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Preface

Over two years have passed since the publication of Mathematical Meth-
ods, my undergraduate textbook to which the present book was to be a
companion. The initial motivation for writing this book was to take some
examples from Mathematical Methods in which to illustrate the use of a
symbolic language such as Mathematica�. However, after writing the first
few pages, I realized very quickly that, for the book to be most effective, I
had to go beyond the presentation of examples. I had to talk about the the-
ory of numerical integration, discrete differentiation, solution of differential
equations, and a number of other topics; thus the delay in the publication
of the book.

As a result, the book has become a self-contained introduction to the
use of computer algebra—specifically, Mathematica—for undergraduates in
physics and related fields. Although many of the examples discussed here
are taken from Mathematical Methods, no prior knowledge of the content
of that book is essential for learning the techniques of computer algebra.
Of course, a deeper understanding of the underlying physical ideas requires
reading the relevant sections of Mathematical Methods or a book like it. For
those interested in the underlying theories of the examples being discussed,
I have placed the appropriate page (or section) numbers in the margin.

I have to emphasize that the book does not discuss programming in
Mathematica. Nor does it teach all the principles and techniques of the
most elegant utilization of Mathematica. The book can best be described
as “learning the essentials of Mathematica through examples from under-
graduate physics.” In other words, Mathematica commands and techniques
are introduced as the need arises.



Note to the Reader

I should point out from the very beginning that, as powerful as Mathemat-
ica is, it is only a tool. And a tool is more useful if its user has thought
through the details of the task for which the tool is designed. Just as one
needs to master multiplication—both conceptually (where and how it is
used) and factually (the multiplication table)—before a calculator can be
of any use, so does one need to master algebra, calculus, trigonometry, dif-
ferential equations, etc., before Mathematica can be of any help. In short, Mathematica, like any

other calculational tool,
is only as smart as its
user can make it!

Mathematica cannot think for you.
Once you have learned the concepts behind the equations and know how

to set up a specific problem, Mathematica can be of great help in solving
that problem for you. This book, of course, is not written to help you set
up the problems; for that, you have to refer to your physics or engineering
books. The purpose of this book is to familiarize you with the simple—
but powerful—techniques of calculation used to solve problems that are
otherwise insoluble. I have taken many examples from your undergraduate
courses and have used a multitude of Mathematica techniques to solve those
problems.

I encourage you to explore the CD-ROM that comes with the book.
Not only does it contain all the codes used in the book, but it also gives
many explanations and tips at each step of the solution of a problem. The
CD-ROM is compatible with both Mathematica 3.0 and Mathematica 4.0.



1
Mathematica in a Nutshell

Mathematica� is a high-level computer language that can perform sym-
bolic, numerical, and graphical manipulation of mathematical expressions.
In this chapter we shall learn many of the essential Mathematica commands.

1.1 Running Mathematica

Installing and running Mathematica differ from one computer system to
another. However, the heart of Mathematica, where the calculations are
performed, is the same in all systems. Mathematica has two major com- of kernels, front ends,

and notebooksponents, the kernel and the front end. The front end is the window in
which you type in your commands. These windows are generally part of
notebooks, which are Mathematica’s interface with the kernel. The ker-
nel is where the commands are processed. It could reside in the computer
where the front end resides, or it could be in a remote computer.

Mathematica is launched by double-clicking on its icon—or any other
shortcut your computer system recognizes. Almost all front ends now in-
corporate notebooks, and I assume that the reader is communicating with Shift+Return or

numeric Enter tells
Mathematica to start.

Mathematica through this medium. The window of a notebook looks like
any other window. After typing in your command, hold down the Shift
key while hitting the Return key to execute that command. In Macintosh,
the numeric Enter key will also do the job.

When you enter a command, Mathematica usually precedes it with an
input sign such as In[1]:=; and when it gives out the result of the calcu-
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lation, the output sign Out[1]= appears in front of the answer. The input
and output numbers change as the session progresses. This is a convenient
way of keeping track of all inputs and outputs for cross referencing. Thus,
if you type 2+2 and enter the result, Mathematica turns it into In[1]:=
2+2 and gives the result as Out[1]= 4.

In the remaining part of this chapter (and indeed throughout the book),
we are going to discuss most of the commands an average user of Math-
ematica will need. Nevertheless, for the important details omitted in this
book, the reader is urged to make frequent use of the definitive Mathe-
matica Book [Wolf 96] as well as the Help menu, which includes the online
version of the Mathematica Book.

1.2 Numerical Calculations

Mathematica recognizes two types of numerical calculations: integer and
floating point. When the input of a mathematical expression is in integer
form, Mathematica—unless asked specifically—does not approximate the
final answer in decimal format. Consider asking Mathematica to add 11/3
to 217/43, by typing inMathematica calculates

integer expressions
exactly. 11/3 + 217/43

and pressing the numeric Enter key. Mathematica will give the answer as
1124
129

. On the other hand, if you type in

11./3 + 217/43

you will get the answer 8.71318. The difference between the two inputs
is the occurrence of the floating (or decimal) point. In the second input
Mathematica treats 11. and all the other numbers in the expression as real
numbers and manipulates them as such.

When Mathematica encounters expressions involving integers, it evalu-
ates them and often gives the exact result. For example, for 5100, Mathe-
matica gives an exact 70-digit answer:

In[2]:= 5ˆ100

Out[2]= 788860905221011805411728565282786229673206435109\
0230047702789306640625

One can always get an approximate decimal answer by ending the inputuse of // N

with // N

In[3]:= 5ˆ100 // N

Out[3]= 7.88861 × 1069
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An alternative way of getting approximations is to use N[expr,n], which
returns the numerical value of expr to n significant figures. Here is how
to find the numerical value of π to any desired significant figures. Simply
replace 40 with some other (positive) integer: use of N[ , ]

In[4]:= N[Pi,40]

Out[4]= 3.141592653589793238462643383279502884197

The example above illustrates how Mathematica denotes the constant π.
Other mathematical constants also have their own notations:

Pi π = 3.14159
E e = 2.71828

I i =
√−1

Infinity ∞
Degree π/180 : as in 30 Degrees

Mathematica understands the usual mathematical functions with two Functions begin with
capital letters;
arguments are enclosed
in square brackets.

caveats:

• All Mathematica functions begin with a capital letter.

• The arguments are enclosed in square brackets.

Here is a list of some common functions:

Sqrt[x]
√
x Sin[x], ArcSin[x] sine, its inverse

Exp[x] ex Cos[x], ArcCos[x] cosine, its inverse
Abs[x] absolute value Tan[x], ArcTan[x] tangent, its inverse

n! the factorial Cot[x], ArcCot[x] cotangent, its inverse
Log[x] natural log Log[b,x] log to base b

By default, the arguments of the trigonometric functions are treated as
radians. You can, however, use degrees: Arguments of the

trigonometric functions
are treated as radians.In[5]:= Sin[Pi/3]-Cos[45 Degree]

Out[5]= − 1√
2

+
√

3
2

Note that Mathematica returns the exact result. This is because no floating
point appeared in the arguments of the functions. Changing 3 to 3. or 45
to 45. returns 0.158919. Similarly, Sqrt[2] will return

√
2, but
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In[6]:= N[Sqrt[2],45]

Out[6]= 1.41421356237309504880168872420969807856967188

Mathematica has a very useful shortcut for reusing the existing expres-Reusing the existing
expressions sions.

% the last result generated
%% the next-to-last result generated
% n the result on output line Out[n]

Typing in %ˆ2 squares the last result generated and returns its value. Sim-
ilarly, Sqrt[% 6] takes the square root of the result on output line Out[6].

1.3 Algebraic and Trigonometric Calculations

The most powerful aspect of Mathematica is its ability to handle symbolic
mathematics, including all the manipulations one encounters in algebra.
The following is a partial list of algebraic expressions frequently encoun-
tered in calculations.

Expand[expr] multiply products and powers in expr
Factor[expr] write expr as products of minimal factors

Simplify[expr] simplify expr (standard)
FullSimplify[expr] simplify expr (comprehensive)
PowerExpand[expr] transform (xy)p to xpyp; useful for

changing
√
a2 to a

Mathematica allows a convenient method of substituting values for a
quantity in an expression:

expr /. x -> value replace x by value in expr
expr /. {x -> xval, y -> yval} perform several replacements

Here is an example of the use of some of the above:

In[1]:= xˆ2-2x+1 /. x -> 2 + y

Out[1]= 1 − 2(2 + y) + (2 + y)2

In[2]:= Expand[%]
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Out[2]= 1 + 2y + y2

In[3]:= Factor[%]

Out[3]= (1 + y)2

As “smart” as Mathematica is, it is too ignorant to do some of the most
obvious things. You will have to ask it to do it. Consider the following:

In[4]:= g=xˆ2 + yˆ2

Out[41]= x2 + y2

In[5]:= g/. {x->Cos[t],y->Sin[t]}

Out[5]= Cos[t]2 + Sin[t]2

In[6]:= TrigReduce[g]

Out[6]= x2 + y2

In[7]:= TrigReduce[%5]

Out[7]= 1

This example illustrates a number of Mathematica subtleties that are
worth mentioning at this point. First, note that the substitution x->Cos[t]
and y->Sin[t] did not change the value of g, as evident in Out[6]. Sec-
ond, Mathematica does not automatically “remember” even the simplest
trigonometric identity, if you do not “remind” it of the identity. Third,
Mathematica has some trigonometric “reminders,” some of which are gath-
ered below: some trigonometric

commands

TrigExpand[expr] expand the trig expr into a sum of terms
TrigFactor[expr] write the trig expr as products of terms
TrigReduce[expr] simplify trig expr using trig identities

Here is an illustration of how these work:

In[8]:= TrigExpand[Sin[x+y]]

Out[81]= Cos[y] Sin[x] + Cos[x] Sin[y]

In[9]:= h=% /. {y->2x}

Out[9]= Cos[2x] Sin[x] + Cos[x] Sin[2x]
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In[10]:= TrigExpand[h]

Out[10]= 3Cos[x]2 Sin[x] − Sin[x]3

In[11]:= TrigFactor[%]

Out[11]= (1 + 2 Cos[2x]) Sin[x]

In[12]:= TrigReduce[%]

Out[12]= Sin[3x]

For most purposes, the commands discussed so far are adequate. How-
ever, sometimes—especially with rational expressions—other commands
may come in handy. The following are examples of such commands:

Factor[expr] reduce expr to a product of factors
Together[expr] put all terms of expr over a common denominator

Apart[expr] separate expr into terms with simple denominators
Cancel[expr] cancel common factors in numerator and

denominator of expr

Let us look at an example. Consider the rational expression

In[1]:= f=(2xˆ5-xˆ3+6xˆ2-x+3)/(6xˆ3-4xˆ2+3x-2)

Out[1]:=

3 − x+ 6x2 − x3 + 2x5

−2 + 3x− 4x2 + 6x3

First we separate f into terms with simple denominators:

