of models [Van Santen and Sperling 1984]. These
so-called motion energy models [Adelson and Bergen 1985] apply odd and even type
Gabor-filters in the spatiotemporal frequency domain such that their combined output is
phase-invariant and reaches a maximum for stimuli of a particular spatial and temporal

3Sometimes it is also referred to as the motion constraint equation.
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frequency. Many of these filters tuned to different combinations of spatial and temporal
frequencies are integrated such that they support a particular image velocity [Heeger
1987a, Grzywacz and Yuille 1990]. The motion energy models are similarly affected by
the correspondence problem as the explicit matching models. However, since the 'features’
are characterized by their spatial and temporal frequencies such an approach is possibly
more robust. In any case, none of the above matching models can circumvent the inherent
correspondence problem.

2.2 Flow Models

To resolve the ambiguity of optical flow estimation additional constraints have to be
imposed on the motion field. Additional constraints can result in parametric flow models
and reflect our expectations of the observed type of visual motion. Therefore these models
represent a priori assumptions of the environment and might be formed by adaptation
processes taking place on various time-scales [Rao and Ballard 1996, Rao and Ballard 1999,
Mead 1990]. The more complex a model is and thus the more accurate it can describe a
particular flow field, the more it lacks generality. The choice of the model is determined
by the motion field expected, the type of motion information required, and the complexity
of the system allowed. Furthermore, depending on their complexity and thus the required
accuracy of the model, flow models permit a very compact and sparse representation of the
motion field. Such sparse representation is important e.g. in efficient video compression
standards that are able to cut down the huge bandwidth in video transmission.

2.2.1 Global motion

First, we consider the modeling of the flow field induced by movements of the observer
with respect to its environment. If the environment remains stationary the apparent
motion is directly related to the ego-motion of the observer. In this case, the observer
does not have to perceive his environment as a collection of single objects but rather sees
it as a spatiotemporally structured background that allows him to sense his own motion
[Sundareswaran 1991].

Three fundamental models can be associated with relative global motion to a fronto-
parallel oriented background:

e The simplest flow field imaginable results from pure translational motion (Fig-
ure 2.1a). The induced flow field v(z, y,t) does not contain any source nor rotation.
Thus the divergence div(v), the rotation rot(v) and the gradient grad(v) of the flow
field are zero. Such global translational motion can be represented by a single flow
vector.
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Figure 2.1: Basic global flow patterns. (a) A pure translational (a), rotational (b) and
radial (c) flow field.
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e Pure rotational motion between the observer and the background at constant dis-
tance will induce a rotational flow field as shown in Figure 2.1b. Again, the flow field
has no source but now rotation is present. Clock-wise or counter-clock-wise rotation
can be described by the sign of vector ¢ = rot(v) pointing either perpendicularly in
or out of the image plane. Since c is constant in the complete image space, a single
parameter is sufficient to describe the flow field.

e Approaching or receding motion will result in a radial flow field (Figure 2.1c) that
contains a single motion source or sink respectively. An appropriate model of such a
field would be to require the divergence to be constant. For approaching motion, the
origin of the source is called focus-of-expansion and signals the heading direction
of the observer.Again, a single parameter ¢y = div(v) is sufficient to describe the
flow field whereas its sign signals approaching or receding motion and its value is a
measure for speed.

Many more complicated models of affine, projective or more general polynomial type
have been proposed to account for motion of tilted and non-rigid objects (for a review see
[Stiller and Konrad 1999]). Furthermore, there are models that also consider the temporal
changes of the flow field such as acceleration [Chahine and Konrad 1995]. However, it is
clear that only in very special cases can the complete flow field be accurately described
with a single model of few parameters. In general, the models will oversimplify the visual
motion. Nevertheless, a single model approach can provide a very sparse representation
of global motion and it provides a robust measure because it accounts for the whole image
space, thus its region-of-support is maximal.

There is evidence that the visual system in primates does in fact extract global flow pat-
terns for ego-motion perception [Bremmer and Lappe 1999]. Recent electro-physiological
studies show that in regions beyond area MT of the macaque monkey neurons respond to
global flow patterns [Duffy and Wurtz 1993]. In the medial superior temporal area (MST)
neurons are selective to particular global flow patterns such as radial and rotational flow
and combinations of it [Lappe et al. 1996]. Furthermore a large fraction of neurons in
area MST receive vestibular input as well as input from MT [Duffy 2000] which suggest
that MST is involved in the perception of ego-motion.

2.2.2 Local motion

We now consider the general case where several objects and the observer are moving
relative to each other. Several moving objects induce several flow sources resulting in a
complex flow pattern. It is not feasible to apply a global flow model to capture such arbi-
trary pattern. On the other extreme, a purely local measure is possible, but cannot be a
very good estimate because of the earlier mentioned correspondence problem of which the
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N constraint lines

a — b

Figure 2.2: The aperture problem. (a) A rigid object moving translationally to the
right induces local motion that is ambiguous within the two circular apertures. (b) Vector
averaging of the normal flow field (dashed arrow) does not lead to the correct global
motion. Instead, only the intersection of the constraint lines leads to the correct common
object motion (bold solid arrow).

aperture problem is a well-known representative [Hildreth 1983]. To understand the
implications of the aperture problem we consider Figure 2.2a: Each of the two circles rep-
resent the aperture of a local motion detector. In the present constellation, each detector
observes only a local feature of a moving object which is in this case an brightness edge
of a particular spatial orientation. The apparent motion perceived within each aperture
is ambiguous because it could be elicited by an infinite number of possible displacements
of the edge.

Nevertheless, we can obtain a pure local estimate of the optical flow when we apply
a flow model that simply chooses the shortest one from the subset of all possible motion
vectors (bold arrow in Figure 2.2a). Since the shortest flow vector points perpendicular
to the edge orientation it is also called normal flow vector. Assuming all possible local
motions to occur with equal probability, normal flow estimation is the optimal local motion
estimation with respect to the accumulated error in direction because it represents the
mean direction*. Normal flow can serve as a loose estimate of apparent motion which
might be sufficient for some perceptual tasks [Huang and Aloimonos 1991]. However,
object motion can only be directly reconstructed from the normal flow vectors for very
particular object shapes. In general, the vector average of the normal flow along the object
contour provides not a good estimate for apparent object motion (Figure 2.2b). Here, the
correct motion is determined by the unique motion vector that is present in both subsets
of possible flow vectors, represented by the two constraint lines.

4If we apply the dot-product as an error measure for direction and speed, the accumulated error
remains constant, thus each of the possible flow vectors is an equally sub-optimal estimate.
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In general, apparent motion cannot be correctly determined by the vector av-
erage of the local normal flow vectors along the object contour and body.

To avoid the complexity of a global model and to overcome the poor estimation per-
formance of a purely local model we have to apply models to regions-of-support in the
image space. A partition of the image space into sub-images of fixed size turns the mod-
eling process into several global motion tasks. According to the model complexity and
the partition sizes the apparent motion can be captured by a relatively small number of
parameters. Several older video compression standards [Stiller and Konrad 1999] used
such block-partitioning with simple translational flow models. Obviously a fixed partition
scheme will fail for several flow sources present in one partition. In addition, depending
on the partition size, the spatial resolution of motion information is coarse.

2.2.3 Motion discontinuities

A general property of biological visual systems is their ability to discard redundant infor-
mation as early as possible in the processing stream and so reduce the huge information
flow. Using antagonistic center-surround type receptive fields, spatiotemporal disconti-
nuities in the visual feature space are transmitted preferably while regions of uniform
visual input are hardly encoded. This is well-known for the peripheral visual nervous
system, the retina that receives direct environmental input. However, it also holds within
cortical visual areas such as V1 (e.g. [Hubel and Wiesel 1962]) and higher motion areas
like MT/V5 in primates [Allman et al. 1985, Bradley and Andersen 1998|. Furthermore
electro-physiological studies provide evidence that motion discontinuities are indeed sep-
arately encoded in early visual cortex of primates. Lamme et al. [1993] demonstrated
on the awake behaving macaque monkey that motion boundary signals are present as
early as in V1. In addition, studies on human subjects using fMRI have shown that mo-
tion discontinuities are represented by retinotopically arranged regions of increased neural
activity, spreading from V1 up to MT/V5 [Reppas et al. 1997].

Such physiological data strengthens the argument that the special treatment of motion
discontinuities plays a significant role already in very early visual stages such as V1.
These findings suggest that the detection of motion discontinuities is vital even for the
computation of very local visual motion. Since the above experiments use random-dot
stimuli that induce unambiguous local motion, it is not clear whether the observed fMRI
signals represent only low level motion discontinuities that could in principle be processed
solely within V1. If this is not the case and the signals indicate much more object specific
properties, the intrinsic ambiguities of apparent motion do require additional information
from other higher level areas. It seems rather likely that recurrent, top-down connections
do play a major role in the computation of motion discontinuities.

From a computational point of view, motion discontinuities are important for the
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Figure 2.3: Object Motion. (a) Three rigid objects undergoing translational motion
while the observer is not moving. (b) Ideally, a correct estimation for the optical
flow field assumes three independent translational models, restricted to disconnected re-
gions-of-support. The boundaries of these areas represent locations of discontinuous mo-
tion between objects as well as between objects and background.

correct extraction of the optical flow, which is illustrated by the example depicted in
Figure 2.3. It shows a snapshot of an idealized visual scene of three moving objects taken
by a static observer. The background is stationary and the three objects are moving
independently. For the sake of simplicity they are assumed to undergo purely translational
motion. Thus, the induced flow field of each object is preferably represented by a separate
translational flow model. Ideally, the regions-of-support for each model coincide with the
visible object outlines. In the case of translational flow, the outlines are the only regions
where the flow field is discontinuous. Thus we are left with a substantial problem: how
can we extract the object outlines according to the optical flow discontinuities, if the
discontinuities are a priori necessary for an accurate estimation of the optical flow??

The correct (best possible) estimation of apparent motion of an object requires
knowledge of object size and location which requires knowing already the mo-
tion.

Some computational process is needed to solve the problem in which the estimate of the
optical flow and the regions-of-support are computed in parallel but within strong mutual
recurrence such that their estimates are interactively refined until they converge to some
optimal solution. Given the flow model, this process will provide the estimate of the
optical flow and thus the parameters of the model as well as the region boundaries for

5Note, that for more general flow models, motion discontinuities do not necessarily coincide with the
regions-of-support and thus the object boundaries. However, in any case the dilemma remains because
the flow estimate defines the regions-of-support and vice versa.
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which the particular parameters hold. Such computational interplay naturally reflects
the typical integrative and differential interactions found in psychophysical experiments
known as motion capture and motion contrast respectively [Braddick 1993].

From the discussion above it is evident that an accurate estimation of optical flow
is inseparable from the process of motion segmentation, where the region boundaries
represent the segments of the visual scene of common motion sources and the label for
each segment is given by the model parameter, thus the optical flow.

2.3 Optimization

The poorly conditioned visual input requires a combination of matching and flow models
in order to extract feasible estimates of the optical flow. This is typical for perceptive
processes because perception is the interpretation of the often ambiguous input. Inter-
pretation means a classification of the input according to some internal models of what
has to be extracted and what is expected. Such classification can be seen as an opti-
mization problem of finding the interpretation of the input that is in best agreement with
the model. By defining some appropriate error measure the problem can be formulated
in a mathematically sound way. The optimization procedure very much depends on the
complexity and the number of free parameters of the models.

An estimation process of visual motion involves optimization on different processing
stages and of different complexity. The estimation of the optical flow field, given the visual
input and the regions-of-support, usually involves a least-square estimation or a maximum
search problem where the computational demands increase polynomially in the size of the
regions-of-support N. On the other hand, the selection of the regions-of-support and thus
the segmentation process remains a typical combinatorial problem where the number of
possible solutions are exponential in N. It has been shown that the problem of motion
segmentation is indeed NP-complete [Jagota 1995].

Most approaches of visual motion estimation in computer vision and almost all of
their hardware implementations use simple models and/or predefined regions-of-support
that do not need expensive optimization to keep the computational load low enough for
real-time applications. For example, the estimation of normal flow does not require an
optimization process because the region-of-support is only one pixel and the matching
model is defined such that it is well-posed®.

Ssee Appendix A
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2.4 Computational Approaches

The following paragraph provides an overview over some selected algorithms and system
approaches used for optical flow estimation. Their characteristics and specialties will be
discussed. However, optical flow is more of a description than a measure. Thus the
motivation for the different approaches is potentially very different. There is nothing
like the correct optical flow field and therefore a quantitative comparison of any kind is
rather delicate (see e.g. [Little and Verri 1989, Barron et al. 1994]). All models rely
on the same input — the spatiotemporal brightness distribution — to produce a result of
common quality, a good estimate of the 2D projection of 3D motion. Hence, it is not
surprising that despite having conceptually different routes, some approaches turn out to
be computationally the same [Van Santen and Sperling 1985]. An inherently satisfying
classification is therefore not possible. However, in agreement with our considerations in
Section 2.1, we will distinguish between the following approaches:

2.4.1 Explicit matching methods

Such methods can be thought of performing a matching process either in the temporal
or the spatial domain. In computer vision, images are usually captured at fixed time-
intervals. This means, matching has to be seen as a spatial search of features in image
space. On the other hand, if the brightness information is sensed continuously, the time
that features need to travel between two locations of fixed distance in the image may
serve as an indirect measure for motion. The matching process itself consists either of a
continuous measure, such as a correlation function, followed by a decision mechanism or
of an exclusive logical operation applied to the Boolean representation of features.

An early algorithm with explicit matching in the spatial domain is described by Anan-
dan [1989]. The proposed approach uses spatially band-pass filtered image patches. A
coarse-to-fine resolution pyramid is applied where initial estimates on coarse levels are fed
into the next levels of finer resolution. The matching criterion is the sum of the squared
differences (SDD) between the pixel values of a local patch centered at a particular image
location in one frame and all patches within a certain search space around the same loca-
tion in the next frame. The estimate of the local flow vector is given by the displacement
that minimizes the SDD. The hierarchical organization introduces a directed matching of
the estimate and allows a reduction of the spatial search space on each level to a maximum
of one pixel. In addition, it increases the range of detectable displacements. The approach
refines its flow estimation such that it introduces a continuous confidence measure that
prefers estimates at prominent image features such as edges and corners. Furthermore,
to prevent an unreliable estimate in regions of low feature contrast, a translational flow
model is introduced that fills in information from high-confidence locations and performs
a smoothing of the flow field. The model is formulated such that smoothing is only dom-
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inant in regions with low confidence measure and thus ideally, motion discontinuities are
preserved. A very similar approach was proposed by Biilthoff et al. [1989]. The authors
point out that such correlation methods can account for a variety of psychophysical ex-
perimental results and therefore might be a candidate model to explain human motion
perception.

Since the timing information is inherently analog and thus of arbitrary resolution,
biological systems can restrict spatial interaction to only nearest neighbors. For frame
based implementations in computer vision, the range of detectable image velocities is
highly restricted by the fixed spatial and temporal quantization. Moreover, it turns out
that a linear increase in the extent of the search space of the matching area increases the
computational load for cross-correlation quadratically. However, it only scales linearly
leaving the spatial window constant and increasing the temporal resolution (frame rate).
Such a time-linear optical flow estimation scheme, in which the spatial search space is
restricted only to nearest neighbors, was proposed by Camus [1994]. However, to obtain a
reasonable optical flow resolution the frame rate has to be high and the maximal detectable
speed must remain within one pixel per frame.

Explicit matching algorithms (’shift and correlate’) are the methods of choice in tradi-
tional robotics and industrial applications. The use of spatially extended patches supports
such approaches with decent robustness to image noise. Furthermore, the decisive char-
acter of a winner-take-all mechanism masks the aperture problem (it does not solve it)
and thus keeps it well-posed, except in very pathological cases where the cross-correlation
matrix provides several exactly equivalent maxima. However, the computational load is
quite high, depending on the required resolution and the expected image velocity.

2.4.2 Gradient methods

Gradient methods represent implicit matching methods. They assume a continuous rela-
tion between the changes in the image brightness and the image motion. Clearly, such
methods can only account for short-range apparent motion [Braddick 1980].

An early attempt to use brightness gradients to recover image motion was done by
Limb and Murphy [1975]. In their approach motion along the x and y axis is treated
independently, leading to a simple and computationally well-posed method for the sake
of accuracy.

The algorithm by Horn and Schunck [1981] was the first attempt to use the bright-
ness constraint equation (2.3) to estimate a dense 2D optical flow field. In order to
obtain a mathematically well-posed formulation, they introduced an additional smooth-
ness constraint that requires the optical flow field to vary smoothly over image space.
The smoothness constraint is formulated as such that the sum of the squared flow gradi-
ents vanishes. Yuille and Grzywacz [1988] introduced a more general formulation of the
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smoothing constraints, considering also smoothness in higher order derivatives of the flow
field. Since both the brightness constraint as well as the smoothness constraint lead to
a simplified description of a general motion scene the algorithm uses the mathematical
framework of standard regularization where the sum of the squared and weighted error
to both constraints is minimized. The relative weight of each constraint is determined
by an additional parameter that allows a broad range of computational behavior. The
algorithm provides a dense estimate of optical flow. In the case there is a single motion
source present within the image space it can solve the aperture problem. Furthermore,
it has been shown that first order gradient based methods can be mapped to neuronal
correlates in primate visual cortex [Koch et al. 1991]. A disadvantage of the approach
is that there exist input conditions for which the computation is ill-posed and robust-

. In the original formulation of the

ness is not guaranteed under real-world conditions
algorithm, motion discontinuities are not preserved because the smoothing constraint is
applied isotropically.

In contrast to isotropic smoothing, Lucas and Kanade [1981] introduced a fixed region-
of-support for each image location where translational motion is assumed. The algo-
rithm determines the local flow vector such that it minimizes the sum of the squared
and weighted brightness constraints within the local region. The algorithm applies global
motion estimation within overlapping regions of fixed size. It can be computed in closed
form, except where the aperture problem holds. By introducing a conditioning threshold,
motion is only estimated where it is computationally well-conditioned. As a consequence,
the estimated optical flow field remains sparse. The closed form optimization allows a
relatively fast processing. However, the introduction of a threshold measure requires
an external controller that ideally adjusts the threshold according to the spatiotemporal
structure of the input.

In the derivation of the brightness constraint equation we neglected the higher order
terms in the Taylor approximation (2.2). There are several approaches that take second
order terms into account [Verri et al. 1990]. The expansion of second order terms leads to
two equations for the two unknown velocity components. Thus, the local flow field should
be directly computable. However, this is only possible if the Hessian® of the brightness
distribution E(z,y,t) is non-singular. Since the computation of second order gradients is
very noise sensitive and unreliable in practice, a conditioning threshold for the Hessian
must be introduced. Again, this approach leads to a sparse optical flow representation.

Since gradient based methods rely on the continuous and differentiable nature of the
spatiotemporal brightness distribution, implementations that allow a continuous sensing
of the brightness gradients are necessary. Hence, in frame-based techniques presmoothing
with spatial and temporal filters is usually applied.

"as will be shown in Chapter 4

8see definition in Appendix A
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2.4.3 Spatiotemporal filter methods

Models of this class are believed to be most plausible for biological systems. The cor-
relation based approaches [Hassenstein and Reichardt 1956, Barlow and Levick 1965,
Van Santen and Sperling 1985] apply mainly to motion perception in insects. These ap-
proaches did not attract much attention in computer vision because the computational
demands of implementing the spatial and temporal filters are large in relation to the
quality of the motion estimates obtained.

The general class of motion energy models seems to be more interesting because,
especially in two spatial dimensions, they account for various perceptive effects. Although
first proposed by Adelson and Bergen [1985], the approach is based on work of Watson
and Ahumada [1985] who showed that non-separable spatiotemporally oriented filters can
be constructed from separable ones. This means that spatially and temporally filtering
can be applied sequentially on the image input. Such a scheme seems to be supported
by physiological studies in primary visual cortex because it models very well e.g. the
response of complex cells in V1. To provide a phase insensitive response of the filters,
Adelson and Bergen introduced so-called quadrature pairs where the squared responses
of two iso-oriented, but 90°phase shifted, spatiotemporal filters are summed. To obtain
image velocity, they propose a population encoding scheme where velocity is expressed
as the ratio between the responses of motion energy filters tuned to different velocities.
Since linearity is assumed, the response of each filter will change with different contrasts
but their ratio will remain constant.

Heeger [1987a] and later Grzywacz and Yuille [1990] extended the approach to two-
dimensional visual space and proposed a different method to extract local image velocity
from motion energy filters. A common local image velocity is supported by the response
of motion energy filters with their optimal frequencies lying on a plane in the spatiotem-
poral frequency domain that intersects the origin. The explicit velocity is given by the
slope of the plane with respect to each spatial frequency axis. In image regions where
the aperture problem holds the filter responses are supporting several possible velocity
planes. Summation of the filter responses along particular velocity planes reveals finally
the velocity of common belief, similar to the intersection of constraints solution in gradient
based methods.

In contrast to the previous methods, Fleet and Jepson [1990] use the phase relation of
the velocity-tuned filters to derive the local motion estimate. In fact, their method resem-
bles a gradient-based approach applied to the phase contours of the output of velocity-
tuned filters rather than to the image brightness.

Motion energy models are plausible descriptions of what is happening in visual cor-
tex. Elaborate systems show many of the psychophysical effects and responses to visual
illusions known [Nowlan and Sejnowski 1994]. However, for real-time applications in tra-
ditional computer vision these approaches are computationally much too expensive.
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2.4.4 Motion segmentation

The approaches mentioned so far do not show a segmentation behavior in the sense that
they explicitly extract regions of common motion sources. There exist several approaches
that do address the problem. A first class of methods proposes a feed-forward procedure
where local motion information is extracted first and then segmentation is performed on
this information according to some statistical classifier [Schunck 1989, Wu and Kittler
1993] or by applying a probabilistic model using Markov Random Fields [Murray and
Buxton 1987]. As expected, they perform well for highly textured objects but fail for
scenes containing larger and mildly textured objects.

A second class of algorithms combine static brightness cues with visual motion in-
formation to improve segmentation performance in regions of low contrast. An early
approach by Thompson [1980] proposes a two-step region-merging process between local
motion information and gray level intensities of the image scene. Local motion infor-
mation is derived using a gradient method proposed by Fennema and Thompson [1979].
Unfortunately, a quantitative description of the method is missing, so that a clear under-
standing is impossible. Another recent attempt was proposed by Cesmeli and Wang [2000]
where the brightness segmentation is not only combined with the local motion estimate
but recurrently refines this estimate. Their presented results consist mainly of artificial
and real image sequences with objects of high contrasts and suggest that the brightness
differences play a dominant role in the segmentation process.

The third class covers approaches that estimate optical flow and perform motion seg-
mentation simultaneously. To separate regions of common motion sources, several authors
use the concept of line processes, first introduced by Geman and Geman [1984], adding
a variable that controls the integration among neighboring image locations. Line processes
have been suggested for many early visual tasks that need smooth spatial interaction while
preserving discontinuities (see e.g. [Marroquin 1985, Terzopolous 1986, Marroquin et al.
1987, Gamble and Poggio 1987, Murray and Buxton 1987]). Typically, line processes
require non-deterministic or annealing methods for optimization. Many of the stochas-
tic approaches use a Bayes formalism to describe the probability distribution in Markov
Random Fields [Chang et al. 1997]. When searching for the mazimum a posteriori proba-
bility of a solution, this approach reduces to the minimization of a cost function. To avoid
stochastic optimization, Memin and Perez [1998] apply an annealing approach where the
optical flow estimation is refined during a multi-grid procedure. In addition, they expand
their cost function by a term that forces closed contours. In general, such multi-scale
approaches show good performance [Stiller and Konrad 1999].

Of special interest are approaches using analog electronic networks to perform com-
bined estimation of optical flow and segmentation [Hutchinson et al. 1988, Koch et al.
1989]. Such networks undergo a simple gradient descent behavior to find near-optimal so-
lutions. Although simulation results showed promising results there is no known attempt
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of a physical implementation yet.

There is a common property to all deterministic approaches: Since the cost function of
the optimization problem typically exhibits many local minima, the system has to be reset
to some initial state in order to process new visual input. Otherwise, multi-stability occurs
such that a once chosen segmentation will remain even when the visual scene changes.

2.5 Neuromorphic Implementations

Real-time performance of visual motion systems can hardly be achieved without any ded-
icated hardware solutions. The tremendous computational efficiency of biological systems
encouraged scientists and engineers very early to build electronic circuits that emulate the
principles of such systems. Historically, the first attempts were to implement the outer
pleziform layer (OPL) of a typical mammalian retina. As early as in the 70’s, [Fukushima
et al. 1970] presented such a model using discrete (!) electronic elements. As access
to analog Very Large Scale Integrated (aVLSI) technology became standardized
and affordable, Carver Mead began to create computationally efficient and powerful elec-
tronic devices using the insights neurobiologists provided from biological neural computa-
tion. Since then many of these so-called neuromorphic [Mead 1990] or neuro-inspired
[Vittoz 1989] systems for solving perceptive as well as purely computational tasks® were
engineered.

Several approaches apply explicit matching in the time-domain: They compute
the time-of-travel for a feature passing from one detector to its neighbor. In [Sarpeshkar
et al. 1993] and later more elaborated [Kramer et al. 1997], the authors propose two
circuits in which the matching features are temporal edges. In one of their circuits
(facilitate-and-sample) a temporal brightness edge triggers a pulse that logarithmically
decays in time until a second pulse occurs that indicates the arrival of the edge at the
neighboring cell. The decayed voltage is sampled and represents the logarithmically en-
coded local image velocity. The reported results for 1D arrays exhibit a relatively accurate
velocity estimation over many orders of magnitude. In the second scheme, the temporal
edge elicits a pulse of fixed amplitude and length at the measuring detector as well as
at its neighbor. The overlapping pulse width is an inversely linear measure for image
velocity. In this scheme, since encoding is linear, the usable range of operation is limited.
Either small velocities are not detectable because the pulses become non-overlapping or
the resolution for high velocities decreases. An additional variation [Kramer 1996] encodes
image velocity as inversely proportional to the length of a binary pulse. Such local motion
circuits were also used successfully for the localization of the focus-of-expansion [Indiveri
et al. 1996, Higgins and Koch 1999] or the detection of 1D motion discontinuities [Kramer

9However, as stated earlier, perception is always the result of a computational process.
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et al. 1996]. Other similar implementations based on the time-of-travel of temporal edges
are reported [Higgins and Koch 1997].

Benson and Delbruck [1992] present a direction selective retina circuit that is inspired
by the mechanism for directional selectivity found in the rabbit retina [Barlow and Levick
1965]. It also represents a explicit matching method in the time-domain and is similar
to the approach of Kramer [1996]. A temporal edge detected at a local motion cell elicit
a pulse which is shut down by inhibitory input from the neighboring motion cells in the
preferred direction. Thus the length of the output pulse is inversely proportional to the
speed. In the null direction, inhibition suppresses the output of the neighboring detector.
The reported chip consists of an array of 41x47 direction selective cells, all having the
same directional tuning.

In [Horiuchi et al. 1991], the velocity estimation task is transformed into a spatial
correlation task which is inspired by the process of auditory localization in the barn owl:
The occurrence of a feature at a detector and its neighbor triggers two pulses traveling
along oppositely directed delay lines. Correlators watching these lines detect where pulses
pass each other. Active correlators detected by a winner-take-all circuit serve as the
spatial correlate for the observed image velocity. Slow speeds in either direction will be
detected at the end of the correlator array whereas fast speed lead to winners close to the
middle.

Another aVLSI implementation of explicit matching in the time domain uses spatial
edges as matching features [Etienne-Cummings et al. 1993]. Spatial edge detection is
achieved by approximating a difference-of-Gaussian operation. Local brightness values
are compared to the smoothed image provided by a resistive mesh using well implants
or polysilicon lines as resistive elements [Etienne-Cummings 1993]. The presence and the
location of spatial edges are coded as binary signals that are obtained by thresholding
the edge enhanced image. Velocity is measured as the time-of-travel for the binary edge
signals.

Moini et al. [1997] report a 1D motion chip called "bugeye’ that emulates the typical
insect visual motion detection system. The implementation simplifies the biological system
insofar that it quantizes the temporal changes in the visual input. It then uses these
quantized temporal changes as labeled events to apply template matching in the time-
domain in order to extract visual motion information. Matching is performed off-chip to
allow to test different template models of different complexity levels. The chip therefore
represents only the front end of a visual motion system. Special attention was paid to a
multiplicative noise cancellation mechanism that reduces the sensitivity of the chip to 120
Hz flicker noise.

One of the few examples of a successful commercial application of integrated motion-
sensing circuits is Logitech’s Trackman Marble!?, a trackball pointing device for personal

10www.logitech.com
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computers [Arreguit et al. 1996]. So far, several million units were sold world-wide.
The core of the trackball consists of an 2D optical sensor-array of 75 motion processing
units which uses spatiotemporal sampling to extract the global motion of the trackball.
The implementation is insofar different from previous examples because it uses precisely
controlled and pulsed lighting conditions as well as a given random-dot pattern stimulus
that is directly imprinted onto the trackball itself. Obviously, these conditions simplify
the motion extraction task significantly. Each pixel consists of a simple edge-detector that
compares the differences in sensed intensity between neighboring photoreceptors to a given
threshold. The global motion of the trackball is then directly computed by dividing the
number of edges that moved between two time-steps in each of two orthogonal directions
by the total number of edges present. The higher the total number of edges seen by the
sensor is, the higher is the resolution of the motion estimate. Using a particular random
dot pattern, the spatial average of the number of edges can be well-controlled and kept
rather constant. The temporal sampling has to be fast enough such that the maximal
on-chip displacement is guaranteed to be below one pixel-spacing, otherwise temporal
aliasing will occur.

In general, the circuits presented above are compact, show a robust behavior and work
over a wide range of image motion. However, there is a fundamental disadvantage related
to approaches relying on the time-of-travel of features: Such implementations can only
report local image motion after the moving feature has passed the local detector, thus
being undetermined in situations where no motion is present. This means, these circuits
cannot detect zero motion per definition. For example, if a moving object stops abruptly,
this stop cannot be detected.

There are several implementations that use a gradient based motion estimation
scheme. One of the earliest integrated motion chip was proposed by Tanner and Mead
[1986]. The 8x8 motion array consists of identical cells that compute a common global
motion estimate in a cooperative/competitive manner. The two components of the global
motion vector are commonly provided to each cell as two voltages on global wires. Each
cell tries to adjust this global estimate according to its locally measured image gradients
such that the sum of the squared errors of the constraint equations (Equation 2.3) is
minimal for the whole array. Thus, the chip implements the computational approach pro-
posed by Lucas and Kanade [1981] with uniform weighting and a window size equivalent
to the whole imaging array. In principle, the chip is able to solve the aperture problem
for singular motion and thus to compute real 2D motion. However, as widely witnessed!!
the actual chip never worked robustly under real-world conditions. The feedback compu-
tation of the local error turned out to be difficult to implement correctly and sensitive
to mismatch and noise in the gradient computation. A second attempt to improve the
implementation also failed [Moore and Koch 1991].

Upersonal communication, Delbriick, T. and Harris, J. and Koch, C.
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A gradient-based 1D implementation has been reported by Deutschmann and Koch
[1998a]. In one spatial dimension, image motion can directly be computed as v =
—0FE,;/0E,. To avoid the division by zero problem, a small constant current is added
to the denominator such that it cannot become zero in any case. The circuit shows ro-
bustness and appropriate linearity. The use of wide linear-range circuits allows to span
two orders of magnitude of velocity range. Compact gradient-based motion sensors were
also presented [Moore and Koch 1991, Horiuchi et al. 1994] and later in two spatial dimen-
sions [Deutschmann and Koch 1998b] where the resulting motion signal is basically the
product of the spatial and temporal brightness gradients. Such a motion signal obviously
strongly depends on the contrast and spatial frequency of the visual scene. Nevertheless,
these compact implementations provide at least the correct direction of motion. This has
been proven to be sufficient for visual-motor tasks such as saccadic and smooth pursuit
tracking [Horiuchi et al. 1994].

In a third category we consider implementations that are very closely modeling cor-
relation based methods observed in biological systems. There is a series of implemen-
tations based on the Reichardt scheme. An early representative [Andreou and Strohbehn
1990] consists of a 1D array of motion detectors where multiplication between the spatially
filtered visual input and its delayed version of a neighboring detector cell serves as the
non-linear correlation function. The correlation signals from local detectors are averaged
to provide a global motion estimate. The first 2D implementation uses uni-directional de-
lay lines as temporally tuned filters for moving edges [Delbruck 1993c]. The delay lines are
oriented in three spatial directions within the hexagonal array of correlator cells. Photore-
ceptors sense changes in the intensity and couple their output into the delay lines where
they propagate with a characteristic velocity in one direction. Whenever the velocity of a
moving intensity edge matches the propagation speed along a particular delay line, then
the signal on the delay line is reinforced. The circuit performs temporal integration of
the motion signal along the orientations of the delay lines. Although the chip contains a
2D array of motion cells, local motion information is blurred by means of the temporal
integration. Nevertheless, this approach utilizes collective computation since the motion
estimate is the result of a spatiotemporal integration process along the elements of each
delay line.