In[2]:= g=Apart[f]

Out[2]:=

− 5
27

+
2x
9

+
x2

3
+

71
27(−2 + 3x)

Then we put them back together again:

In[3]:= Together[g]

Out[3]:=

3 − x+ x3

−2 + 3x
This is not f because, in the process of putting g together, Mathematica
simplified the expression, canceling out the common factors in the numer-
ator and denominator. To see this, we reproduce f by typing it in:
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In[4]:= f

Out[4]:=

3 − x+ 6x2 − x3 + 2x5

−2 + 3x− 4x2 + 6x3

and ask Mathematica to cancel common factors in its numerator and de-
nominator:

In[5]:= Cancel[f]

Out[5]:=

3 − x+ x3

−2 + 3x
The following are some useful commands with which one can separate

different parts of an expression:

Numerator[expr] numerator of expr
Denominator[expr] denominator of expr

Part[expr,n] nth term of expr
Coefficient[expr,form] coefficient of form in expr

As an example, consider

In[1]:= u=((xˆ2-2y+3)ˆ4 Tan[x])/(x+Sin[3x] Cos[2y])

Out[1]:=

(x2 − 2y + 3)4 Tan[x]
x+ Cos[2y] Sin[3x]

Now isolate the numerator:

In[2]:= num=Numerator[u]

Out[2]:=

(x2 − 2y + 3)4 Tan[x]

Tell Mathematica to produce the (obvious) coefficient of Tan[x]:

In[3]:= Coefficient[num, Tan[x]]

Out[3]:=

(x2 − 2y + 3)4

That was easy. But the following is not!
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In[4]:= Coefficient[%, yˆ2]

Out[4]:=

216 + 144x2 + 24x4

Now type in

In[5]:= TrigExpand[Denominator[u]]

Out[5]:=

x+ 3 Cos[x]2 Cos[y]2 Sin[x] − Cos[y]2 Sin[x]3

− 3 Cos[x]2 Sin[x] Sin[y]2 + Sin[x]3 Sin[y]2

To find the coefficient of sinx type in

In[6]:= Coefficient[%, Sin[x]]

Out[6]:=

3 Cos[x]2 Cos[y]2 − 3 Cos[x]2 Sin[y]2

1.4 Calculus in Mathematica

The ability to combine algebraic, trigonometric, and analytic calculations
makes Mathematica an extremely powerful tool. It has the following com-
mands for differentiation of a function:

D[f, x] the (partial) derivative
∂f

∂x

D[f, x1, x2, . . . ] the multiple partial derivative
∂

∂x1

∂

∂x2
· · · f

D[f, {x, n}] the nth derivative
∂nf

∂xn

When the function depends on a single variable, the following abbreviations—
common in mathematical literature—can be used:

f’[x] the derivative f ′(x)
f’’[x] the second derivative f ′′(x)

f’’’’’’’’[x] the eighth derivative f (8)(x)
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Mathematica can differentiate simple expressions

In[1]:= D[xˆ2,x]

Out[1]= 2x

as easily as some not-so-simple ones:

In[2]:= D[Sin[x*yˆ2/Exp[x+y]],x,y]

Out[2]= (2E−x−yy−2E−x−yxy−E−x−yy2+E−x−yxy2)Cos[E−x−yxy2]
−(2E−x−yxy−E−x−yxy2)(E−x−yy2−E−x−yxy2)Sin[E−x−yxy2]

Mathematica can perform definite and indefinite integration using its
enormous table of integrals as well as powerful internal routines. The sym-
bol for integration commands are very intuitive:

Integrate[f, x] the indefinite integral
∫
f dx

Integrate[f, {x, a, b}] the definite integral
∫ b

a

f dx

Mathematica knows the elementary indefinite integrals

In[3]:= Integrate[xˆ2 Log[x],x]

Out[3]= −x3

9
+

1
3
x3Log[x],

and some famous definite integrals:

In[4]:= Integrate[Exp[-xˆ2],{x,0,Infinity}]

Out[4]=

√
π

2
.

It is familiar enough with some famous functions to give the result of some
integrations in terms of them:

In[5]:= Integrate[Sqrt[1-k Sin[x]ˆ2],x]

Out[5]= EllipticE[x,k].

However, it cannot evaluate all integrals analytically:

In[6]:= Integrate[xˆx],{x,0,1}]

Out[6]=
∫ 1
0 x

x dx
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Nevertheless, it can always give you the numerical value of the integral to
any desired accuracy:

In[7]:= N[%,20]

Out[7]= 0.7834305107121344071

A powerful tool of Mathematica, which the reader will find extremely
useful, is its ability to manipulate user-defined functions. These functionsdefining functions (or

delayed assignments) can be not only in terms of the internal built-in functions, but also in terms
of procedures. We define a function f by typing f[x ]:= and putting the
desired expression, formula, function, etc. involving the “dummy” variable
x on the right-hand side of the equation. For example, we define f as
follows:1

In[1]:= f[x ]:= a xˆ3 Sin[a x]

This teaches Mathematica a rule by which it takes the argument of f and
manipulates it according to the instructions given on the right-hand side.
Notice the important (referred to as “blank”) on the left-hand side. The
colon to the left of the equal sign is not significant, as it only suppresses
the output of that line. We could replace the argument of the function so
defined with any expression, and the function gets evaluated accordingly.

In[2]:= f[b]

Out[2]= ab3 Sin[ab]

In[3]:= f[a]

Out[3]= a4 Sin[a2]

In[4]:= f[Sin[y]]

Out[4]= aSin[y]3 Sin[aSin[y]]

Once the function is defined, many operations such as differentiation and
integration can be performed on it. For example, we can differentiate the
complicated function f(sin y) shown in Out[4] above:

In[5]:= D[f[Sin[y]],y]

Out[5]= a2 Cos[y] Cos[aSin[y]] Sin[y]3+3aCos[y] Sin[y]2 Sin[aSin[y]]

Or we can integrate the same function:

1Note that a space between two symbols is the same as multiplication of those sym-
bols. Thus, a x is equivalent to a*x.
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In[6]:= Integrate[f[Sin[y]],{y,0,1}]

Out[6]= a
∫ 1
0 Sin[y]3 Sin[aSin[y]] dy

So, Mathematica did not know how to integrate the function. But, as al-
ways, it can easily compute it numerically. To do so, we need first to assign
a numerical value to a:

In[7]:= % /. a->2

Out[7]= 2
∫ 1
0 Sin[y]3 Sin[2 Sin[y]] dy

In[8]:= N[%]

Out[8]= 0.340467

As mentioned earlier, functions can be procedures. A frequently occur-
ring procedure is summation of related terms. Mathematica has a built-in
expression for summation:

Sum[g, {i,m, n}] the sum
n∑

i=m

g

Sum[g, {i,m, n, di}] the sum with i increasing in steps of di

Consider the familiar sum

In[1]:= Sum[1/k!,{k,0,5}]

Out[1]=
163
60

In[2]:= N[%]

Out[2]= 2.71667

Notice two things: one, that Mathematica is familiar with the convention
0! = 1; and two, that it gives the result of the summation as a fraction.
The sum above contains six terms. If we want to include more terms in the
sum, we have to change 5 to some other number. For example,

In[3]:= Sum[1/k!,{k,0,20}]

Out[3]= 6613313319248080001
2432902008176640000

In[4]:= N[%]

Out[4]= 2.71828.
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A more economical way of handling this is to define a function whose
argument is the number of terms. In fact, we can do better. We define a
function with two arguments as follows:

In[5]:= Clear[f,x,n]

In[6]:= f[x ,n ]:= Sum[x/k!,{k,0,n}]

Notice that k, being a dummy index, does not appear on the left-hand
side. In fact, we can use any other symbol in place of k on the right-hand
side with no noticeable consequence. The statement Clear[f,x,n] is aUse Clear[f,x, . . . ] to

override previous
assignment to f, x, . . . .

precaution to clear all the previous definitions of f , x, and n. The use
of this statement is a good habit to get into to make sure that no values
assigned previously to a variable or a function enter in the current definition
of the function.

With f[x,n] at our disposal, we can now find the values of the sum, not
only for x = 1, but for any x—and any n, of course. For instance,

In[7]:= f[y,8]

Out[7]:= 1 + y + y2

2 + y3

6 + y4

24 + y5

2 + y2

120 + y7

5040 + y8

40320;

or

In[8]:= f[1,30]

Out[8]:= 55464002213405654539818183437977
20404066139399312202792960000000

In[9]:= N[%,35]

Out[9]:= 2.7182818284590452353602874713526624

In[10]:= N[E,35]

Out[10]:= 2.7182818284590452353602874713526625

In[11]:= f[1,Infinity]

Out[11]:= E.

In[10] asks Mathematica to give the numerical value of the base of natural
logarithm to 35 significant figures. Out[11] shows that Mathematica is
familiar with the infinite series expansion of the base of natural logarithm.
In fact, it is more intelligent!

In[12]:= f[2,Infinity]

Out[12]:= E2
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In[13]:= f[y,Infinity]

Out[13]:= Ey.

At the beginning of Section 1.3, we mentioned Mathematica’s substitu-
tion rule x-> value. This same rule applies to functions in a more general
and powerful way. Here are some examples:

In[1]:= f[t]+f[s]/. t->-5, f[s]->Sin[y]

Out[1]:= f [−5] + Sin[y]

In[2]:= f[t]+f[s]/. f[x ]->xˆ2

Out[2]:= s2 + t2

In[3]:= f[t]+f[s]/. f[x ]->f[x y]

Out[3]:= f [ty] + f [sy]

In[4]:= % /. f[a b ]->f[a]+f[b]

Out[4]:= f [t] + f [s] + 2f [y].

1.5 Numerical Mathematics

Mathematica is not only a powerful program for symbolic mathematics, it
is also capable of handling sophisticated numerical calculations. In fact, al-
most all the symbolic operations have a numeric counterpart, distinguished
from the former by the concatenation of the letter N to the name of the
symbolic operation.

One of the most common problems encountered in numerical mathe-
matics is solving equations. Equations in Mathematica are described by a For equations use ==

not =.double equal sign. A single equal sign is an assignment, not an equation.
The relevant statements are

Solve[lhs==rhs,x] solve the single equation for x
NSolve[lhs==rhs,x] numerically solve the single equation for x

expr /. sol evaluate expr using the values obtained in sol

Solve tries to solve the equation lhs == rhs, where lhs and rhs are ex-
pressions in x, and give you the exact solution in the form of a list; it can
handle mostly polynomials of degree 4 or less. NSolve does the same nu-
merically; it can handle polynomials of all degrees. You can assign a label
to the Solve or NSolve expressions—we have designated this label as sol
above—and use that label to evaluate expressions involving x at the roots
of the equations. Here is a familiar example:
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In[1]:= Solve[a xˆ2 +b x +c == 0,x]

Out[1]:={{
x → −b− √

b2 − 4ac
2a

}
,

{
x → −b+

√
b2 − 4ac

2a

}}

As seen above, Mathematica gives solutions in the form of a list desig-Solution of equations is
put out in the form of a
list.

nated as entries in a curly bracket separated by commas. The solutions are
not given as simple entries, but as a “replacement rule”—again in curly
brackets. This is especially convenient when the solutions are to be substi-
tuted in other expressions.

Mathematica can also solve cubic and quartic equations. A well-known
result in mathematics states, however, that higher-degree polynomials can-
not be solved analytically in terms of radicals. Nevertheless, Mathematica
can find the roots numerically.

As another example, suppose we want to find the value of f[x] at the
roots of the polynomial 1 + x + 2x2 + 3x3 + 4x4 + 5x5. First we find the
(complex) numerical roots of the polynomial and call them sol :

In[1]:= sol=NSolve[1 + x + 2 xˆ2 +3 xˆ3 +4 xˆ4
+ 5 xˆ5 == 0,x]

Out[1]:=

{{x → −0.789728}, {x → −0.326925 − 0.674868I}
{x → −0.326925 + 0.674868I}{x → 0.321789 − 0.588911I}
{x → 0.321789 + 0.588911I}}

Then we evaluate the function at the roots:

In[2]:= f[x]/. sol

Out[2]:=

{f [−0.789728], f [−0.326925 − 0.674868I]
f [−0.326925 + 0.674868I]f [0.321789 − 0.588911I]
f [0.321789 + 0.588911I]}

Mathematica can solve a simultaneous set of equations involving several
variables. The rules are the same as before, except that—as is common in
Mathematica—one lists the equations in one set of curly brackets separated
by commas and the unknowns in another set of curly brackets. For example,

In[3]:= h=NSolve[{xˆ5 -yˆ5==1,x -2 y == 1} ,{x,y}]
yields
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Out[3]:=

{{x → −0.902376 − 0.430949I, y → −0.951188 − 0.215474I},
{x → −0.902376 + 0.430949I, y → −0.951188 + 0.215474I},
{x → 0.321731 − 0.946831I, y → −0.339134 − 0.473416I},
{x → 0.321731 + 0.946831I, y → −0.339134 + 0.473416I},
{x → 1., y → 0.}}

The solutions, as expected, are complex numbers. We can easily find the
absolute values of these complex numbers. Note that the set of solutions is
labeled h in this case:

In[4]:= {Abs[x], Abs[y]} /. h

Out[4]:=

{{1., 0.975289}, {1., 0.975289}, {1., 0.582352},
{1., 0.582352}, {1., 0.}}

It is interesting that the absolute values of x are all equal to 1.
Mathematica cannot Solve a simple equation such as cosx = x. It can-

not even NSolve it. This is because the equation is not algebraic; it is a
transcendental equation. There is, however, another command that can be
used in such situations:

FindRoot[lhs==rhs,{x, x0}] find a numerical solution starting
with x0

Unfortunately, finding a root requires a prior estimate of the location of
the root. The value x0 provided to Mathematica should not be too far from
the root of the equation, although in some cases Mathematica can solve the
equation with x0 far away from the root. The reason for this drawback is
that Mathematica mostly uses Newton’s method for finding roots. Let us
briefly describe this method.

Suppose you want to find the roots of the equation f(x) = 0, i.e., the
points at which f intersects the x-axis. Estimate one of the roots, say r,
and pick a value x0 close (it does not have to be too close!) to that root.
Now approximate the function with the tangent line L1 that passes through
(x0, f(x0)). Find the point that the tangent line intersects the x-axis; call Newton’s method of

finding roots of
equations

this x1. Since the tangent line is given as a linear function involving x0, we
can always solve for x1 entirely in terms of x0. In fact, setting y = 0 in the
equation of the tangent line

y − f(x0) = f ′(x0)(x− x0)
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f(x1)
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FIGURE 1.1. By approximating the function with tangent lines, we can get suc-
cessively closer to the root of the function. But we are not always lucky! The
tangent line of the starting point on the left of the root intersects the x-axis too
far away from r.

finds the x-intercept, i.e., x1. Thus,

0 − f(x0) = f ′(x0)(x1 − x0) ⇒ x1 = x0 − f(x0)
f ′(x0)

Generally, x1 is closer to the root r than x0, as shown in Figure 1.1, and
can be used as the input into the above equation to give a closer value to
r:

x2 = x1 − f(x1)
f ′(x1)

and in general,

xn+1 = xn − f(xn)
f ′(xn)

(1.1)

In particular, if we are interested in the mth root of a, we use the function
f(x) = xm − a. This gives

xn+1 = xn − xm
n − a

mxm−1
n

=
(

1 − 1
m

)
xn +

a

mxm−1
n

(1.2)

Mathematica has a built-in function that is especially suited for this pur-
pose:

NestList[f,x,n] generates the list {x, f [x], f [f [x]], . . . } where f
is nested up to n times deep

So, if we apply Equation (1.2) a large number of times, we get the mth root
of a to any desired accuracy. Actually, the process converges very rapidly.
For example, to find 3

√
8, set a = 8, m = 3, and define
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In[5]:= f[x ] := 2 x/3+8/(3 xˆ2)

and type in

In[6]:= NestList[f,1,6]

to obtain

Out[6]:= {1.,3.33333,2.46222,2.08134,2.00314,2.,2.}
We see that the last two iterations give the same result—up to Mathe-
matica’s default precision. In reality, the fifth and the sixth iterations are
2.0000049 and 2.000000000012, respectively!

In the example above, the starting point, x0 = 1, was actually close
enough—and strategically located—to the root for the procedure to give
a very good approximation in just six iterations. However, many times x0
may be too far from the root r, or it may be so located relative to r that the
point of intersection with the x-axis is farther than the original point. An
example of such a situation is the point in Figure 1.1 to the left of r—close
to an extremum of f—the intersection of whose tangent line L2 with the x-
axis may be so far away that no hope of ever getting closer to the intended
root exists. Trigonometric and related functions, due to their multiplicity
of extrema, exhibit this unwanted property, and Newton’s method will not
always work for them.

In such undesirable circumstances, Newton’s method may take a large
number of successive calculations to get to the root, or it may never reach
the root. The default number of successive approximations for Mathematica
is 15. If after 15 trials Mathematica does not get close enough to the root,
it gives a warning and prints out the latest approximation. So, in using
FindRoot, it is a good idea to have a rough estimate of the root and be
ready to try a different estimate if the first one does not yield results.

In case of multiple roots, we can specify the interval in which the root
may lie. This is done by using the following command:

FindRoot[lhs==rhs,{x, x0, xmin, xmax}]
starting with x0, find a numerical solution in the
interval (xmin, xmax)

The drawback of this command is that as soon as Mathematica reaches a
value outside the interval it stops, even though it could have reached the
desired accuracy had it continued. Here is an example:

In[1]:= FindRoot[Tan[x] == x,{x,7}]
Out[1]:= {x → 7.72525}

But
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In[2]:= FindRoot[Tan[x] == x,{x,7.5,7,8}]

produces the warning

FindRoot :: regex : Reached the point {8.15469} which
is outside the region {{7., 8.}}

and the value {x → 8.15469} is printed on the screen. It is, therefore, best
to simply specify a good starting point for each root.

1.6 Graphics

The results of numerical mathematics—and many symbolic manipulations
as well—are best conveyed in the form of graphics. Mathematica has a very
powerful graphics capability suitable for simple two-dimensional plots as
well as complex, multicolored three-dimensional images.

The following is a list of different graphics in Mathematica:

• Two-dimensional plots consisting of

– ordinary plots of the form y = f(x)

– parametric plots of the form x = f(t), y = g(t)

– two-dimensional contour plots of surfaces

– two-dimensional density plots of surfaces

• Three-dimensional plots consisting of

– surface plots of the form z = f(x, y)

– parametric plot of a curve: x = f(t), y = g(t), z = h(t)

– parametric plot of a surface: x = f(t, u), y = g(t, u), z = h(t, u)

Let us briefly discuss each of these graphics separately.

1.6.1 Simple Plots
The simplest kind of plot is the two-dimensional graph of a function of the
form y = f(x). The command for this kind of plot is

Plot[f[x],{x,a,b}] plot f(x) from x = a to x = b

where f[x] can be either an internal function or a user-defined functionMathematica knows how
to avoid infinities in
graphs.

involving internal functions and procedures. For example,

In[1]:= Plot[Cot[x],{x,-3,3}]
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FIGURE 1.2. Plot of cot x from x = −3 to x = 3.

yields the plot of Figure 1.2. Note that Mathematica handles the singular-
ities of the function nicely.

Now let us consider an example in which the function is user-defined.
Take the function to be a simple integral:

In[2]:= f[x ]:= Integrate[Eˆ(-tˆ2), {t,0,x}]
This—within a constant multiple—is the famous error function used ex-
tensively in statistics and probability, known to Mathematica as Erf[x].2

We then tell Mathematica to plot this function for us in some convenient
interval:

In[3]:= Plot[f[x],{x,0,3}]
The output of this plot is shown in Figure 1.3.

We can plot several functions on the same graph. We simply put all plotting several
functions on the same
graph

functions in curly brackets separated by commas. For example,

In[4]:= Plot[{10 Eˆ(-xˆ2), 20 Sin[x], Tan[x]},{x,-3,3}]
produces the plot of Figure 1.4. We can change the look of each plot—e.g.,
using dashes or different shades of gray—to differentiate between them
more easily. For hints on changing the style of a plot, the reader may
consult the Mathematica Book or the Help menu of Mathematica.

1.6.2 Parametric Plots
Functions of the form y = f(x) can have only one value for y for a given
x. So, a simple graph such as a circle of radius a can only be drawn by

2The fact that Mathematica recognizes the error function is immaterial here. We
could use any (complicated) function as the integrand so that the result of integration
is not known to Mathematica.
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FIGURE 1.3. Plot of
∫ x
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FIGURE 1.4. Plot of three functions, 15e−x2
, 20 sin x, and tan x from x = −3 to

x = 3.

juxtaposing the two half-circles y =
√
a2 − x2 and y = −√

a2 − x2. There
is, however, a more elegant way around this: using parametric equations of a
curve. In fact, parametric equations can produce curves that are impossible
with any number of curves each described by some y = f(x).

The command for the parametric plot of x = f(t), y = g(t) is, not sur-
prisingly,

ParametricPlot[{f[t],g[t]},{t,a,b}] make a parametric plot

from t = a to t = b

To produce our full circle mentioned above, we note that in polar coordi-
nates its equation is r = a and θ goes from zero to 2π. Therefore, x = a cos θ
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FIGURE 1.5. Parametric plot of a circle.

and y = a sin θ can be interpreted as the parametric equations of the circle.
Thus, use of the option

AspectRatio
In[5]:= ParametricPlot[{2 Cos[t], 2 Sin[t]},{t, 0, 2 Pi},
AspectRatio->Automatic]

will produce a circle of radius 2. This circle is shown in Figure 1.5. The
option AspectRatio->Automatic tells Mathematica to use the same units
for the horizontal and vertical axes.