Recently, the fly visual motion system attracted some attention from neuromorphic
engineers. One-dimensional silicon models of the fly’s elementary motion detector have
been presented that show similar tuning characteristics as physiological data from the
insects [Harrison and Koch 1998, Liu 2000]. The estimate for visual motion is computed
by multiplying the temporal high-pass filtered signal of the photoreceptor of a motion
detector with the low-pass filtered signal of its neighbor. The fixed time constants of
the low-pass and high-pass filter make the detector narrowly tuned to particular spatial
and temporal frequencies of the input stimulus. Liu [2000] proposes a silicon model of
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the spatial aggregation of the local motion responses observed in the fly which leads to
a global motion output that is relatively insensitive to the contrast and size of the visual
stimulus. Adaptation of the time constants of the low- and high-pass filters is also known
to take place in the fly’s visual motion system such that the sensitivity to changes in the
perceived motion remains high. Such adaptation mechanisms have been implemented and
show successful replication of physiological data [Liu 1996].

So far, the discussed correlation-based implementations are exclusively reporting vi-
sual motion along one spatial dimension. They report visual motion but not explicitly
velocity. Motion signals from a correlation detector are inherently dependent on contrast,
spatial and temporal frequency. Correlation based methods have been shown to be equiv-
alent to motion energy based approaches. The estimation of two-dimensional motion
requires large ensembles of spatiotemporally oriented filters. Furthermore, the extrac-
tion of apparent image velocity requires additional processes such as integration [Heeger
1987b] or normalization [Adelson and Bergen 1985]. However, there have been attempts
to realize a motion energy based system using a special purpose hybrid hardware system
[Etienne-Cummings et al. 1996, Etienne-Cummings et al. 1999]. Although the system
only approximates two-dimensional spatial filtering, a single motion unit with filters of
combinations of only three spatial and three temporal scales requires several hundred
neuronal units with thousands of synapses. Obviously wiring and density constraints do
not allow such a system to be implemented on a single or few-chip system.

Little is known about implementing aVLSI motion segmentation systems. Although
several implementations have been reported that successfully demonstrate segmentation in
one-dimensional feature space using so-called resistive fuse circuits [Harris and Koch 1989,
Harris 1991, Liu and Harris 1992], there exists only one attempt by Kramer et al. [1996] to
achieve segmentation by motion. Their implementation is based on the one-dimensional
array of local motion elements described in Kramer et al. [1995], thus keeping the feature
one-dimensional as well. A line process is performed where bump circuits [Delbruck 1993al
compare the output of two adjacent motion elements and control the conductance in a
diffusion network accordingly. In regions of common motion, the output of the individual
elements is averaged while regions of different motion are separated.

The majority of the discussed aVLSI motion systems (see Table 2.1) report visual mo-
tion only along single spatial dimensions thus avoiding the aperture problem and therefore
complex integration schemes. Some of these circuits can be very compactly integrated.
However, to estimate visual motion in two spatial dimensions, information about the two-
dimensional structure of the image scene has to be available. Gradient based methods
have the advantage that the spatial gradients are relatively easy to compute and are a
compact representation of spatial orientation. Explicit matching methods would require a
feature extraction stage that accounts for two-dimensional features. Implementations for
the extraction of brightness corners have been reported [Pesavento and Koch 1999] but



24 CHAPTER 2. VISUAL MOTION PROCESSING

Authors motion motion explicit | normal | object
resolution | dimension | velocity | flow | motion

Optical flow estimation

feature matching

[Horiuchi et al. 1991] local 1D yes no no
[Etienne-Cummings et al. 1993] local 1D yes no no
[Sarpeshkar et al. 1993] local 1D no no no
[Arreguit et al. 1996] global 2D yes no yes
[Kramer 1996] local 1D yes no no
[Higgins and Koch 1997] local 1D yes no no
[Moini et al. 1997] local 1D yes no no
gradient based

[Tanner and Mead 1986] global 2D yes yes yes
[Moore and Koch 1991] local 1D no no no
[Horiuchi et al. 1994] local 1D no no no
[Deutschmann and Koch 1998a) local 1D yes no no
[Deutschmann and Koch 1998b] local 2D no yes no
correlation based

[Andreou et al. 1991] global 1D no no no
[Benson and Delbruck 1992] local 1D no no no
[Delbruck 1993c] global/local | 3 x 1D no no no
[Harrison and Koch 1998] local 1D no no no
[Liu 2000] global 1D no no no

motion energy based

[Etienne-Cummings et al. 1999]‘ local ‘ 2x 1D ‘ yes ‘ no ‘ no

Motion segmentation

[Kramer et al. 1996] ‘ local ‘ 1D ‘ yes ‘ no ‘ no

Table 2.1: Overview of existing neuromorphic aVLSI motion systems.

they require rather expanded circuitry. Motion energy based systems are probably the
method-of-choice but turn out to be expensive to implement even in a simplified manner.



Chapter 3

Constraint Optimization

The extraction of optical flow and furthermore motion segmentation is substantially based
on optimization processes that find the optimal solution with respect to the applied models
and the visual data. According to the complexity of the models the level of optimization
varies and different computational optimization approaches might be advantageous. The
framework of constraint optimization' has some particular properties that makes it
the method of choice for the purpose of this thesis. Constraint optimization requires a
formalism where the optimization task is formulated (modeled) as different constraints
that are imposed on the solution. These constraints might be partially contradicting.
Mathematically, they are formulated and combined such that they form a cost function
or energy, that has a minimum for the optimal solution. The influence of each constraint
is thereby controlled by a weighting parameter. Since each constraint reflects partial
properties of the applied model, the weighting parameter provides a means for continuous
adaptation of the model. These parameters can be the output from another ’top-down’
process, so providing the necessary dimensional reduction used in the control structure of
complex systems.

The reduction of the optimization problem to the task of minimizing a cost function
also allows the use of deterministic methods to find the (local) minima. Furthermore,
applied to image processing or other problems with non-hierarchical, topographically ar-
ranged input space, such optimization tasks can be mapped to cellular network arrays
of identical units that behave continuously in time according to some deterministic dy-
namics. Such parallel processing in locally connected analog networks exactly reveals the
superiority of biological systems in solving perceptive tasks. And, it also matches the
characteristics of neuromorphic aVLSI implementations.

This chapter gives an introduction to constraint optimization and how such opti-

INot to be confounded with constrained optimization. Constraint optimization is actually an uncon-
strained optimization method because it implies no explicit additional constraints on the solution other
than minimizing the cost function [Fletcher 1980, Fletcher 1981].
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mization processes can be translated to the dynamics of simple processing units in non-
hierarchical analog networks. Two simple examples are discussed that each represent an
integrative and selective system, described in the framework of constraint optimization.

3.1 A Physical Description of Computation in Net-
works

Since the very first attempt by McCulloch and Pitts [1943] many different ways of describ-
ing the computational properties of neural networks were proposed. Among others, the
concept of content-addressable memory, thus how neural networks can store informa-
tion patterns and retrieve them from noisy or only partially present input, had a signifi-
cant impact on the research community, starting in the early 70’s. Although there were
substantial contributions before [Little and Shaw 1975, Grossberg 1978], it was Hopfield
[1982, Hopfield [1984] that clearly established the notion that memory can be represented
by the locally stable states of a dynamical system consisting of a number of equivalent
simple units. He showed that the stable states represent minima of an appropriate cost
function and depend on the interaction strength between the single units. Furthermore
by assigning such a cost function he pointed out the physical nature of computation.
Soon, it was discovered that the restoring properties of such a content-addressable
memory could not only be useful to recall pre-learned patterns but also to find (local)
solutions of problems that represent minima of a cost function, thus optimization. Hopfield
and Tank [1985] demonstrated how the computationally hard traveling salesman problem
(TSP) can be formulated as a combined cost function of several constraints and how a
near-optimal solution can be found by a network of the appropriate architecture within
a few characteristic time constants. Although this particular problem turned out to be
not very well suited for such a network approach [Wilson and Pawley 1988, Kamgar-Parsi
and Kamgar-Parsi 1990, Gee and Prager 1995] it clearly demonstrated its potential for
solving optimization problems. Meanwhile, a variety of optimization problems including
linear and quadratic programming [Tank and Hopfield 1986], and their generic network
solutions have been addressed [Cichocki and Unbehauen 1993, Liang and Wang 2000].

3.2 Competitive and Cooperative Behavior of Con-
straint Optimization Networks

A successful application of constraint optimization for problem solving depends primar-
ily on how well the problem is defined by the chosen constraints. Many computational
problems can be formulated as constraint optimization problems; although those are more
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suitable where a valid solution does not require all of the constraints to be exactly fulfilled
in order to be valid.? In the following, two example problems are discussed.

3.2.1 Winner-take-all networks

Consider the typical winner-take-all (WTA) problem: Given a discrete set of positive
input values I, ..., Iy C R", find I,,,, such that

ez > I; V j # max !

The problem can be reformulated as finding a network architecture of computational
units that assigns to each given input vector I, ..., Iy a binary output vector Vi,..., Vy
where V0, = 1 and Vjzpe, = 0.

Once the problem is identified, we have to find suitable constraints and their appro-
priate measures to define a cost function. Below is a possible suggestion of such a cost

function:
_a 8 )
H(V) = 5;;‘% + 5(2%—1) - vzijvm (3.1)
VE
sparse activity limited total activity biggest input wins

The cost function H(V') is a combination of three constraints where their relative
strengths are given by the weighting parameters «, 8 and v. The first and the second
constraint promote all the states where only one output unit is active and its activity
level V. = 1. We can consider these as syntactic constraints that ensure that the
network performs a decision in any case whether it is the right one or not. The third
constraint finally relates the data to the output such that it will be most negative if the
winning unit is actually the one which receives largest input. For finite input values,
the cost function is bounded from above and below where the lower bound is equal to
H,in = —7v1naz- The WTA problem is now formulated as the optimization problem:

Given I, ..., Iy, find the output vector Vi, ..., Vi such that H(V') is minimal.

Once a cost function is assigned we want to derive a local update rule that we can
repeatedly apply to each computational unit in the network such that from a given start
condition the system ends up in a state of minimal costs. In the following, we define a
simple rule such that we change the output state V; of each unit if this lowers the total

2This was exactly the reason why the TSP could not be solved satisfactorily by the proposed constraint
optimization approach. The syntactic constraints (every city once, only one city at a time) had to be
perfectly matched in order to obtain a valid tour. With increasing number of cities, the ratio of valid to
the total number of found solutions dropped to a inefficiently low value.
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costs. The change in costs that a transition V; — V; of a single unit’s output induces can
be written as

AHy = H(V') - H(V). (3.2)
Using a finite difference approximation we can compute AHy, -+ from Equation (3.1) as
AHy o =AV; (@) Vi+ B Vi—1)—~L). (3.3)

j#i i

Now we can formulate the update rule in terms of positive (AV; > 0) and negative
(AV; < 0) transitions:

V. =

7

' { apply transition if AHW—W;.’ <0 (3.4)

no transition otherwise

A WTA network of units with such dynamics cannot serve as a model for an equivalent
physical network because it does not consider any thermal noise to be present. A stochastic
formulation of the dynamics with a finite temperature would be more appropriate but
requires methods of statistical mechanics to describe the network behavior and find valid
solutions. Rather then going into a detailed analysis of stochastic networks®, we want to
modify the model we have so far such that the output units are now allowed to take on
continuous values. The characteristics of a single unit is thus described by a continuous
activation function g(u) : u — V, where u represents the input to unit and V' its output.
Figure 3.1 shows some examples of such non-linear activation functions.

A typical sigmoidal activation function is

g(u) = %(tanh(u/uo) +1) (3.5)

where the parameter 1/ug characterizes the maximal gain of the unit’s activation function.
In the limiting case where 1/uy — oo we have the two-state unit as before. In general,
the activation function does not necessarily have to be of sigmoidal nature. In the case
of the WTA network we require only that the function is differentiable, monotonically
increasing, and limited from below. In particular, the output range of the units does not
have to be limited to the unity interval. Thus, linear-threshold units (see Figure 3.1a) can
be also used and can be treated within the same analytical framework. The only relevant
parameter is the activation gain. We see later, that for other optimization problems the
units can also have purely linear activation functions.

The constraints imposed on the WTA system remain the same in the case of continuous
units, although the output of the winning unit is not guaranteed to be exactly one. Also
the cost function (3.1) is the same; except that it must now include an additional term

3which can be found in textbooks such as e.g. in [Hertz et al. 1991]
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Figure 3.1: Non-linear activation functions. (a) A sigmoidal, a hard threshold and
a linear threshold activation function (dash-dotted line) are shown. (b) The inverse of
typical sigmoidal activation functions (3.5) with different slope parameters ug are plotted.

The total integral under each curve represents the activation energy needed to activate
the unit and decreases with decreasing ug.

which represents the total activation energy needed to keep the units in states of either
high or low activity. We can consider the activation energy as an additional constraint
imposed by the computational machinery rather than by the problem itself. The cost
function (3.1) hereby modifies to

AV =S S W+ S0 - Yo v+ YRy [ @ 6o

)

where 1/R is the additional weighting parameter. We see later that in the context of an
equivalent electronic network implementation the parameter 1/R can be interpreted as
the non-zero leak conductance of each unit. As Figure 3.1b illustrates, the integral over
the inverse activation functions and thus the activation energy decreases for an increas-
ing activation gain 1/ug. Thus in the high-gain limit (uq — 0) the cost function (3.6)
approaches the initially proposed form (3.1).

H(V) is sufficiently regular and at least twice continuously differentiable because V
is continuous. We propose a new update strategy for the activity changes of the network
to lower the global cost function. A simple gradient descent rule is applied where the

output V; of each unit changes proportionally to the negative partial gradient of the cost
function, thus ~

.. OH

Vi oc —— 3.7

until a steady state of minimal cost is reached where OH /0V; = 0 V i.
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Since V; is monotonic in u;, we define the following equations of motion:

1 oA
C 8V

—i—aZV—i—,B ZV-—l (3.8)

J#i

0 =

and expanded Us

The constant C' determines the time constant of the units. Its physical interpretation
becomes obvious if we compare the dynamics (3.8) with a simplified electrical circuit
as sketched in Figure 3.2: The dynamics exactly describe the current equilibrium at
the summation node of the circuit where a, § and 7 are conductances. The input and
output values are represented by voltages. A typical sigmoidal activation function can be
implemented by an transconductance amplifier [Hopfield 1984], but also other functions
are possible.

We still have to test if the proposed dynamics actually guarantee a stable system such
that it always converges to some asymptotically stable fixed point. To prove this, we
show that under arbitrary starting conditions, the cost function (3.6) always decreases
[Hopfield 1984]. Differentiating H (V') with respect to time leads to

dH 0H dV;
£V dt
av; _ dV
= OZZZVJ‘E-Fﬁ(ZV;—I)Z I+1/RZ LVp) 5
i j#i i i

dv; ;
= Z 5 [Z(a‘Fﬁ)V}'—OzVi—ﬁ—ﬂﬁ-ﬁ}

1 dV; du; e .
= -5 d‘; dqu (substitution with (3.8))
1 duz '

i

Thus, H(V) is never increasing and because it is bounded from below and has the dy-
namics (3.8), it will always converge to a asymptotically stable fixed point. Therefore,
H (V) represents a Lyapunov function of the system. As we see, this holds for many all
differentiable activation functions that are monotonically increasing, i.e. ¢'(u) > 0.

WTA network architecture

So far, we proposed a network containing NV simple computational units with a particular,
non-linear activation function. We formulated the winner-take-all task as an constraint
optimization problem and defined the dynamics of the units in order to guarantee that
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Figure 3.2: WTA network architectures. (a) Single unit of the WTA network. Excita-
tory connections are shown as filled triangle and inhibitory ones as open triangle. (b) WTA
network with homogeneous structure (only inhibitory connections to unit i are shown).
(c) WTA network with global inhibitory unit.

the system has asymptotically stable states representing the wanted solutions. However
we did not consider yet what the structure of such a network will be. If we add a constant
term to the external input (I; = I; + 8/v) and include the capacitance C in the weight
parameters «, 8 and -y, we can rewrite (3.8) in the following way:

Uj
= v, — @+ Vi + Ak 3.10
" . « (a+ pB) : v (3.10)

self-excitation —_——
global inhibition

The dynamics (3.10) describe a typical WTA network that exhibits self-excitation and
global inhibition [Grossberg 1978|.

There are basically two interpretations for the network architecture: It can be thought
of as a network of homogeneous units where each unit has inhibitory connections to all
the other units and one excitatory connection to itself. Alternatively, the network has a
single additional inhibitory unit* that sums the equally weighted output from all N units
and feeds it back to each unit as a global inhibitory input. Both cases are illustrated
in Figure 3.2. The additional unit and the loss of homogeneity are compensated by the
massive reduction of connectivity. Applying a global inhibitory inter-neuron reduces the

“or inter-neuron, see [Kaski and Kohonen 1994]
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connectivity to the fraction 3/(/N + 1) of the fully connected architecture, a substantial
reduction to a few percent for networks consisting in the order of hundreds of units. Nev-
ertheless, to be computationally equivalent we require the time constant of the inhibitory
inter-neuron to be small enough such that asymptotic stability holds and thus limit cycles
do not occur. In addition, we have to assume the activation function of the inhibitory
unit as being strictly linear. Other possible characteristics like a sigmoidal function, would
alter the cost function (3.6) such that o and 5 become dependent on the absolute level of
activity. However, the qualitative behavior of the network would remain the same.

Global convergence, gain and multi-stage WTA amplifiers

Although we showed that the system always converges to an asymptotically stable state
we did not consider whether it is globally convergent, i.e. always converges to the global
minimum or not. In fact, the applied gradient descent method always gets stuck in local
minima and there is no deterministic method to avoid so. The only way to ensure global
convergence is to make sure that there are no local minima. In other words, under all
conditions for which H is shown to be convex®, there is a global minimum and therefore
the system globally converges.

However, before going deeper into this, we first have to decide if global convergence
is actually required. Recalling our task, it is sensible to require the system always to
recognize the winner independently of its starting conditions or, when changing the input
distribution, of its previous state. Otherwise if local minima are present, a hysteretic or
multi-stable behavior might occur and the unit winning the competition does not neces-
sarily have to be the 'real’ winner. Nevertheless, such a behavior can be of interest under
some computational aspects. In any case, it is interesting to know what the conditions
for hysteresis are.

We notice that convexity is a too strong but easily testable criterion for a global
minimum. There are obviously non-convex functions that show the same property. The
convexity of H is guaranteed if its Hessian Jj is positive semi-definite’. We find J; to
be symmetric and only dependent on the weighting parameters. In order to be positive
semi-definite its eigenvalues have to be real and non-negative. There are two distinct
eigenvalues for J;

M=+ +(N-D+8) and h=—a+. (3.11)

Since we require the weighting parameters «, 8,7 and R to be positive, \; is always
positive whereas Ao is only non-negative for

a< %. self-excitation gain limit (3.12)

5see Appendix A
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Figure 3.3: Hysteresis. (a,b,c): A winner is selected and kept although the input
changes and actually a new unit receives the largest input. It needs a substantially larger
input to overcome the local minimum and switch to the ’correct’ winner. Multi-stage
WTA amplifier. (d,e,f): For small input differences (< 1%) obeying the self-excitation
gain limit (3.12), the gain is too small to clearly select a winner. Successive stages multiply
the gain and lead to a clear winner solution without hysteretic behavior.

33
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For a given leak conductance 1/R, there is obviously a trade-off between strong self-
excitation («) and a high gain activation function (1/ug). In other words, in order to
approximate a 'pure’ implementation of our constraint problem (3.1) one has to accept a
possible hysteretic behavior of the network. Figures 3.3a-c show the effect of hysteresis for
a WTA network where the self-excitation gain limit does not hold. Only the winning unit
is active. Once the winning unit is assigned, it remains in its winning position although the
input changes and some other unit now receives the largest input. It needs a substantial
input difference to overcome the local minimum and let the network switch to the ’real’
winning input.

On the other hand, if the self-excitation gain limit is obeyed, the network might not
be able to assign a clear winner, which is especially true for small input differences. In
this case, a cascade of WTA networks can overcome these limitations: The output of one
network serves as the input to the next network in the cascade (see Figure 3.3 d-f). Such a
multi-stage WTA system can multiply the gain almost arbitrarily, and provides a hard
WTA behavior while avoiding hysteresis.

3.2.2 Resistive networks for smooth data interpolation

Above, we have shown how a problem can be formulated in the framework of constraint
optimization and how an appropriate network architecture can be constructed such that
it solves the problem. In the present example, we would like to proceed the opposite
direction: We consider a network of simple computational units which resembles a well-
known electrical structure and we want to investigate what task it solves and how it can
be formulated as a constraint optimization problem.

Consider the resistive (or diffusion) network shown in Figure 3.4. The voltage dis-
tribution U is the input to the network. The second voltage distribution V' represents
the output of the network. Each input node is connected to the output by some input
conductance \; and each output node is connected to its nearest neighbors by the lateral
conductance Ay. Applying Kirchhoff’s current law to the node V;; we find the following
dynamics for a single node in the network:

. 1
Vij = 5[A1(Uz‘j = Vi) + X2 (Vigor + Vijor + Vigr; + Vica; — 4Vij)] (3.13)

From the preceding example we know that if the system is asymptotically stable these
dynamics can be interpreted as performing a gradient descent on a global cost function.
If we consider the right-hand side of (3.13) as the negative discrete partial derivative of
such a cost function, we simply have to find ways to partially integrate it in order to
reconstruct the cost function. In general, there is no straight forward procedure to do so.
However, in this simple case we can find heuristically an appropriate cost function. We
recognize that the right-hand (\s) term in (3.13) is a discrete five-point approximation of
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Figure 3.4: Patch of a resistive network. For readability, only a single input node U; ;
is shown.

the Laplacian V?V;; on a rectangular grid with bin-size one. Now, it is straight forward
to show that

HV) = 2 S (U~ Vi) + 2 S (AT + (A7) (3.14)
1] L)

is a valid cost function for the resistive network. AVj; represents the discrete approxima-

tion of the first order partial derivatives of V;;.

The cost function (3.14) is the combination of two constraints: the first constraint
restricts the output Vj; not to be too far from the input U;; (data term) while the second
one requires the spatial variation of the output units to be small (smoothness term). The
relative weighting of both constraints is determined by the parameters A;, A, that represent,
the uniform input and lateral conductances in the resistive network. If we assume the
lateral conductances to be zero, for example, each unit is disconnected from its neighbors.
As a consequence, the smoothness constraint is disabled and the output of the network
follows perfectly the input.

The resistive network is the simplest embodiment of standard regularization. Reg-
ularization techniques usually impose a data and a smoothness constraint on the solution.
They have been widely proposed as a common framework to solve problems in early vision
[Poggio et al. 1985, Bertero et al. 1987, Yuille 1989, Szeliski 1996] which usually require
smooth spatial interaction. We note that in terms of its connectivity, the resistive network
is a very efficient implementation of a convolution engine with simple exponential kernels.






Chapter 4
Motion Perception Networks

"But it is remarkable, on the other hand, that a sure guide is found in physical
interpretation: an analytic problem always being correctly set ("well-posed’),
in our use of the phrase, when it is the translation of some mechanical or
physical question.” (Jacques Hadamard in: Lectures on Cauchy’s Problem in
Linear Partial Differential Equations; Yale University Press, 1923)

4.1 Estimation of Optical Flow

A novel system approach for the estimation of two-dimensional optical flow is presented.
The approach is gradient based and it extends an existing algorithm [Horn and Schunck
1981] such that well-posedness and robustness are guaranteed independently of the visual
input applied. In particular, I will demonstrate how the computational processes of this
approach can be mapped to the physical dynamics of an analog electronic network which
offers computationally very efficient solutions for optical flow estimation. A hardware
implementation of such network will be discussed in Chapter 5.

In the following, I will stress the notion of a system because a system represents
an entity that dynamically defines the relations between the input it receives, and the
output that it generates. Furthermore it also implies a sense of completeness: A system
is defined preferably for the complete range of possible combinations of input, output and
internal states. Operating under real-world conditions this is a crucial property because
the environment is given and non-trivial and even for moderate levels of complexity it is
usually impractical to predefine all possible states a priori such that exceptions might be
identified for which the system does not work correctly. An ideal system therefore works
and behaves reasonably under all conditions.

The input to the proposed system is always assumed to be the spatiotemporal gradi-
ents Ey(z,y,t), Ey(z,y,t) and Ey(x,y,t) of the brightness distribution of the visual scene
rather than the brightness itself. It is evident that in a physical system the transduction of
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the visual information and the extraction of the spatiotemporal gradients has to be carried
out in a first processing stage that has a significant impact on the overall performance of
the subsequent optical flow system. For the theoretical analysis within this chapter such
input stage is not considered and the input is assumed to be given. However, in terms of
a complete implementation this has to and will be discussed (Chapter 5). The systems
output is, of course, the vector field v(z,y,t) = (u,v) representing the instantaneous
estimate of the optical flow in image space.

According to the methodology introduced in the previous chapter, the system is char-
acterized by different constraints that do express the applied models and assumptions.
These constraints are weighted and combined such that they express an optimization
problem that has to be solved in order to obtain the desired optical flow estimates.

4.1.1 The optical low model: smooth and biased

The first constraint imposed is the brightness constraint!. The brightness constraint
equation describes a line in velocity space that represents the set of all possible velocity
estimates with respect to the input. The function

F(v(z,y,1)? = (Eyu+ By + Ey)? (4.1)

is a measure of how good the motion estimate satisfies the brightness constraint. Since
the Euclidean distance e between the brightness constraint line and a point P = (uy, v,)
representing a motion estimate, is given by

o |Eyu, + Eyv, + By
JEETE

the measure (4.1) can be seen as the square of this distance times the absolute brightness

(4.2)

gradient. This implies that if the intensity contrast and thus the signal-to-noise ratio
is high, the input information is more reliable and therefore a deviation of the motion
estimate from the constraint line is less tolerated than if the contrast is low. This is a
feasible assumption. The brightness constraint alone can be sufficient to define a least-
square solution for global motion.

There is an interesting relation to the flow dynamics in fluids: If the brightness dis-
tribution is identified with the density distribution of an incompressible fluid then the
brightness constraint equation describes exactly the two-dimensional dynamics of the fluid
under the assumption of preserved total mass. This analogy plausibly illustrates that the
brightness constraint also holds for non-rigid objects as long as the total brightness (total
mass) of the object stays constant. The restriction div(v) = 0 which excludes the presence
of sources also follows directly from the assumption of constant mass.

!see Equation 2.2, Chapter 2
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The assumption that objects with smooth contours introduce smooth flow fields is
reasonable and has been shown to be immediately related to the rigidity of the objects
observed [Ullman and Yuille 1987]. Smoothness assumes that locations in the image close
to each other are more likely to belong to the same moving object and thus, are more
likely to have the same visual motion. Smoothness can be imposed by requiring the spatial
gradients of the flow field to be minimal. The smoothness constraint

S (z,y,t)) = ul 4+ ul +vi + v} (4.3)

defines a quadratic measure of how large the flow field varies across the image space. It
is only defined for flow fields with continuous partial derivatives. For convenience, we
require the flow field to be at least twice continuously differentiable. The algorithms by
Horn and Schunck [1981] and related ones [Hildreth 1983] are using such a smoothness
measure together with the brightness constraint to estimate optical flow. In fact, applying
the smoothness constraint forces the solution to behave according to a physical membrane
model. Since (4.3) constrains the derivatives rather than the flow field itself, there remain
input conditions under which the optimization is ill-conditioned or even ill-posed.
Therefore, a third term is introduced which I call the bias constraint. Expressed as

B(v(z,y,t)) = (u—up)®* + (v — vp)?, (4.4)

it measures how close the estimated flow vector is to some reference motion (ug, vy). The
reference motion can be understood as the a priori expected motion in case the visual
information content is unreliable or missing. This reference motion can undergo changes
according to some long-term adaptation process such that it represents e.g. the statistical
mean of the experienced visual motion. Such an adaptation process further increases the
computational power of the approach.

Finally, the three constraints above are combined to express the following constraint
optimization problem:

Given the input E,(z,y,t), Ey(z,y,t) and E(z,y,t) on an image region Q C
R?, find the optical flow field v(z,y,t) € R? such that the cost function

H(v(z,y,t);p,0) = / (F2 + pS + oB) dQ = min! (4.5)
Q
with  o'(z,y,t) = 0 along 09 . (4.6)

The weight of each constraint is defined by the parameters p and o. In the first
instance, these parameters are assumed to be constant. However, later we will see how
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Figure 4.1: Sitring models. One-dimensional mechanical equivalents for the optical
flow models are shown where the motion estimate is represented by the position of a
one-dimensional membrane (string) relative to some resting position under the influence
of external forces applied by rubber bands. The binding conditions at the end points
of the string are horizontally fixed but vertically free. (a) Global least-square solution
to the sum of the brightness constraint equations (4.1). The string is totally stiff and
the boundary conditions ensure its horizontal position. The elasticity constant of each
individual rubber band is proportional to the local brightness gradient. (b) Introducing
the smoothness constraint allows the string to bend and thus accounts for local solutions.
The tension of the string is given by the weighting parameter p. Obviously, for no visual
input, the rubber band strengths are zero and the string is floating which is an ill-posed
condition. (c) Introducing the bias constraint is equivalent to introducing another set of
rubber bands connecting the string to some reference level V. The elastic constant of
these bands is proportional to the parameter o. The position and shape of the string is
always well-defined.
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they can be a function of time, space and the current optical flow estimate and so permit
the computational behavior to be altered significantly.

We assume the motion gradients to vanish at the boundary 0f2, that is that the area
outside {2 does not influence our motion estimate. This assumption is reasonable, because
we do not have any information available outside our image space. In the mechanical
equivalent (Figure 4.1) the binding of the string is such that it can freely move along the
v-axis. The tension of the string (proportional to p) ensures that the gradient vanishes
at the boundaries.

A well-posed problem

The constraint optimization problem (4.5) can be solved using variational calculus. How-
ever, before we show an appropriate network model that can solve the problem, we want
to make sure that it has always a solution which is unique and depends continuously on
the input, thus it is said to be well-posed.

We prove the following theorem:

Theorem. The estimation of optical flow formulated as the constraint optimization prob-
lem (4.5) is well-posed. In particular, this holds under all possible visual input conditions.

Proof. Consider the integrand
L(v(z,y,t),v(z,y,t),z,y;p,0) = F* + pS +oB (4.7)

of the cost function (4.5). L is continuously defined for all v(z,y,t) € R? that are
sufficiently smooth. Hence, each twice continuously differentiable flow field that fulfills
the boundary condition is a candidate for a solution. According to proposition 1 in
Appendix A, the variational problem (4.5) has a unique solution wg, if the associated
Euler-Lagrange equations have a solution, the integrand L is strictly convex and the
natural boundary condition

Loy (vo(z,y,t),vo(z,y,t),2,9y) =0 holds. (4.8)
For (4.5), the associated Euler-Lagrange equations are

P(Ugy + Uyy) =E,(Eyu + Eyv + Ey) + 0(u — up)
P(Vaz + vyy) =By (Eyu + Eyv + E;) 4+ o(v — ). (4.9)

They represent a typical system of stationary, inhomogeneous Poisson equations. For the
required von Neumann boundary conditions (4.6), existence of a solution is guaranteed
[Bronstein and Smendjajew 1996].
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Strict convexity of the integrand is given if the Hessian J = V2L (v, v, z,y) is positive
definite, thus all eigenvalues are real and positive?. We find the Hessian for the integrand
L to be

/ E’+0 E,E, 0 0 0 0 \
E,E, E; +o 0 0 0 0
J = 0 0 p 0 0 0 (4.10)
0 0 0 p 0 0
0 0 0 0 p 0
\ 0 0 0 0 0 p )
The matrix J is symmetric and three real and distinct eigenvalues are found:
M=p , =0 and M=0+E.+E, . (4.11)

Since we assume the weighting parameters p and o to be positive, the eigenvalues are
always positive independently of the visual input. Therefore, the integrand L is strictly
convex. It is straight forward to show that the optical flow gradient vanishes at the image
boundaries due to the natural boundary condition (4.8) since

Ly = 2pv(z,y,t) =0 only for v'(z,y,t) = 0. (4.12)

Thus all conditions of proposition 1 are fulfilled and the optimization problem has a
global minimum and therefore a unique solution. Again, this is truly independent of the
brightness gradients and thus the visual input.