With a parametric plot you can produce all the pretty polar plots you
learned in calculus.3 For example, recall that r = sin(nθ) produces a 2n-
leaved clover if n is even and an n-leaved clover if n is odd. Because x =
r cos θ and y = r sin θ, we can easily produce these clovers. Thus, to produce
a 4-leaved clover, use

In[5]:= ParametricPlot[{Cos[t] Sin[2 t],
Sin[t] Sin[2 t]},{t, 0, 2 Pi}]

On the other hand,

In[5]:= ParametricPlot[{Cos[t] Sin[5 t],
Sin[t] Sin[5 t]},{t, 0, 2 Pi}]

will produce a 5-leaved clover. Both of these are shown in Figure 1.6. In pro-
ducing this figure, we have used the following two Mathematica commands:

GraphicsArray[{g1,g2, . . . }] arranges several graphs in one row
Show[g] redraws graph g

3Actually, Mathematica has a command called PolarPlot, which can directly plot
graphs whose equations are given in polar form.
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FIGURE 1.6. Drawing clovers using ParametricPlot.

and one graph option:

Ticks -> None hide the tick marks

Options are properties that can be used in plots to customize their presen-Options can customize
your graph. tation. They are usually placed at the end of the Plot argument, separated

by commas from each other and the rest of the argument.

1.6.3 Contour and Density Plots
The two-dimensional contour and density plots are less common in the
introductory courses. However, they are indispensable in computationally
intensive advanced courses and research areas. A contour plot of f(x, y) is
a topographical map of the function. It gives the boundaries of slices cut
through the function by planes parallel to the xy-plane. The density plot
depicts the value of f at a regular array of points. Higher regions are shown
in lighter shades. The syntax for these plots, for which x runs from a to b,
and y, from c to d, are

ContourPlot[f[x,y],{x,a,b},{y,c,d}]
DensityPlot[f[x,y],{x,a,b},{y,c,d}]

Figure 1.7 shows the contour plot (left) and the density plot (right) of
the function exy for −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2. Sometimes con-
tour plots are drawn without shading. This can be done using the op-
tion ContourShading->False. However, unless the printer is incapable ofthe option

ContourShading handling gray levels well, it is actually preferable to leave the shading in,
because the gray level gives information about the “height” of the function:
the lighter the shade, the larger the value of the function.
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FIGURE 1.7. The contour plot (left) and the density plot (right) of exy.

1.6.4 Three-Dimensional Plots
Instead of showing only the two-dimensional contours or density variation
of a three-dimensional function, one can show a three-dimensional plot of
that function. The command is simple enough: if you want a plot of a
function f with x between a and b and y between c and d, then type in

Plot3D[f[x,y],{x,a,b},{y,c,d}]

For example,

In[1]:= Plot3D[ Cot[t u],{t, -3, 3},{u, -3, 3}]
produces the graph of Figure 1.8. This is not entirely true! Mathematica
produces a much rougher version of this graph. To obtain the graph of
Figure 1.8 one has to change the default options so that the number of
points on each axis as well as the range of the function (the range of the
vertical axis) is larger than the defaults. (See Table 1.1.)

Just as in two-dimensional plots, z = f(x, y) cannot produce a surface in
which two values of z would be present for a single doublet (x, y). A simple
example of such a surface is a sphere x2+y2+z2 = a2. One can only produce
half-spheres z = ±

√
a2 − x2 − y2. The remedy is to use a parametric plot.

In fact, a parametric plot produces not only surfaces but also curves in
three dimensions. Curves have a single parameter while surfaces involve
two parameters. The two commands are

ParametricPlot3D[{f[t],g[t],h[t]},{t,a,b}]
ParametricPlot3D[{f[t,u],g[t,u],h[t,u]},{t,a,b},{u,c,d}]

where the first one produces a curve and the second one a surface in three
dimensions. For example,
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FIGURE 1.8. The three-dimensional plot of cot(tu).

In[2]:= ParametricPlot3D[{Sin[t], Cos[t], t/5},
{t, 0, 6 Pi}]

produces the helix of Figure 1.9, and
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FIGURE 1.9. The helix is produced using ParametricPlot3D with a single pa-
rameter.

In[3]:= ParametricPlot3D[{Sin[t] Cos[u], Sin[t] Sin[u],
Cos[t]},{t, 0, Pi},{u, 0, 2 Pi}]

produces the sphere of Figure 1.10.
In general, a function f(θ, ϕ) can be plotted parametrically as follows.

When we plot f(x, y), we treat the values of f as the third Cartesian
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FIGURE 1.10. The sphere is produced using ParametricPlot3D with two param-
eters.
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FIGURE 1.11. When only one of the axes is a function of one of the two param-
eters, a cylinder is drawn along that axis.

coordinate z. Similarly, for specific values of its arguments, f(θ, ϕ) can be
thought of as the values of the third spherical coordinate r. Thus, writing
r = f(θ, ϕ), we have

x(θ, ϕ) = r sin θ cosϕ = f(θ, ϕ) sin θ cosϕ
y(θ, ϕ) = r sin θ sinϕ = f(θ, ϕ) sin θ sinϕ (1.3)
z(θ, ϕ) = r cos θ = f(θ, ϕ) cos θ

The three functions x(θ, ϕ), y(θ, ϕ), and z(θ, ϕ) can now be parametrically
plotted to give a surface. In the special case of a sphere of unit radius,
f(θ, ϕ) = 1, and we get the three functions in In[3] above (with t replacing
θ and u replacing ϕ).
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2/3D Option Default value Description
2D AspectRatio 1/GoldenRatio height-to-width ratio for the

plot; Automatic sets it from
absolute x- and y-coordinates

Axes True whether to include axes;
False draws no axes

AxesLabel None whether to include axes
3D Boxed True whether to draw a 3D box

around a 3D plot
2D Frame False whether to draw a frame

around the plot
2D GridLines None what gridlines to include;

Automatic includes one
gridline per major tick mark

2D PlotLabel None expression used as plot label
3D PlotPoints 15 number of points in each

direction to sample the function
PlotRange Automatic range of coordinates included

in plot; All includes all points
2D Ticks Automatic what tick marks to draw;

None gives no tick marks
3D Shading True whether to shade the surface

TABLE 1.1. Options for three-dimensional plots.

In a three-dimensional parametric plot if one of the two variables ap-
pears in only one of the axes, a “cylinder” is produced along that axis. For
example,

In[3]:= ParametricPlot3D[{2 Cos[t] Cos[2t], 2 Sin[t]
Cos[2t], u},{t, 0, Pi},{u, 0, 5}]

will yield the cylinder of Figure 1.11.
We have already used the options to alter the way Mathematica plots

graphs by default. Table 1.1 lists some of the options for three-dimensional
plots. Two-dimensional plots have fewer options, but they have a variety
of styles.

1.7 Complex Numbers

For a long time it was thought that complex numbers were just toys in-
vented and played with only by mathematicians. After all, no single quan-
tity in the real world can be measured by an imaginary number, a number
that lives only in the imagination of mathematicians.
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However, things have changed enormously over the last couple of cen-
turies. Continuing in the footsteps of Euler, who packaged the three most
important numbers of mathematics in the formula eiπ = −1, Gauss took the
complex numbers very seriously and, unlike his contemporaries who were
reluctant to manipulate them as legitimate mathematical objects, treated
them on an equal footing with the real numbers. The result was some fun-
damental conclusions concerning the number system itself, and the proof
of the most important fundamental theorem of algebra. Cauchy, a French
contemporary of Gauss, extended the concept of complex numbers to the
notion of complex functions, and—almost single-handedly—developed the
rich subject of complex analysis. By the end of the nineteenth century the
subjects of complex algebra and calculus were firmly established in the
entire mathematics community.

But no one in their wildest imagination could dream of a day when Na-
ture itself would incorporate complex numbers in its most inner workings.
In 1926 Erwin Schrödinger discovered that in the language of the world
of the subatomic particles, complex numbers were the indispensable alpha-
bets. The very first symbol in the Schrödinger equation is i. That is why the
importance of complex numbers has not gone unnoticed in Mathematica.

We have already noted that Mathematica has the internal constant I,
representing

√−1, and have seen it find roots of polynomials as complex
numbers. It is therefore not surprising to learn that Mathematica can ma- MM Chapter 9 discusses

complex numbers.nipulate complex numbers and functions. In fact, any symbol in Mathe-
matica is treated as a complex quantity unless otherwise indicated.

Some of the commands used in complex manipulations are

Re[z], Im[z] real and imaginary parts of z
Conjugate[z] complex conjugate of z

Abs[z], Arg[z] absolute value |z| and argument θ of z in |z|eiθ

ComplexExpand[expr] expand expr assuming all variables are real

There is also ComplexExpand[[expr],{x,y, . . . }], which expands the
expr assuming that {x, y, . . . } are complex.

We usually denote a complex number by z, with x and y its real and
imaginary parts, respectively. As indicated above, Mathematica treats all
variables as complex quantities, so x, y, and z are all such quantities. To
see this, let us use ComplexExpand. The input

In[1]:= ComplexExpand[(x + I y)ˆ2]

produces

Out[1]:= x2 + 2Ixy − y2

but
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In[2]:= ComplexExpand[(x + I y)ˆ2,{x,y}]
produces

Out[2]:=

− Im[x]2 − 2I Im[x] Im[y] + Im[y]2 + 2I Im[x] Re[x] − 2 Im[y] Re[x]

+ Re[x]2 − 2 Im[x] Re[y] − 2I Im[y] Re[y] + 2I Re[x] Re[y] − Re[y]2

In the first case, x and y are treated as real numbers, eliminating the need
for producing the real and imaginary parts of, e.g. x2. In the second case, x
and y are treated as complex numbers, each with its own real and imaginary
parts.

1.7.1 An Example from Optics
Although no single measurable physical quantity corresponds to a complex
number, a pair of physical quantities can be represented very naturally
by a complex number. For example, a wave, which always consists of an
amplitude and a phase, begs a representation by a complex number. Thus,
the sinusoidal wave

A cos(k · r − ωt+ φ) (1.4)

can be thought of as the real part of the complex waverepresentation of waves
by complex numbers

Aei(k·r−ωt+φ) ≡ Ze−iωt

where Z is the complex amplitude Aei(k·r+φ). In all discussions that follow
in this section, k · r is treated as part of the phase and absorbed in φ.