Finally, continuity of the solution on the input is guaranteed because L is a continuous
function of v(z, y, t) and the spatiotemporal gradients E,(x, y,t), Ey(z, y,t) and E(z,y,t).
Thus the proof is complete. O

Boundary conditions

If o is set to zero and therefore the bias constraint looses its influence and is abandoned,
the cost function (4.5) is equivalent to the smooth optical flow formulation of Horn and
Schunck [1981]. Now, at least one eigenvalue in (4.11) is zero. The cost function is still
convex but no longer strictly convex and thus multiple minima might coexist. Local
minima occur when the local brightness gradients are not independent throughout the
whole image. That means either they are zero and therefore no features are present or
there are only single oriented edges perceived such that the aperture problem holds?.
In these cases the problem is ill-posed if special assumptions are not made concerning
the boundary conditions. Not surprisingly some authors [Poggio et al. 1985] suggest
that the visual input space be restricted to guarantee well-posedness. However, such

2see Appendix A
34.e. the strong aperture problem or the aperture problem in the large
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restrictions prevent a continuous operation under real-world conditions and require a
separate threshold operation.

Applying resistive networks in visual processing tasks [Horn 1988], it was recognized
that in order to be well-posed, membrane models typically require a given value on its
boundaries. Thus Koch et al. [1991] proposed an approach where the flow estimate
v(z,y,t) is set to zero along the image boundary 0f2. Clearly, there is no rational reason
for such an assumption other than to prevent ill-posedness. The assumption of a fixed
motion value at the image boundary cannot be legitimated by any reasonable model. It
heavily influences the estimation of optical flow near the image boundary and implies an
unnecessarily strong bias.

The here introduced bias constraint, however, ensures well-posedness of the problem
while allowing natural boundary conditions. The formulation within the constraint op-
timization framework allows to express a tendency rather than a commitment to some
reference motion. The strength or impact of this tendency not only depends on a con-
tinuous parameter ¢ but also on the visual input such that it only affects the estimate
significantly when the visual input is ambiguous.

4.1.2 Network architecture

The minimization problem (4.5) so far is formulated continuously on the image space
1 C R%. Since the visual input is usually provided by some imaging device with finite
spatial resolution, however, it is feasible to integrate the cost function only over locations
where the input is accessible. We discretize the image space on an orthogonal basis and
label each node by two integer values ¢ € [1...n] and j € [1...m]. The nodes define a
quadratic grid with space constant h. The estimation of optical flow is therefore reduced
to a finite number of locations which allows to consider each individual optical flow vector
as the resulting output of a single processing unit in a network.
The discrete form of the cost function (4.5) is

H(v;p,0) = Z Z [(Eﬂvijuij + By, vij + Etif)2+

=1 j=1

p((Auiz)? + (Avij)?) + o ((uig — ue)® + (vij — v0)?)] (4.13)

where the partial derivatives of the flow vectors in the smoothness term are replaced by
a symmetric difference operator* A such that

2 2
Tit1,7 — Ti—1, Tiirl — Ti i

Ags )2 = i+1,5 i—1,j tj+1 ij—1 _

(Azz) ( 2h * 2h

“not to be confused with the Laplace operator V2
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We have previously shown that our optimization problem has only a global minimum.
Therefore, it follows directly that

H'(vo; p,7) = 0 (4.14)

is a sufficient condition for the unique solution vg. Thus partial differentiation of the
discretized cost function (4.13) leads to a linear system of 2n x m equations. Instead
of solving this linear system analytically we proceed differently. We create a dynamical
system that performs steepest gradient descent on the cost function (4.13): the estimated
optical flow components u;; and v;; are altered negatively proportional to the partial
gradients of the cost function thus,

0H (v; p, 0)
aui]-

0H (v; p, 0)

4.1
- (4.15)

’[Lz‘j X — and Uzj xX —
until steady state is reached. This leads to the following system of 2n X m linear partial

differential equations

. 1
Uij = _5 [E%;j (Ewij Uij + Eyij vij + Etij)_

p(Uit1g + Uim1j + Uiger + Uig-1 — 4ui) + 0 (ui; — uo)],
@ij = _5 [Ey”( z;; Uij + Eyijvij + Etij)_
P(Vis1j + Vi1 + Vi1 + Vi1 — 4vi) 4+ o (v — vo)] (4.16)

forallie[l...n], j €[l...m] and where C is a constant.

Why transform a system of linear equations into a system of linear differential
equations?

Because, employing such dynamics might allow us to identify some equivalent physical
system onto which the optimization problem can be mapped. And in fact, the dynamical
system (4.16) should appear familiar to us: The second and third term in the right-hand
side describe the dynamics of the resistive network as shown in the previous chapter®. It
follows that it is relatively straight-forward to construct an equivalent analog electronic
network for the purpose of optical flow estimation. We identify the optical flow compo-
nents each with the potential on a node in a resistive network with capacitance C. The
right-hand of (4.16) in square brackets represents a sum of currents that charges up or
down these nodes until equilibrium is reached.

The total dissipated power in the resistive network is actually the physical equivalent
of the total costs induced by the bias and smoothness constraint®. For constant conduc-
tances p and o the behavior of the resistive network is ohmic, and the dissipated power is

Ssee Equation (3.13)

6Note, that using the expression energy instead of cost function would have been confusing here in
terms of its physical meaning,.
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Figure 4.2: Optical flow network architecture. A single unit of the optical flow network
is shown. The smoothness constraint is embodied in two resistive networks composed of
the conductances p. The components of the local optical flow vector are encoded as the
voltages U; ; and V; ; at each node of these networks. The vertical conductance o accounts
for the bias of the optical flow estimate towards some reference motion represented by the
potentials Uy and V. A and B constitute active circuitry that acts as a current source
or sink depending on the deviation of the optical flow estimate from the local brightness
constraint.
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equivalent to the current flowing through the conductances times the potential difference
across a node. For non-constant conductances, the dissipated power is given by the total
resistive co-content which is the integral of the current over the potential difference [Harris
and Koch 1989].

The schematics in Figure 4.2 sketch a single unit of the optical flow network. We can
clearly recognize that each constraint of the cost function (4.13) has a physical counterpart:
smoothness is enforced by the resistive networks with lateral conductances proportional
to the weighting parameter p. The bias constraint is implemented as a leak conductance
o to some reference potentials V, and Uy. Only the realization of the brightness constraint
needs some active circuitry represented by the boxes A and B. At each node these boxes
compare the instantaneous local estimate of optical flow with the visual input and inject
or sink the following currents IU; ; and IV; ; such that
IUi;j X _Ewij (Ewiju’ij + Eyijvij + Etij)

IV;J' X _Eyij (Ewijuij + Eyijvij + Etij)' (4'17)

The circuitry within these boxes includes several multiplication and summing operations.
Since the components of the optical flow vector can take on negative values, the actual
encoding has to be seen as the differences of the voltages in the resistive network to some
null-potential.

4.1.3 A dynamical minimization problem

We have assumed that the gradient descent dynamics decrease the cost function (4.13)
along all its possible trajectories and the system globally converges to a single solution as
t — oo. If this is true, H(v;p,0) is a Lyapunov function of the system, i.e.

dH dH dv

s <0 with e 0 only for i 0. (4.18)

With (4.16) we can show that

dH_Z[aH du;; O0H dv,-j}_ 1 [(GH

dd n 1 OH )2]
dt N 8uij dt (%ij dt N C Py

2
< 4.1
)+ o0 0 (4.19)

—~ Ouij N

which is obviously true for all possible trajectories of v. However, the underlying assump-

tion for this analysis was that the input, thus the spatiotemporal brightness gradients,

is constant over time. This is of course not very sensible per se because our optical flow

system particularly requires information of the temporal structure of the image brightness.
So far we have considered that the system always moves down the steepest gradient

on the surface of a static cost function until it reaches the global minimum. Now we must

modify this picture to allow the cost function to change as time evolves. The problem is
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no longer static but rather a dynamical optimization problem. Taking into account the
temporal structure of the input, we must rewrite the total temporal derivative of the cost
function as

dH Z[ 0H du; OH dv; 0H dE,, 0H dE,, 0H dF,,
— = + + +
dt auij dt aUZ’j dt 8Ew” dt 8Ey” dt 8Et¢j dt

(4.20)

Although the first two terms are less than or equal to zero as shown before (4.19), this
is not necessarily the case for the total expression. The cost function is not a Lyapunov
function in its strict definition. However, if we can ensure that the dynamics of our
network are much faster than the input dynamics (thus e.g. u; > dE,,;/ dt), then the
last three terms in (4.20) can be neglected. Hence, we can treat the optimization problem
to be quasi-stationary and safely assume that the estimated flow field is always at the
momentary global minimum of the cost function — or at least very close to it. Consider
again the mechanical analogy of the string as shown in Figure 4.1, and assume now that
the position of the pins, and thus the external forces applied by the rubber bands, change.
Then, the shape of the string immediately adapts to the new configuration such that it
will always represent the state of minimal costs. A critical limit is reached when the
changes of the external forces happen on such a short time-scale that the mass of the
string becomes relevant for its dynamics, and thus the kinematic energy of the system
must be considered.

The dynamics in our optical flow system are mainly determined by the network capac-
itance C' and the time constant 7,.. of the active recurrent circuitry represented by the
boxes A and B in Figure 4.2. Those parameters are to a large extent under active control
of the designer of the system, and therefore can be kept as small as possible’.

4.1.4 Computational behavior

The computational characteristics of the system mainly depend on the relative impact
of the three different constraints and thus on the values of p and 0. According to the
values of these parameters, the computational behavior of the system changes significantly
and exhibits different models of visual motion estimation such as normal flow, smooth
local flow or global flow. Figure 4.3 schematically illustrates the different operational
regimes the system exhibits depending on the two parameters. The textured oval region
represents the parameter space in which the system provides robust and sensible optical
flow estimation. The limits of sensible operation are determined by the bias conductance o.
For values approaching zero, computation becomes ill-posed whereas for high values, the
behavior is trivial because the bias constraint dominates such that the system constantly
reports the reference values independently of the visual input.

"see discussion on processing speed in Section 5.3.4
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The notion of computational complexity of the system is interesting. In Figure 4.3
a contour plot illustrates the different levels of computational complexity. As we will
see later, the computational behavior of the system in the regimes of purely normal or
global flow can be described by mathematically closed-form expressions. Using traditional
sequential computers such feed forward computation needs much less effort and thus time
than the highly iterative process required for smooth local flow estimation. If we consider
the execution time (computational load) to be a fair measure of computational complexity,
then the estimation of smooth local flow is computationally most complex. However,
in the context of the analog network proposed here it is not obvious how to define an
equivalent measure of the computational load. Clearly, the active processing in each unit
of the network does not change for different values of o and p. So the processing load
for each unit remains the same independently of whether it is estimating normal flow or
contributing to a global flow estimate. The only difference in behavior is induced by the
parameter p. Thus, what an observer of the system finally recognizes as a computational
behavior of different complexity reduces to the amount of interaction within the network!

In the following, simulation results are presented that illustrate the different compu-
tational behaviors in relation to the parameters p and o. The artificial image sequence
used as input consists of a triangle of uniform brightness moving on a stationary lightly
structured or unstructured background. The triangle undergoes horizontal translational
motion to the right with a constant speed. Any additional information on the simulation
methods and the stimulus sequence can be found in Appendix B.

The lateral coupling conductance p

The conductance p is an important network parameter because it controls the degree of
communication between single units. If p = 0, the lateral coupling amongst the units
in the network is disabled. In this case, the network performs an optical flow estimate
where each unit reports the flow vector that is on its local brightness constraint line and
best matches the reference motion vy enforced by the bias constraint. By the prohibition
of lateral interaction, the network actually breaks up into its single processing units. In
this case, the output of each unit can be computed analytically by applying the necessary
condition H'(v; p,0) = 0, thus

El'ij (Ewijuij + Eyijvij + Etij) + U(U’ij — ) =

0
Eyij (Ewijuij + Eyijvij + Etij) + J(Uij —v) = 0. (4.21)
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Figure 4.3: Computational complezxity dependent on p and o. The computational char-
acteristics of the optical flow system is shown in dependence of the parameters p and o.
None or very weak lateral coupling amongst the optical flow units combined with a finite
value of ¢ leads to a normal flow estimate. A large lateral conductance on the other hand
allows a global estimate of the visual motion. Robustness typically increases with larger
integration areas (large p). Larger values of ¢ also increase robustness but are not desired
because they strengthen the contrast dependence of the motion estimate significantly. The
system shows its computationally richest and most complex behavior for small ¢’s and in-
termediate p’s. This is indicated by the symbolic contour plot showing the different levels
of computational complexity.

Solving for the local flow vector v;; finally leads to

UZ] = — Etij Ewij Ug (U + E:ZU) + Vo (EJ;” Etij)
o+ E%i], + E;ij o+ Egij + Egij

by = — Ey, Ey, v(o + EZ.) + uo(Ey; Ey;) (.29
o+ E; +Ej. o+ E; +E;

If we apply a typical bias for slow motion, i.e. vy = 0, the second term on the right-hand
side of Equations (4.22) vanishes. With o — 0, Equation (4.22) provides an infinitely close
approximation of a normal flow estimate as shown in Figure 4.4b. Only local information
is processed and therefore the aperture problem holds dominantly: The resulting optical
flow is not identical to the correct object motion. Note that the vector average of the
normal flow does not resolve the object motion either. The bias conductance ¢ is required
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Figure 4.4: Varying the smoothness strength p. The network shows a wide range
of computational behaviors. (b)-(f) Keeping 0 = 0.001 constant and increasing
p =10,0.05,0.15,0.5,1.5] exhibits a continuous transition from normal flow to global flow
estimation.
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to be non-zero to avoid division by zero. The problem is well-posed even with no visual
input present. In this case the output simply follows the reference motion.

For p > 0 the lateral coupling between the units in the network is enabled and infor-
mation and computation is spread amongst the units in the network. Now, the network
provides estimates of smooth optical flow. Increasing values of p also increase the region-
of-support and lead to smoother flow fields (Figure 4.4b-f). Obviously, there is a clear
trade-off between obtaining local motion information and the possibility to solve the aper-
ture problem: A large region-of-support is required to solve the aperture problem but the
isotropic character of the resistive network cannot preserve the important optical flow
discontinuities at e.g. object boundaries.

As p — oo the smoothness constraint dominates such that it does not allow the
slightest spatial deviation in the flow field. Thus the flow field is uniform within the
whole image range and can be represented by a single global flow vector vy = (ug, vy).
Now, the linear system (4.14) becomes an over-complete one for which we can find the
following analytical solution

uy = ZZ](EZ” +0)- Zij(auo —E,;Ey;) — Zij Ey By, - Zij(UUO — By, Et;)
Z’ij(E;ij +0)- ZZJ(E;%” +0) - (Zz] EmijEyij)Q
and
Zz’j(Egij +0)- Zz‘j(UUO — By, Ey;) - Zij B By - Zz‘j(UUO — By Eyy;)
Zij(Egi'j +0)- ZZJ(E:%” +0) - (Zzg By Ey,;)?

respectively. These two equations represent the least-square solution of the optimization

v, = (4.23)

problem (4.5) assuming a common global motion model.

An attempt to quantitatively measure the effect of the lateral conductances on the
performance of the optical flow estimation is summarized in Table 4.1, using the same ar-
tificial image sequence as in Figure 4.4. Results for the simulation examples (Figure 4.4b-f
and Figure 4.5¢) are shown as well as two results for global motion estimation (p = 100).
Two different error measures were applied to quantify the error between the estimated and
the exact flow field. In a first measure, the angle and the speed differences are considered
independently. As can be noted, the angular error decreases for increasing values of p
because a larger region-of-support gradually solves the aperture problem. On the other
hand, the average speed difference increases as well since the smoothing assigns also mo-
tion to the background that is actually stationary. For a global motion estimate, the mean
angular error grows again because the region-of-support extends to the complete image
space and includes now two motion sources: the stationary background and the moving
object. The resulting estimate represents now some sort of an average estimate between
the background motion and the object motion. The zero motion in the background biases
the global estimate towards the mean of the normal flow vectors inducing a directional
tilt due to the 45 edge of the triangle. As can be seen, this effect is hardly affected by
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regime angle speed |v| combined ®.

p o mean std mean std mean std

0 0.001 47.4° 29.1° 0.07 0.25 3.3° 11.3°
0.05 0.001 15.4° 9.6° 0.11 0.19 5.4 8.9
0.15 0.001 12.8° 7.3° 0.16 0.18 8.2° 8.5
0.5 0.001 12.1° 5.1° 0.25 0.15 13.2° 7.2°
1.5 0.001 12.5° 3.3° 0.33 0.11 17.9° 5.3°
100 0.001 20.1° 0.3° 0.22 0.13 13.5° 4.8°
0.05 0 9.6° 5.7 0.14 0.19 7.4° 9.1°
100 0 20.1° 0.3° 0.26 0.13 14.0° 4.6°

Table 4.1: The deviation of the estimated flow fields from the correct motion. The
error between the estimated and the correct motion of the ’triangle’ stimulus is shown in
dependence on the lateral conductance p. The independent angular and speed errors are
calculated as well as a combined measure (see text for explanation).

the finite 0. A global estimate only reveals the object motion if the background does not
provide any spatiotemporal structure (see also Figure 4.6). The speed error obviously
grows with increasing smoothing because a non-zero velocity estimate is assigned to more
and more units in the background.

The absolute angular error is a measure that does not consider the strength of the
motion and thus is very sensitive to additive noise for small motion. We therefore introduce
a combined measure that considers the angular as well as the speed error. To do so, we
consider the flow vectors as the 2D projection of the three-dimensional space-time direction
vector v = (u,v,1). The combined error measure is defined then as the angular error in
space-time direction between the estimated and the correct motion. Thus we define the
combined error

Vestimated * Ucorrect
®,. = arccos( (4.24)

‘ Vestimated ‘ |'Ucorrect | .

The same measure has been used previously to compare different optical flow methods
[Barron et al. 1994] and allows us later to compare the performance of the present network
with algorithms reported in the literature — at least for one particular image sequence.
The combined measure favors a correctly located motion estimate, and is lowest in a
pure normal flow regime. However, taking into account both error measures a modest
value of p &~ 0.1 provides the best results which seems to be in good agreement with
the visual impression of the flow field (Figure 4.4¢,d). Note, that such quantitative error
measures have to be carefully interpreted. The performance of the network for a particular
parameter setting depends significantly on the properties of the visual input.
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The influence of the bias conductance o

The bias constraint is crucial for the computationally well-posed nature of the system.
We noticed that it keeps the system well-posed even for completely separated units in
the network which allows the estimation of normal flow. Now we want to consider its
influence on smooth local flow estimates where sufficient visual input is present such that
well-posedness is guaranteed even without the bias constraint.

The two columns of Figure 4.5 show the simulated responses to a visual sequence con-
sisting of an identical object undergoing the same movement on a stationary background.
The only difference is the non-textured background of the second sequence. Figures 4.5c-
d show the estimated flow field for parameter values p = 0.1 and ¢ = 0, thus disabling
the bias constraint which is equivalent to the approach of Horn and Schunck [1981]. For
comparison, Figures 4.5 e-f show results for the same parameter settings but the bias con-
straint enabled (o = 0.005, with vy = 0). Obviously, if the bias constraint is not active,
the effective smoothing kernel substantially depends on the visual input and not only on
the lateral conductance p.

To understand this effect we consider the effective diffusion length in resistive net-
works. The diffusion length L is the distance from a spatial position z, at which the
response to a voltage-source applied at o has decayed by one e-fold. Because in our
network architecture, it is typically the case that ¢/p < 1, we can use the continuous
approximation, in which the diffusion length L = y/p/o [Mead 1989]. For o — 0, the
diffusion length becomes infinite, i.e. a single voltage applied at some location spreads
everywhere in the network. Superposition holds because the resistive network is linear. If
o = 0, the network actually performs a first order moment computation for a given voltage
distribution. Returning to the example in Figure 4.5d: Since the background does not
provide any visual input, the units are not active and the infinite diffusion length causes
a spreading to the image boundaries.

One can argue that spreading available information into regions of no information is a
sensible process [Horn and Schunck 1981]. Clearly, under some circumstances this might
be the case, e.g. in a scene containing a single moving object. In general however, there
is not much reason to assume that for regions receiving no or ambiguous visual input,
the motion information from some distant image location is a better and more likely
estimation than some other, arbitrary value. Instead, using the bias constraint provides
the means to assign a priori information. It allows us to do better than chance by forcing
the motion estimate to take on a most probable reference value in case the input is
ambiguous. As mentioned, this reference value can be seen as the result of some long
term adaptive process that includes information of the history and the environmental
conditions the system has to deal with.

Also, we have encountered the trade-off between the size of the region-of-support and
the possibility to obtain local motion estimates. It is desirable to be able to define this
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Figure 4.5: Diffusion length dependence. Same object, same motion but different back-
ground texture: Disabling the bias constraint (p = 0.05,0 = 0) leads to a drastically
changed behavior (¢ and d). Enabling the bias constraint (e and f) ensures that the
intrinsic diffusion length is finite (p = 0.05,0 = 0.001).
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Figure 4.6: Dependence of the perceived motion on contrast. The global motion of the tri-
angle stimulus is estimated for varying contrast. The correct IOC motion of the triangle is
v = (1,0). The three trajectories represent the estimates for decreasing figure-ground con-
trast [95%, . .., 1%)] for three different reference motion vy = [(0,0); (0.5, —0.1); (1.4, 0.25)].
At high contrast, the estimate is in any case close to the true velocity v = (1,0). Only
for low contrast, the bias constraint (¢ = 0.001) has a significant influence and biases
the estimate towards the applied reference motion. Clearly, the direction of the perceived
motion is affected also. In the particular case of vg = (0,0), the perceived direction of
motion can continuously shift from the correct motion towards a vector average estimate
depending on the contrast.

trade-off by adjusting the diffusion length without being dependent on the visual input.
We will discuss later methods on how the diffusion length can be locally adapted to
enhance the estimation of optical flow.

The bias constraint also affects the integration process necessary to estimate object
motion. For a given o, the strength of the effect depends mainly on the contrast and the
reference motion vg but also on the shape of the object. In general, the resulting motion
estimate deviates not only in speed but also in direction from the correct intersection-of-
constraint (IOC) solution. Figure 4.6 illustrates the changes of the perceived motion for
the same triangle stimulus with non-textured background used before. The three trajec-
tories represent the estimated object motion (4.23) for decreasing figure-ground contrast.
Each trajectory is processed with a different reference motion. Given a reasonably low
weight to the bias constraint (o = 0.001), the object motion estimate is close to the true
motion for sufficiently high contrast. For low contrast, it degrades towards the particu-
lar reference motion. For a typical slow motion preference (e.g. trajectory a), however,
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the direction of motion shifts from the correct IOC motion towards a normal flow vector
average estimate. Thus for object shapes for which the correct motion and the vector
average estimate do not have the same direction, the perceived direction of motion varies
with contrast.

4.1.5 Simulation results using realistic image sequences

Some qualitative behaviors of the optical flow network are investigated using more re-
alistic and natural image sequences. The network is simulated according to the derived
dynamics (4.16) where the values of the conductances p and o are set as indicated. More
technical details about the simulation methods and the applied image sequences are listed
in Appendix B.

The ’tape-rolls’ image sequence

The first example consists of an indoor image sequence where two tape-rolls are rolling
on a table in opposite directions and with different relative distances to a stationary
observer. Figure 4.7 shows every second frame of such sequence and the estimated and
twice subsampled optical flow field. A rather moderate smoothness strength was chosen
(p = 0.075) while the bias constraint (¢ = 0.0025) was slightly increased compared to
the previous artificial image sequences to account for the higher signal-to-noise ratio of
real image sequences. The ’tape-rolls’ sequence has many properties that makes it a
real challenge for visual motion processing systems. First of all, the spatial and temporal
sampling rate is low (60x60 pixels, 15 frames/sec) which increases the number of sampling
artifacts. The low temporal sampling also leads to a maximal interframe displacement of
> 2 pixels. Large interframe displacements are hard to resolve. Furthermore, the sequence
contains two identical objects appearing at different spatial scales. Although the tape-rolls
roll on the table, the apparent motion is largely translational. Still, especially for the larger
roll, rotational components might influence the homogeneity of the flow sources. During
several frames, occlusion between the two tape-rolls occurs which certainly violates the
brightness constraint. Also contrast conditions are partially non-ideal and in conjunction
with the present shadows lead to almost smooth object boundaries.

In general, the network produces an optical flow estimate that seems appropriate for
the visual motion perceived. Although the tape-rolls are actually rotating the estimate
primarily consists of the translational component of their motions because distinguishable
visual features are not visible on the surface of the tape-rolls. Nevertheless, a rotational
component can be observed also, especially at the left side of the roll in front (Fig-
ure 4.7e,f). As a consequence of the smoothness constraint, the regions where optical flow
is reported, overlap the actual the size of the two moving tape-rolls in the image. Because
of this, the part of the table that is visible through the hole of the tape is assigned to move
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Figure 4.7: The ’tape-rolls’ sequence. The sequence (a,c) shows two tape-rolls that are
rolling in opposite direction on a table. Only every second frame is shown. The estimated
flow field (b,d) is down-sampled by a factor of 2. The conductances were p = 0.075 and
o = 0.0025.
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with the tape-roll also. Furthermore, shadows associated with the rolls induce a visual
motion perception as well, e.g. the optical flow area at the bottom of the frontal row
is elongated in the direction of the shadow. The limitations of the isotropic smoothness
constraint become obvious in the case where occlusion occurs and the two flow sources are
present within a close neighborhood. As can be seen in Figure 4.7b-d, the partial occlusion
of the distant tape roll results in a highly disturbed flow field because the assumption of
having locally only a single flow source present is violated.

Performance of the optical flow network

There are online databases that provide image sequences that can be used to test optical
flow algorithms®. Some of these sequences have become quasi-standards in the literature,
and allow at least some qualitative comparison among different approaches. Three of
the most frequently used examples were applied to the optical flow network. For each
sequence, a particular frame and the associated optical flow estimate is shown (Figure 4.8
and Figure 4.9, respectively). While two of the sequences are natural image recordings, the
third one is an artificially rendered image sequence where the projected image velocities
are known exactly. Thus, the sequence is often used as a quantitative benchmark for
different optical flow algorithms (see e.g. [Little and Verri 1989, Barron et al. 1994]).
Although we will provide a quantitative error measure for reasons of completeness, again
we have to recall that the significance of such numbers is fairly limited. For the three
simulation examples, the weight of the bias constraint is kept constant (¢ = 0.001) while
the strength of the smoothness constraint is set as indicated.

The first test sequence shows the well-known 'Rubic’s cube’ placed on a platform that
rotates counter-clockwise. The optical flow field reflects correctly the large rotational
motion. The moderate smoothing (p = 0.15) still allows to resolve the local motion
ambiguities at the grid pattern of the cube. This example shows that the brightness
constraint model, although it accounts only for translational motion, may be suited to
estimate large-field rotational motions.

The second sequence is called the "THamburg taxi’ sequence. It is a typical traffic scene
and includes four different motion sources: a dark car crossing from left to right, the taxi
turning around the corner, a van passing from right to left behind a tree and finally a
pedestrian in the upper left corner walking to the left on the side-walk. Figures 4.8c,d
show frame #19 and the corresponding estimate of the optical flow field respectively. As
can be seen, the network resolves the different motion sources clearly although the flow
field induced by the pedestrian is hardly visible due to subsampling and the low walking
speed. The smoothness strength was kept moderate (p = 0.15). Interestingly, the flow
field of the taxi seems to be more homogeneous and correct than the one of the black

8see Appendix B for more details
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Figure 4.8: Simulation results on natural test sequences. (a,b) The 5th frame of the
'Rubic’s cube’ sequence and the associated optical flow estimate are shown. The result
shows that rotational motion on the large is well captured with the translational model.
(c,d) The last frame of the "Hamburg taxi’ sequence. Note that the low contrast within
the lower car induces the tendency towards a more normal flow estimate. Both flow fields
are subsampled by a factor 10.
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Figure 4.9: Simulation results for the *Yosemite’ sequence. (a) Frame #10 of the arti-
ficially rendered flight sequence over the Yosemite valley (CA, U.S.A.). (b) The correct
underlying 2D image motion v.. (¢) The estimated optical flow field v.. (d) The error
vector field v, — v.. Note that especially the estimated flow on the mountain peak in the
foreground is affected by the aperture problem in the large and thus provides a substantial
directional error. Again, all above flow fields are subsampled by a factor 10.
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car in the front. This is mainly due to the low visual contrast condition within the black
car. It increases the influence of the bias constraint and results in a tendency of the flow
vectors to point towards their normal direction.

The "Yosemite’ sequence (Figure 4.9) represents, in addition to its artificial nature, a
different motion pattern. It reflects the visual perception of ego-motion of a moving ob-
server in a mostly static environment. The clouds in the sky undergo translational motion
to the right. To best account for the large field motion although it is not translational,
the smoothness constraint was assumed to be important (p = 0.4). Figure 4.9d shows
the difference vectors between the correct 2D projection of the simulated motion and the
estimated flow field. As can be seen, the largest deviations occur around the mountain
peak in the foreground and the sky in the background. The estimate on the area of the
mountain peak suffers from the dominantly vertically-oriented texture, thus reflecting the
aperture problem in the large. The flow field is biased towards the normal flow orientation
which is horizontal. By contrast, the landscape in the foreground on the right-hand side
shows a rich and randomly oriented texture and allows a better estimation of the flow
field. The second area of large estimation errors is the cloudy sky. Right at the horizon,
the error is large because the smoothness constraint does not allow to preserve the mo-
tion discontinuity that occurs between the clouds and the mountains. Furthermore, the
whole sky area shows regions of large error. This is not surprising, because the brightness
constraint is highly violated due to the successive formation and extinction of the cloud
patterns.

A quantitative error comparison with a few selected methods reported in the literature
shows that the proposed optical flow network is adequate in its performance (Table 4.2).
In order to provide a fair comparison, only methods that provide a 100% dense flow field
were considered. Any threshold applied to the flow field facilitates the estimation task
because it neglects regions of ambiguous or noisy visual motion where an estimate is
difficult to achieve and thus the error is likely to be high. Furthermore, for methods with
sparse flow fields the reported error measure in the literature [Barron et al. 1994] are only
taken over the sparse subset naturally leading to better performance measures.

As expected, the measured error is close to the one for the approach by Horn and
Schunck [1981] because the bias constraint is set rather weak and the smoothness param-
eter p = 0.5 is equivalent to the value used by Barron et al. [1994]. In addition, large
regions of uniform brightness as e.g. seen in Figure 4.5d where the bias constraint would
be most effective are not present. Nevertheless, the finite o seems to improve slightly the
estimation accuracy by reducing the noise sensitivity in regions of low contrast. The other
two methods are explicit matching methods and provided little more accurate estimates
for this particular sequence. Again, these numbers have to be interpreted cautiously.

To summarize: The proposed optical flow network provides good results for realistic
image sequences. The influence of the smoothness constraint has to be adjusted according
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method ®. mean P, std
Horn and Schunck [1981] 31.7° 31.2°
Anandan [1989] 13.4° 15.7°
Singh [1991] 10.47 13.9°

‘ The optical flow network ‘ 23.2° 17.3°

Table 4.2: Quantitative error comparison for the ’Yosemite’ sequence. The mean and
the standard deviation for the combined error of the flow estimates are given for different
approaches reported in the literature. For reasons of fairness, only methods that provide
a 100% dense flow field are considered. The referred error values are taken from Barron
et al. [1994] and the applied error measure is defined according to (4.24).

to the expected visual motion. For rather small moving objects in front of a stationary
observer, p is preferably chosen to be small in order to obtain a reasonable spatial resolu-
tion. For large visual motions, in particular induced by ego-motion, an increased p results
in a more robust and correct estimate.

4.1.6 Related methods

The motion coherence theory introduced by Yuille and Grzywacz [1988] (see also
[Yuille and Grzywacz 1989, Grzywacz and Yuille 1991] and re-formulated within a Bayesian
framework [Weiss and Adelson 1998]) reveals some strong compliance with the minimiza-
tion problem (4.5) though it introduces a more general description of the smoothness
constraint. Yuille and Grzywacz propose the minimization of the following cost function
in order to obtain an optimal estimate of the optical flow:

Hegy (v(r),U;) = Z(M(v(rz)) — M(U;))* + )\/ dr Z cm(D™0)2. (4.25)

i

According to the original description in Yuille and Grzywacz [1988], the first term of the
cost function represents the difference between the local measurement of visual motion
M (U;), where U; is the true image motion, and the local estimate of the constructed
smooth flow field M (v(r;)), summed over all locations r; where visual input is available.
This formulation follows strongly the formalism of standard regularization, where the
regularized solution is required to be close to the data. However, as noted before, there is
nothing like a true image motion that can be measured locally in visual motion processing.
Rather, we have to understand this first term of (4.25) as a total measure of how well
the estimated smooth optical flow fits the matching model applied at each location. For
example, using an implicit matching model, the brightness constraint (4.1) would represent
such a measure.
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The second term is a description of a general smoothness constraint that requires
the derivatives (D™v, m = [0...00]) of the optical flow field of any order m to be
small. This is interesting because it includes the zero order derivatives which can be
seen as the formulation of the bias constraint (4.4) with the particular reference motion
(ug,v9) = 0. One might therefore conclude that motion coherence theory basically covers
the optimization method proposed in this chapter. Nevertheless, it constitutes a much
broader and more general smoothness constraint framework for optical flow estimation
and gives reason to the following critical objections:

One theorem of the motion coherence theory claims that ”A necessary and sufficient
condition (to be well-posed) is that derivatives of higher than first order exist in the smooth-
ing operator.” (Grzywacz and Yuille [1991], page 243, theorem 4). We have shown that
this theorem is incorrect as it stands. Actually higher order derivatives in the smoothing
constraint alone are not a sufficient and necessary condition for well-posedness. Part
of the reason for this strong statement might be the fact that Yuille and Grzywacz did
not prove the theorem themselves but rather refer to the literature [Duchon 1977]. It is
remarkable however, that Duchon neither proves directly the theorem nor does he relate
to the general smoothness term. Duchon’s statement on which Yuille and Grzywacz base
their theorem refers to second order or so-called thin plate models in higher spatial dimen-
sion R"” for which he requires the cost function to include derivatives of order m, where
m > n/2 in order to apply his proposed spline methods. Duchon does not consider first
order models such as the membrane model.

Higher than first order derivatives (in conjunction with the zero order terms) are
necessary to guarantee a unique solution if the visual motion information is only available
at sparse locations?. However, under the assumption of a continuously differentiable
brightness distribution E(z,y,t) the constraint problem (4.5) is guaranteed to be well-
posed. As we have seen, this is true even when the smoothness constraint is completely
neglected (p = 0). Subsequently, the claim that the approach of Horn and Schunck [1981]
is not well-posed due to the lack of higher order derivatives in the smoothing term is
wrong. In fact, the Horn and Schunck approach is ill-posed but only because it does not
contain the bias constraint.

Although the formulation of a general smoothness constraint is mathematically elegant,
it is much too broad with respect to reasonable simple models of the flow field. For almost
all known models, there is no physical relevance to account for smoothness in higher than
second order derivatives of the optical flow field. Not surprisingly, Yuille and Grzywacz
did not find any significance for higher than second order derivatives in their simulation
results. In particular, pure translational models only require smoothness in the first order

0

derivatives per definition'®. On one hand, the general smoothness constraint seems to

9personal communication, A. Yuille
105ee Chapter 2
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be too general in terms of higher order derivatives, it is too limited for the zero order
derivatives. In contrast to the bias constraint (4.4) it assumes a priori zero reference
motion. Thus, it discards the possibility to apply a bias to the flow field towards another,
non-zero reference motion that can be the result of some adaptive process.

Last, Yuille and Grzywacz did not show how to implement their method in a network
architecture. It seems that although they proposed a general mathematical formalism of
smoothness in optical flow estimation, they were not completely aware of the physical
nature and the relevance of such a constraint. By contrast, the smoothness and bias
constraints introduced here are founded on the physics of the applied matching model
and the functional needs of a simple and efficient network architecture for optical flow
estimation in an unconditioned real-world environment.

4.2 Control of the Local Conductance Pattern

There is a strong dependence of the optical flow estimate on the values of the parameters
p and o. As yet, we assumed these parameters to be uniform and constant over the
entire network. The resulting isotropic diffusion process leads to uniform neighborhood
interactions that are not directed by any local information of possible object boundaries.
However, if such information is available, we can significantly improve the optical flow
estimation by making local changes to the lateral connectivity strength p such that motion
integration takes place preferably over regions containing single flow sources. The trade-
off between loosing information about the locality of motion and gaining more accurate
and robust estimation results through spatial integration can be circumvented. Especially,
smoothing over motion discontinuities as exhibited in the previous simulation examples
can be suppressed.

Ideally, we prefer to partition the image scene into disjoint regions of common (trans-
lational) motion (see also Figure 2.3) by introducing line processes that literally cut
(p = 0) the lateral conductances in the resistive network around these areas of single
flow sources. We call such process motion segmentation if it is mainly a function of
the present visual motion information. The resulting common motion within each parti-
tion can thereby be seen as the individual labels of the segments. Line processes allow
an efficient optical flow estimation using a single flow model: The optical flow network
serves as the common computational basis, whereas the effective collective computation
is performed simultaneously for several different motion sources, each located within an
isolated region of the visual space. The connectivity pattern serves thereby two-fold: It
improves the optical flow estimate, but at the same time it represents the location of
motion boundaries that could be used as input for other visual or cognitive systems.

Furthermore, also ¢ can be changed locally. A high o literally clamps the potentials in
the resistive networks to the reference motion vy by shunting the currents at each node to
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the reference potential. It suppresses the optical flow response in selected image regions
and therefore provides a means of selective attention. Such attentional processes have
been shown to play a significant role in cortical motion processing of primates. For
example, already in the early stages of the motion pathway of the macaque monkey
such as MT and MST, it has been shown that spatial attention results in an increased
neural response to stimuli at the attended location and a reduced response to stimuli
elsewhere [Treue and Maunsell 1996, Treue and Trujillo 1999]. Selective attention is
believed to be a mechanism to reduce the huge amount of visual information; and it
accounts for the limited processing capacity of cortical areas observed in humans that
were tested for their visual awareness of objects [Kastner and Ungerleider 2000].
We now rewrite the optimization problem (4.5) in a more general form

H(v;p(z,y,t),0(x,y,t)) = /F2 + p(z,y,t)S + o(z,y,t)B dQ2 = min ! (4.26)
Q

There is a unique solution along trajectories p(z, y, t) and o(z, y, t) for which the integrand
is strictly convex at any time ¢. However, global asymptotic stability is not guaranteed
because the global minimum for every given p(z,y,t) > 0 and o(z,y,t) > 0 depends on
the history of p(x,y,t) and o(x,y,t). This can lead to hysteretic behavior of the motion
estimate because motion is per se a process in time and has a history, of course.

In the following we discuss possibilities of how to control the weighting parameter p
and o locally in order to enhance optical flow estimation and perform higher level visual
motion tasks such as motion segmentation and object recognition by motion. In particular,
we present two elementary network architectures that contain additional retinotopically
organized maps of computational units that receive input from the optical flow network
and recurrently control the weighting parameters p(z,y,t) and o(z,y,t). These networks
demonstrate the potential and flexibility of the optical flow network approach as a basic
computational machinery for visual motion perception. Nevertheless, we have to bear in
mind that higher level visual motion processes as performed by e.g. humans are based
on rich and rather complex cortical mechanisms that are not at all understood yet. The
presented network architectures therefore are not meant to reflect biophysical models of
visual motion processing.

4.2.1 Passive non-linear conductances

Previously, we have identified the weighting parameters p and ¢ as vertical and lateral
conductances in the resistive networks of the optical flow network architecture. In a first
instance, we consider now these conductances as typical two-terminal devices that control
the amount of current flowing through as a function of the local potential differences V'
across them. This way, the general and explicit space- and time-dependent formulation
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in (4.26) reduces to an implicit one, thus p(V'), o(V) respectively. These passive conduc-
tances remain (non-linear) functions of only local measures which allows us to derive local
rules and architectures for their implementation.

Applying passive conductances, the smoothness constraint (4.13) in the discrete case
transforms to

Auf; Auz.’j Avf; Aui-’j
S(Aug, Avys) = / (V) dv + / (V) dv + / (V) dv + / (V)dv, (4.27)
0 0 0 0

where I(V') is the current flowing at node 75 in both orthogonal directions in each of the
two resistive networks. The integrals over the currents are equivalent to the co-content
and their sum represents the total dissipated power in the networks.

Global asymptotic stability is guaranteed if each integral term in the smoothness
constraint (4.27) is convex with respect to V. Let I(V) = Vg(V) be the current through
the conductance g(V'). Then, convexity is given if the second derivative of the co-content,
called the incremental conductance g* is non-zero, thus

. dI(v) _ dg(V)

g = =9V + Vs 0. (4.28)

Global asymptotic stability of the optical flow network is ensured if the incremental con-

ductances p* and o* at each node 75 are non-negative or non-zero respectively.

The lateral conductance p(V)

What would be good functions p(V') and o(V) in order to increase the performance of
the optical flow estimation? The lateral conductances preferably should be high at places
where the potential difference V' and thus the variation of the flow field is small and low if
it is large. That way, small variations in the optical flow field are smoothed out whereas
large velocity gradients at motion discontinuities are preserved by limiting the current. Or
in other words, the smoothness constraint is modified such that it penalizes large velocity
gradients less than small ones.

We distinguish two classes of implementations of such conductances. The first class
describes so-called saturating resistances for which the Horizontal Resistor (HRes)
[Mead 1989, Mahowald and Mead 1991] and the Tiny-Tanh Resistor [Harris 1991] rep-
resent successful examples of appropriate electronic circuits. The current is typically a
sigmoidal function of the potential V' across, thus for example given as

I(V) = Iy tanh(aV) . (4.29)

I, is the maximal saturation current of the conductance and oo = po /I a gain factor, where
1/po represents the maximal possible conductance, thus the maximal slope of (4.29).
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Figure 4.10 shows the I-V curve, the co-content, the incremental and the effective con-
ductances of saturating resistances. We note that the co-content, and thus the smoothness
constraint, transforms from a quadratic to a linear function of the voltage gradients. The
transition point depends on the parameter p, for a given I,: For high values, as in the
tiny-tanh circuit, saturation occurs for very small voltages, thus the current approximates
a step function, going from —I for V' < 0 to Iy for V' > 0 and the co-content turns into an
absolute value function |IyV|. Absolute value functions have been suggested for solving
ezact constraint'! problems in image processing [Platt 1989]. Using saturating resistances,
global asymptotic stability is given because the incremental conductance p* > 0.

The second class of implementations contains so-called resistive fuse circuits [Harris
and Koch 1989, Yu et al. 1992, Sawaji et al. 1998]. As for the saturating resistances,
these circuits allow smoothing in regions of small voltage variations across their terminals.
Above some voltage difference, however, the effective conductance decreases and finally
goes to zero, ending up in a complete electrical separation of the two terminals. Such
behavior serves well to implement line processes necessary to separate distinct regions of
common motion completely. The incremental conductance of any resistive fuse is partially
negative (see Figure 4.10), meaning that networks of such conductances are multi-stable.
In fact, multi-stability cannot be avoided in any networks performing line processes.

Figure 4.11 allows a comparison between the behavior of the optical flow network
using ohmic or non-linear passive conductances. Using saturating resistances or resistive
fuses reduces significantly the smoothness of the resulting optical flow field at motion
discontinuities. It prevents an extensive blurring of the motion contours but still allows
the interaction within areas of common motion.

However, there is a general problem of applying non-linear two-terminal conductances
in the optical flow network: Optical flow is a two-dimensional feature encoded in two
resistive networks, one for each component of the flow vectors. Obviously, such conduc-
tances would regulate the connectivity in each network independently, according to local
differences in the components. A difference measure in each of the components can only
approximate an appropriate measure for the complete features such as e.g. the differ-
ence in absolute vector length. Also, we assume that the conductance pattern reflects
the physical properties of the moving scene such as boundaries of moving objects. Since
the physical properties are only dependent on the image location they should be spatially
coherent within both networks which is not guaranteed with passive non-linear conduc-
tances.

" Ezact because the linear dependence of the co-content on V penalizes small deviations more strongly
than in the quadratic case and thus forces the solution to be piece-wise smooth and very close to the
data.
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Figure 4.10: Characteristics of passive conductances. The characteristic curves for dif-
ferent saturating resistances (pp = [2.5,10] Q) and a typical analog resistive fuse (dashed
lines) are shown. (a) The current through the saturating resistances is clearly limited
for high voltage differences. Furthermore, the resistive fuse electrically separates the two
terminal for high voltage differences completely. The current for this resistive fuse model
is described as I(V) = AV[l + exp(B(AV? — @))]7! with A = 1 Q7!, @ = 1 VA and
the free temperature dependent parameter = 25 [Harris et al. 1990]. (b) The asso-
ciated co-contents for the saturating resistances show clearly the transition between the
quadratic and linear characteristics as the voltage difference increases. For large pg the
co-contents approximate the absolute-value function. The co-content for the resistive fuse
is non-convex which is reflected also by the partially negative incremental conductances

(c) in the regions of £1 V. (d) Nevertheless, the effective conductances are strictly positive
for both classes.
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Figure 4.11: Optical flow estimation using passive non-linear conductances. (a) A linear

smoothness conductance (equivalent to Figure 4.4d, with p = 0.15,0 = 0.001) generates

a smooth flow field which becomes particularly well visible in the contour plot (b) of the

absolute velocities. (c,d) Saturating resistances (pp = 0.15,I; = 0.01) partially prevent
smoothing into the background. (e,f) Resistive fuses (A = 0.15 Q 1, 8 = 200 and o = 0.025
VA) clearly separate the units in the network at high motion gradients.
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The bias conductance o (V)

The quadratic measure of the bias constraint (4.4) results in a constant conductance o
and therefore an ohmic bias current in the resistive network. The optical flow estimate is
penalized proportionally to the size of its components. However, the original purpose of
the bias constraint was to ensure that the optimization problem is well-defined in cases
where the visual input is ambiguous. It seems reasonable to strengthen the bias constraint
locally according to the degree of ambiguity. Only, the degree of ambiguity is not at all
reflected by the amplitude of the motion estimate which is the only information available
for any potential passive conductance o(V'). Therefore, it is most sensible to penalized
the motion estimate independently of its size, which is achieved by applying a constant
bias current. As shown earlier, such behavior can be implemented approximately using
saturating resistances with py > 1. Again, the bias constraint (4.4) must be replaced by
the measure of the electrical co-content:

\uij—uo\ |Uij_'U0‘
B(Uij, Uz’j; Ug, U()) = / I(V) dV -+ / I(V) dV, (430)
0 0

with I(V') as in (4.29). For py — oo, the bias constraint (4.30) reduces to the absolute-
value function. Global asymptotic stability is guaranteed because the incremental con-
ductance o* is non-zero for all finite py.

4.2.2 The motion segmentation network

An extended motion segmentation system is introduced that consists of two discontinu-
ity networks recurrently connected to the optical flow network (see Figure 4.12). Each
unit F;; and @;; controls a motion discontinuity segment oriented in x- and y-direction
respectively at node i in the optical flow network. The whole system forms a recurrent
feedback-loop where the optical flow network provides the motion input to the discontinu-
ity networks which then control the lateral conductances of the former. In contrast to the
passive conductances discussed previously, the connectivity strength in both resistive net-
works is now controlled identically. Since motion discontinuities strongly reflect physical
properties of the underlying visual scene, clearly they either exist or not. Thus, the units
in the discontinuity networks ideally approximate a binary behavior to reflect the decisive
character of detecting discontinuities, but being ’sufficiently’ analog to allow a determin-
istic implementation. One can also think of switches that enable or disable the connection
between neighboring units in the optical flow network. Each open switch thereby repre-
sents a line segment in the overall line process which is perpendicularly oriented to the
pair of connected units.

Again, the desired behavior of the discontinuity networks is formulated as a constraint
optimization problem. Since both networks are identical except in orientation we restrict
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Figure 4.12: Schematics of the motion segmentation network. Two additional networks
control the lateral conductances in the optical flow network in x- and y-direction respec-
tively. The units in each network excite their neighbors along the orientation of the
corresponding line segment to force a continuation of the line process. The soft-WTA
competition supports the continuation by suppressing activity in the units orthogonal to
the line orientation. Furthermore, it adapts the threshold of discontinuity detection by
forcing a winner also in areas of low input contrast. For clarity, the optical flow network
is shown only as a single layer network.
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the analytical discussion to the 'P-unit’ network and silently address the ’Q-unit’ network
as well. The following cost function is proposed:

)
Hp = Z( aPy + B(1 — Py)(Avy)? + (1 — Py)(AF})? — o Pii(Pivrj + Pio1)
ij
+ip; P +?(ZP ~1)?+1/R " 1) dg) (4.31)
2 ] — w 2 - w /2 g . .

The first three terms represent a typical threshold function where the unit P;; is turned
on, if the sum of the weighted input is larger than a constant «. The input consists of the
square of the local optical flow gradient (Av};)* = (Auf;)* + (Av};)* and the brightness
constraint gradient in y-direction (AF})?, where F is defined as in (4.1).

Where most known approaches for motion segmentation use the flow field gradient as
the measure of motion coherence'?, using the local gradient of the brightness constraint
in addition is very specific to the chosen optical flow network approach and has not been
proposed before. The major advantage of this combined difference measure is its relative
insensitivity to the strength of the smoothing conductance. Figure 4.13 characteristi-
cally shows the smooth optical flow field for weak and strong smoothing at an idealized
motion discontinuity. Since the brightness constraint represents the weighted distance
of the velocity estimate to the brightness constraint line, its local gradient is largest at
motion discontinuities because there, two different motion sources collide and have to
find a common flow estimate if smoothing takes place. However, if smoothing is weak
or even disabled, the brightness constraint can be fulfilled much better on both sides of
the discontinuity and thus its gradient is shallow. For the gradient in the flow field, the
conditions are just opposite. Thus, whatever the smoothness conductance pattern in the
optical flow field is, the information about potential motion discontinuities cannot ’get
lost’ using both gradient measures. Of course, the input of the two gradient measures
must not — and cannot due to non-local interactions — be balanced perfectly in order to
obtain a net input difference when line-segments change their state and thus the smooth-
ness conductance changes rapidly. A net input is essential to perform the optimization
task correctly because it relates the input to the state of the networks. Nevertheless, the
combined gradient input is a useful way to reduce the expected hysteretic effects due to
the performed line process.

The first three terms of the cost function (4.31) do not yet define a network structure
because they do not imply any direct interaction between individual units. This situation
changes with the next constraint (§): It favors those units to be active that have already
active nearest-neighbors in the same direction as the orientation of their line segments.
The idea is to force the formation of a continuous discontinuity preferably along its ori-
entation. The next two terms support this process by inducing a soft-WTA competition

125ee Chapter 2
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Figure 4.13: Combined gradient measure for the detection of motion discontinuities.
An idealized motion discontinuity is shown with its true one-dimensional velocity profile
(dashed line) and two examples of smooth flow estimates (bold curves). The local gradient
of the brightness constraint signals how strong the local motion estimate differs from the
set of possible motions defined by the observed spatiotemporal brightness pattern. It is
naturally large at motion discontinuities and depends on the smoothness conductance. As
indicated by the arrows, the brightness constraint gradient AF across the discontinuity is
large if the flow field is smooth and small if it is not. However, the optical flow gradient Awv
just shows the opposite behavior. A combined measure thus signals motion discontinuities
independently of the smoothness conditions in the optical flow network and therefore
independently of the conductances pattern.

along the units perpendicular to the orientation of the line segment (see Figure 4.12). It
inhibits activity in a row of units perpendicular to the orientation of the unit’s particular
line segment which suppresses the formation of many, very close and parallel oriented
line segments. The constraints for the soft-WTA behavior are formulated identically to
the simple WTA example'®, except that competition is now spatially limited to the ex-
tent of the (one-dimensional) neighborhood kernel W and modulated by the local kernel
coefficients. The coefficients are chosen to decay exponentially with distance and are
normalized such that their sum is equal to one. The kernel is assumed to be symmetric
where wy is its central coefficient. The soft-WTA competition also provides means for an
adaptive threshold because it forces a winner also in regions of low input contrast. The
tendency to force discontinuities even when no input is present is counter-balanced by the
static threshold constraints.

The last constraint in (4.31) is imposed again by the non-zero leak conductance of

Bsee Equation (3.6), Chapter 3
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the analog units with activation function g : p;; = P;; € [0, 1]. Although chosen to be a
typical sigmoidal function (3.5) it can be any function that is non-linear, monotonically
increasing and limited to [0, 1].

The cost function (4.31) is bounded from below for any given and finite input. Thus a
network that performs gradient descent on the cost function is given to be asymptotically
stable. This leads to the following dynamics for the discontinuity networks:

. L1 pi
b= = g | e 60w (AR

J/

static tilrreshold
— 8(Pip1j+Pirg)+ePy+¢ Py—ewPy—¢ |, (4.32)

-

soft-WTA with cross-excitation

where P_,J = Y, wwPw stands for the weighted average of the output activity within
the neighborhood W and P;; = >, ww Py for its average. The network architecture
follows directly from the dynamics. Again, connectivity can be reduced significantly by
introducing two layers of additional inhibitory units. The first layer receives weighted
input from all units within a single neighborhood and thus provides P;. The second
layer does the same but receives now input from the first layer and therefore provides P;;.
Besides inhibitory input, each unit also gets excitatory input of different sources: a general
and constant input ¢, input from its neighbors in the orientation of its line segment, and
excitatory input from itself according to the parameter ¢ and wy.

Global asymptotic stability for the discontinuity networks is desirable, because the
motion input changes and does not favor a hysteretic behavior. It is the weight connection
matrix of the network thus the parameters 9, €, » and W that decide its stability properties.
Strict convexity of the cost function was easily be verified for the (simple) classical WTA
network by requiring the Hessian of the cost function to be positive definite. However,
such procedure becomes complex for the discontinuity networks, and may only be solved
numerically. Nevertheless, to get some estimate of what the conditions for strict convexity
and thus for global asymptotic stability may be, the eigenvector analysis was performed
for two extreme cases of W:

e W=
The kernel includes only the local unit itself. The excitatory and inhibitory e-terms
in (4.32) cancel and the smallest eigenvalue leads to the condition

%+¢—\/§620 (4.33)

to hold for global asymptotic stability where 1/py is the maximal gain of the ac-
tivation function g. Clearly, since the excitatory and inhibitory e-terms in (4.32)
cancel, only the neighbor excitation term remains that has to be smaller than the
inhibition imposed by the leak (driving force) po/R and the (self-)inhibition ¢.
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e W =|wy,...,wy], where w;=1/N Vi€][l,N]
The kernel now includes a complete row (or column) of N units with uniform weights
which changes the characteristics to be a hard-WTA along that row or column
respectively. Therefore, the eigenvalue condition

Bt V>0 (4.34)

is equivalent to the self-excitation gain limit (Equation 3.12 on page 32) plus it
also includes the excitation from the nearest neighbors. The row length N appears
in (4.34) since we required the weights to be normalized.

General kernels will lead to more complex conditions including every weight parameter.
Numerical experiments however showed that condition (4.34) under the rigorous assump-
tion NV = 1 represents a conservative lower limit for which global asymptotic stability
holds. Increasing the inhibitory weight parameter ¢ always exhibits a positive effect
on this limit, thus allows stronger excitatory connections € and §. There are theorems
on global asymptotic stability in additive networks based on simple conditions on the
inhibitory and excitatory strengths [Hirsch 1989]. However, tested on the hard-WTA net-
work, the theorems were not able to predict a reasonable stability criterion. Reasons for
this failure are not investigated further here.

Closing the recurrent loop, we allow the discontinuity networks to control the smooth-
ness conductances in the optical flow network. Hence, we replace the smoothness con-
straint in (4.13) by

5= Zﬂo (1= Py) (Au))* + (Av})*) + (1 = Qi) ((Aufy)* + (Avf)*)],  (4.35)

where Aug;, Avf; and Aug;, Avy; are the linearized gradients of the optical flow field in x-
and y-direction respectlvely. The effective conductance is within the range [0. .. py].

The complete system (discontinuity networks plus optical flow network) is asymptoti-
cally stable because each sub-network is. However, global asymptotic stability is difficult
to investigate. It is clear, that the interaction between the optical flow and the discontinu-
ity networks is non-linear due to the multiplicative interaction between the different state
variables as seen in Equation (4.35). Any statements on additive networks are therefore
not applicable. Qualitatively, the combined system is expected to be multi-stable because

the feedback loop has certainly a positive component.

Simulation results

The behavior of the complete system was simulated and its suitability demonstrated using
the 'tape-rolls’ sequence. The parameters of the two discontinuity networks were set as
follows: The static threshold oo = 0.12, the input weights § = v = 1, neighbor excitation
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Figure 4.14: Motion segmentation of the ’tape-rolls’ sequence. (a,c) Every second frame
of the ’tape rolls’ sequence is shown overlaid with the estimated motion discontinuities.
(b,d) The associated optical flow is displayed as vector field and gray scale image of its
absolute value. See text for further explanations.
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6 = 0.002, the soft-WTA parameter ¢ = 0.003 and ¢ = 0.13. Self-inhibition was set rather
small with py/R, resp. go/R = 0.01. Clearly, the parameter values obey the excitation
gain limit (4.34). The bias conductance and the reference motion of the optical flow
network were kept as in previous simulations (o = 0.0025, vy = 0).

The ’tape-rolls’ sequence is a true benchmark because it includes many features that

14 Figure 4.14a,c shows every second frame (# 2, 4, 6, 8, 10) of

are difficult to resolve
the sequence, overlaid with the estimated motion discontinuities. The associated optical
flow is shown as flow field superimposed on the gray scale representation of its absolute
value (Figure 4.14b,d). We recall again, that the assessment of the simulation results
has to remain on a qualitative and descriptive level because absolute benchmarks are not
available. Any comparison with other approaches can therefore be, at most, suggestive.

The overall performance is reasonable especially given the fact that there was no
applied reset of the network states in between different frame presentations. A reset
clearly would help to improve the segmentation quality because it eludes the problem
of hysteresis. Unfortunately, most of the proposed approaches in the literature do not
report any simulation results of whole image sequences with continuous frame presentation
[Hutchinson et al. 1988, Harris et al. 1990, Memin and Perez 1998, Aubert et al. 1999,
Cesmeli and Wang 2000]. Thus, it seems rather likely that their presented results are
based on single frame simulations with default initial conditions. It is therefore difficult
to judge how strong these approaches are susceptible to hysteresis. It is clear that if an
inter-frame reset is applied in the presented discontinuity networks, hysteresis is of no
concern and the parameter values do not have to obey limits such as the self-excitation
gain limit (4.34). Most likely, this would allow more optimal settings that lead to better
single frame results than shown here.

It is certainly worth to consider an interframe reset of the network states for frame
based, sequential segmentation systems. However, such periodic reset would severely
contradict the continuous nature of the here proposed analog networks. At least a clock
and an external control mechanism would be required that decide when the states in the
network are valid and thus represent the desired estimate and when not (e.g. in the reset
phase).

The presented motion segmentation system is designed such that it shows as little
hysteresis as possible, although it cannot avoid it completely. Hysteresis becomes signif-
icantly noticeable e.g. by comparing the first frame in Figure 4.14 with all subsequent
frames: Since the first frame is not burdened by any history, it exhibits a much cleaner
discontinuity estimation that also matches the physical shape of the objects quite well.
In later frames, the discontinuities appear to correlate less with the physical boundaries
of the objects, which is especially obvious within the large tape-roll in frame #4 and #6.
There, spurious discontinuities cause an inhomogeneous flow estimate within the large

Mgee Section 4.1.5 on page 56
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tape-roll. Nevertheless, the coarse outline detection of the two objects is good and does
not show much hysteretic artifacts. This surprises, regarding e.g. the low contrast con-
ditions at the trailing edge of the tape-roll in front. Only in the last frame, part of the
trailing boundary seems to get stuck, which causes the disrupted contour.

As expected from the limitations of the brightness constraint model, occlusion causes
some trouble and leads to small partitions of unreliable motion estimates. It is interesting
also to see that the system cannot distinguish between moving objects and dynamic
shadows which can be observed e.g. in frame #2 and #6 at the lower bottom of the
tape-roll in front.

4.2.3 The motion selective network

Local control of the bias conductances provides the possibility to suppress the response of
a particular optical flow unit by clamping its output to some reference value. Thus, the
perception of visual motion can actively be changed according to what is expected to be
perceived and where.

In the following, the motion selective network is proposed which extends the optical
flow network by a single additional network. As sketched in Figure 4.15, units of this
network are retinotopically organized and receive input from the optical flow network
according to some measure of how close the optical flow is to some expected motion
Umodel- Lhe connectivity of the motion selective network is chosen such that active units
tend to appear in clusters of a preferred minimal size. In feed forward configuration,
the activity of the network encodes roughly the spatial extent to which a motion source
matches the expected motion. If the feedback connections to the optical flow network are
enabled, then the active units in the network control the bias conductances of the related
optical flow units: the conductance is increased significantly if the motion selective unit
is not active and as a result, the optical flow estimate is suppressed locally.

We formalize the properties of the motion selective network once again as a constraint
optimization problem and introduce the following cost function

Hy =% DO AyAu+ g(z Aij — Nma$>2 - %Z;AijAW
1] %]

ij kiij

Az'j
_52Aij(vij.vm0de,)+1/RZ/ g7 (&) de, (4.36)
ij i J1/2

where A;; is the response of the motion selective unit at node ij and g : a;; — A;; is its
non-linear activation function.

The first two terms are the equivalent constraints of the simple WTA network (3.6)
with the small difference that the total activity is forced to be N,,,,. Choosing an appro-
priate activation function such a constraint will allow ideally N, winners. We will call
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Figure 4.15: Schematics of the motion selective network. The optical flow network is
combined with another retinotopic network that is selective to a particular type of motion.
Its architecture is based on a WTA network that forces multiple winners. Additional exci-
tatory connections to nearest-neighbors promote the clustering of active units. The output
of the selective network is fed back to control the strength of the local bias conductances
in a way that motion perception can be selectively restricted to only a particular kind of
motion, specified by v model-
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this network a multi-winner-take-all (mWTA) network. In contrast to the soft-WTA
circuit in the motion discontinuity networks, every unit in the array participates in the
same competition and has an equal chance to win. The fixed number of winners can be
seen as the maximal amount of attentional resources for which the input has to compete
for. Such a paradigm has been proposed as the underlying mechanism that accounts for
attentional processes observed in primates [Kastner and Ungerleider 2000].

The activation function can be arbitrary as long as it is monotonically increasing,
limited from below and — in contrast to the simple WTA network — saturates. Saturation is
vital because otherwise, a single active unit with output Ayinner = Npaz would correspond
to the optimal solution of (4.36) and the desired multi-winner behavior would not occur.
In our case, the activation function was chosen to be sigmoidal (3.5).

The third term favors units to be active within an active neighborhood W, hence
leading to clusters of the network activity. The forth term represents the input to the
network and prevents units to be active at locations where the optical flow estimate
does not match the expected motion'®. Finally, because we are using analog units with
activation functions of finite slope the dissipated power in the unit must be taken into
account, which is expressed in the last term.

Applying gradient descent to minimize (4.36) leads to the following dynamics of the

network
1 a
di]‘ = — 5 [% +a Z Ap + B(Z Az’j - Nmam) - ’YZAW - (5(’01'3' ) vadel)}
kl#ij ij w
1

= — 5 [% + (O! + ﬂ) ZA” — O,/Aij — /J)Nmax — ’YZ AW — (S(’Uij . 'vmode])]. (437)
ij w
The network architecture is given by the dynamics (4.37) and is very similar to the one
of the simple WTA network!®: Each unit receives global inhibitory input from all units
in the network (a + f) but also excites itself (). In addition, each unit has excitatory
connections (y) from and to units in a defined neighborhood W. Finally, a constant
excitatory input which is proportional to N, is imposed on all units. As proposed in
Section 3.2.1 and shown in Figure 4.15, the connectivity is massively reduced using a global
inhibitory unit that sums up the output of all units and inhibits each one accordingly.
The cost function (4.36) is bounded from below and above for any given and finite
flow field v and is a Lyapunov function of the system (4.37). To assure global asymptotic
stability within the mW'TA network, the self-excitation gain limit has to be obeyed. Again,
this limit depends on the exact form of the excitation kernel W. In the simple case of a
4-nearest-neighbor kernel with unity weights, we find that
Qo
R

15The chosen dot-product is just one possible difference measure.
165ee Figure 3.2 on page 31

at+y< (4.38)
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must hold in order to guarantee that the Hessian of the cost function (4.36) is positive-
definite. Here 1/ag is the maximal gain of the activation function, and R the input
resistance. For more general kernels the appropriate conditions have to be found numeri-
cally.