The superposition of two waves Z1e
−iω1t and Z2e

−iω2t gives rise to a third
“wave,” which in general will have a time-dependent amplitude and no well-
defined frequency. For example, the reader may verify that if Z1 = A1e

iφ1

and Z2 = A2e
iφ2 , and if we could write the sum of the two waves as

Aei(φ−ωt), then

A cos(φ− ωt) = A1 cos(φ1 − ω1t) +A2 cos(φ2 − ω2t)
A sin(φ− ωt) = A1 sin(φ1 − ω1t) +A2 sin(φ2 − ω2t)

It turns out that A, φ, and ω are all time-dependent. For example, by adding
the squares of the two equations above, we obtain

A =
√
A2

1 +A2
2 + 2A1A2 cos[(φ1 − φ2 + (ω1 − ω2)t]

However, if the two frequencies are equal, with ω = ω1 = ω2, then the entire
time dependence of the superposition of the two waves can be described by
this common frequency, and the amplitude will be time-independent.
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FIGURE 1.12. (a) An N -slit arrangement, showing the viewing angle θ. (b) Two
adjacent slits and the rays that meet at the screen far away.

The problem of the superposition of a set of waves with the same fre-
quency reduces to adding their complex amplitudes:

N∑
j=1

Zje
−iωt =


 N∑

j=1

Aje
iφj


 e−iωt ≡ Ae−iωt

In general, the sum in parentheses cannot be calculated in closed form.
However, a very special (but useful) case lends itself to an analytic solution. N -slit interference
In an N -slit interference (Figure 1.12), all Aj ’s are equal, and φj = jφ,
where φ is the phase difference between the waves of consecutive slits ac-
quired due to the difference in path length as the waves move from their
sources to the location of interference. We now use Mathematica to find
the intensity of an N -slit interference pattern.

Recall from introductory physics that the intensity is (proportional to)
1
2 |amp|2, which for a single slit of amplitude A becomes 1

2 |A|2. Calling this
intensity I1, the N -slit intensity IN can be written as

IN = 1
2 |A|2 = 1

2 |A|2
∣∣∣∣∣∣
N−1∑
j=1

eijφ

∣∣∣∣∣∣
2

= I1

∣∣∣∣∣∣
N−1∑
j=1

eijφ

∣∣∣∣∣∣
2

where the sum extends to N − 1 because there are N − 1 phase differences
between N slits. Our job is to calculate the sum

∑N−1
j=1 eijφ. Typing in

In[1]:= amp[N ,phi ]:=Sum[Eˆ(I k phi),{k,0,N-1}]
yields

Out[1]:=

−1 + EINφ

−1 + EIφ
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From here on we have to get control of the manipulations because otherwise
Mathematica assumes that all quantities are complex. So, the first thing we
want to do is to write the numerator in terms of trigonometric functions.
This is accomplished by

In[2]:= num1[N ,phi ]=ComplexExpand[Numerator[amp[N,phi]]]

Out[2]:=

1 − Cos[Nφ] + I Sin[Nφ]

Since we are interested in intensity, we need the square of the absolute
value of the numerator:

In[3]:= numInt[N ,phi ]= Simplify[ComplexExpand[num1[N,phi]
Conjugate[num1[N,phi]]]]

Out[3]:=

2 − 2Cos[Nφ]

We do the same thing with the denominator:

In[4]:= den1[N ,phi ]=ComplexExpand[Denominator[amp[N,phi]]]

Out[4]:=

1 − Cos[φ] + I Sin[φ]

In[5]:= denInt[N ,phi ]= Simplify[ComplexExpand[den1[N,phi]
Conjugate[den1[N,phi]]]]

Out[5]:=

2 − 2Cos[φ]

Setting I1 = 1, we finally obtain

In[6]:= intensity[N ,phi ]=Simplify[numInt[N,phi]
/denInt[N,phi]]

Out[5]:=

1 − Cos[Nφ]
1 − Cos[φ]

This is sometimes written as

IN = I1
1 − cos(Nφ)

1 − cosφ
= I1

[
sin(Nφ/2)
sin(φ/2)

]2

, φ =
(

2π
λ

)
d sin θ (1.5)
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FIGURE 1.13. The intensity of a five-slit arrangement.

where the single-slit intensity I1 has been reintroduced, and φ has been
written explicitly in terms of the viewing angle θ. To see where this ex-
pression for φ comes from, refer to Figure 1.12(b) and note that the path
difference between the two adjacent rays is d sin θ. Now recall from Equation
(1.4) that the phase difference due to the path difference—this is the only
phase difference considered, because the φ of Equation (1.4) is assumed to
be zero—is simply k = 2π/λ times the path difference.

Figure 1.13, produced by the command

In[7]:= Plot[intensity[5,phi],{phi,-5 Pi,5 Pi},
PlotRange->All]

shows the intensity of a five-slit arrangement. Notice that there are some
primary maxima, in between which we find four minima and three sec-
ondary maxima. The fact that there are N−1 minima and N−2 secondary
maxima between any two primary maxima of an N -slit arrangement is de-
picted in Figure 1.14, where the intensity of a 3-slit, a 7-slit, and a 10-slit
arrangement is plotted as a function of φ. Note that the 3-slit intensity
shows 2 minima and 1 secondary maxima, the 7-slit 6 minima and 5 sec-
ondary maxima, and the 10-slit 9 minima and 8 secondary maxima. We
now want to use Mathematica to investigate the nature of these extrema.

The locations of extrema of a function are the roots of the derivative of
that function. So, let us differentiate the intensity

In[1]:= derInt[N ,phi ]=Together[D[intensity[N,phi],phi]]

Out[1]:=

− Sin[φ] + Cos[Nφ] Sin[φ] +N Sin[Nφ] −N Cos[φ] Sin[Nφ]
(1 − Cos[φ])2
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FIGURE 1.14. The intensity of a three-slit (left), a seven-slit (middle), and a
ten-slit arrangement plotted as a function of φ.

Without Together, Mathematica would separate the answer into two frac-
tions. Now find the roots of the derivative:

In[2]:= rts[N ,r ]:=FindRoot[derInt[N,phi]==0,{phi,r}];
extremum[N ,r ]:=phi /. rts[N,r]

This little routine finds the roots of the derivative near φ = r and calls them
extremum[N,r]. To feed a good r into this routine, it would be helpful if
we plotted the derivative. We now look at the special case of 8 slits in some
detail. The reader may wish to try other values of N .

For N = 8, the plot of the derivative looks like Figure 1.15. Note that
there are 15 roots altogether. The roots at the two extremes of the figure oc-
cur at φ = 0 and φ = 2π and correspond to the two primary maxima there.
The roots with a positive slope—there are seven of these—correspond to
the minima between two primary maxima.4 The remaining roots with neg-
ative slopes—there are six of these—correspond to the secondary maxima
between two primary maxima.

The graph gives us only the rough estimate of the locations of the roots,
and we can use these estimates to calculate the more accurate locations. For
example, for N = 8, the first minimum appears to occur around r = 0.8.
Thus, we type in

In[3]:= min8[1]=extremum[8,0.8]

and obtain

Out[3]:= 0.785398

Typing in min8[2]=extremum[8,1.6], etc., we find the location of the
seven minima of the intensity. Then we use the command

In[4]:= tabMin=Table[min8[j],{j,1,7}]
to produce the following list:

Out[4]:=

4Recall that an extremum where the second derivative—i.e., the slope of the graph
of the derivative—is positive (negative) is a minimum (maximum).
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FIGURE 1.15. The derivative of the intensity of an eight-slit arrangement.

{0.785398, 1.5708, 2.35619, 3.14159, 3.92699, 4.71239, 5.49779}
Similarly, we can find the secondary maxima. In Figure 1.15 these corre-

spond to the horizontal intercepts with negative slopes. The first one occurs
about r = 1.2. So, we type in

In[5]:= secMax8[1]=extremum[8,1.2]

and obtain

Out[5]:= 1.12939

As before, we create a list of the locations of the secondary maxima—after
evaluating secMax8[2] through secMax8[6]—by using the command

In[6]:= tabMax=Table[secMax8[j],{j,1,6}]
which yields

Out[6]:=

{1.12939, 1.94218, 2.74258, 3.54061, 4.341, 5.15379}
It is instructive to calculate the intensities at the minima (which we

expect to be zero) and maxima. This is easily done by substitution in
the intensity formula. However, because of the denominator, we expect
indeterminate results. Therefore, the command Limit has to be used. So,
we type in

In[7]:= tabIntMin=Table[Limit[intensity[8,phi],
phi->min8[j]],{j,1,7}]

and get
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Out[7]:=

{0, 0, 0, 0, 0, 0, 0}
as we should.

For the intensity of the secondary maxima, we type in

In[8]:= tabIntSecMax=Table[Limit[intensity[8,phi],
phi->secMax8[j]],{j,1,6}]

and get

Out[8]:=

{3.36082, 1.45681, 1.04022, 1.04022, 1.45681, 3.36082}
For primary maxima, we need to evaluate the intensity at φ = 2mπ for

the integer m. These will all give the same result by Equation (1.5). Mere
substitution, however, will give an indeterminate result. Therefore, we have
to take limits. As a convenient shortcut, we define the following command,
which is good not only for the primary maxima, but for all extrema:

In[9]:= IntAtExtrema[N ,r ]:=Limit[intensity[N,phi],
phi->extremum[N,r]]

Let us use this to find the intensity of primary maxima for different
number of slits. We use r = 2π ≈ 6.2832 for N = 2 to N = 10 in the
following command to make a table:

In[10]:= PrimMax=Table[{j,IntAtExtrema[j,6.2832]},
{j,2,10}]

Executing this command yields

Out[10]:=

{{2, 4.}, {3, 9.}, {4, 16.}, {5, 25.}, {6, 36.}, {7, 49.}, {8, 64.},
{9, 81.}, {10, 100.}}

It is clear from the above list that the intensity of the primary maxima
should be equal (actually proportional) to the square of the number of
slits. We can show this analytically by evaluating the limit of the intensity
at φ = 0. In fact, typing

In[11]:= Limit[intensity[N,phi],phi->0]

yields N2 as the output. Recalling that the single-slit intensity was taken
to be 1, we obtain the well-known result from optics that Iprim max

N = N2I1.
The preceding discussion of maxima and minima assumes that the single-

slit intensity I1 is independent of the viewing angle θ. This assumption is
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FIGURE 1.16. The interference pattern of a five-slit arrangement with diffraction.

not strictly correct, because a slit can produce an interference pattern of its
own. The Huygens’ principle in wave optics tells us that the wave emerging
from a single slit is to be considered as a collection of point sources capable
of producing their own interference pattern. Starting with Equation (1.5),
and assuming that the single slit of width a is a collection of N narrow slits
separated by a/N , it is not hard (see Problem 1.28 for details) to show that,
in the limit of N → ∞, one obtains the single-slit diffraction formula:

I1 = I0

[
sin(β/2)
β/2

]2

, β =
2π
λ
a sin θ (1.6)

where I0 is the single-slit intensity at the viewing angle θ = 0. Combining
this with (1.5), we obtain