Note that the cost function (4.36) is a soft representation of the imposed constraints.
Thus the total number of winners in the network is not guaranteed to be N,... In
fact as seen in the simple WTA network, the maximal loop-gain can be too small to
determine clear winners at all for weak and ambiguous input. This is dominantly caused
by the inhibitory influence of the finite input resistance of the analog units which requires
a certain activity level for units to be active. In any case, the total loop-gain can be
increased almost arbitrarily without running into multi-stable behavior by using cascades
of mWTA networks'”.

Closing the recurrent feedback-loop between the motion selective network and the
optical flow network allows the motion selective units to control the strength of the local
bias conductances. Hence, we modify the bias constraint in (4.13) to

B = Z(O’l —+ (1 — AZ]) 0'2) [(UU — U0)2 + (’Uz'j — U0)2:|, (439)

ij

with 0 < 01 < 0,. Using a typical sigmoidal activation function (3.5) A;; € [0, 1], the
effective bias conductances are therefore in the interval [oq, o1 + 03]

Simulation results

Simulation results are presented for the 'tape-rolls’ sequence once for preferred rightward
motion v,eqe = (1,0) and once for leftward motion v,04e = (—1,0) as displayed in
Figure 4.16 and Figure 4.17 respectively. Every second frame of the sequence is shown,
superimposed with the resulting optical flow field. Below each frame, the corresponding
activity in the attentional network is indicated as a gray scale representation. The high
gain within the attentional network expresses an almost binary activity pattern. It is a
consequence of using a two-stage mWTA arrangement which is necessary for sufficient
suppression (1 — A;; — 0). The network parameters were kept constant in both cases
and set as follows: the mWTA parameters o = 0.02, 8 = 0.5 and v = 0.05, the input
weight § = 1 and self-inhibition ag/R = 0.1. These parameters were identical in both
mWTA-stages. The default number of winners was slightly reduced in the preferred
leftward motion case to account for the size difference of the objects sizes. The lateral
conductance and the lower limit of the bias conductance in the optical flow network were
kept as in the smooth optical flow example (p = 0.075 and o7 = 0.0025) and the maximal
leak conductance oo = 0.8.

7see Figure 3.3 on page 33
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Figure 4.16: The motion selective network tuned to rightward motion. (a,c) The
‘tape-rolls’ sequence (frame # 2,4,6,8,10,12) is shown overlaid with the resulting opti-
cal flow field. The attentional feedback clearly suppresses the motion field associated with
the smaller tape-roll. (b,d) The activity in the motion selective network (N, = 500)
is shown at the associated time instance. Note that no reset of the network states is
performed in between the different frames.
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Figure 4.17: The motion selective network tuned to leftward motion. (a,c) Again the
"tape-rolls’ sequence, but now leftward motion is favored. (b,d) The associated activity in
the motion selective network is clearly assigned to the smaller roll. The size of attention
is slightly reduced in comparison to the previous example (N4, = 300).
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For preferred rightward motion, the leftward motion field of the smaller roll in the
back is almost completely suppressed while the flow field on the front roll is correctly
estimated. The activity in the motion selective network nicely matches the size of the
tape-roll and does not show any shift towards the trailing edge which could be expected
as the result of hysteresis. Preferring leftward motion (Figure 4.17), the system assigns all
its attentional activity to the small roll in the back. Again, the induced local adjustment
of the bias conductances strongly suppresses the optical flow field everywhere else. The
parameters besides the preferred motion were kept identical in both cases. Again, there
was no interframe reset of the network states.

Stability of the complete system is guaranteed because each sub-system, the optical
flow network and the motion selective network, is asymptotically stable in any case'®.
Although a detailed analysis of conditions for global asymptotic stability of the complete
system is not performed, it seems very likely that the positive feedback can elicit hys-
teretic behavior. In fact, hysteresis is observed in the simulation results such as e.g. in
Figure 4.16, where the top part of the tape-roll in front is not or only partially detected
although its motion matches the preferred motion. This is likely due to the occlusion of
the two tape-rolls occurring in the first few frames which induces some non-preferred opti-
cal flow in that region. It prevents the network from becoming active again right away. It
takes some time to overcome this ’experience’ until the last frame, where a partial recov-
ery can be observed. It has been verified that this effect is due to hysteresis: Reapplying
the whole sequence but deleting the network history right after occlusion occurred (frame
#8) leads to an immediate recovery of the activity pattern in the top part of the tape-roll
(not shown).

Nevertheless, the effect of hysteresis seems to be less pronounced and distorting than
in the previously discussed segmentation network. A possible reason can be the nature of
the mWTA network: The network strongly encourages always N,,q, units to be active. In
fact, the chosen value for o5 does not result in a complete suppression of the optical flow
in non-attended areas. Thus, the suppressed inputs to the motion selective network still
have the chance to win over the diminishing inputs at locations where motion has already
passed.

The motion selective network also provides means to allow top-down influence. Firstly,
it contains two global parameters, the preferred motion v,,,4¢; and the attention kernel
size Np,.: that can be thought of as controlled by the output of another, even higher
level network. These parameters represent object related properties that are independent
of a retinotopic representation. Any networks that provide such output will inevitably
follow a different topological policy than the one introduced here. Secondly, the motion
selective units can receive direct input, such that the attentional process is spatially

18We assume that the time constants of both networks are much shorter than that of the visual motion
itself.
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guided. This steering input can be generated by another retinotopically arranged place
encoding network or some lower dimensional, variable-encoding map [Hahnloser et al.
1999].

4.3 Conclusions

I have shown how optical flow estimation can be formulated within the framework of
constraint optimization. The introduced bias constraint thereby reveals many interesting
properties. As rigorously proven, it is this constraint that turns the estimation of visual
motion into a well-posed problem under any visual input conditions. The bias constraint
also allows to apply a priori knowledge about the expected visual motion if visual input
is ambiguous or absent.

More important, I have demonstrated how such optimization problems can be solved by
simple analog electronic networks. A basic network architecture is proposed that reliably
computes smooth optical flow. According to the strength of the lateral conductances in
the network, the resulting output broadly varies between a normal flow and a global flow
estimate. Unlike earlier proposals the network architecture is simple and does not contain
any negative conductances [Hutchinson et al. 1988|.

Extensions of the basic network have been discussed that allow the local adaptation
of the bias and the smoothness conductance, in order to control the motion integration
process and the suppression of network activity. The two proposed systems each use ad-
ditional recurrently connected networks that allow them to perform motion segmentation
and motion selective attention tasks where the activity in the layer directly represents
motion discontinuities or the attentional strength respectively. Since segmentation and
attention are decisive processes per definition, different variations of the classical WTA
architecture form the core circuits of these additional network layers. In particular, a
cross-excitation soft-WTA architecture is introduced that forces the formation of con-
tinuous motion boundaries while suppressing nearby parallel oriented line segments. A
multi-WTA architecture is proposed for the motion selective attention network that as-
signs a preferred number of winning units to the input area that corresponds best to a
preferred motion.

An important aspect of decisive processes within the temporal domain is their pos-
sible multi-stable behavior that can produce hysteretic effects. The proposed networks
are designed such that they exhibit as little hysteresis as possible. This is achieved by
respecting the weight conditions for mono-stability in the decisive network layers (self-
excitation gain limits). Furthermore, the positive loop-gain is reduced by minimizing the
feedback effect onto the inputs to the decisive stages (combined gradient differences and
non-complete suppression). The presented simulation results using real-world image se-
quences demonstrate that these arrangements allow to keep hysteresis on an acceptable
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level.

For all proposed networks, highest priority was given to simple (WTA-)architectures
that permits a physical implementation as integrated electronic circuits. This requirement
should be considered by those who draw comparisons of this approach, with alternative
approaches reported elsewhere in the literature.



Chapter 5

Neuromorphic Implementation

A substantial part of this dissertation is dedicated to aVLSI implementations of some
of the formulated constraint optimization networks. Idealized electronic circuits of these
networks have been derived in the previous chapter. However, the implementation of
such circuits imposes many problems arising from the fundamental physical properties
of semiconductors and the inherent non-idealities of the applied process technologies.
Definitions, symbols and the large signal transistor model used within this chapter are
introduced in Appendix C.

It seems to be the appropriate place to acknowledge the pioneering work of John
Tanner [Tanner 1986, Tanner and Mead 1986]. His attempt to implement a network for
global motion estimation was both a source of inspiration and the challenge to prove
that a functional implementation of such a network is possible. I am pleased to present
here successful focal-plane implementations of the smooth optical flow network and the
simplified motion discontinuity networks. Their characteristic behavior and performance
under real-world visual conditions is measured and presented.

5.1 Computation of the Image Brightness Gradients

So far, the spatiotemporal brightness gradients that constitute the input to the proposed
networks have been considered to be given. Nevertheless, they need to be extracted
first. We show the circuits that are necessary to compute the spatiotemporal brightness
gradients and discuss the influence of spatial sampling.

5.1.1 Adaptive photoreceptor circuit

At the basis of processing remains the transduction of the visual information into appropri-
ate electronic signals. Preferably, such a transduction stage has to work over a wide range
of light intensities, while remaining sensitive to small contrast changes. The adaptive
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photoreceptor circuit [Delbruck 1993b, Delbruck and Mead 1994] meets these require-
ments and was an early but successful example of how biological phototransduction can
be functionally translated into semiconductor technology. The circuit logarithmically en-
codes the irradiance values. A feedback loop connects the voltage-clamped photodiode
through an adaptive element to the feedback transistor that provides the photocurrent.
The adaptive element adjusts the operating point according to the slow dynamics of the
global brightness while a high gain capacitive divider stage amplifies the transient response
around the common operating point.

In the two presented implementation examples, adaptive photoreceptors are used
where the adaptive element is modified as proposed by Liu [1998] (see schematics in
Figure 5.4). The adaptive element consists of a well-transistor whose gate is controlled by
a native-type source follower that replicates the output node voltage of the photoreceptor
with a gain factor k < 1 and an offset given by the voltage Biaspp4. In first approximation
we assume k to be constant and therefore the source follower ensures that the adaptation
current is exponential in the transient amplitude of the photoreceptor output voltage.
Thus, the adaptation time constant is ideally uniform over a wide output-range and can
be controlled by the gate voltage Biaspya. However, the time constant is not symmetric
with respect to on- and off-transient responses. In addition to its temporal high-pass
filter characteristics, the photoreceptor circuit shows also a low-pass filter behavior!. The
cut-off frequency is determined mainly by the background light intensity, the capacitance
of the photodiode and the parasitic (Miller-)capacitance between output node and photo-
diode. Lowering the bias current of the photoreceptor (by increasing Biaspy) reduces the
speed of the high gain output amplifier, and so allows the cut-off frequency to decrease
below that limit.

To summarize: The adaptive photoreceptor acts as temporal band-pass filter where
the characteristic frequencies are adjustable to some degree. Such a filter stage at the very
beginning of the visual motion process discards the non-relevant high- and low-frequency
contents of the visual information (such as the absolute brightness level or flicker noise)
from propagating into following processing stages.

5.1.2 Continuous temporal derivative circuit

A correct velocity estimation within gradient-based motion circuits is only possible if tem-
poral differentiation is performed accurately over a broad temporal frequency spectrum.
The circuit shown in Figure 5.1 does meet these specifications to a large extent. Originally
called hysteretic differentiator [Mead 1989] and also considered in a slightly different
configuration, it has been used in a number of motion detection circuits [Kramer et al.
1997, Higgins and Koch 1997, Harrison and Koch 1998, Liu 2000].

lsee [Delbruck 1993b] for a detailed analysis
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The hysteretic differentiator circuit consists of a transconductance amplifier, the capaci-
tance C and a stage that provides the rectified output currents that are ideally proportional
to the temporal derivative of the input voltage V. (b) The peak currents of I, and
Iyi— are shown as a function of the applied temporal voltage gradient for a saw-tooth input
waveform with large peak-to-peak amplitude (2 Volts). The currents are plotted for two
different levels of the adjustable source potentials H D+ and HD—. Note that the cut-off
frequency is beyond the largest measured values of the temporal gradient (5000V /sec).
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The circuit consists of a high gain transconductance amplifier that controls the gate
voltages of a pair of transistors of opposite polarity, which are connected at their sources.
The non-inverting input to the transconductance amplifier is driven by the photoreceptor
output while the inverting input is the voltage Vi on the capacitance C. Depending on the
output of the transconductance amplifier, current flows either through the upper transistor
(nFET) to charge the capacitance C or through the lower transistor (pFET) to discharge
C. The current through each branch is mirrored with current mirrors of variable source
potentials H D+ and H D— respectively to provide the rectified and potentially amplified
currents I, and I, of the capacitor current Ic.

Ideal differentiation is performed by a single capacitor, where the current /o flowing
onto the capacitance C'is proportional to the temporal derivative of the voltage Vi across

it, thus
_ 1dWe
“TC a
If we assume the transconductance amplifier has zero output conductance and thus infinite
gain, then the hysteretic differentiator acts as an ideal differentiator, because V¢ follows

(5.1)

infinitely closely the input signal V;,, and the current I is given as in Equation (5.1). For
any time-varying input signal, the amplifier’s output V,,; is always such that it allows
I to flow either from the upper or out of the lower branch of the rectifying circuit. In
steady state, V,,; is adjusted such that the currents through the upper and lower branch
are equal. Still, Vi is infinitely close to V;, because the gain is infinite.

The finite gain of the transconductance amplifier causes some deviations form this ideal
behavior. There is some finite potential difference € = |V}, — V| needed to open either
side of the rectifying circuit enough to provide the necessary currents to the capacitance.
In steady state, € is close to zero and its exact value depends on V,, the amplifier gain
and the transistor characteristics in the rectifying circuit. For a linearly increasing input
signal, the current to the capacitance and therefore I,,;, is at first smaller than the true
derivative current until € is large enough to provide the whole current. If the input signal
stops increasing and stays constant, the output current is still positive for some transition
period until € reaches its steady state value. The same is true for a linearly decreasing
input signal.

The hysteretic differentiator shows a threshold behavior for transitions between input
signals with temporal gradients of opposite sign. In steady state, the leak current through
the reverse-biased junction of the nFET source requires the offset V,,; > Vo to be large
enough to provide the necessary amount of leak current. If the input signal now decreases,
V,ut has to surmount at least this offset in order for the pFET to conduct. Every transition
between positive and negative gradients requires the amplifier output to perform this
voltage step. The offset voltage can be as large as 1 Volt and leads typically to a threshold
voltage €5, = [10...30] mV, depending on the amplifier gain. For signal amplitudes
smaller than ¢, the hysteretic differentiator does not provide a proper measure of the
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temporal derivative.

For large input signal amplitudes where the temporal gradient is constant over some
sufficiently large voltage range, however, the peak currents are a very close approximation
of the temporal derivative. Figure 5.1b demonstrates the wide linear frequency-range of
the differentiator output for large amplitude signals. As shown, the adjustable source
nodes within the output current mirrors allow to tune individually the amplification of
the output currents I, and I,,; . Although the upper frequency limit of accurate dif-
ferentiation was not measured, it exceeds the upper cut-off frequency of the photoreceptor
even under strong illumination conditions [Delbruck 1993b].

5.1.3 Spatial sampling and aliasing conditions

Analog networks naturally provide continuous-time behavior, which is important for any
signal processing in the temporal domain. Although temporal aliasing conditions are
not expected, a focal-plane implementation of an array of single processing units with
individual photoreceptors inevitably implies spatial sampling of the irradiance distribution
on a regular grid due to the finite size of each unit in the array. Figure 5.2a illustrates
the situation for a one-dimensional array with spacing parameter d. Only part of the
incoming visual information is transduced into a current by a single photodiode, leading
to a classical reconstruction problem as dealt within sampling theory. Spatial aliasing?
can occur depending on the array parameter d and the spatial frequency of the irradiance
distribution. The finite size D of the photodiode leads to patch-sampling rather than
point-sampling of the irradiance distribution. Here the fill factor is given by 6 = D/d.
For any 2D active pixel sensor 6 < 1, and usually decreases as increasing computational
complexity is built into a single pixel. While strict point-sampling (6 = 0) preserves
spatial aliasing effects for arbitrarily high frequencies, a finite photodiode size introduces
a low-pass filter characteristics due to the spatial averaging (Figure 5.2b).

We consider a simple visual input presented to a simplified model of the optical flow
network in order to investigate how spatial aliasing and patch-sampling influence the
motion estimation. Assume an arrangement as depicted in Figure 5.2a, where a sinusoidal
brightness grating is moving with a fixed velocity v while it is seen by a one-dimensional
optical flow network. We describe the irradiance distribution as

E(z,t) = sin(kx — wt) with z,t € R, (5.2)

where w = kv and k is the spatial frequency of the projected stimulus.
The estimation of the spatial brightness gradient of a spatially sampled image is an ill-
posed problem per definition [Bertero et al. 1987] and requires a model and optimization

2Definition: aliasing - folding of higher into lower frequency components in a discrete spectrum due
to undersampling of the signal.
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Figure 5.2: Spatial sampling and continuous-time sensing of the irradiance distribu-
tion. (a) Spatial sampling of sinusoidal patterns of different spatial frequencies k (given
in units of the Nyquist frequency [7/d]) in one visual dimension. The discrete spatial
patch-sampling of sinewave patterns discards the visual information outside the shaded
areas and thus leads to a classical reconstruction problem. The approximation of the spa-
tial gradient by a difference operator is influenced by aliasing and becomes significantly
incorrect for higher spatial frequencies. (b) An increasing photodiode size affects both
the temporal and spatial gradient estimation by introducing a low-pass filter behavior but
might also change sign. However, the effect is only significant for high fill factors and/or
very high spatial frequencies. For pure point-sampling (§ — 0) the peak amplitude of the
spatial gradient estimate remains constant while the temporal gradient estimate increases
linearly with spatial frequency.
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procedure very much in the way as introduced in the previous chapters. A smoothness
regularizer at the photoreceptor level could be implemented with a resistive mesh. Instead
the brightness distribution was assumed to be linear in between the sampling points. The
continuous one-dimensional spatial differentiation at location x; thereby reduces to the

[ T+ — T
Ay = (Bt T 6:3)

Considering the average irradiance over D, the discrete spatial gradient becomes

difference operator

1 1 :L‘i-l—d-l—D/Z . 1 J,‘i—d-l—D/Z )
Bant) =33 (5 [ oy Sk de 5 [T e ) e

=154 (sin(k((z; + d) — vt)) - sin(kD/2) — sin(k((z; — d) — vt)) - sin(kD/2))

2 . .
=5y sin(kd) -sin(kD/2) - cos(k(z; = vt)). (5.4)

Similarly, the temporal gradient at location z; is

z;+D/2
Ey(z:.1) =% % Skl —en) ae
—_ %(sin(k(a:i — vt + D/2)) — sin(k(z; — vt — D/2)))
__ %j(cos(k(xi — ut)) - sin(kD/2)). (5.5)

According to (4.22), a single unit of the optical flow network in equilibrium, with no
lateral interconnection, is expected to report normal flow that in the one-dimensional case

reduces to By (0, ) E (13, 1)
T, «\Zi, T) + Upo
Vout (@i, 1) = —— 5.6
i) 0+ Egy(x;,t)? (5.6)
For simplicity we assume the reference motion uy = 0. Substituting (5.5) and (5.4)

into (5.6), we can predict the motion response of a single unit depending on the spatial
frequency of the stimulus and the fill factor ¢ as well as on the weight of the bias constraint
o. Figure 5.3 shows the predicted peak output response for different parameter values
as a function of the spatial stimulus frequency £, given in units of the Nyquist frequency
[w/d]. Note that the response strongly depends on k. Only for low spatial frequencies, the
motion output approximates well the correct velocity. For very low frequencies, the locally
perceived stimulus contrast diminishes and the non-zero o biases the output response
towards the reference motion. As the spatial frequency approaches the Nyquist frequency,
the response increases to unrealistically high values and changes sign at k£ € Z*[r/d]. A
non-zero ¢ and an increasing fill factor reduce this effect. However, their influence is only
marginal for reasonable values of § and small o.
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Figure 5.3: Motion response dependence on spatial stimulus frequency  (a) The ex-
pected response of the optical flow chip according to (5.6) as a function of the spatial
frequency k (given in units of the Nyquist frequency [r/d]) of a sinewave stimulus moving
with velocity v: All solid curves are taken for a single motion unit at location £ = 0 and
time ¢t = 0. Only for low spatial frequencies the motion response resembles the true veloc-
ity. For & > 0.5 the discrete approximation of the spatial gradient leads to a significantly
increased response. At multiples of the Nyquist frequency k£ = [1,2,...,n] spatial aliasing
reverses the direction of the perceived motion. Without the bias constraint (o = 0) the
computation is ill-posed at multiples of the Nyquist frequency and the response goes to
+o0 in their vicinity. Increasing the fill factor does not affect the motion response unless
o > 0. A finite o biases the response at very low frequencies to the reference motion
ug = 0. The dashed curve is the time-averaged response over the duration of one stimulus
cycle. (b) A magnified view covering the same frequency-range as shown in Figure 5.2:
The label of the curves are equivalent to (a). Note that the influence of the fill factor only
becomes significant for unrealistically high spatial frequencies k& > 1.
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In the extreme and hypothetical case where o = 0, (5.6) reduces to

Vout = v % with ug = 0. (5.7)
The computation is ill-posed at spatial frequencies k € Z* and the motion response
approaches infinity close to their vicinity. For k& — 0, however, the correct velocity
estimate is found. Two things are remarkable: Firstly, D drops out in Equation (5.7) which
means that the low-pass filter characteristics of a non-zero fill factor only influences the
response for a non-zero o. Thus, for high k£ the overall motion response increases because
the estimated spatial gradient amplitude remains constant but the temporal gradient
scales linearly (see Figure 5.2). Secondly, the motion output response does not depend
on time nor space, meaning that a uniformly moving sinewave pattern induces a constant
output response.
However, this is not the case for o > 0. According to (5.6) we find the motion response

to be
kd cos(kx; — wt)?

sin(kd) o + cos(kxz; — wt)?

Vout (i, t) = v (5.8)

with
k2d>D?
=0 .
4 sin®(kd) sin®(kD/2)
Since @ > 0, the motion response Vg (x;,t) is in the range between zero and the

hypothetical constant response given by (5.7) at any time ¢. The exact value depends on
the spatial frequency k of the stimulus and the array parameters d and D. Furthermore,
the motion response is now phase-dependent due to the remaining frequency terms in
(5.8). The response follows the stimulus frequency w and thus oscillates sinusoidally. As a
consequence, the time-averaged motion response over the duration of a complete stimulus
cycle (dashed curve in Figure 5.3)

t+T
Vo) = / Voa(zi ) dt with T = (5.9)
t

1
w
is always less than the peak response at the particular place x = 0 and time ¢t = 0, where
the sinewave stimulus shows its highest temporal gradient.

Phase-dependence of the motion response of an isolated motion unit is an inherent
property of the approach caused by the non-zero o and the single spatial sampling scale
in the gradient estimation. The equivalent problem is encountered in motion energy
approaches where quadrature pairs of local spatiotemporal filters with a spatial phase-
shift of 90° have to be combined in order to achieve phase-independent motion energy
responses [Adelson and Bergen 1985, Grzywacz and Yuille 1990, Heeger 1987a]. However,
the collective computation amongst the units of the optical flow network results in the
spatial integration of the visual information and allows to partially overcome the phase-
dependent response of a single unit.
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5.2 The Optical Flow Chip

An aVLSI implementation of the smooth optical flow network derived in the previous
chapter (see Figure 4.2) is presented. Articles on preliminary implementations of this
network have been published already [Stocker 1998, Stocker and Douglas 1999]. The
discussion in the following, however, will be restricted mainly to the latest version, briefly
named the optical flow chip. This prototype implementation consists of a 10x10 quadratic
array of single motion units, each having a size of (124 ym)?, as fabricated in a 0.8 um
BiCMOS process. Detailed process specifications are listed in Appendix E.

5.2.1 Single motion unit

The complete schematics of a single motion unit of the optical flow chip are drawn in
Figure 5.4. Besides the photoreceptor and the hysteretic differentiator circuit, it consists
of two identical sub-parts for each of the two optical flow components, including the feed-
back loops necessary to embed the brightness constraint. The general encoding scheme
throughout the entire cell is such that each variable is encoded as the difference of two
electrical signals, either currents or voltages. Thus for example, the two estimated com-
ponents of the optical flow vector v and v are given as the potentials U, and V, with
respect to some reference voltage Vier.

The circuit is easiest understood if we consider the current equilibrium at the two
capacitive nodes C, and C,. For each node, the sum of four bi-directional currents has to
be zero, namely

e the differential output current of the high output-gain stage (Fz_ — Fz,) and
(Fy_ — Fy,) respectively,

e the output current Ig of the transconductance amplifier,
e the current /g flowing to neighboring units in the resistive network,
e and finally the capacitive current /..

The only purpose of the circuit is to adjust the potentials U, and V., on the nodes
according to the current equilibrium. The design of the circuit ensures that the dynamics
of the potentials map as closely as possible the dynamics derived in (4.16). Since we
have shown that these dynamics are a sufficient condition for solving the optimization
problem, the solution will be provided for free: we just let the circuit behave according
to its natural dynamics!

In steady state when I = 0, the circuit has solved the constraint optimization problem
and the current equilibrium at the capacitive node reflects the necessary condition for the
global solution (4.14).
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We apply the following mapping between the physical quantities in the circuit (currents)
and the mathematical expressions in the dynamics of the optimization problem, exem-
plarily shown for one optical low component:

(F.’L'_|_ o F'IE*) = _E.’L‘ij ( zij Uij + Eyij/vij + Etij)
Is = p (Uip1 + Uic1y + i1 + i1 — 4uij)
IB = 0 (U'ij — Uo) (510)

Hence, each of the above currents represents the momentary influences of the three con-
straints: The lateral currents flowing in the resistive network ensure smoothness; the
conductances of the transconductance amplifiers bias the optical flow estimate U, and V.
to some reference potential Vi.r; and the correction currents (Fz_, Fx,) and (Fy_, Fy,)
force the brightness constraint to hold. However, the size of these currents depends on the
actual estimate of the optical flow. While this dependence is intrinsically respected in the
resistive network and the transconductance amplifier, an explicit feedback loop is needed
to generate the correction currents. This feedback loop (indicated by circular arrows in
Figure 5.4) is expensive from a circuit’s perspective. It has to compute the differential cor-
rection currents which requires the emulation of several mathematical operations (5.10).
Two wide linear-range Gilbert multipliers provide the four-quadrant multiplication E,u
and E,v between the spatial gradients and the instantaneous estimate of the optical flow.

Addition of the output currents of the multipliers and the output currents of the
temporal derivative circuit is performed at the pair of current mirrors. The summed
currents are then mirrored to a second pair of Gilbert multipliers that perform the outer
multiplication with the spatial intensity gradient. Finally, the loop is closed by cascoded
mirroring and re-connecting the multipliers’ outputs to the capacitive nodes C, and C,
respectively.

5.2.2 Wide linear-range multiplier

The design of the multiplier circuit needed to compute E,u and E,v is critical for a
successful implementation of the optical flow network. The demands for such a circuit
are ambitious, including four-quadrant operation and a wide linear-range while keeping
the circuit still as compact as possible. Linearity, in this context, means that the output
current is proportional in each term of the multiplication. The standard Gilbert multiplier
circuit implemented with MOSFETs and operated in weak inversion provides compact
four-quadrant multiplication but offers only a fairly limited linear range [Mead 1989).
We present a modified version of the standard Gilbert multiplier circuit, shown in
Figure 5.5. The circuit embeds the original multiplier within an additional differential
pair that enables the multiplier core to operate above threshold while still providing sub-
threshold output currents. As shown in Appendix D, above-threshold operation of the



5.2. THE OPTICAL FLOW CHIP

Figure 5.5: Wide linear-range multiplier circuit. The main advantage of the circuit is
its compactness and the fact that its linear range and the output current level can be
independently controlled. The bias current I; directly determines the linear range in
above-threshold operation and can be adjusted with V3;. Two ideal diodes logarithmically
transform the currents I, and I_ into a voltage difference that serves as the input to the
outer differential pair and provides the scaled down sub-threshold output currents Ipy+
and I,,;—. The voltage Vo allows to adjust the total output current level to match the
temporal differentiator output.
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simple differential pair circuit increases substantially its linear range. Since a Gilbert
multiplier is a stack of three differential pairs, we expect its linear-range to be enlarged
as well if biased above threshold. In the following, we provide a detailed analysis of this
multiplier circuit and compare the results with measured data.

First, we consider the multiplier core of the circuit that is identical with the original
Gilbert multiplier. We assume all three differential pairs to operate above threshold.
The input to the multiplier is given by the differential voltages AV4 = Vi — V5, and
AVp = V3 — V,, respectively. From Appendix D we know that the saturation currents in
the two legs of the lower differential pair can be described as

2

AT AT
I = 5“(AVA+ $—AVA) and I, = ﬁ’“(—mf,ﬁ “—AVA>

2
8 Bk 8 Bk

These currents are the bias currents for the upper two differential pairs. Thus we find
the total differential output currents to be

2 27
41 41

I =hz+la= el AVg+ [~ — AV | + | —AVp+ [ =2 — AV

8 Bk Bk

and
2

41 41
I—:Il4+f23:@ —AVp + (| — AV + | AV + (| =2 — AVp?
’ ’ 8 ,Blf ﬁ/{

27

The total output current of the multiplier core then simplifies to

Al AL
[ =1, —]_ = ﬁ“AVB <\/ L AVE2 — \/—Q—AV ) (5.11)

Yet, Equation (5.11) does not seem very intuitive to understand. We can derive a more
imaginative form if we expand both square-roots in (5.11) around AV}, according to the

Taylor series
2

T
Ja—z ~ a_Q\/__8a\/c_z

Neglecting second and higher order terms, we find the following approximation:

AVp?
wore o P8 AV AV 14 g
V2 =M 9AY,2

ﬂlﬁ

Equation (5.12) illustrates more clearly the behavior of the multiplier core. In a first

(5.12)

approximation the output current is proportional to the product of the two differential
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input voltages AV, and AVp which is what we require. However, the term in brackets
is not constant because it depends on the input. According to the input limit for the
differential pair (Appendix (D.13)), the denominator has to remain positive, thus in the
interval [0,41,,/Fk]. The complete term in brackets is always > 1 and is monotonically
increasing with increasing inputs AV, and AVg. As a consequence, the multiplier circuit
shows a super-linear behavior, at least as long as all transistors are biased above threshold.
We expect the effect to be pronounced for changes in the input voltage at the upper
differential pairs because the numerator changes directly with AV3.

Before we examine the (super-)linear behavior more closely, we first consider the rest
of the circuit and solve for the total output current I,,;. According to Figure 5.5, the
currents I, and I from the multiplier core induce a logarithmic voltage drop across the
diodes D; and D,. These voltages form the input to the outer differential pair, biased
in the sub-threshold regime according to the bias voltage Vi2. Given the general diode
current (Shockley-equation) as

1
Liiode = Io(exp (;deiT) —-1) (5.13)

and considering the characteristics of the differential pair in sub-threshold operation®, we
find the the total output current of the multiplier circuit to be

log (14 + Io)/(I_ + —70)))
5 .

Towi = Lowss — Lows = Iyo tanh(lm (5.14)

For typical values of k and n, I,,; is some exponential function in the above-threshold
output currents of the multiplier core as illustrated in Figure 5.6. However, if we were to
assume kn = 1, equation (5.14) would simplify to

ICOTG

Lot = Ipg —— 24— 5.15
PR T 4T+ 20, (5.15)
Since I is very small compared with the above-threshold bias current I;, we could safely
neglect it and finally would find
I
Tpur ~ 2 1O | (5.16)
Iy
Hence, the total output current of the multiplier circuit would be the normalized
output of the multiplier core running above threshold, scaled by the bias current Ip;. In
general, however, x of the outer nFET’s and the ideality factor 1/n of the diodes do
not match. Nevertheless, we show in the following that the assumption of linear current
scaling (5.16) is valid when choosing an ideal implementation of the diodes D; and D,.

3see Appendix D
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Figure 5.6: Scaling characteristics of the output current of the multiplier circuit as a
function of kn. The normalized scaling characteristics of the core output current I52;°
to the total output current I, is displayed for different values of kn = [0.5, 3/4, 9/10,
110/9, 4/3, 2]. The curves are computed according to (5.14) with I; /I;o = 1 where the
differential currents I, and I_ are swept completely [0...1] in each case. The dashed line

shows the ideal, linear scaling (kn = 1).