IN = I0

[
sin(β/2)
β/2

]2 [ sin(Nφ/2)
sin(φ/2)

]2

, β =
2π
λ
a sin θ, φ =

2π
λ
d sin θ

(1.7)

where a is the width of each of the N slits and d is their separation.
To see the effect of diffraction on the N -slit interference, we look at the

plot of the IN of (1.7) as a function of y, the viewing location in Figure 1.12.
To this end, we type in

beta[y ,a ,lambda ,L ]:=(2 Pi a/lambda) y/Sqrt[yˆ2+Lˆ2];
phi[y ,d ,lambda ,L ]:=(2 Pi d/lambda) y/Sqrt[yˆ2+Lˆ2];
diff[y ,a ,lambda ,L ]:=(Sin[beta[y,a,lambda,L]/2]

/(beta[y,a,lambda,L]/2))ˆ2;
interf[y ,d ,lambda ,n ,L ]:=(Sin[n phi[y,d,lambda,L]/2]

/(Sin[phi[y,a,lambda,L]/2]))ˆ2;
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FIGURE 1.17. The interference pattern of a five-slit arrangement with diffraction
with d/a = 10 on the left, d/a = 20 in the middle, and d/a = 50 on the right.

totIntensity[y ,d ,a ,lambda ,n ,L ]:=diff[y,a,lambda,L]
interf[y,d,lambda,n,L]

Then the input

In[2]:= Plot[totIntensity[y,0.05,0.01,0.005,5,1],
{y,-0.5,0.5},PlotRange->All]

will produce the plot shown in Figure 1.16. Notice that the intensity of
the primary maxima is sharply reduced away from the central maximum.
This effect is due to the diffraction caused by each slit; an effect that can
be reduced by taking d, the slit spacing, to be much larger than a, the
width of each slit. We can exhibit this by plotting totIntensity for—say
three—different ratios d/a, calling these plots pl1, pl2, and pl3, and usinguse of Show and

GraphicsArray
Show[GraphicsArray[{pl1,pl2,pl3}]]

The result is exhibited in Figure 1.17. Note that as the ratio d/a increases,
the effect of diffraction decreases.

1.8 Animation

One of the most powerful features of Mathematica is the ease with which
animations can be achieved. When a physical quantity is a function of time
in addition to other variables (such as spatial coordinates), animation be-
comes a great visual aid in understanding the behavior of the quantity. In
textbooks the effect of animation is sometimes depicted as a series of still
images (snapshots) of the quantity in question at different times. Mathe-
matica can produce these snapshots in sufficient quantities so that their
rendering in succession will give the illusion of motion just as the succes-
sive exposure of the frames of a movie creates the illusion of motion. The
commands used in such situations are

<<Graphics‘Animation‘ load the Animation package
Animate[plot,{t,a,b,dt}] animate plot with t running from a to b

in steps of dt
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FIGURE 1.18. Some of the snapshots that Mathematica created in the animation
of a Gaussian pulse. The upper-left frame corresponds to t = 0, with t increasing
clockwise, ending at t = 5 at the lower left.

In some platforms <<Graphics‘Animation‘ is not necessary. The argu-
ment of Animate is one of the plot commands of Mathematica, which acts
on a function, one of whose independent variables is t (usually time). The
output of this command is a series of graphics cells, each slightly different
from the previous one. To see the animation, one has to select the graphics How to play an

animationcells and choose Animate Selected Graphics from the Cell menu. The
keyboard shortcut for this is Command+y in Macintosh and Control+y in
Windows. Let us look at some examples.

First, consider a Gaussian-shaped pulse moving in the positive x-direction.
The reader recalls that a traveling pulse having speed v and a shape de-
scribed by the function f(x) is given by f(x± vt), where the plus and the
minus represent, respectively, a left-moving and a right-moving pulse. For
simplicity, we assume that the speed is unity, and that the pulse starts out
at x = −2. Then, the Gaussian pulse will have the form e−(x+2−t)2 , and
the command

In[1]:= Animate[Plot[Exp[-(x+2-t)ˆ2],{x,-2,2},
PlotRange->{0,1}],{t,0,5,0.2}]

will create 26 plots starting with t = 0 and ending with t = 5, separated by
intervals of 0.2 units. Selecting these plots and pressing the combination
Command+y keys in Macintosh (Control+y keys in Windows) will play the
movement of the Gaussian pulse from left to right and loop it back to the
beginning after reaching the end. Figure 1.18 shows some of the snapshots
created by Mathematica in the animation of our Gaussian pulse.

Next, we consider the formation of beats when two sinusoidal waves of
slightly different frequencies interfere. This time let’s make the waves move
to the left, but keep their speed the same.5 Thus, we type in

5The wave number (coefficient of x) and the angular frequency (coefficient of t) of
the two waves are different, but their ratios are the same.
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FIGURE 1.19. Some of the snapshots created by Mathematica in the animation
of a beat. The upper-left frame corresponds to t = 0, with t increasing clockwise,
ending at t = 30 at the lower left.

In[2]:= f[x ,t ]:=Cos[x+t]+Cos[1.2 x+1.2t];
Animate[Plot[f[x,t],{x,-16,16},
PlotRange->{-2.5,2.5}],{t,0,30,1}]

following which Mathematica creates 31 plots starting at t = 0 and sep-
arated consecutively by one unit of t. Some of these plots are shown in
Figure 1.19. Note the specification of PlotRange in this animation. If we
do not specify the plot range, and the range of the plots are different at
different t’s, then Mathematica automatically rescales the plots, causing
the plots to have essentially different units for axes at different times.

Our third example is a two-dimensional wave that travels diagonally in
the xy-plane. The input is

In[3]:= Animate[Plot3D[Cos[x+y-t],{x,0,2Pi},{y,0,2Pi}],
{t,0,2Pi}]

By choosing the range of x, y, and t to be 0 to 2π, the animation repeats
itself smoothly and continuously. Figure 1.20 shows some of the snapshots
created by Mathematica in the animation of this two-dimensional wave.
The input

In[4]:= Animate[Plot3D[Cos[x-t],{x,0,2Pi},{y,0,2Pi}],
{t,0,2Pi}]

creates a surface wave traveling along the x-axis. It resembles the waving
of a flag viewed from Mathematica’s default viewing angle. To change this
angle, one changes the values of Plot3D option ViewPoint. These valuesthe option ViewPoint

for a 3D plot give the coordinates of the point in space from which to look at the surface.
Changing the viewpoint as follows:

In[5]:= Animate[Plot3D[Cos[x-t],{x,0,2Pi},{y,0,2Pi}],
{t,0,2Pi},ViewPoint->{0.4,0.5,2}]
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FIGURE 1.20. Some of the snapshots created by Mathematica in the animation
of a two-dimensional wave. The upper-left frame corresponds to t = 0, with t
increasing clockwise, ending at t = 2π at the lower left.

the waving sheet appears on the screen as if looked at from the top.
Our last example has to do with the time-dependent solutions of the

one-dimensional Schrödinger equation in an infinite potential well of width
L. It is well known from introductory physics that the stationary solutions
(energy eigenstates) are of the form

ψn(x) =

√
2
L

sin
(nπx
L

)
, n = 1, 2, 3, . . .

It is also known that the time-dependent solutions are obtained from the
stationary solutions by a superposition of a number of such states each
multiplied by e−iωnt, with ωn = En/�, where En is the energy of the
nth state. More specifically, a time-dependent solution of this particular
Schrödinger equation can be written as

Ψ(x, t) =
N∑

k=1

ak sin
(
kπx

L

)
e−iEkt/�, Ek =

�
2π2

2mL2 k
2 (1.8)

where
∑N

k=1 |ak|2 = 1. If all ak are zero except for one, say an, then

Ψ(x, t) = an sin
(nπx
L

)
e−iEnt/� ⇒ |Ψ(x, t)|2 = |an|2 sin2

(nπx
L

)
implying a time-independent probability density.6 That is why these states
are called stationary.

6For those unfamiliar with quantum theory, the square of the absolute value of the so-
lution of the Schrödinger equation is the probability density for the (subatomic) particle
involved.
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FIGURE 1.21. Some of the snapshots created by Mathematica in the animation
of an infinite quantum well. The upper-left frame corresponds to t = 0, with t
increasing clockwise, ending at t = 2 at the lower left.

A time-dependent probability, therefore, requires a superposition of at
least two different stationary states. So, let us type in

In[6]:= psi[x ,t ,n ]:= Sum[a[j] Sin[j Pi x]
Exp[-I Pi jˆ2t],{j,1,n-1}]+Sqrt[1-Sum[a[m]ˆ2,
{m,1,n-1}]] Sin[n Pi x]Exp[-I Pi nˆ2 t];
p[x ,t ,n ]:= ComplexExpand[psi[x,t,n]
Conjugate[psi[x,t,n]]]

Here

Ψ(x, t) =
n−1∑
j=1

aj sin(jπx)e−iπj2t +

√√√√1 −
n−1∑
m=1

a2
m sin(nπx)e−iπn2t

is a superposition of n solutions, whose probability density is also defined
in In[6]. All constants such as the width of the potential, the particle’s
mass, etc. are set equal to 1. For n = 2 and a1 = 1/

√
2, we type in

In[7]:= a[1]:=1/Sqrt[2]; Animate[Plot[p[x,t,3],{x,0,1},
Axes->False,PlotRange->{0,1.6}],{t,0,2Pi/3,0.05}]

and obtain 42 graphics cells whose animation shows the probability density
sloshing back and forth between the left and right halves of the potential
well. The specification of the PlotRange is necessary to avoid the rescaling
of the plots at different times. Figure 1.21 shows some of the snapshots
created by Mathematica in the animation of this infinite quantum well.
The period of the oscillation between the left and the right halves of the
well turns out to be 2π/3, as the reader may verify by evaluating |Ψ(x, t)|2.
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1.9 Input and Output Control

In this final section of our overview we want to say a few words about how
input and output of Mathematica are controlled. Let us first consider the
output.

We have already seen how to control the numerical output by specifying
the number of decimal places using N[ ]. If you end the Mathematica
input expression with // N, the expression is evaluated numerically and the
output is given with the default number of significant figures. For example,
the input Pi // N gives 3.14159.

A similar command exists for symbolic calculations as well. This com-
mand is especially useful if the output is extremely long. For instance,
typing in

In[1]:= Expand[(2 a + 3 b - 4)ˆ10]

gives a result 16 lines long. On the other hand,

In[2]:= Expand[(2 a + 3 b - 4)ˆ10] // Short

yields

Out[2]:= 1048576 − 5242880a+ << 91 >> +393660ab9

+ 59049b10

indicating that the output has ignored 91 terms of the result and printed
only the given 4 terms. We can control the number of output lines by using
the command Short[expr,n], which gives the outline of the answer in n Short[expr,n] explained
lines. It also gives the number of terms it has suppressed. For example,

In[3]:= Short[Expand[(2 a + 3 b - 4)ˆ10],3]

gives the answer in three lines, including the symbol <<79>>, which indi- meaning of <<>> in
outputcates that 79 terms of the answer have been suppressed.