The voltage drop across the diodes D; and D, is such that the gate voltages of the
outer nFET’s are typically within 1 V below V3, meaning that the gate-bulk potentials
are large. In this voltage range, x asymptotically approaches 1 because the capacitance
of the depletion layer becomes negligibly small compared to the gate-oxide capacitance®.
Thus we can assume k = 1 and equal for both nFET’s. Furthermore, the emitter current
of a bipolar transistor shows an ideal diode behavior (n = 1) as a function of the emitter
potential when connecting base and collector to a common reference potential [Gray and
Meyer 1993]. This ideal behavior has also been verified by measuring the emitter currents
of diode-connected native BICMOS and vertical CMOS bipolar transistors (data shown
in Figure 5.9). Deviations occur only at high current densities when high-level carrier
injection becomes relevant. Therefore, implementing D; and D, as diode-connected npn-
bipolar transistors allows us to assume kn & 1 and thus (5.16) to be a valid approximation
for the total output current of the wide linear-range multiplier.

Figure 5.7 shows the measured output characteristics of the wide linear-range multi-
plier for varying input voltages AV, and AVp respectively. At the macroscopic level, the
output current is typically a sigmoidal function of the input voltage. However, a closer

4see Appendix C
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Figure 5.7: Output characteristics of the wide linear-range multiplier. (a) Measured
output currents of the wide linear-range multiplier as a function of the applied input
voltage at the lower differential pair AV4. (b) The same measurement but this time
sweeping the input voltage at the upper differential pairs AVg. In both figures, each
curve represents the output current for a fixed differential voltage AV (0, 0.05, 0.1, 0.15,
0.2, 0.3, 0.4, 0.5, 0.75 V) applied at the non-swept input. The bias voltages were V;; = 1.2
V and Ve = 0.725 V respectively. (c) and (d) Single traces for sweeping AV4 and AVp
respectively are shown, together with a least-square fit according to Equation (5.11) (bold
line) and a linear fit (dashed line). Equation (5.11) characterizes accurately the measured
output currents within the voltage range that obeys the input limits (vertical dotted lines).
Note the small super-linear behavior of the output current for sweeping AVp.
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examination reveals the predicted super-linearity in the response curves. The effect is
almost not noticeable when varying AVy, but is significant when changing input AVp
as shown in Figure 5.7d. The measured behavior nicely matches the fitting functions
according to the derived expression (5.11) and it also supports the linear scaling of the
output currents to sub-threshold level according to (5.16). Of course, the behavior is only
described accurately as long as all transistors in the multiplier core are saturated and
biased in the above-threshold regime.

Operational limits

To keep all transistors in saturation, we have to define some lower limits for the input
voltages. Similar considerations as for the simple differential pair circuit (Appendix D)
lead to the following saturation limits of the multiplier circuit:

max (‘/i, ‘/'2) > % + (% — VT()) and
max (V3,Vy) > max (Vi,Va) + (Vy — Vo) - (5.17)

These are important operational limits that the design of the single motion unit has to
account for (see Figure 5.4). As an immediate consequence, a unity-gain source follower
is added which allows the photoreceptor output voltages to be increased sufficiently to
obey (5.17); because they form the input to the upper differential pairs (V3, Vj) of the
multiplier circuits. The input to the lower differential pair is given by the differential
voltage U, — Vier and Vi — Vi respectively. Since Vi is controllable, it can be set such
that it meets condition (5.17).

In order to keep all transistors of the multiplier circuit core in above-threshold oper-
ation, the maximal differential input voltages are limited. We find the following input

2
AVA < (%1 — VT()) and AVB < g(%l — VT()). (518)

limits

We note that the derived limits (represented by the dotted vertical lines in Figures 5.7c,d)
correspond well with the measured voltage range within which Equation (5.11) describes
accurately the output currents.

Linear range

The linear range of the presented multiplier circuit is almost an order of magnitude larger
than the one of the standard Gilbert multiplier running in sub-threshold. Figure 5.8a
displays the linear range for both differential input stages as a function of the bias current
Iy, where the linear range is defined as the input voltage where the measured output
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Figure 5.8: Linear and saturation range of the wide linear-range multiplier. (a) The
linear range is shown as a function of the bias current I; for both input stages. Linearity
is massively increased in comparison to the sub-threshold regime. The linear range grows
inversely proportionally to the transconductance of the multiplier circuit, as illustrated
by the least-square fit based on (5.19) and (5.20). Due to the super-linear behavior, the
linear range is smaller for variable input AVpg. In practice however, saturation is of much
greater importance because it signals the transition point where the multiplier output
changes drastically its behavior. (b) The output current as a function of input AVp
clearly shows the super-linear behavior (V;; = 1.4 V). The range of linearity (dashed lines)
is significantly smaller than the range where the output is not saturating (dash-dotted
lines).

current deviates by less than 5% from a linear fit through the origin. Due to the expansive
non-linearity, the linear range for the input AVp is much smaller as shown in Figure 5.8b.

We can estimate the size of the linear range as a function of the bias current of the
multiplier core. The maximal slope of the normalized output currents for given inputs
AVy, AVp is proportional to the transconductance. Under the assumption that the output
currents represent similar sigmoidal functions, the linear range is inversely proportional
to the transconductance of the multiplier. The two fitting functions, based on the inverse
of the transconductances (5.19) and (5.20), describe fairly well the measured linear ranges
as shown in Figure 5.8a and prove that above assumption is valid.

In the following, the transconductances of the multiplier circuit will be determined for
each of the two differential input voltages. Differentiating (5.16) with respect to AV, and
AVpg respectively leads to

Ol ot 1 Iy Iy
A = = — ZBgAV, 5.19
JmA OAVAIAVA—50,Vp=const. /2 Iy fr B\/]bl — BrAVE/2 ( )
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and

01, 1 I
- S Y IN 5.20
B 8AVB AVp—0,V4=const. \/5 Ib1 ﬁﬁ: 4 ( )

9

The effect of the expansive non-linearities on the motion output of a single motion unit
is much less significant than the impact of saturation of the multiplier observed for large
inputs. Saturation starts when the inputs AV, AVjp exceed the input limits (5.18)5. The
input range for which the multiplier is not in saturation, is almost equally large for both
inputs and slightly beyond the linear range found for AV/,.

Diode implementation

In principal, base-emitter junctions can be exploited either using native bipolar transis-
tors in a genuine BiCMOS process or the vertical bipolar transistors in standard CMOS
technology. Vertical bipolar transistors are intrinsically present in all well-type MOSFETSs
as schematically shown in Figure 5.9b. The use of vertical bipolars is insofar limited as
they have a common collector which is the substrate. As a consequence, only one type of
vertical bipolars is available depending on the substrate doping (e.g. only pnp-bipolars
with a p-doped substrate) which would require to invert the complete multiplier circuit®.

It is important that the bipolar implementation of the diodes D; and D, guarantees
an ideal behavior over a sufficiently large above-threshold current range. To test this we
measured the base-emitter voltage Vzg as a function of the applied emitter current Iy for
both, a vertical pnp-bipolar transistor in a typical p-substrate CMOS process and a native
npn-bipolar transistor in a genuine BICMOS process. As shown in Figure 5.9¢, the two
emitter currents depend exponentially on the base-emitter potential for low current values.
At current levels above 1 pyA, the vertical bipolar starts to deviate significantly from its
exponential characteristics due to high-level injection that is caused by the relative light
doping of the well (base) [Gray and Meyer 1993]. Nonetheless this occurs already at a
current level that is below the range where the multiplier core is preferably operated at.
The exponential regime of the native bipolar, however, continues up to 0.1 mA. Although
a CMOS implementation of the diodes would be preferable to avoid the more complex
and expensive BICMOS process, that approach is inconsistent with a correct operation
of the multiplier circuit. Figure 5.9d shows that the standard deviation between different
devices of both types of bipolar transistors reveals only a small current mismatch in the
order of 1%.

Ssee also Figure 5.8b (dashed lines)
6i.e. replace all native with well-transistors and switch the rails
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Figure 5.9: BiCMOS bipolar versus vertical CMOS bipolar transistor.

(a) Cross-section

of a native npn-bipolar transistor. BiCMOS processes usually use a highly (n+) doped
buried layer to achieve low collector resistivity and thus fast switching. (b) In standard
CMOS technology, the intrinsic vertical pnp-bipolar can be activated within a normal
pFET. Considering either drain or source as the emitter, the well serves as base and the
substrate as the common collector. Obviously, this heavily constrains the use of multiple
vertical bipolars. (c) The measured emitter currents for the native npn-bipolar and the
vertical pnp of a pFET are shown. In both cases base and collector are shorted and the
emitter potential is moved. Note that the deviation from the exponential characteristics
for the pFET bipolar occurs already at 1uA, thus below the range the wide linear-range
multiplier is preferably biased. This deviation is mainly caused by high-level injection due
to the relatively lightly doped well (base). (d) The measured relative standard deviation
(n=6) for the native bipolar (Ag = 4 ym?) and for two pFETSs with two different emitter

sizes (4 um)? and (2.6 ym)?. Data is given for currents within the exponential regime of
the vertical bipolar.
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Non-linearities in the feedback loop

The output current of the multiplier circuit saturates for large input voltages. What does
this mean in terms of the expected motion output of a single unit of the optical flow chip?

For the sake of illustration, we once more assume a one-dimensional array of the
optical flow network. Furthermore, we disable all lateral connections and neglect the bias
constraint (p = 0,0 = 0). Then, for given spatiotemporal brightness gradients, the circuit
ideally satisfies the brightness constraint

Eau+E,=0. (5.21)

Now, assume that the multiplication E,u is replaced by the saturating function fg, (u)
with F, held constant, where f describes the output characteristics of the proposed mul-
tiplier circuit and E, and u represent its input voltages’. Since f is one to one, we can
solve for the motion response

u= fH-E) . (5.22)

Unfortunately, Equation (5.11) only describes the multiplier circuit accurately if all its
transistors are running above threshold which is, in particular, not valid in the saturation
region of the multiplier. For reasons of simplicity and because we are only interested in the
qualitative effect of the saturation behavior, we assume the output IS;;° of the multiplier
core to follow a simple sigmoidal function tanh(u) for any given E,. Considering the total
output current of the wide linear-range multiplier (5.16), we now rewrite the saturating
function fgp_(u) = cg, Ipe/Iy tanh(u), where the constant cg, is according to E,, and find

u= —artanh(ﬁEtc;;l) : (5.23)
Iy ¢

Figure 5.10 illustrates the expected motion response according to (5.23) for different
values of the bias current I,. We see that the motion output overestimates the stimulus
velocity the more the multiplier circuit starts to saturate and finally ends up at the rails!
The more the output of the multiplier circuit is below the true multiplication result, the
more the feedback loop raises v in order to make the brightness constraint (5.21) hold.

Considering the correct characteristics of the real multiplier circuit, the response will
look different from the curves in Figure 5.10 insofar as the linear range is increased and
the saturation transition is sharper and more pronounced. Nevertheless, Figure 5.10
illustrates the qualitative response behavior nicely. Increasing I decreases the slope of
the motion response. Thus, the bias current of the outer differential pair acts as gain
control that allows, e.g. the linear range of the motion response to be adjusted to the
expected motion range so obtaining the highest possible signal-to-noise ratio.

"According to the notation in the schematics of the optical flow unit (Figure 5.4), the inputs to the
multiplier circuit are the differential voltages E, = Phyy — Phy— and u = Uy — Vier.
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Figure 5.10: FEzpected motion response due to saturation of the multiplier circuit. The
figure shows qualitatively the expected speed tuning curves according to Equation (5.23).
Note that the more the function f saturates, the more expansive is the motion response
curve. The different curves correspond to different values of the bias current Ips. The bias
voltage Vi controls the response gain and thus allows to adjust it to the velocity range of
the expected visual motion.

The presented multiplier circuit provides compact four-quadrant multiplication where
the linear/saturation range and the multiplication gain can be separately controlled by
two bias voltages V3 and Vjy. The disadvantages are the increased power consumption
caused by the above-threshold operation and the need for BICMOS process technology to
implement diodes showing an ideal behavior over a sufficiently large current range.

5.2.3 Cascoded current mirror and the effective bias constraint

As shown in the schematics of the single motion unit (Figure 5.4 ), the bias constraint is
implemented by a transconductance amplifier configured as unity-gain follower. Instead
of an ohmic current (5.10), it generates a saturating leak current Ip that is a function of
the voltage difference between the voltage U+ and V4 respectively, and V., the virtual
ground or zero-motion level in the circuit. The bias constraint transforms from a quadratic
to an absolute-value function for increasing voltage differences®. The saturation current
and therefore the strength of the bias conductance is controlled by the bias voltage Biasop
of the transconductance amplifier. Consider the current equilibrium at the capacitive

8see also previous discussion in Section 4.2.1
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Figure 5.11: Cascoded current mirror and the effective bias conductance (a) A n-type
cascoded current mirror. (b) The effective bias conductance at the capacitive feedback
node is the combination of the output conductances of the current mirrors g,n and g,ps
and the transconductance of the operational amplifier gp;qs-

nodes Cy, C, in the single motion unit. In steady state, we assumed all currents onto
these nodes to represent the different constraints according to the dynamics (4.19). To be
completely true, this would require the feedback current to be generated by ideal current
sources. However, the small but present output conductances of the feedback nodes induce
a deviation from such an ideal model.

Figure 5.11b shows one of the feedback nodes used in the single motion unit. According
to the figure, an incremental increase of V' requires the total correction current F, — F_
to be larger than actually defined by the constraint dynamics by an amount that is
proportional to the sum of the conductances g,y and g,p. The extra current has to
be provided by the feedback loop and thus alters the computational result. Since this
current depends proportionally on the voltage V', we can understand it also as the second
bias current in addition to the current through the transconductance amplifier. It biases
the capacitive node to a reference voltage, however, that cannot be controlled and that
depends on various issues like the strength of the currents F'; and F'_ or the Early voltages
of the transistors. In general, this reference voltage is not identical with V... Thus, the
superposition of the two bias currents has an asymmetric influence on the final motion
estimate. Since the total correction currents are typically weak, the effect is significant
and cannot be neglected. It is therefore necessary to reduce the output conductances as
much as possible.

A cascoded current mirror circuit as shown in Figure 5.11a reveals a significant decrease
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in output conductance compared with a simple current mirror. Using the notation as in
Figure 5.11a and neglecting the junction leakage in drain and source, we find the output

conductance to be

Go = g1 222 (5.24)

9ms3
where ¢43 and g,,,3 are the drain- and transconductance of transistor M3 and g,; is the

output conductance of transistor M;. We immediately see, that the decrease in output
conductance compared to g, (the output conductance of a simple current mirror circuit)
is in the order of a factor
ds3 _ UT
9ms3 B VE,M3

~ 250...500 , (5.25)

where Uy is the thermal voltage k¥T/q and Vg x denotes the Early voltage of transistor X.
Applying the same analysis to the p-type current mirror, the final output conductance of
the feedback node (see Figure 5.11b) becomes

F,- Ur F - Ur

Ven Vene  Vepi Vep2

Jo = GoN + Gor = (526)

The output conductance depends equally strongly on both transistors in the cascoded
current mirror. Since the Early voltage is proportional to the length of a transistor’ both
transistors should be long in order to reduce the output conductance. If restrictions in
implementation area do not allow this, then the length of the mirror transistor preferably
has to be increased at the expense of the length of the cascode transistor because of
matching reasons.

The total output conductance depends also on the strength of the correction currents
F, and F . The correction currents are mainly determined by the bias voltage Biasyy;o of
the multiplier circuit. We have previously shown that increasing this bias voltage allows to
adjust the motion output range in order to detect higher visual speeds. However, a higher
total output conductance also pronounces the unwanted second order effects (asymmetry).
As a consequence, gp;,s has to be sufficiently large to counter-balance these asymmetric
influences and allow the implementation of the exact bias constraint. From an algorithmic
point of view, however, we want to keep the strength of the bias constraint minimal to
achieve a best possible optical flow estimate. Thus again, it is very important to minimize
the output conductances of the feedback nodes.

5.2.4 Implementation of the smoothness constraint

The implementation of the smoothness constraint consists of two resistive networks of
saturating resistors. The general characteristics of these elements has been discussed
previously!'® where we have shown that their non-ohmic conductances reduce smoothing

9see Appendix C
10gee Section 4.2.1
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across large voltage differences. This anisotropic smoothing process allows motion inte-
gration to take place preferably in areas of common motion. The cost function associated
with the smoothness constraint reduces to the absolute-value function for voltage differ-
ences that are in the saturation region of the saturating resistors. The resulting optical
flow estimation is enhanced compared to the case of using ohmic conductances!!. Inter-
estingly, it is by far more convenient to implement saturating resistive elements in CMOS
than ohmic resistors that are adjustable.

The saturating resistances are implemented using the Horizontal Resistor (HRes) cir-
cuit proposed by Mead [1990]. As shown in the schematics in Figure 5.4, a single transcon-
ductance amplifier with an additional diode-connected transistor in the output leg and
four pass transistors are required to implement the resistive connections to the four neigh-
boring units. For voltage differences within the small-signal linear range of the amplifier,
the conductance is proportional to the bias current controlled by the gate voltage Biasyg.
Above the linear range, the current through the pass-transistor saturates and is equal to
half of the bias current. Thus, the bias voltage Biasyg sets the saturation current glob-
ally whereas the smoothing is anisotropic and locally controlled by the instantaneous
voltage distribution in the resistive networks.

5.3 Performance of the Optical Flow Chip

In the following, the measured behavior of the optical flow chip to moving real-world stim-
uli is presented and discussed. For all measurements the stimuli were projected directly
onto the chip via an optical lens system. The stimuli were either generated electronically
and displayed on a computer screen, or were physical moving objects e.g. printed patterns
on a rotating drum. The wide-range characteristics of the adaptive photoreceptor makes
the optical flow chip relatively insensitive to the absolute irradiance level. The measured
on-chip irradiance in all the experiments was within one order of magnitude with a mini-
mal value of 9 mW /m? for very low contrast computer screen displays. At such low values,
the rise time of the photoreceptor circuit is in the order of a few milliseconds [Delbruck
1993b]. This is sufficiently fast considering the applied stimulus speed in those particu-
lar measurements. The bias voltages are named according to the labels provided in the
schematics shown in Figure 5.4. Unless indicated differently, the bias voltages were all
sub-threshold and were kept constant at their mentioned standard values. The measured
output signals are always shown with respect to the potential voltage Vs

"as shown in Figure 4.11



5.3. PERFORMANCE OF THE OPTICAL FLOW CHIP 113

5.3.1 Characterization of the motion circuit

Moving sinewave and squarewave gratings were applied to characterize the motion re-
sponse for varying speed, contrast and spatial frequency of the gratings. Furthermore,
the orientation tuning of the optical flow chip and its ability to report the intersection-
of-constraints estimate of visual motion are tested. In order to increase the robustness
of these measurements, the presented data constitutes the global motion signal, thus the
unique, collectively computed solution provided by the 10x10 units of the optical flow
chip. Although we measured the response of single isolated units to be very similar to the
shown global responses they were less robust. In particular, pronounced mismatch effects
require an increased weight of the bias constraint that deteriorates the output response
with respect to its sensitivity to contrast and spatial frequency. The impact of mismatch
will be discussed in a later section.

Speed tuning

Figure 5.12 shows the time-averaged response of the optical flow chip to a moving sinewave
grating of high contrast (80%) and low spatial frequency (0.08 cycles/pixel). Each data
point represents the mean value of 20 single measurements, each being the output voltage
time-averaged over one stimulus cycle. As a consequence, the measured standard devia-
tion is rather small. Only the component of the optical flow vector is displayed that is
orthogonally oriented to the moving direction of the grating.

The response is almost linear in stimulus speed within the voltage range that is equiv-
alent to the non-saturated range of the multiplier circuit. For the given bias strength
of the multiplier core (Biasyyy; = 1.1 V), the linear range is approximately +0.5 V
as indicated by the dash-dotted lines. Beyond the linear range, the response quickly
increases/decreases and finally hits the voltage rails on either side (not shown), as pre-
dicted'?. Within a small range around zero motion, the optical flow output slightly
underestimates the stimulus velocity.

The two graphs in Figure 5.13 show each the different speed-tuning curves as a function
of the bias voltage Biasyy;, for a moving sinewave and a squarewave grating of equal
contrast and spatial frequency respectively. As expected, increasing Biasyyo leads to a
smaller response gain and thus expands the linear output range. The solid lines represent,
the linear fits to the individual measurements. The slope of these lines roughly scales by
a factor of one half for a fixed increase in bias voltage by 30 mV. Therefore, the gain is
inversely proportional to the bias current as we predicted according to Equation (5.23).
The bias voltage Biasyyye allows to optimally adjust the limited linear operational range
of the optical flow chip to the speed of the expected visual motion. It also allows re-
calibration if scale changes are applied in the optical pathway. The slope values for the

2¢compare also with Figure 5.10
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Figure 5.12: Speed tuning of the optical flow chip. The measured time-averaged speed

tuning of the optical flow chip to a moving sinewave grating is shown (spatial frequency

0.08 cycles/pixel, contrast 80%). The tuning curve follows qualitatively the predicted

response, showing the expanding non-linearity due to the saturation of the multiplier

circuits.

two different stimuli are almost identical (see the insets in Figure 5.13). This suggests
that the speed tuning is not dependent on the spatial frequency spectrum of the stimulus
as long as the fundamental frequency is the same.

Figure 5.14 reveals a closer look to both, the low and high speed limits of operation.
For appropriate values of Biasyyre, the range of reliable speed estimation spans three
orders of magnitude, from 1 pixel/sec up to at least 3500 pixels/sec. Higher visual speed
values are likely to be measured reliably but were not possible to be produced by the used
test-setup. In principle, the upper bound of accurate speed estimation is given by the
low-pass filter cut-off frequency of the photoreceptor and/or the hysteretic differentiator.

Very low speed values are difficult to be estimated correctly; even the direction of
motion can be confounded (Figure 5.14a). Given the low output currents from the wide
linear-range multiplier due to its low bias voltage Biasyy, = 0.35 V and considering
the very low currents from the temporal differentiator for such small stimulus speeds, the
total differential currents at the capacitive feedback nodes are also low and dynamic second
order effects dominate, modulated by the slowly varying photoreceptor outputs. However,
zero motion is reliably detected since the input is constant and the slow time constant
induced by the weak bias constraint (Biaspp = 0.30 V) is not expressed in the time-
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(a) The measured time-averaged motion response

of the optical flow chip for a moving sinewave grating is shown as a function of the
multiplier bias voltage Biasyyyz (0.5, 0.53, 0.56, 0.59, 0.62 V). The voltage gain decreases
exponentially in the bias voltage (see insets). Thus, the linear range of the response can

be adjusted to the speed range of the visual stimulus.
a squarewave grating of same spatial frequency and contrast.

(b) The same measurements for
The comparison of the

measured slope values for the two stimuli reveals an almost identical response behavior.
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Figure 5.14: Speed detection limits of the optical flow chip. (a) The measured
time-averaged motion response of the optical flow chip biased to detect very low speeds
(Biasyyre = 0.35 V). The chip is able to reliably detect low speeds down to 1 pixel/sec. (b)
Appropriately biased (Biasyyje = 0.67 V), high speeds up to 3500 pixels/sec were applied
and could be measured reliably.

averaged measurements. Subsequentially, the deviation at low velocities is suppressed for
higher current densities, that is higher values of Biaspp and Biasyys.

Contrast dependence

The output of the optical flow chip depends continuously on the contrast. The lower the
contrast, the more dominant is the influence of the bias constraint, forcing the response
towards the reference voltage Vier. Figure 5.15a shows the output voltage as a function
of stimulus contrast for a moving sinewave and squarewave grating stimulus of constant
speed (30 pixels/sec) and identical spatial frequency (0.08 cycles/pixel). Each data point
represents the mean value of 20 single measurements, each being the time-averaged output
voltage over one stimulus cycle.

Below a critical contrast value of about 35%, the output signal decreases rapidly to-
wards zero motion. The squarewave stimulus shows a slightly sustained resistance against
the drop-off. A least-square fit is applied according to Equation (5.6) (solid lines). In
particular, for the sinewave grating stimulus, the fit gets slightly worse around the critical
contrast value because of the non-linear bias conductance implemented by the transcon-
ductance amplifier. The effective conductance decreases with increasing motion output
signal while Equation (5.6) assumes a constant o. As a consequence, the measured re-
sponse curve rises faster and exhibits a flatter plateau than the fitting curve.
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Figure 5.15: Contrast dependence of the motion output. (a) The motion output is mea-
sured as a function of stimulus contrast for sinewave and squarewave gratings of constant
speed (30 pixels/sec) and spatial frequency (0.08 cycles/sec). The bias constraint forces
the responses towards zero motion for low stimulus contrast. Especially for the sinewave
grating, the measured response curves exhibits a sharper onset and a flatter plateau be-
havior than the fitting functions which is due to the non-ohmic bias conductance. (b)
Increasing values of the bias voltage Biaspp (0.15, 0.23, 0.26, 0.29, 0.32, 0.35, 0.45 V)
lead to a stronger contrast dependence even at high contrast values, here shown for the
sinewave grating stimulus. In the extreme case (bottom two curves), the output signal
deteriorates and becomes proportional to the product of the spatial and temporal inten-
sity gradient. Due to the early saturation of the second, simple Gilbert multiplier, the
expected quadratic dependence is only noticeable at small signal levels (< 150 mV) and
transfers above towards a linear function of contrast.

The influence of the bias conductance on the contrast tuning is shown in Figure 5.15b
using the same sinewave grating stimulus as before. Increasing values of the bias volt-
age Biaspp strongly decrease the output voltage at low contrasts and induce a contrast
dependence even for high contrast values. For high values of the bias voltage, the bias
conductance dominates the denominator in Equation (5.6). Thus the motion signal be-
comes quadratically dependent on contrast (E,E;). The motion estimation reduces to the
multiplication of the spatial and temporal brightness gradients which simplifies the com-
putational complexity drastically (see also Figure 4.3). In fact, such simple spatiotemporal
gradient multiplication makes the costly feedback architecture of the circuit obsolete and
can be implemented in a much more compact way [Horiuchi et al. 1994, Deutschmann
and Koch 1998a]. The expected quadratic dependence can be observed in Figure 5.15b
only at very low contrast levels, because the simple Gilbert multipliers responsible for



118 CHAPTER 5. NEUROMORPHIC IMPLEMENTATION

2. -
= 2
3 5
g =
S 3
S g
5] IS
S €

o sinewave grating %

* squarewave grating

0 05 1 15 0 05 1 15
a spatial frequency k [17d] b spatial frequency k [1vd]

Figure 5.16: Spatial frequency tuning of the optical flow chip. (a) The spatial frequency
response was measured for a sinewave and squarewave grating of constant speed (30 pix-
els/sec). For frequencies k < 1 [r/d], the response follows closely the expected response
(fit - solid curve). (b) Increasing the bias voltage Biaspop (0.1, 0.15, 0.2, 0.25, 0.30, 0.35,
0.40 V) reduces the overall response and shifts the peak response towards the spatial fre-
quency k = 0.5 [r/d], where the spatial gradient and thus the local contrast is highest.
Only the response to sinewave gratings is shown.

the product of the spatial and temporal gradient saturate early and lead then to a linear
dependence on contrast.

Spatial frequency tuning

The third stimulus parameter tested was spatial frequency. Moving sinewave and square-
wave gratings (80% contrast, 30 pixels/sec) of varying spatial frequency were presented
to the chip. Figure 5.16a shows the motion output of the optical flow chip to sinewave
and squarewave gratings as a function of increasing spatial frequency. Again, each data
point represents the mean value of 20 single measurements, each being the time-averaged
output voltage over one stimulus cycle. The spatial frequency k is given in units of the
Nyquist frequency [7/d].

The difference in waveforms does not have a significant effect onto the response. A
least-square fit according to Equation (5.6) was performed on the response to the sinewave
grating for frequencies k£ < 0.75. For spatial frequencies £ < 0.06, the locally measured
spatial gradients on the chip surface are very low and thus the bias constraint dominates
and forces zero motion. As in the contrast measurements, we recognize a steeper slope of
the response curve compared with the fit for frequencies below the critical value. Again,
this is caused by the non-ohmic bias conductance. As a positive consequence, the response



5.3. PERFORMANCE OF THE OPTICAL FLOW CHIP 119

shows an extended plateau behavior in the frequency range 0.06 < £ < 0.3. As spatial
frequencies become high £ > 1, the response curves rapidly drop towards zero and remain
small. The deviation from the predicted response behavior, as shown in Figure 5.3 where
large negative values occur as the spatial period drops below the double inter-pixel distance
d, were induced by the non-optimal test setup that was not able to project a high spatial
frequency stimulus with sufficiently high local contrast onto the chip surface.

The strength of the bias voltage Biaspp affects the amplitude of the motion response
as well as the spatial frequency for which the motion response is maximal as shown in
Figure 5.16b. Recall that, increasing Biaspp decreases the motion output the more, the
smaller the local spatial gradient is. Because E, is largest at £ = 0.5 (see Figure 5.2) the
spatial frequency for which the motion output is maximal moves more and more towards
this value with increasing values of Biasgp.

Orientation tuning

The ability of the optical flow chip to accurately estimate two-dimensional visual motion
is superior to other reported hardware implementations. An orthogonal sinusoidal plaid
pattern (spatial frequency 0.08 cycles/pixel, contrast 80 %) moving with constant speed
(30 pixels/sec) was presented to the chip and the global motion response was measured
for different directions-of-motion of the pattern. Each data point represents once more
the mean value of 20 single measurements, each being the time-averaged output voltage
over one stimulus cycle.

Figure 5.17 shows the applied plaid stimulus and the measured global motion com-
ponents U and V' of the optical flow chip as a function of the direction-of-motion. The
output fits well the theoretically expected sine and cosine functions. Note that the least-
square-error fit (solid lines) reveals a slight orientation offset of about 6 caused by the
non-perfect calibration of the stimulus orientation with the orientation of the optical flow
array.

Intersection-of-constraints solution

The optical flow chip is able to solve the aperture problem. To demonstrate this property,
we presented a high contrast visual stimulus to the chip that consisted of a dark triangle
on a light non-textured background, moving in different directions. The particular object
shape requires the collective computation of the intersection-of-constraints solution in
order to achieve the correct global motion estimate. The triangle was moving with a
speed of 30 pixels/sec and the figure-ground contrast was 80%.

Figure 5.18 shows the applied stimulus and the global motion output of the chip for a
constant positive or negative object motion in the two orthogonal directions. Each data
point thereby represents the time-averaged global motion vector for a given strength of
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Figure 5.17: Orientation tuning of the optical flow chip. The optical flow chip exhibits
the expected cosine- and sinewave tuning curves for the orthogonal motion components U
and V. The sinusoidal plaid stimulus was moving at a velocity of 30 pixels/sec and the
bias voltages were set as Biasyyp=0.46 V and Biaspop=0.28 V respectively.

the bias constraint.

For strengths of the bias constraint smaller than a particular threshold value (Biaspp <
0.25 V) the optical flow chip almost perfectly reports the true object motion in either of
the four tested directions. A small tilt of the motion vector in the order of less than
10°remains as the result of the remaining intrinsic output conductance of the feedback
node (see Section 5.2.3). By contrast, the vector average integration scheme would lead
to a deviation in direction of 22.5 for this particular object. As the strength of the bias
constraint exceeds the threshold value, the reported speed decreases rapidly and the result-
ing direction estimation resembles the characteristics of a more vector average estimation
scheme. A further increase in the bias voltage Biaspp strengthens the bias constraint
further such that the chip is not able to respond at all anymore. These findings match
very well our theoretical predictions. Because an increase in bias strength is equivalent
to a decrease in stimulus contrast, the recorded trajectories also qualitatively fit the ones
from simulation®3.

Note, that the threshold value of the bias voltage is slightly smaller than the minimal
value required in any practical applications. A minimal level of Biaspp is needed in order
to counterbalance any second order effects and is defined as the minimal voltage for which
the chip still robustly reports a zero motion output if the visual contrast vanishes and the

13see Figure 4.6
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Figure 5.18: Solving the aperture problem. The time-averaged output of the optical
flow chip is shown for a triangular object moving in orthogonal directions. The collective
computation of the intersection-of-constraints solution is required in order to achieve the
correct global motion estimate. Data points along each response trajectory correspond
to particular bias voltages Biasop (0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.33, 0.36, 0.39, 0.42, 0.45,
0.48, 0.51, 0.75 V) where increasing voltages decrease the length of the motion vectors.
The optical flow chip is capable of solving the aperture problem. Increasing the influence
of the bias constraint, however, leads to a global motion estimate that represents more a
vector average solution (compare also with Figure 4.6).

photoreceptors are completely adapted.