If you want the output to be completely suppressed, you can use a semi-
colon after the command. Furthermore, you can input several commands
at the same time by separating them with semicolons. For example, use of semicolon to

suppress output
In[4]:= f[x ]=xˆ2; g[t ]=Sin[t]ˆ3;

does not reproduce the input—as Mathematica normally does. However, it
stores the two functions defined and remembers them later. This can be
seen by typing in

In[5]:= f[3] + g[Pi/4]

which yields 9 + 1/2
√

2.
Starting with Mathematica 3, you can input many expressions by simply

clicking on the symbols provided in various palettes. There are seven built- using palettes for
inputting expressions
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(a) (b) (c) (d)

FIGURE 1.22. Different “subpalettes” of the BasicInput palette. The palettes of
(a) mathematical operations, (b) widely used mathematical symbols, (c) Greek
alphabet, and (d) subscripts, etc.

in palettes:7 Algebraic Manipulation, Basic Calculations, Basic
Input, Basic Typesetting, Complete Characters, International
Characters, and Notebook Launcher. All these can be accessed from the
File pop-up menu. The first three are the most relevant to our purposes.

A palette is a collection of buttons arranged in rows and columns. EachA palette is a collection
of buttons. button produces its symbol in the notebook upon being clicked. You can put

several palettes next to each other. For instance, the BasicInput palette
consists of four “subpalettes,” which are shown separately in Figure 1.22.
Although the buttons are self-explanatory (for instance, ∂t,u � stands for
the mixed derivative with respect to t and u of an expression in the black
box), a few remarks are in order.

The black squares are in general the first entries, i.e., when you click a
button with a black square, what you type first will end up in that square.
To type in other placeholders, you need to click on them. You can use the
buttons after you have typed the main expression (what goes in the black
square). Simply select what is intended for the black square, and then click
on the button. Suppose you want to input Sin[x y]+Cos[x]ˆ3. You can
type in Sin[x y]+Cos[x], select Cos[x], and click on the first button of
the palette shown in Figure 1.22(a). Now enter 3 for the exponent.

The second palette, depicted in Figure 1.22(b), contains symbols that
are used in standard mathematics or in Mathematica (or both). The first
entry is π, the famous number in mathematics that is also represented in

7Mathematica allows you to create palettes of your own. However, a discussion of
such details would take us too far afield.
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Mathematica by Pi. You cannot use π as a (constant or variable) Greek
letter. The second entry is the base of the natural logarithm; and the third
entry is

√−1.
The third palette [Figure 1.22(c)] is the Greek alphabet, mostly lower

case, but some capital letters are also included. Note that π is also there,
and it has the same meaning as the first entry of the previous palette.
Typing N[π] and hitting Return will produce 3.14159.

The last palette [Figure 1.22(d)] shows some of the so-called modifier
buttons. These are symbols—such as subscripts and underscripts—added
to variables to make them more in tune with the common usage in math-
ematics.

The other palettes are more specialized but also easy to use. We shall
have many occasions to use them in the remainder of this book. It is a good
idea to get into the habit of using these palettes, because they save a lot
of typing, and you don’t have to memorize all the commands.

Because of typographical limitations, we continue to use input commands
in their text format. However, use of palettes saves a lot of typing, and
the reader is well advised to make frequent use of them.

1.10 Problems

Problem 1.1. Consider the integers 137174210 and 1111111111. Put a
decimal point at the end of one of them, then take the ratio of the first to
the second. Using N, ask Mathematica to give you the result to 50 decimal
places. Now remove the inserted decimal point and do the same thing. You
should get a surprisingly interesting result!

Problem 1.2. Find the numerical value of ii, where i =
√−1. Compare

your result with the numerical value of e−π/2.

Problem 1.3. Find the factorial of 100. Of 300. Of 500. Now try the
factorial of 4.5 and 3.2, or any other noninteger number.

Problem 1.4. Factor x10 − 1. Manipulate the result to get the original
expression back.

Problem 1.5. Using FactorInteger, find the prime factors of 9699690
and 9765625.

Problem 1.6. Have Mathematica evaluate (a+ b)100 for you. Then tell it
to find the coefficient of a50b50. Check to see if this coefficient is what you
expect.

Problem 1.7. Start with the expression x4 + y4. Substitute cos z for x
and sin z for y. Then ask Mathematica to reduce the result for you.



44 1. Mathematica in a Nutshell

Problem 1.8. Instruct Mathematica to find the indefinite integral of
1/(1 + x2). Now change the power of x to 3, 4, etc., and see what the
result will be.

Problem 1.9. Instruct Mathematica to find the indefinite integral of
1/ sinx. Now differentiate the answer and TrigReduce it. Is the end re-
sult the same as the original integrand?

Problem 1.10. Define a function g(x) as

g(x) =
∫ x3

x

sin(xt2)dt

Then ask Mathematica to find its derivative. Use the Help menu to find
out about functions introduced in the answer.

Problem 1.11. Define a function g(x) as

g(x) =
∫ cos x

sin x

ex2t3dt

(a) Ask Mathematica to find its derivative. Use the Help menu to find out
about functions introduced in the answer.
(b) Find the numerical value of g′(3). See if you can find the source of
the imaginary part of g′(3). After all, a real function such as the integral
defining g(x) cannot have a complex derivative!

Problem 1.12. Find the roots of the following polynomials in terms of
radicals:

(a) x3 − 3x2 + 5x− 2

(b) 3x3 − 2x2 + 7x− 9

(c) x4 − 5x3 − 4x2 − 6x+ 3

(d) − 6x4 + 3x3 − 2x2 − 7x+ 11

(e) x5 − x4 + 5x3 − 7x2 − 3x+ 13

Now find the numerical values of the roots of the same polynomials.

Problem 1.13. Find at least three different values of x for which ex and
tanx are equal.

Problem 1.14. Find all values of x for which ex = 4x.

Problem 1.15. Find all values of x for which e2x = 2 − x.

Problem 1.16. Are there any angles for which the sine of the angle is
equal to the cosine of the square of the angle? If so, find a few such angles.
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Problem 1.17. Define functions f1(x, n), f2(x, n), f3(x, n), and f4(x, n)
to be the sum of the first n terms of the Maclaurin series of ex, sinx,
cosx, and ln(1 + x), respectively. For some values of x and n, compare the
functions with their finite-sum representations.

Problem 1.18. In this problem, we want to find a series representation
of π for Mathematica.
(a) In Mathematica define the function a(x, n) to be the Evaluation of the
nth derivative of arcsin(x).
(b) Using (a), define pi(y, k) to be the sum of the first k terms of the
Maclaurin series for arcsin(y).
(c) Substituting 0.5 for y, find a series (really a polynomial of degree k) for
π/6.
(d) Compare π and the series by evaluating the differences π−6∗pi(0.5, 10),
π − 6 ∗ pi(0.5, 20), π − 6 ∗ pi(0.5, 40), and π − 6 ∗ pi(0.5, 100).

Problem 1.19. Plot the difference between ex and its Maclaurin series
expansion up to x6 for x between 0 and 5. Use PlotRange->All as an
option of the plot. Do the same with the Maclaurin series expansion up to
x10.

Problem 1.20. Define a function

g(x) =
∫ π/2

0

√
1 − x2 sin2 t dt

Then plot g in the interval 0 < x < 0.5.

Problem 1.21. Define a function

g(x, y) =
∫ y

0
sin(xt2) dt

Then make a three-dimensional plot of g in the interval 0 < x < 2, 0 <
y < 2π.

Problem 1.22. For points in the xy-plane, find the electrostatic potential See [Hass 00, pp.
27–28], for electrostatic
potential of point
charges.

of four point charges equal in magnitude with two positive charges located
at (1, 0) and (0, 1), and two negative charges located at (−1, 0) and (0,−1).
Now make a three-dimensional plot of this potential for the range −2 <
x < 2, −2 < y < 2. Make sure you have enough PlotPoints to render the
plot smooth.

Problem 1.23. Make a contour and a density plot of the potential of the
previous problem.

Problem 1.24. Spherical harmonics Ylm(θ, ϕ), where l is a nonnegative
integer and m takes integer values between −l and +l, occur frequently
in mathematical physics. When l = 2, we have the following five spherical
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harmonics:

Y20(θ, ϕ) =

√
5

16π
(3 cos2 θ − 1),

Y2,−1(θ, ϕ) =

√
15
8π
e−iϕ sin θ cos θ, Y21(θ, ϕ) = −

√
15
8π
eiϕ sin θ cos θ,

Y2,−2(θ, ϕ) =

√
15
32π

e−2iϕ sin2 θ, Y22(θ, ϕ) =

√
15
32π

e2iϕ sin2 θ.

Using Equation (1.3), make a three-dimensional parametric plot of the real
parts of Y21(θ, ϕ) and Y22(θ, ϕ). Also make a three-dimensional parametric
plot of the square of the absolute values of Y21(θ, ϕ) and Y22(θ, ϕ). Recall
that eiα = cosα+ i sinα.

Problem 1.25. Using Mathematica, find the real and imaginary parts of
the following complex numbers:

(a) (2 − i)(3 + 2i) (b) (2 − 3i)(1 + i) (c) (a− ib)(2a+ 2ib)

(d)
i

1 + i
(e)

1 + i

2 − i
(f)

1 + 3i
1 − 2i

(g)
1 + 2i
2 − 3i

(h)
2

1 − 3i
(i)

1 − i

1 + i

(j)
5

(1 − i)(2 − i)(3 − i)
(k)

1 + 2i
3 − 4i

+
2 − i

5i

Problem 1.26. Using Mathematica, convert the following complex num-
bers to polar form (i.e., find the absolute values and the arguments of the
numbers):

(a) 2 − i (b) 2 − 3i (c) 3 − 2i (d) i

(e) − i (f)
i

1 + i
(g)

1 + i

2 − i
(h)

1 + 3i
1 − 2i

(i) 1 + i
√

3 (j)
2 + 3i
3 − 4i

(k) 27i (l) − 64

(m) 2 − 5i (n) 1 + i (o) 1 − i (p) 5 + 2i

Problem 1.27. Using Mathematica, find the real and imaginary parts of
the following:

(a) (1 + i
√

3)3 (b) (2 + i)53 (c) 4
√
i (d)

3
√

1 + i
√

3

(e) (1 + i
√

3)63 (f)
(

1 − i

1 + i

)81

(g) 6
√−i (h) 4

√−1

(i)

(
1 + i

√
3√

3 + i

)217

(j) (1 + i)22 (k) 6
√

1 − i (l) (1 − i)4.
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Problem 1.28. In Equation (1.5), let Nφ = β, and use small-angle ap-
proximation for the sine term in the denominator. Absorb any constant
(such as N2) in the constant called I0. To find the expression for β in
terms of θ, simply note that Nd = a.
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2
Vectors and Matrices in Mathematica

Now that we have become familiar with the essentials of Mathematica, let
us apply our knowledge to solving some physical problems. We shall con-
centrate on specific examples and introduce new techniques as we progress.
Most of the examples are based on the author’s book, Mathematical Meth-
ods [Hass 00], which we abbreviate as MM, and refer the reader—in the
margins—to its appropriate sections and pages for further details and
deeper understanding. Although a familiarity with the concepts in that
book is helpful for a fuller understanding of our examples, no prior knowl-
edge of those concepts is essential for the Mathematica applications.