5.3.2 Flow field computation

The optical flow chip contains scanning circuitry that allows the optical flow field and the
local photoreceptor signals to be simultaneously scanned at rates up to 5000 frames/sec.
Figure 5.19 shows images of the photoreceptor signals and the instantaneous flow fields
to various stimuli such as a dark dot on light background moving to the left (a,b), a black
and white grid moving to the right (c,d) and part of a hand on a light background, moving
to the lower right (e,f). For all these stimuli, the optical flow chip provides qualitative
reasonable local estimates of visual motion.

The lateral coupling of the units was set such that interaction was fairly limited.
As a consequence, the resulting flow field approximates normal flow in areas where the
aperture problem holds. This can particularly well be observed for the grid pattern where
the optical flow vectors tend to be perpendicularly oriented to the edges of the grid.
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Figure 5.19: Samples of reported optical flow fields. (a,b) The scanned photoreceptor
signal and the optical flow field are displayed for: a dark point horizontally moving to the
left on a light background (a,b); a grid pattern that moves to the right (c,d) and a hand
moving in the direction of the lower right corner of the image.
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Figure 5.20: Optical flow fields of increasing smoothness. The optical flow fields of a
sinewave grating moving to the upper right are shown for increasing values of the bias
voltage Biasgr (b-d). The image of the associated photoreceptor output is displayed in
the upper left (a).

Only at the grid nodes, spatial gradients of different orientations are provided within the
local kernel of interaction which makes the collective computation of the correct pattern
motion possible. Anisotropic smoothing due to the characteristics of the HRes circuit can
be observed in the optical flow field of the moving dot stimulus. The flow field within
the dot area is smooth whereas the flow gradient between figure and background is steep.
This leads to an improved optical flow estimate that is closer to the correct (global)
intersection-of-constraints solution.

Figure 5.20 demonstrates how the applied HRes circuits allow to control the strength
of the smoothness constraint and thus the smoothness of the resulting optical flow field: A
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sinewave grating stimulus is moving to the upper right direction and the estimated optical
flow is shown for three different values of the bias voltage Biasyg (0.25, 0.38 and 0.8 V). As
the voltage increases, the optical flow estimate becomes smoother and finally represents
a global estimate that does not exhibit any local motion information anymore. The bias
constraint controlled by Biaspp allows the chip to compute normal flow. Note however,
that most of the estimated flow vectors in (b) and (c¢) do have a slight bias towards a
direction straight to the right-hand side that disappears in the global estimate (d). This
shows that robustness and accuracy increase with larger and larger spatial interaction.

5.3.3 Non-idealities and limitations

As discussed in Section 5.1, the instantaneous motion response is expected to be phase-
dependent on the stimulus frequency. Measuring a single, isolated motion unit confirms
this expectation. We also see deviations from the ideal expected behavior that are the
result of potential offsets in the intensity gradient estimation. These offsets are predom-
inantly induced by mismatch in the responsible circuits due to local variations in the
fabrication process.

Figure 5.21a shows the measured trajectories of the two optical flow components of a
single, isolated motion unit. A sinewave grating moving with constant velocity is presented
that is oriented such that the U-component of the flow vector is positive and the V-
component is ideally zero. The top trace represents the photoreceptor output of the unit.
It is clear that the mean response of the motion output over a complete stimulus cycle is
in qualitative agreement with the presented visual motion, having a positive U-component
and an approximately zero V-component. The individual trajectories, however, typically
vary widely and the U-component even takes on values indicating motion in opposite
direction.

Offsets in the estimation of the spatial and temporal gradients can explain the observed
behavior to a large extent. Figure 5.21b shows the simulated instantaneous response
of a single motion unit to a sinewave grating stimulus (top trace) in the presence of
offsets in the spatial gradient estimation. Each trace represents the response according
to Equation (5.6) with a constant offset A added to the computed spatial gradients. If
there is no offset assumed, the output reports the correct visual motion most of the time
except when the spatial gradient becomes zero and the bias constraint dominates and
enforces zero motion. Adding offsets in the order of 25% or 50% of the maximal spatial
gradient changes the response behavior drastically. If offset increases the spatial gradient
estimate, the motion output decreases. It even changes sign if the effective gradient is
smaller than the mismatch induced. When the offset decreases the effective gradient, the
motion response is increased. The amount of increase and decrease in response is not
equally large, due to the divisive influence of the spatial gradient in the computation of
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Figure 5.21: Mismatch in the computation of the spatiotemporal brightness gradients.
(a) The typical instantaneous output of a single isolated motion unit to a sinewave grating
exhibits non-ideal behavior due to mismatch. The photoreceptor output (top trace) and
the two voltages U and V, representing the components of the local optical flow vector, are
shown. Offsets in the computation of the spatial and temporal brightness gradients due to
mismatch in the photoreceptor and in the hysteretic differentiator circuit can explain to a
large extent the observed behavior, as shown in the following simulation results. (b) Ad-
ditive offsets in the spatial gradient estimation result in an asymmetric and phase-shifted
motion output. (c) Additive offsets in the temporal gradient estimation also induce asym-
metric changes in the response but no phase-shift. (d) A gain offset in the off-transient
(or on-transient) current of the hysteretic differentiator (which is likely to be induced
through mismatches in the current mirrors of the circuit) results in a asymmetric response
that significantly affects the time-averaged response. Note in all above cases, that even
for no offsets, the response is phase-dependent on the stimulus due to the bias constraint.
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the motion output. As a consequence, the output becomes increasingly asymmetric with
increasing offsets. The locations of the extrema in the simulated trajectories undergo a
phase-shift which can be observed in the measured trajectories as well.

The effective additive mismatch in the spatial gradient computation of the optical flow
chip was estimated by measuring the variations of the individual photoreceptor outputs in
their adapted state to a uniform visual input. These variations lead to an absolute mean of
the mismatch in spatial gradient estimation of 21 mV with standard deviation of 18 mV.
The relative impact of the mismatch depends of course on the effective spatial gradient
imposed by the stimulus. For example, the sinewave grating stimulus used previously
with 80% peak contrast induces a peak-to-peak amplitude of the photoreceptor output
of approximately 500 mV. Given a spatial stimulus frequency of 0.08 cycles/pixel, the
maximal'? local spatial gradient signal is approximately 125 mV. Thus the measured
mismatch is in the order of 17% of the maximal effective spatial gradient. Obviously, the
photoreceptors are not adapted when exposed to a time-varying stimulus. Although the
gain mismatch of the photoreceptor output in the transient regime is usually smaller than
in the adapted state, the overall offset certainly increases.

Additive offsets in the temporal gradient computation have a similar effect on the
resulting output which is illustrated in Figure 5.21c. However, the responses to both half-
cycles of the stimulus are more symmetric than for offsets in the spatial gradient. The
previously observed phase-shift of the peak responses does not occur. Additive offsets
are likely to occur in the hysteretic differentiator circuit due to the previously discussed
difference in leakage currents of the source implants between the native and the well-
transistor in the rectifying circuit!®.

A third possible source of mismatch consists of the gain differences between the rectified
output current of the hysteretic differentiator for positive (on-transient) and negative (off-
transient) brightness changes. Figure 5.21d depicts the expected motion output for an
increased gain in the off-transient. Although the effect is much smaller compared with
the additive effects discussed before, gain offsets amplify the effects of the additive offsets
in gradient computation. Gain deviations in the on- and off-currents of the hysteretic
differentiator are likely to occur due to the necessity to mirror these currents several
times between the hysteretic differentiator circuit and the feedback node.

Flow field offsets

It is interesting now to measure the output variations between the individual units of
the optical flow network. We measured the response of each unit to a sinewave grating
moving with constant speed diagonally to the array orientation such that the u-component
and the negative v-component of the motion should be equally large. The smoothness

Mwith respect to the on-chip spacing in the network array and the given stimulus frequency
15see description in Section 5.1.2
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Figure 5.22: Flow field offsets. (a) The measured time-averaged motion output of
individual and isolated single optical flow units is plotted for a sinewave grating stimulus,
diagonally oriented and constantly moving to the lower right corner. (b) The histograms
for both components of the optical flow vector quantitatively show the distribution of the
individual motion estimates. We find mean values of U = 0.25 V and V = —0.24 V with
standard deviations of Ugq = 0.09 V and Vg = 0.04 V respectively. Bias settings were
Biasvwg =0.42 V and Bia.Sop =0.38 V.

constraint was completely disabled (Biasgr = 0 V). The stimulus speed and the bias
settings were chosen such that the output values are clearly within the linear range of the
optical flow units to prevent any distortion of the output distribution due to the expansive
non-linearity of the circuit.

Figure 5.22a presents the measured time-averaged optical flow field. It reveals some
moderate offsets between the optical flow vectors of the different units in the array. The
output of some units is clearly incorrect, but these units seem to be located preferably
at the array boundaries. Because motion is computed component-wise, deviations due to
mismatch are causing errors in speed as well as orientation of the optical flow estimate.
Figure 5.22b shows the histogram of the output voltages U and V of all motion units.
Mean values are found to be U = 0.25 V and V = —0.24 V with standard deviations
of Ugg = 0.09 V and Vg = 0.04 V respectively. Very similar results were found for
other chips of the same fabrication batch. The outputs consistently approximate normal
distributions as long as the motion signals are within the linear range of the circuit. This
is in agreement with randomly induced mismatches due to the fabrication process and
rules out any systematic errors.

The above offset values are for completely isolated motion units. Already weak cou-
pling among the units increases noticeably the homogeneity of the individual responses
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and decreases the offsets in the individual optical flow estimates.

5.3.4 Processing speed

An argument often made in favor of analog processing systems is their intrinsic fast
processing speed. As discussed earlier'®, the instantaneous output of the optical flow chip
can be assumed to be the optimal solution of the defined optimization problem given that
the time constant of the implemented network is negligible compared to the dynamics of
the visual input. The obvious implication of this qualitative statement is the existence of
a processing speed limit beyond which the optical flow estimate eventually deviates
largely from the optimal solution of the problem. Recalling the only function of the
network, namely to reach as quickly as possible the global minimum of the cost function,
we immediately recognize that the time constant of the network represents a measure of
its maximal processing speed: If the dynamics of the visual scene exceed the time constant
of the network, the global minimum can change its location in energy space faster than
the network is able to reduce the distance to it and thus it will potentially never reach it.

The time constant of the optical flow chip is mainly determined by the capacitances
Cy, C, and the various attached conductances of a single motion unit (schematics in
Figure 5.4). C, and C, are not explicitly designed but represent the sum of the various
parasitic capacitances present. The total conductance at the capacitive nodes mainly
consists of the transconductance of the multiplicative feedback circuit, but also of the
transconductance of the amplifier that implements the bias constraint and the remaining
output conductance of the cascoded current mirror. As a consequence, the time con-
stant and thus the processing speed varies and depends on the instantaneous optical flow
estimate, the visual input and the bias settings in the circuit. In particular, the transcon-
ductance of the feedback loop decreases as the optical flow estimate U and V fulfills more
and more the brightness constraint. The time constant therefore increases and slows down
the processing. Thus, we are forced to redefine processing speed as the minimal time the
optical flow chip requires to reach an estimation level of the optimal solution of a certain
accuracy. With respect to this definition, we now list and qualitatively discuss some of
the above mentioned influences on the processing speed:

e Low spatial contrast
If the local stimulus contrast is very low, the spatiotemporal brightness gradients
vanish and the correction currents at the capacitive nodes become small. The time
constant then is large because the conductance is given mainly by the transconduc-
tance of the amplifier and the remaining output conductance of the cascoded current
mirror, which both are ideally small. The lower the visual contrast, the slower is
the processing speed. This is a sensible property of the optical flow network because

165ee Section 4.1.3
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in this way, it can distinguish between noisy input of low contrast but high spa-
tiotemporal frequencies and reliable high contrast but low frequency input moving
with the same constant velocity; in the first case, the integration time is too short
to elicit a noticeable output signal while in the latter case, the low spatial frequency
of the stimulus provides the necessary integration time to build up a correct motion
estimate.

e High spatial contrast
Conversely, high spatial stimulus contrast increases the feedback currents and leads
to faster processing in the optical flow chip, which is also sensible because locations
of high spatial contrast are more reliable stimulus features that need a shorter in-
tegration time and thus allow a higher temporal resolution. Similarly, fast visual
motion increases the transconductance of the feedback loop and therefore increases
the processing speed.

e High current densities
The overall current densities in the feedback loops determine their transconduc-
tances (5.26). These densities depend on the bias voltage Biasyyre of the wide
linear-range multipliers and the amplification of the output currents of the hys-
teretic differentiator given by the voltages HDyearr and HDyyear-. In practice, the
requirement for sub-threshold operation limits the largest possible current densities.

In the following, some quantitative measurements of the processing speed of the opti-
cal flow chip are presented for one particular visual stimulus and a given typical current
density. As illustrated in Figure 5.24a, the stimulus consisted of a plaid pattern com-
posed of two orthogonal sinewave gratings of which the contrast of one grating was varied
[0...50%] while the contrast of the second one was kept constant at 50%. The spatial and
temporal frequency of each grating was identical and given as 0.08 cycles/pixel and 30
pixels/sec respectively. The plaid pattern was presented such that the orientation of each
grating was parallel to one of the motion component axes. Each data point represents the
mean and standard deviation for a total of 10 samples. Processing time was defined as the
time needed by the circuit to raise the voltages U and V up to 75% of their asymptotic
signal level after the onset of the moving stimulus. Before the onset of the stimulus, the
visual input to the chip was a uniformly illuminated surface of constant brightness. Fig-
ure 5.23 shows the minimal processing time for each component of the global optical flow
estimate as a function of the varying contrast of one of the gratings. If both gratings are of
high contrast, the processing time is approximately 30ms and equal for both components
of the optical flow estimate. As the contrast of one grating decreases, the processing time
for the motion component pointing perpendicularly to the grating’s orientation strongly
increases. At 0% contrast, no visual information is present in that direction and the
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Figure 5.23: Processing speed of the optical flow chip. The graph shows the time needed
for the output voltages U and V to reach 75% of their asymptotic output level after the
onset of a moving plaid stimulus. The plaid consisted of two sinewave gratings where the
contrast of the grating oriented perpendicular to the u-component of the motion varies
[0...50%] while the contrast of the other grating is constant (50%). For low contrasts,
the processing speed significantly decreases. Beyond some contrast level (> 12%) the
processing speed stays constant because the Gilbert multipliers saturate and therefore
limit the correction currents.

measured processing time is only determined by the bias conductance'”. The processing
speed saturates for contrast values > 12% because the pFET Gilbert multipliers feeding
into the cascoded current mirrors saturate and therefore limit the transconductance of
the feedback loop (see schematics in Figure 5.4).

5.4 A Model for Motion Processing in Visual Cor-
tex ?

The proposed optical flow chip clearly does not represent the attempt of a close structural
embodiment of the primate’s visual motion system in silicon; and it was never intended
to be so. Considering the large differences in the computational substrates of silicon and
the brain, such an attempt also does not seem very reasonable at all.

"The error bar is evidently huge because the component’s value is ideally constant and zero and the
75% limit only determined by noise.
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There is strong belief that the processing of motion information in visual cortex is
mainly a two-stage process. The primary visual cortex V1 thereby serves as the first stage
where neuronal activity represents the spectral energy of the visual input within narrow
spatiotemporal frequency bands [Adelson and Bergen 1985]. Neurons in V1 are therefore
sensitive to the orientation and direction of the visual stimulus, as has been known for
a long time [Hubel and Wiesel 1962]. Also because of their small receptive field sizes,
such neurons are inherently confronted with the aperture problem. A second processing
stage is then required that has to compute local velocity explicitly and unambiguously.
It is widely believed that area MT is the earliest cortical region where sub-populations
of neurons show such properties. Although often suggested [Movshon et al. 1985] it has
been clearly shown only recently that some MT neurons exhibit in fact an explicit velocity
encoding scheme [Perrone and Thiele 2001]. Several models have been proposed to encode
velocity where neurons receive the combined input from those spatiotemporally tuned
neurons of V1 that are consistent with a particular image velocity and thus populate a
plane in the spatiotemporal frequency domain [Heeger 1987a, Grzywacz and Yuille 1990).
Thus, it seems that V1 neurons rather span the complete range of spatial orientations
than only subsets that are consistent with specific stimulus-dependent patterns [Schrater
et al. 2000]. It is obvious, that visual motion energy induces activity in multiple velocity
planes in the frequency space due to noise and visual ambiguities. As a consequence,
several velocity-tuned neurons in MT will be active and there has to be a competitive
process taking place in order to generate an unambiguous vote for a particular local
velocity. There is physiological and psychophysical evidence that this competitive process
is affected by many different stimulus relevant parameters such as spatial frequency, shape,
contrast and disparity [Adelson and Movshon 1982, Movshon et al. 1985, Yo and Wilson
1992, Burke and Wenderoth 1993, Lorenceau et al. 1993, Bradley et al. 1995].

Knowing this, we may now ask to what extent the optical flow network is at least a
plausible functional model of parts of the cortical motion processing circuitry in area M'T
or even MST. Clearly, the optimization problem of finding the intersection-of-constraints
solution is functionally equivalent to the competitive process necessary to determine un-
ambiguously local motion'8. Furthermore, the bias constraint of the optical flow network,
which was introduced from an engineering point-of-view, can explain several perceptual
effects such as the tendency to report normal flow when local ambiguities occur [Nakayama
and Silverman 1988a, Nakayama and Silverman 1988b].

Experiments

We tested the global motion response of the optical flow chip to moving sinusoidal plaid
patterns, a class of two-dimensional visual stimuli that are generated by the superposition

18We assume that the velocity space is densely encoded by velocity-tuned neurons.
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of two one-dimensional sinewave gratings of different orientation [Adelson and Movshon
1982]. These stimuli have been used for many physiological and psychophysical experi-
ments on biological visual motion processing systems.

The first test stimulus consisted of a type-I plaid pattern [Ferrera and Wilson 1990],
that is the superposition of two orthogonal gratings. As Figure 5.24a shows, the plaid was
chosen such that the orientation of each grating is mapped to one of the component axes
U and V of the optical flow chip. Besides their orientation, the gratings were identical in
spatial and temporal frequency and their normal motion was positive with respect to the
voltages U — Vier and V' — V. The circular aperture of the stimulus was large enough
to ensure that the chip exclusively received visual input originating only from the plaid
pattern.

Figure 5.24b displays the time-averaged output of the optical flow chip, recorded for
different contrast ratios of the two gratings where the contrast of one grating was kept
constant at 50% while the other one varied [0...50%)]. If both gratings have identically
high contrast, the response is in good agreement with the intersection-of-constraints solu-
tion. As the contrast of one of the gratings decreases, the reported motion continuously
changes direction until it signals pure component motion of the other grating. Ideally, the
output would not show such an immediate deviation of the pattern motion for decreasing
contrasts but rather would stay close to the pattern motion estimate and then switch
rapidly only if the contrast ratios become small (compare also with Figure 4.6). However,
this ideal behavior could not be reproduced because the strength of the bias constraint
had to be slightly increased compared with previous measurements (Biasop = 0.32 V) to
assure normal flow estimation when the contrast of one grating becomes zero.

Also type-II plaid stimuli were tested (Figure 5.25), where the gratings are such that
the component motions are within a different quadrant of the velocity space than the
combined pattern motion of the plaid. Figure 5.25b shows the output response for different
contrast ratios of the gratings. If the contrast of both gratings is identically high, the
optical flow chip reports the correct pattern motion that has a negative U-component
whereas the component motion is always positive. As the contrast of either of the two
gratings decreases, the output is increasingly biased towards the individual component
motions.

The behavior of the optical flow chip in the two experiments is at least qualita-
tively in good agreement with psychophysical data reported. It has been shown early
that under high-contrast and unambiguous conditions, human visual motion perception
performs functionally an intersection-of-constraints computation [Adelson and Movshon
1982]. However, Stone et al. [1990] found, that humans subjects report increasing devi-
ations of the perceived plaid motion towards the normal motion of the higher contrast
grating if contrast of the other grating is successively reduced. Other authors reported a
continuous transition between the perception of the vector average of the component mo-
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Figure 5.24: Type-I plaid stimulus of varying contrasts. (a) A type-I plaid stimulus
was generated by superimposing two orthogonal sinewave gratings of same spatial and
temporal frequency. (b) The global motion response of the optical flow chip is shown as a
function of contrast [0...50%)] of one of the underlying gratings while keeping the other
grating at a constant contrast value of 50%. The response of the optical flow chip exhibits
a continuous transition between component and pattern motion.
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Figure 5.25: Type-II plaid stimulus of varying contrasts. (a) A type-II plaid pattern
consists of two sinusoidal gratings that each have a normal motion in the same quadrant
of the velocity space but superimposed create a pattern motion that lies in a different

quadrant. (b) The optical flow chip reports the correct pattern or component motions,

depending on the individual contrast of the gratings.



5.5. THE MOTION SEGMENTATION CHIP 135

tion vectors and the intersection-of-constraints solution [Nakayama and Silverman 1988a,
Burke and Wenderoth 1993, Weiss and Adelson 1998], depending on the contrast differ-
ences of the gratings.

Another functional similarity between the optical flow chip and the primate visual
motion system can be found in the dynamics of the motion responses. In order to solve
local motion ambiguities, integration has to take place over some spatial scale. When
presented with a type-II plaid stimulus, humans perceived motion to be biased towards
the vector average motion at short durations, approaching the intersection-of-constraints
solution only after some time lag [Yo and Wilson 1992]. Furthermore, Yo and Wilson
found that the time lag increases strongly with decreasing stimulus contrast. Just recently,
Pack and Born [2001] supported these psychophysical results by intra-cellular recordings
in area M'T of alert macaque monkeys. They showed that in the early response phase after
stimulus onset, the direction tuning-curves of M'T neurons are strongly biased towards the
orientation perpendicularly to the local stimulus orientation. Only after some time (60ms)
was the direction-tuning consistent with the neuron’s preferred direction of the overall
pattern motion. Considering the results of the previous section on the processing speed of
the chip and its dependence on contrast, we expect a very similar behavior of the optical
flow chip. And in fact!'®, tested with the type-II plaid stimulus shown in Figure 5.25b,
the resulting motion estimate is initially biased towards the average component motion,
thus pointing into the first quadrant in velocity space (positive U and V' component) and
only later on, after some time lag of ~ 50 ms converges to the true pattern motion in the
second quadrant.

5.5 The Motion Segmentation Chip

We present an extended implementation of the optical flow chip that includes the active
control of the local smoothness conductances. The implementation follows the motion
segmentation network system proposed in Section 4.2.2 that introduces two additional
discontinuity networks with units P;; and @);;. Active units in these networks represents
active line segments oriented in x- and y-direction. The hardware implementation is mod-
ified insofar as there is no soft-WTA competition taking place amongst the discontinuity
units to favor a continuation of the line process. This simplification was necessary because
otherwise, the implementation would have required pixel sizes and wiring densities that
exceed the feasible complexity level of focal-plane chip architectures. As a consequence,
we will not consider the P and () units to form networks in a strict sense because there
is no connectivity between these units.

We modify the input dynamics of the discontinuity networks (4.32) with respect to

ot illustrated
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the above mentioned simplifications and find, exemplarily for the P units:

by = 5 | P2 a f(ael) - hAFY)] (5.27)

The quadratic norm in (4.32) is replaced by the more general functions f and h that are
only required to be non-negative, symmetric and monotonic. The vector F = (Fx, Fy)
is composed of two components that represent the correction currents generated by the
optical flow unit for each motion component as given by (5.10). Using the difference
in correction current as the input to the discontinuity units rather than the brightness
constraint gradient as proposed in Section 4.2.2 incorporates additional information about
possible brightness boundaries into the segmentation process.

Each discontinuity unit performs a threshold operation: The input p;; increases as long
as the sum of the local measure of the velocity differences and the brightness constraints
is bigger than the threshold a plus the leakage term determined by the conductance
1/R. Analogously, p;; decreases as long as it can if the input does not reach threshold.
Assuming 1/R to be small, the activation function g : p;; — P,; has an upper and lower
bound and the output F;; of the discontinuity unit is in either one of the two corresponding
states. The recurrent loop is closed when allowing the discontinuity units P;; to control
the smoothness conductances between neighboring units in y-direction. In an equivalent
manner, the dynamics of the units ();; are defined where their output control the presence
or absence of line segments in the x-direction.

5.5.1 Single motion segmentation unit

Figure 5.26 shows the schematics of the complete motion segmentation unit. The core
circuit consists of the optical flow unit (represented as black box) that is identical with
the schematics in Figure 5.4, except that the HRes circuits are shown here explicitly to
clarify the control of the smoothness conductances. The segmentation unit consists of
twice identical circuitry that computes the control signal for the line process in the x-
and y-direction. Thus it has to receive the appropriate optical flow and correction current
signals from two neighboring cells and has to provide them to the two other neighbors.
The correction current signals Fz., Fy. are represented by the gate voltages of the
current mirrors at the feedback nodes that logarithmically encode the effective differential
correction currents (see Figure 5.4).

The function f(Aw) is implemented as the sum of the ’antibump’ outputs of two bump
circuits [Delbruck 1993a] which is an approximation of the quadratic vector norm of v.
Since the optical flow signals are referenced to a common potential V., the components
U, and V. of the unit and its neighbors can be directly the input to the bump circuits.
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The differential encoding of the correction current signals, however, requires a preprocess-
ing step in order to extract the correction current gradient, which will be described in the
next section. The function h(AF'), however, is also based on the bump circuit dissimilar-
ity measure. The total segmentation current for each of the two line orientations is then
the sum of the output currents of the two bump circuits where the bias voltages Biasrcorr
and Biasycorgr determine their relative weights. The segmentation current finally serves
as input to the discontinuity units that qualitatively exhibit the dynamics (5.27): The
input current is compared to a threshold current set by Biasrgresgorp, and the resulting
current then either charges up or down the capacitance Cy. The leak conductance 1/R is
given by the output conductance of the high-impedance node and therefore is dependent
on the threshold and the segmentation current?®. In any case, it is rather small. The
activation function g is given by the inverter stage and is limited naturally by the voltage
rails. Finally, the feedback loop is closed by the output of the inverter which either enables
or disables the smoothness conductance in between two neighboring optical flow units as
set by the horizontal resistor via a pass-transistor.

Computing the gradient of the brightness constraint error signal

The antibump output of the bump circuit biased in the sub-threshold regime provides
a compact and appropriate dissimilarity measure between voltage signals. Its bias volt-
age further allows to adjust the weight of this measure which is crucial for the motion
segmentation unit in order to scale the influence of the optical flow gradient versus the
correction current gradients appropriately. Using bump circuits for the computation of
the correction current gradients requires a stage that ideally transforms the difference
between two differential currents linearly into a differential voltage.

Figure 5.27 illustrates the simple transformation circuit used in the motion segmen-
tation unit. Its task is to transform a differential currents difference AI = I4 — I =
(Iay — Ia_) — (Ipy — Ip_) into the voltage difference AV = V; — V,. The differential
currents are cross-wise summed into currents I; and I5. Stacked pairs of diode-connected
transistors generate the voltages Vi and V5. The resulting voltage difference?! then follows

1 Tay + IB—):|
AV = — |5 log [ A2—B= | | 5.28
o [7 og ( T (5.28)

as

where v = (k, + 1)/k, with x, being the gate coefficient of the diode-connected pFETs?2.
Assuming that the two differential currents /4 and Iz have a common DC-current level I,
we can expand (5.28) around I,. We rewrite the logarithm of the quotient as the difference

20gee Equation (5.26)
Zlin units of kT/q.
21n first approximation, k, is assumed to be constant and equal for both pFETs.
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Figure 5.27: Transforming a differential currents difference into o differential voltage.

of two logarithms and expand with respect to each differential current component

1 1
log(Iay +1p-)| =~ log(2L) + 57 [(Lay = Io) + (In- — Iy)] = 75 [(Tar — Io)* +
Io 2]0 4]0
(Iay = Io)(Ip- — Io) + (Ip- — Ip)*] + R3
1 1
log(Ia- + Ipy)| =~ log(2L) + 57 [(Ta- = Io) + (Ins — Io)] = 75 [(Ta- — Io)* +
Io 2]0 4]0
(Ia- — I)(Ip+ — o) + (Ip+ — 1o)*] + Rs (5.29)

where R3 stands for the remainder of third and higher order terms. Taking the difference
of the two logarithms in (5.29), the second order terms cancel because of the assumed com-
mon DC-level I;. The remainder R3 can be neglected for currents /4 and Ig moderately
small compared to I since the components of order n decrease inversely proportionally
to Iy to the power of n. Finally, using (5.29) we can rewrite (5.28) as

Y (Iay —1a ) — (Ipy — Ip)

AV ~ — Al . 5.30
v K,p 2[0 x ( )

The gain factor v > 2 is induced by the additional diode-connected transistor and enlarges
the transformation range. Simulations show that for typical sub-threshold levels of I, the
useful output voltage range is up to 150 mV which matches the bump width of the bump
circuit.

We assumed that the differential currents 74 and Iz have a common DC-level, in order
for the linear transformation to hold. Recalling that these currents stand for the correction
currents of two neighboring optical flow units, we recognize that this assumption is not
completely true. The DC-level of each correction current is given as:
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e half the bias current of the two wide linear-range multipliers, which is determined
by the bias voltage Biasy;» and thus remains constant throughout the array,

e plus a component provided by the hysteretic differentiator that is not constant
because the sum of the differential output currents of the differentiator is not deter-
mined by some bias current?.

Nevertheless, it is fair to assume that the difference in DC-level is small between neighbor-
ing units because the currents of the hysteretic differentiator are typically small compared
to the bias currents of the wide linear-range multipliers. This is because the output cur-
rents of the multipliers and the hysteretic differentiator need to be of the same order of
magnitude to allow a proper function of the feedback loop. And since the multipliers
are preferably operated in their linear range, their differential output currents are rather
small compared to their bias currents and thus also are the output current of the hysteretic
differentiator. So, we can therefore assume that the shift in DC-level of the correction
currents is small, and that the linear approximation (5.30) is sound.

5.6 Performance of the Motion Segmentation Chip

In the following, we present results from a fully functional implementation of a motion
segmentation network. The data presented was recorded from chips of identical layouts,
fabricated on a single production run in 0.8 um BiCMOS technology?*. The prototype
chip, in the following called the motion segmentation chip, consists of a quadratic array
of 12x12 functional optical flow units with a size of (170 um)? each, thus having twice
11x11 functional discontinuity units. The motion segmentation chip provides five different
signals from each unit: the photoreceptor signal, the two motion signals U, and V, and
the output of the two discontinuity units P and Q.

5.6.1 Detecting motion discontinuities

We tested the ability of the motion segmentation chip to detect motion discontinuities.
A relatively simple high-contrast visual stimulus was presented to the chip that consisted
of a moving dark dot on a light, uniform background.

Figure 5.28 displays a sequence of the scanned output signals while the dot moves
through the visual field of the motion segmentation chip. The rows (a,c) show the pho-
toreceptor signals, overlaid with the local estimate of the optical flow. Below each frame,
the associated activity pattern of the discontinuity units is shown (b,d) as a gray scale

Zsee schematics in Figure 5.4

24Exact specifications can be found in Appendix E.
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Figure 5.28: FEztraction of motion discontinuities. A scanned output sequence of the
motion segmentation chip is shown, which was presented with a visual stimulus that
consisted of a moving dark dot on a light background. (a,c) The photoreceptor outputs
are displayed together with the instantaneous estimate of the optical flow field. (b,d) The
present state of the discontinuity units is reflected by a gray scale image where dark pixels
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represent locally active units (P and/or Q).
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image where dark pixels represent locally active P and/or @) units. We see that the activ-
ity pattern approximately reflects the outline of the moving dot and thus the location of
motion discontinuities. Nevertheless, it seems difficult to achieve a closed contour around
the single object such that the activity of the discontinuity units leads to two fully dis-
connected areas in the optical flow network. The smoothing conductance was set rather
low (Biasyr = 250 mV) in order to prevent smoothing of the optical flow estimate due
to the disrupted contour. As a consequence, the total segmentation current was mainly
determined by the strength of the flow gradient which is a reasonable measure considering
the relatively small object size.

Note that because the stimulus is repeatedly appearing on the same image trajectory,
the photoreceptors in the background adapt over time to some uniform gray value that
represents the logarithmically encoded background light intensity. Within the trajectory
of the dot, however, the photoreceptors are forced to stay in their transient regime where
the increased gain enhances the contrast between object and background and leads to the
white stripe in the photoreceptor image.

5.6.2 Piece-wise smooth optical flow estimation

To demonstrate in principle the ability of the segmentation chip to separate completely
two image areas around two different flow sources, a stimulus with a less complex motion
boundary was applied.

As shown in Figure 5.29a, the applied stimulus consisted of two tightly joined, iden-
tical sinewave plaid patterns. One of the plaid patterns remained stationary while the
other one moved horizontally with constant velocity, thus forming a linear motion dis-
continuity. The boundary between the two patterns was chosen such that in moments
when they were in phase, the impression of an single uniform plaid pattern occurred. The
stationary pattern roughly covered 2/3 of the visual field of the segmentation chip which
is indicated by the black square. Although the motion discontinuity had a simple shape,
the applied stimulus was very challenging because it did not provide any other cues for
segmentation than its underlying motion. Unlike in the previous example of the moving
dot, the absolute temporal gradient for example would not be a sufficient measure to find
the true motion discontinuity because the average temporal gradient within the moving
plaid pattern is constant and therefore the probability to detect a motion discontinuity
is constant throughout the image region that belongs to the moving plaid pattern. The
lateral smoothing was set high (Biasgr = 900 mV) in order to obtain a piece-wise smooth
flow field that does not reflect the spatial pattern of the plaid stimuli.

Two results are presented. In case the discontinuity units are disabled by setting
Biasturesnorp sufficiently high, the resulting flow field is very smooth, spreading out far
into the image region of the stationary pattern as shown in Figure 5.29b. Clearly, the
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Figure 5.29: Piece-wise smooth optical flow estimation. (a) The motion segmentation
chip was presented with two completely identical sinewave plaid patterns where one was
static and the other one underwent translational motion to the right. (b) The photore-
ceptor output and the optical flow signal of the motion segmentation chip is shown when
the discontinuity units are disabled: the optical flow field is smooth according to the large
value of Biasgg. (c,d) A short sequence under the same conditions, now with enabled
discontinuity units. The units are preferably active at the motion discontinuity and lead
to a clear separation between the two plaid patterns. Thus the optical flow field is smooth
only within each separated region.
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motion discontinuity is completely smoothed out and not visible from the estimated flow
field. Any method that tries to find the motion discontinuity based on this smooth flow
field only would fail because the gradient is very shallow and approximately constant over
the entire image.

Using in addition the difference measure of the correction forces, however, allows the
segmentation chip to find the true motion discontinuity despite the high smoothing con-
ductance?®. It is able to separate the two flow sources completely and to provide a nearly
global flow estimate within each area. Figure 5.29¢,d represents a scanned sequence of the
chip’s outputs, showing the photoreceptor output with overlaid optical flow estimate and
the associated discontinuity pattern. The chip can clearly find the linear motion discon-
tinuity although some discontinuity units remain active within the moving plaid pattern.
The estimated optical flow field respects the motion discontinuity and is almost uniform
within both separated areas.

5.7 Power Consumption

Neuromorphic aVLSI implementations are often claimed to be low power and energy effi-
cient, especially if compared to digital, sequential processing hardware devices. This claim
is not necessarily true. It depends very much on the design of the circuits. In any case, a
comparison is almost impossible because exact numbers of commercially available ASICs
(Application Specific Integrated Circuits) are mostly not published. Furthermore, such
ASICs are highly optimized using latest technology whereas most known neuromorphic
implementations are prototypes, fabricated in older, low-cost technologies which makes a
comparison difficult. And finally, the exact power consumption of neuromorphic motion
sensors is only rarely indicated in the literature (as e.g. in [Etienne-Cummings et al. 1993,
Arreguit et al. 1996]).

The power consumption of a single pixel of the optical flow chip and the motion
segmentation chip was measured as 72 pyW and 80 uW respectively, not including the
power dissipated in all of the necessary read out circuitry. This values are taken for
standard bias settings under standard illumination conditions and with no visual input
present. A large fraction of the power is dissipated in the wide linear-range multipliers and
also the unity-gain follower because these circuits are constantly running in the above-
threshold regime. These values are comparable with the power consumption of the 2D
motion detector by Etienne-Cummings et al. [1993] which was measured to be 100 pW
per pixel. How much an optimized implementation using a special low-power process
can reduce power consumption was shown by Arreguit et al. [1996] where they claim a
dissipated power of only 1.7 uW per pixel.

25 compare also with Figure 4.13
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5.8 Conclusions

Two focal-plane aVLSI implementations of constraint optimization analog networks for
visual motion processing have been presented. They are both fully functional under real-
world conditions. They prove the feasibility of embedding such networks in a physical
substrate. The optical flow chip has been characterized carefully in detail. Its relatively
large linear range of +0.5 V allows to reliably detect visual motion over three orders
of magnitude in speed. The leak conductance ensures that the behavior of the chip is
robust even for ambiguous visual input. The globally adjustable lateral conductances
in the network offer the possibility to continuously control the degree of integration of
visual motion information. If motion is estimated globally, the optical flow chip provides
the intersection-of-constraints solution and thus solves the aperture problem for a single
motion source.

Considering the 10x10 array size of the presented prototype chip, robustness can be
greatly improved with increasing resolution. A higher resolution would allow to increase
the number of pixels in the local integration process while having effectively the same
smoothness of the flow field. A 32x32 array of the same layout in the same technology?®

2 including the necessary read

would only require a die size of approximately (4.5 mm)
out and pad circuitry.

The motion segmentation chip represents to our knowledge the first 2D implementation
attempt of its kind. It detects motion discontinuities and provides motion segmentation
with piece-wise constant flow fields for real-world visual stimuli. Although based on the
optical flow chip, its computational complexity is much higher because it includes the
recurrent feedback loop between the discontinuity units and the optical flow network that
is needed to find solutions to the computationally hard problem of segmentation. One of
the key features of the motion segmentation chip is the combined use of the local velocity
gradient and the gradient in the constraint currents in order to determine the locations of
motion discontinuities. Only this combination allows a large smoothing conductance to be
applied while still being able to perform motion segmentation. However, the performance
of the segmentation chip depends rather strongly on the segmentation threshold and the
weighting of the segmentation signal. This dependence can at least be partially over-
come if discontinuity networks are applied as proposed in Section 4.2.2 where soft-WTA
mechanisms lead to a more adaptive thresholding behavior. The implementation of such
a network was waived because the pixel size and the wiring density would have become
unfeasible large. Even in its current state, the pixel size of the motion segmentation chip,
having approximately 200 active elements, is close to the limits of reasonable focal-plane
implementations.

26 AMS 0.8 um BiCMOS






Chapter 6

Conclusions

This thesis outlined a particular understanding of the perceptual process of visual mo-
tion. Due to the inherently ambiguous nature of the visual information, the perception
of apparent motion requires the interpretation of this information according to some
a priori assumptions represented by the internal perceptual model of the observer. In
a dynamical visual scene, many different motion sources can be present simultaneously.
The perception of motion of each source requires the individual selection of an appropriate
motion model and the region-of-support where it accounts for. Such selection necessar-
ily reflects a competitive process that can be understood as an optimization problem of
choosing the motion model that optimally explains the visual information with respect
to the expectations of the observer. In addition, a second optimization process is neces-
sary on the level of the individual motion models in order to extract the optimal model
parameters for the given visual input. The framework of constraint optimization has
been introduced that serves as the tool to formulate the models mathematically and to
derive the architecture and the dynamics of equivalent analog networks that solve the
competitive process of visual motion perception.

Within this context, I have presented an analog network solution for the estimation of
smooth optical flow. It imposes a single translational motion model with a given and
isotropic region-of-support. Optimization is only needed to find the optimal estimation
of optical flow according to the model and its given parameters. I have shown rigorously
that the particular optimization problem is well-posed for the complete visual input and
parameter space, unlike previously proposed regularization approaches [Horn and Schunck
1981, Poggio et al. 1985, Grzywacz and Yuille 1991]. The introduced bias constraint
plays an important role in this performance and also leads to solutions of the network that
coincide with known psychophysical properties of the primate’s visual motion perception
system.

Furthermore, I have suggested two network architectures that allow dynamical changes
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of the local model parameters' of the optical flow network in order to solve for computa-
tionally hard problems such as motion segmentation and motion selective optical
flow estimation. The recurrent architecture of these networks reflects the increased
computational complexity. The motion selective network is an illustrative example of
how the interplay between top-down and bottom-up input leads to a selective perception
of the visual input.

An important aspect of this thesis is to provide the complete analysis-synthesis loop,
that is to emulate (and not only simulate) the suggested optical flow and motion segmen-
tation networks in a physical substrate. The presented aVLSI implementations serve as
the existence proof for the plausibility of the proposed networks architectures, because
they allow the measurement of real-time behavior under real-world conditions. The ex-
periments and their results confirm the robustness and functionality of the networks. The
optical flow chip and the motion segmentation chip are fairly outstanding examples
of neuromorphic visual motion processing systems with respect to their computational
power and complexity. Both implementations perform continuous-time, distributed par-
allel processing in arrays of identical units.

The organization of this thesis may have evoked the impression of a sequential 'feed-
forwad’ process that had taken place from the analysis of the problem of visual motion
to the analytical derivation of the network architectures and up to the physical imple-
mentation of these networks. This was and is definitely not true. Literally spoken, it was
a recurrent process between analytical description and physical implementation, leading
to a continuous improvement in understanding the problem and finding new solutions.
An illustrative example for this fruitful interaction was the introduction of the bias con-
straint for the optical flow network. It was not obvious until the attempt to implement
the classical optical flow algorithm of Horn and Schunck [1981], that the unavoidable
output conductance of the feedback-loop prevents the exact translation of the algorithm
into aVLSI [Stocker and Douglas 1999]. In fact, the output conductance seemed to be the
'natural’ mechanism of the circuit to keep itself well-posed?. After discovering that such
a property is indeed "not a bug but a feature”, the influence of the output conductance
on the motion estimation was investigated, and finally the bias constraint was included
in the optical flow model.

6.1 Outlook

An important contribution of this thesis was the demonstration that constraint optimiza-
tion networks are indeed possible to be implemented in aVLSI successfully. This demon-
stration hopefully encourages researchers in the neuromorphic community to reconsider

lthe conductances p and o
2see Hadamard’s quote on page 37
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such an approach after it had been regarded for a long time - after some implementa-
tion failures [Moore and Koch 1991] - as a computationally promising but technically
impractical way. Some immediate future directions are worth to consider:

e Application to other perceptual tasks Constraint optimization networks could
certainly be derived to solve other perceptual tasks such as e.g. disparity computa-
tion with stereoscopic visual input or the estimation of depth-from-motion.

e Improved aVLSI implementations - multi-chip systems The motion seg-
mentation chip already reaches the limits of feasible focal-plane implementation.
Larger, more complex, systems will require careful considerations of how to split up
such networks into several subsystems on different chips. It will be important to
access what the necessary information is that must be passed between the subsys-
tems, and how it should be encoded such that known communication schemes such
as the Address-Event-Representation [Mahowald 1994] can guarantee reliable trans-
mission. Superficially considered, these questions address only typical engineering
problems. However, these are fundamental questions to solve for the understanding
of computation in larger recurrent networks and thus are of vital importance in the
field of computational neuroscience.

e Analytical tools The analytical methods proposed in Chapter 3 and 4 are suf-
ficient to describe the stability behavior of simple uniform networks. However, for
non-homogeneous systems containing different recurrently connected sub-networks,
improved methods are needed. Such methods must be able to characterize system
behavior based on the properties of its sub-networks rather than on the dynamics
of the individual computational units.

e Product applications A successful translation of the visual motion chips pre-
sented here into a product would tremendously strengthen the claim that neuro-
morphic engineering can provide very efficient and superior solutions to particular
class of problems. The optical flow chip operated as a global motion estimator might
find an immediate application for simple, visually controlled human-machine inter-
faces. Its small size, low power consumption and the low dimensional signal output
makes it a cheap and simple to use device, especially for mobile applications.

As my final remark, I propose that competitive mechanisms similar to those describe
here for visual motion perception, could be a common processing strategy in higher-level
cognitive areas. In order to describe such processes in a similar framework as demonstrated
here, however, we have to find means to adapt and transform the network architectures
from a topographic input-space representation towards a more abstract and sparse repre-
sentation in object-space.






Appendix A

Variational Calculus

Let us consider the following minimization problem:
Given the Lagrange function L : R™ x R™ x R®" — R which is sufficiently regular (e.g.
€ C?) and the function f: 9Q — R™, find g : Q — R™, Q C R" such that

H = /L(q(w),q’(w), ) dx = min ! (A.1)
Q
and q(x) = f(x), =€ (boundary condition)

Definition 1. A function g(z) is called a candidate for a solution of (A.1) if it is defined
on €2, obeys the boundary condition and is piece-wise differentiable.

A necessary condition for a candidate q,(x) = (qo,,---,0,,), 2 = (Z1,...,T,) to be
solution of (A.1) is that the following system of differential equations hold:

"\ 0

a—%L_qL-(q,q',m)—qu(q,q',w):() j=1,...,m (A.2)

a
i=1 0
This fundamental theorem was proven by Leonhard Euler in 1744 which at the same time
the initiated variational calculus as a mathematical field.

Well-posed

Definition: An analytical problem is said to be well-posed according to Hadamard [Tikhonov
and Arsenin 1977] when its solution i) exists, ii) is unique and iii) depends continuously
on the data.

Otherwise, it is said to be #ll-posed.
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Convexity

Convex sets

Definition 2. The set M C R" is said to be conver if all points on the connecting line
between w1, us € M are in M. Hence, M is convex if for all u;,us € M and t € [0, 1]

U + t(UQ — ul) = tUQ =+ (]. — t)u1 eM (A3)

Examples for convex sets are the space R" and intervals in R”.

Convex functions
Definition 3. A function f(u) defined on a convex set M is called a convex function if
fltug+ (1 —t)uy) < tf(ug) + (1 —1t)f(u1) V(ui,u2) € M and Vt € [0,1].  (A.4)
In particular, it is said to be strictly conver for uy # usy if
fltug+ (1 —t)uy) <tf(ug)+ (1 —1)f(uy) for 0 <t <1, (A.5)

Lemma 1. For a continuous differentiable strictly convex function f(u) defined on a
convex set M and (u1,us) € M the following inequality holds:

fur) + grad f(u1)(ug — u1) < f(ug) for ug # uy. (A.6)

Proof. According to the Taylor expansion we can rewrite f(u) for every (uj,us) € M as
flur +t(uz —w1)) = fur) + grad f(a) t(uz —uz)  with ¢ € [0,1] (A.7)

where 4 is between u; and us. According to the definition of a strictly convex function
and recognizing that the left-hand sides of (A.5) and (A.7) are equivalent we obtain the
inequality

fur) + grad f (@) t(ug — ug) <tf(ug) + (1 —1)f (us)

that can be simplified (division by ¢, 0 <t < 1 (A.5)) such that
flur) + grad f (@) (uz — u1) < f(ua).
Since f'(u) is continuous, limg_,,, finally leads to
flur) + gradf (ui)(ue — ur) < f(ug). (A.8)

This holds for all pairs (uy, ug) which are allowed in (A.5) and thus the proof is complete.
It follows directly form Lemma 1 that u, is a global minimum of f(u), if gradf(u;) = 0. O
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The Hessian matrix

Definition 4. The Hessian J of a twice continuously differentiable function f(z) with

x = (x1,...,T,) is a matrix where the entry at each position i, j is defined as
0*f(x)/0x? for 1=
Jii= ! : A9
7 { 0% f(x)/0x;0z; otherwise (4.9)

Lemma 2. (with no proof) A function f(x) is convex if its Hessian J is positive semi-
definite, i.e. det(J) > 0. It is strictly convex if J is positive definite, thus det(J) > 0.

Global Solution of a Variational Problem with Strictly
Convex Integrand

Proposition 1. Given the variational problem

H(q) = /L(q(m),q'(a:), ) dz = min! (A.10)

with L : R™ x R™® x R* — R of type C? and q : & — R™, Q) C R*. The boundary
conditions are free such that Lg/(q(§),q'(§),€) = 0 with & € 0.

If the integrand L(q, q', ) is continuous and strictly convex with respect to the variables
(q,4q'), then a candidate function g, that fulfills the boundary conditions and the Euler-
Lagrange equations is a global solution of the problem.

Proof. In the following we use the short notation L(q, ¢',x) = L(q) and L(q,, gy, x) =
L(g,) respectively. We now formulate an estimate for the difference:

Hig) - Hla) = [ La) - Liay) de. (A1)

Since L is strictly convex we introduce the following inequality according to Lemma 1:

L(q) > L(q,) + grad(L(q,))(q — qo)
> L(qy) + Lq(ay)(qa — @) + Lg'(a0)(d' — q)- (A.12)

Thus we rewrite the difference (A.11) as

H(g) - H(go) > / Lq(a0)(a - o) + Lq(a0)(a' — g) dz. (A.13)

Partial integration of the second term under the integral

[ Lala)@ - ) de=Lg(a)a-a)|, - [ lat@)a-a) dz (A1
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finally leads to

H(q >/ Lq(q,)(q— qo)—diLq (20)(a—4qo) dx]+Lq (q0)(a—4qy) " (A.15)

The integrand in (A.15) describes the Euler-Lagrange equation which is a necessary con-
dition for a weak solution of the optimization problem. Since we assume g, to obey the
Euler-Lagrange equations, the integral is zero. The second term is also zero according to
the boundary condition. Since

H(g)—H(gy) >0 VgqeR", (A.16)

the energy has a single minimum at gq,. O



Appendix B

Simulation Methods

The simulation results presented in Chapter 4 are gained by numerically integrating the
partial differential equations that describe the dynamics of the analog networks. Inte-
gration was performed using the explicit Fuler method. Step size and stopping criterion
were chosen sufficiently small because processing time was not crucial. The network size
was determined as equally large as the spatial resolution of the applied image sequence.
Although mostly displayed on a subsampled grid (see e.g. Figure 4.7), the flow field was
always estimated for each pixel. Networks were randomly initialized before computing the
first frame. If there were subsequent frames to calculate, no re-initialization took place in
between frames.

Gradient Estimation

Discretization effects were reduced by presmoothing the image sequences in the spatial
and temporal domain [Bertero et al. 1987]. The image sequences were convolved with a
Gaussian kernel of fixed width ¢. Depending on the image resolution, the kernel size was
chosen differently; o = 0.25 pixels for the triangle and the tape-rolls sequence and o = 0.5
pixels for the other image sequences. After presmoothing, the gradients in each direction
were computed as the symmetric difference between the two nearest neighbors.

Image sequences

The triangle sequence

This sequence consists of 20 frames with 64x64 pixel resolution and 8 bit gray scale
encoding. It shows a white triangle moving with a speed of one pixel/frame horizontally
to the right. The brightness values are normalized to the maximal brightness difference
between the darkest points in the background and the surface of the triangle. The contrast
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of the stationary sinusoidal plaid pattern in the background is half the maximal figure-
ground contrast.

The tape-rolls sequence

This sequence is a real image sequence of two tape-rolls rolling in opposite direction on
an office desk. It consists of 20 frames with a spatial resolution of 64x64 pixels and has
6-bit gray level depth. The frame-rate is 15 frames/sec.

The Yosemite sequence

The Yosemite sequence simulates an artificial flight over the Yosemite valley in California,
U.S.A and is based on real topological data overlaid with artificially rendered textures.
The clouds in the background are completely fractal. The sequence was generated by
Lynn Quann at SRI and has been extensively used as a test sequence for optical flow
methods.

The sequence consists of 16 frames with a spatial resolution of 316x252 pixels with 8-
bit gray level encoding. Simulations were performed on an image partition containing
256x256 pixels.

The Rubic’s cube sequence

The Rubic’s cube sequence is another, widely used test sequence for visual motion algo-
rithms. It shows a Rubic’s cube on a rotating turn-table. The sequence consists of 21
frames each with a resolution of 256x240 pixels and 8-bit gray level depth. In simulations,
an image partition with a size of 240x240 pixels was used.

The Hamburg taxi sequence

The sequence shows a typical traffic scene on a crossroad, seen out of the window of a
high building. There are several motion sources present, including multiple cars and a
pedestrian. The original sequence contains 21 frames with 190x256 pixel resolution. In
simulations, an image partition of 190x190 pixels was applied.

The ’triangle’ and the ’tape-rolls’ sequence are available from the author. The other
sequences can be found in various image sequence archives on the web, such as e.g
www.cs.cmu.edu/~cil/v-images.html.



Appendix C

Large Signal MOSFET Model

The Metal-Oxide-Semiconductor Field-Effect Transistor MOSFET is the basic
computational unit used in the implementation of the presented analog networks. Stan-
dard Complementary-Metal-Oxide-Semiconductor CMOS processes provide two
types of MOSFETs, the native and the well transistor. Labeling of the two types is often
based on their channel type, thus calling the n-channel transistor nFET (or NMOS) and
the p-channel transistor pFET (or PMOS). Therefore, in a typical p-type substrate pro-
cess, the nFET is equivalent to the native and the pFET to the well transistor. Throughout
this thesis, schematic symbols for both transistor types are used as depicted in Figure C.1.

vV V

1 Y
I v I v
bulk well / bulk
| |
a ds b dS

Figure C.1: Symbolic representation of (a) the native and (b) the well MOSFET.

The MOSFET has four terminals called gate (g), bulk (b), drain (d) and source (s).
It is a symmetric device insofar as drain and source are not intrinsically defined by the
device but depend only on the voltage distribution on the terminals. The source thereby
is the terminal, where the net current of majority carriers originates.

Detailed discussions and extensive models of MOSFET devices can be found in the
literature. We recommend the excellent textbooks by Gray and Meyer [1993] and Sze
[1981].
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Sub-threshold regime (weak inversion)

The channel current in a MOSFET is in first order approximated by the difference of the
current densities in the forward and the reverse direction, thus

w
Iz = Iy—|exp (—

L[\ KV, — V)) exp (—

kT( N kT(

forward current reverse current

KV, — Vd))} (C.1)

where ¢ is the elementary charge of the majority carriers (i.e. for the nFET ¢ = —1.6022 -
1071 C), k the Boltzmann’s constant, 7" the temperature and x < 1 a parameter that
accounts for the efficacy of the gate voltage V, on the channel potential. The source Vj,
gate V; and drain Vj voltage are all referenced to the bulk potential.

k can be approximated by the capacitor ratio k & C,y/(Coz + Caepiction), Where Cyy is
the capacitance of the gate-oxide and Cyepietion is the capacitance of the depletion region
under the channel. Since Clgepietion inversely depends on the width of the depletion layer,
K is not constant but increases with increasing gate-bulk potential.

For a drain-source potential difference Vs > 4kT /g ~ 100 mV the reverse current can
be neglected and the transistor is said to be in saturation where

Isat = IOE

7 exp (— kT(/{V Vs))- (C.2)

Channel-length modulation — the Early effect

The saturated channel current of the MOSFET is linearly dependent on the width-to-
length ratio W/L of the transistor gate as given by Equation (C.2). Although primarily
given by the physical size of the gate the effective transistor length L depends also on the
depletion width at the drain and source junctions. The depletion width increases with
increasing reverse bias of the junctions. Thus, under the assumption of a constant source
potential, we have to consider an effective drain conductances g45 caused by the voltage
modulation of the channel length. We rewrite the sub-threshold channel current as

Ids = lgqt + gdsVds 3 (03)

where the drain conductance is defined as

8Isat _ a]sat 8L

945 = 3V ~ OL Vg (C.4)

In first approximation we assume the channel-length modulation as negatively propor-
tional to the the drain potential Vg, thus

oL
OVis

= —C (C5)
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where ¢q [m/V] is a constant for a given process and a given transistor length. With

alsat _ Isat

oL L

(C.6)

fi
we find 1 1w

where = ;
)
VEarI y L

The Early voltage —Vg,.y is the hypothetical drain voltage where the extrapolated

Gds = Isat (C?)

VEa.r] ly

sub-threshold drain currents all intersect the voltage axis. It is named after Jim Early
who first described this effect in bipolar transistors. Taking into account the effect of
channel-length modulation, the total channel current then becomes

Vds

VE arly

Ids = Isat (1 + ) 3 (CS)

with T4 as given in (C.2).

Above-threshold regime (strong inversion)

In strong inversion, the channel current can be described as a quadratic function of the
gate voltage of a reverse and forward component

T = [0V, = Vo) = VP2~ (s, = Vi) ~ V"] (©9)

forward current reverse current

Vro is the threshold voltage and 8 = u C,,W/L. The parameter x does not have any
more a clear physical interpretation as in the sub-threshold regime. It remains as a slope
factor and is typically 0.5 < k < 1.
We consider the transistor to be in saturation if the reverse current vanishes, thus if
the saturation condition V4 > k(V,; — Vo) holds. In that case Equation (C.9) simplifies to
B

los = o ((6(Vy = Vo) = V5)?) . (C.10)



Appendix D

Differential Pair Circuit

Sub-threshold regime

Consider the differential pair circuit in Figure D.1. In the first instance, we assume all
transistors to be in saturation and neglect any second order effects. For simplicity we
assume W/L = 1 and write all voltages in units of k7/q.

out
=g

=
5. ©
0. ©

1": .
B 0
SN
'(‘
Y
o

o
3]
T

N .
vl kv

M,

o
T

o sub-threshold
o above-threshold

normalized output current |

\%
| Y
Mb . .
-1 -0.5 0.5 1

. 0 .
a e b differential input voltage AV [V]

Figure D.1: Differential pair circuit. (a) The differential pair circuit. (b) The measured
normalized output currents I, = (Iy — I2)/(I1 + I2) as a function of the differential input
voltage AV = V; —V; for sub- and above-threshold bias voltages V3. For voltages below the
threshold voltage (Vi = 0.79 V) the normalized output curves perfectly overlap because
the linear-range is independent of the bias current (square markers). For increasing bias
voltages above threshold (V, = [1, 1.25, 1.5, 2 V]), however, the linear range increases

continuously.
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The sum of the currents in the two legs of the differential pair equals the bias current
provided by M,, thus
L+L =1 with I, = [y exp(kVj). (D.1)
They are given as
I, = Iyexp(kVi = V) and I, = [yexp(kVa — V). (D.2)

Applying (D.2) in (D.1) we can solve for V and reformulate (D.2) as

exp(kV7) and L=1 exp(kVa)

I = ;
! bexp(/d/l) + exp(kV3) bexp(fdfl) + exp(kV3)

(D.3)
Multiplying denominator and numerator with exp (—«(V; + V3)/2) for both expression in
(D.3), the differential output current simplifies to the well known

Vi -V,
Ly=1 — I, =1, tanh(u

). (D.4)

The differential pair is a very useful transconductance that provides a nicely behaving
relation between its bi-directional output current I,,; and the difference of the two input
voltages, which is ideally independent of the DC-component of the input. The linear
range!, however, is limited to +1.1k7/q which is roughly +£30 mV at room temperature.
Since I, appears only as a scaling factor in (D.4) the linear range is independent of the
bias current and stays constant. Therefore, the transconductance of the differential pair

_ a[out IbK/

= AV laveo = 2 with AV =V, -V, (D.5)

Im

also is linear in the bias current.

Equation (D.4) is valid as long as the bias transistor is in saturation and I is approx-
imately constant. If we assume the extreme case Vi > V5, then all the bias current flows
though M;. To keep M, in saturation (V > 4kT/q), we find the following input condition

to hold: AKT
ma,x(Vl, Vé) > V;) + T (DG)

Above-threshold regime

We now consider the differential pair circuit operating in strong inversion such that the
currents through M;, M, and M, are accurately described by Equation (C.10). To make

characterized as the voltage range within which the output current I,,; does not deviate more than
5% from linearity.
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things easier we assume (8 and k to be equal and constant for all transistors. The currents
through the two legs of the differential pair are

B

I
12/{

(5(Vi Vo) = V) and Iy = 2 (s(Vs — Vo) = V)" (D.7)

Applying Equations (D.7) to the current equilibrium

Bk

I, = I+ 1, with I,= (V,, Viro)? (D.8)

leads to a quadratic expression in V' which has the following solutions:

V = g ( (Vi = Vo) + (Vo — Vo) £ 2{2 AV? ) (D.9)

with AV =V, — V5. Since V is preferably lower than V; or V5 we consider the smaller of
the two solutions. Substitution of V' in Equations (D.7) then gives

2

I = 68” (AV+ gj AVQ) and I, = ’6: (—AV—i— 4—I”—AV2) (D.10)

Finally, the differential output current becomes

B

Y
I, = KAV )

2
G AV (D.11)

Under which conditions for the input voltages V; and V5, is Equation (D.11) a good
approximation of the above-threshold behavior of the differential pair?

Firstly, we have to ensure that M, is in saturation. According to (C.10) this is the case
if V> k(Vy, — Vo). Since V is lowest if the complete bias current flows through either
one of the two legs, the lower saturation limit for one of the input voltages follows as

max(V1, Vo) >V, + (Vo — Vo). (D.12)

Secondly, we also have to make sure that the transistors M; and M, stay in above-
threshold operation. Thus we can determine the upper limit of the input voltage |AV/|.
Assume that M, is right at the threshold voltage? which is defined as k(Vo— Vo) —V = 0.
Furthermore, we neglect the residual sub-threshold current in Ms. Then, substitution of

2Correctly spoken, at threshold we are in the region of moderate inversion which spans roughly 200mV
around the threshold voltage. Thus, the above assumption overestimates the maximal input range that
ensures above-threshold operation.
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Figure D.2: Above-threshold operation characteristics. (a) The measured normalized
output current I,,; is shown as a function of the differential input voltage AV =V, — V4
for V, = 1.5 V. According to Equation (D.11), a least-square-fit is performed (bold curve).
The range for which the fit is accurate closely matches the theoretically found input
limit V = (V — Virg) (with Vg = 0.79 V). When the square-root in Equation (D.11)
becomes negative, the real part of the fitting curve is zero. This is observed at £0.98 V
which is approximately v/2(V; — V). (b) In above-threshold operation, the linear range
(measured 5% limit) increases inversely proportionally to the normalized transconductance
gm /Iy, thus proportionally to the square-root of the bias current. The measured values
match closely an appropriate fitting function (bold line).

V = k(Va — Viyg) in I; (D.7) and the approximation I; = I, leads to the second condition,
the nput limat

AV < (Vy = Vo). (D.13)

We might have expected that Equation (D.11) is valid as long its square-root is positive.
As it turned out now, the valid input range is smaller by a factor of v/2.

Figure D.2 shows the measured output current and a least-square error fit based on
Equation (D.11). As we see, the input limit is not of much importance because the real
circuit, unlike the fitting function, behaves very politely: Going beyond the input limit
barely changes the output current anymore because the differential pair is already close
to its saturation condition where I, is flowing either to one or the other leg. Note, how
the fitting function slightly overestimates the output current around the derived input
limit (D.13). As mentioned, this is mainly because we assumed strong inversion to hold
right down to the threshold voltage and neglected the region of moderate inversion. As a
consequence, the current through the transistor that falls out of strong inversion does not
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decrease as strongly and thus, the differential output current is larger than predicted.

In above-threshold operation, the transconductance of the differential pair is

gm =V I,k . (D.14)

Clearly, the transconductance is no longer proportional to the bias current I;, so the linear
range increases as I, gets larger. Under the assumption that the characteristic shape
of the normalized output currents remains similar for different bias current levels, the
linearity limits will occur at constant current levels. Then, the linear range is inversely
proportional to the normalized transconductance:

—1
Avhnearoc<gj—’:) o /I (D.15)

Figure D.2b shows the measured linear range and a least-square fit according to (D.15).



Appendix E

Process Parameters

The Austria Mikro Systeme AMS 0.8 um BiCMOS process is a mixed analog/digital
process and offers the implementation of generic npn-bipolar transistor. It provides two
layers of metal and two layers of low ohmic polysilicon (poly) to form poly/poly capacitors.
The substrate is p- doped and the gates consist of n+ doped polysilicon. The most
important process parameters are listed below in Table E.1.

MOSFET Transistor NMOS | PMOS units
Effective substrate doping 74x10%° | 28x10'° | em™®
Minimum drawn gate length 0.8 0.8 pm
Oxide thickness 16 16 nm
Threshold voltage 20/20 0.80 -0.84 Vv
Transconductance 100 35 uA/V?
Body factor 20,20 0.74 0.45 VvV
Bipolar Transistor NPN

Beta 100 -
Early-voltage Viany 32 \%
Transit frequency F; 12 GHz
Thin Oxide Poly/Poly Capacitor 1.8 fF/ ym?
Operating Voltage 2.5-5.5 V

Table E.1: AMS 0.8 um BiCMOS process parameters.

Both, the optical flow chip and the motion segmentation chip are fabricated in this
AMS process. Fabrication costs could be kept relatively low by accessing the process
through the multi-project-wafer (MPW) service provided by Europractice®.

1

www.europractice.com
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