2.1 Electric Fields

The electric field E of a point charge q1 with position vector r1 at a point
P—called the field point—with position vector r is given by the formula MM, p. 24

E =
keq1

|r − r1|3 (r − r1) (2.1)

As an example of a vector manipulation, let’s have Mathematica calculate
the field of a single charge for us.

First, we define our position vectors: how to type in vectors

In[1]:= r={x,y,z}; r1={x1,y1,z1};
Note that because of the semicolons, Mathematica does not give any output.
Vectors are always defined as a list, separated by commas and enclosed in
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curly brackets. One can define vectors of any dimension. All one needs to
do is type in more components. As a check that Mathematica remembers
r and r1, we can ask it to calculate r − r1:

In[2]:= r-r1

Out[2]:= {x-x1,y-y1,z-z1}
which are the components of the the desired vector. Mathematica can also
calculate the dot product of the two vectorsdot product of two

vectors
In[3]:= r.r1

Out[3]:= xx1+yy1+zz1

or

In[4]:= (r-r1).(r-r1)

Out[4]:= (x− x1)2 + (y − y1)2 + (z − z1)2

Some common operations with vectors are collected below

{a,b,c} the vector 〈a, b, c〉
a v multiply the vector v by the scalar a
v.w the dot product v · w

Cross[v,w] the cross product v × w

Array[v,n] build an n-dimensional vector of the form
{v[1], v[2], . . . , v[n]}

Table[f[k],{k,n}] build an n-dimensional vector by
evaluating f with k = 1, 2, . . . , n

Next, we write the expression for the field (with ke = 1):

In[5]:= EField1[r ,r1 ,q1 ]:=
(q1/((r-r1).(r-r1))ˆ(3/2)) (r-r1)

Note the occurrence of the “blank” ( ) on the left-hand side of the assign-
ment relation. Because of the presence of (r − r1) on the right-hand side,
EField1 will be a vector—which is a function of vectors. If we type

In[6]:= EField1[r,r1,q1]

the output will be a list of three terms whose first entry is

q1(x− x1)
((x− x1)2 + (y − y1)2 + (z − z1)2)3/2

with similar entries for the y- and z-components.
We can confine the charge and the field point to the xy-plane by setting

the third components of r and r1 equal to zero:
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In[7]:= EField1[{x,y,0},{1,1,0},1]
where we have also set x1 = 1 = y1 and q1 = 1. Note how the argument of
EField1 matches its definition in In[5]: The first and second entries are
vectors, and thus have to be lists with three components.

The output of In[7] will be{ −1 + x

((−1 + x)2 + (−1 + y)2 + (−1 + z)2)3/2
,

−1 + y

((−1 + x)2 + (−1 + y)2 + (−1 + z)2)3/2
, 0

}

showing that the third component of the field is zero, as expected.
We now take only the first two components of the field and try to make

a two-dimensional plot of the field lines. Here is how it is done:

In[8]:= {E2D1x, E2D1y}=Take[EField1[{x,y,0},{1,1,0},1],2];
where Take[list,n] takes the first n elements of list and makes a new choosing components of

a vector using Takelist from them. The left-hand side is the name we have chosen for the
two-dimensional electric field.

Now we are ready to plot the two-dimensional field lines. But first we
have to load the correct Graphics package. For this, you need to type <<
followed by the name of the package. For example, loading packages

In[9]:= << Graphics‘PlotField‘

or the subpackage
PlotField and the
command
PlotVectorField

In[9]:= << Graphics/PlotField.m

will load the PlotField subpackage, which is needed to plot field lines.
Once the package is loaded, we plot the electric field lines using the com-
mand

In[10]:= PlotVectorField[{E2D1x, E2D1y},{x, 0,2},
{y, 0,2}, Axes->True]

By default, PlotVectorField does not draw the axes. To see the axes,
one uses the option Axes->True. The result is displayed in Figure 2.1.
Note that E2D1x and E2D1y are—as they should be for PlotVectorField
command to work—functions of x and y. The arrows have lengths that are
proportional to the strength of the field: close to the charge, they are long,
and get shorter and shorter as we move farther and farther away from the
charge.

Now let us look at a slightly more complicated field—that of two charges.
First, type in the location of the second charge:

In[11]:= r2={x2,y2,z2};
Then calculate the field due to this charge at the same field point as before:

In[12]:= EField2[r ,r2 ,q2 ]:=
(q2/((r-r2).(r-r2))ˆ(3/2)) (r-r2)
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FIGURE 2.1. The field lines of a point charge located at (1, 1).

Now add the two fields to get the total electric field at r:

In[13]:= Etotal[r ,r1 ,r2 ,q1 ,q2 ]:=
EField1[r,r1,q1]+EField2[r,r2,q2]

Let us see what the field lines of a dipole look like. A dipole is theMM, pp. 25 and 26
combination of two charges of equal strength and opposite signs.1 Let the
positive charge of +1 be at (1, 1, 0) and the negative charge of −1 be at
(1, 1.5, 0). Let us also assume that the field point is at (x, y, 0). Since we
are interested in a two-dimensional plot of the field lines, we separate the
first two components of Etotal:

In[14]:= {EDipx, EDipy}=
Take[Etotal[{x,y,0},{1,1,0},{1,1.5,0},1,-1],2];

Once again the entries of Etotal must match those of its definition in
In[13]. Now we are ready to plot this field. Typing in the input line

In[15]:= PlotVectorField[{EDipx, EDipy},{x, 0,2},
{y, 0,2}, Axes->True, Ticks->None]

yields the plot on the left of of Figure 2.2.
We can change the relative strength of the two charges. For example,

In[16]:= {E2Qx, E2Qy}=
Take[Etotal[{x,y,0},{1,1,0},{1,1.5,0},4,-1],2];

is the two-dimensional field of two charges, in which the positive charge
has four times the strength of the negative charge. Then

In[17]:= PlotVectorField[{E2Qx, E2Qy},{x, 0,2},
{y, 0,2}, Axes->True, Ticks->None]

produces the plot on the right of Figure 2.2.
Mathematica can also plot the field lines in three dimensions. Simplythe package

PlotField3D

1Actually, to be precise, we have to define a dipole as two distant charges of opposite
sign located very close to one another.
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FIGURE 2.2. The field lines of (left) a dipole whose positive charge is located at
(1, 1)—the center of the plot—and whose negative charge is located at (1, 1.5),
and (right) of two opposite charges, with the positive charge being four times the
negative charge.

load the appropriate package using

In[18]:= << Graphics‘PlotField3D‘

and type in the three components of the field. For example,

In[19]:= {E3Dx,E3Dy,E3Dz}=EField[{x,y,z},{0,0,0},1];

where EField, defined in In[5] on page 50, describes the three components
[at (x, y, z)] of a positive charge of unit strength located at the origin. To
produce a three-dimensional plot of this field, with the range of x, y, and
z confined to the interval (−1, 1), we type in the command

PlotVectorField3D
In[20]:= PlotVectorField3D[{E3Dx,E3Dy,E3Dz},{x,-1,1},

{y,-1,1}, {z,-1,1}]

and obtain the plot on the left in Figure 2.3. Similarly,

In[21]:= {E3Ddipx,E3Ddipy,E3Ddipz}=
EField[{x,y,z},{0,0,-0.5},-1] +
EField[{x,y,z},{0,0,0.5},1];

corresponding to a dipole on the z-axis, along with

In[22]:= PlotVectorField3D[{E3Ddipx,E3Ddipy,E3Ddipz},
{x, -1,1},{y, -1,1}, {z, -1,1}]

will produce the plot on the right in Figure 2.3.
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FIGURE 2.3. The field lines of a charge (left) and a dipole (right) in three di-
mensions.

2.2 Ionic Crystals

The last section discussed vector calculations in Mathematica in the setting
of discrete charges and their fields. This section considers another aspect
of a collection of discrete charges: the energy stored in assembling them
together.

Consider a collection of N charges brought together so that the ith par-
ticle of charge qi is located at the position vector ri. Then, the (potential)
energy of the assemblage is given byMM, pp. 314–315

U =
1
2

N∑
i=1

qiΦi, Φi = ke

N∑
j=1

qj
|ri − rj | (2.2)

where Φi is the electrostatic potential of all the charges (except the ith
charge) at the location of the ith charge.

2.2.1 One-Dimensional Crystal
Now suppose that we have N/2 positive and an equal number of negative
charges arranged alternately on a straight line spaced a distance a apart as
shown in Figure 2.4. This arrangement is called a (one-dimensional) ionicionic crystals
crystal. Ordinary salt is a three-dimensional collection of positive sodium
ions interspersed between the negative chlorine ions.

We want to calculate the potential energy of the one-dimensional crystal.
In a real crystal N is so large that we can consider it to be infinite. Let
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a

FIGURE 2.4. A one-dimensional ionic crystal.

us suppose that the jth charge has (−1)j as its sign and ja as its location
on the common axis, where j takes on values from −N/2 to +N/2. This
labeling corresponds to taking the “zeroth” charge to be at the origin, with
N/2 charges on the right and on the left. For this to happen, we actually
need N + 1 charges; but as N is assumed to be very large, N ≈ N + 1.

To find U , we first calculate the electrostatic potential Φ0 at the origin.
Here r0 = 0 and rj = ja. Furthermore, the arrangement of charges on the
right of the origin is identical to the left. Therefore,

Φ0 = ke

N/2∑
j=−N/2

q(−1)j

|ja| = 2ke

N/2∑
j=1

q(−1)j

ja

and the product of the potential and the charge at the origin is

q0Φ0 =
2keq

2

a

N/2∑
j=1

(−1)j

j

This shows that if we had chosen a negative charge at the origin, the result
would have been the same because the final result depends on q2. Moreover,
because the crystal is assumed infinite in length, all charge locations are
identical to the origin. This means that

q0Φ0 = q1Φ1 = q2Φ2 = q3Φ3 = . . .

i.e., all the terms in the sum (2.2) are equal. Hence,

U = 1
2Nq0Φ0 = N

keq
2

a

N/2∑
j=1

(−1)j

j
or u =

2keq
2

a

N/2∑
j=1

(−1)j

j

where u is the potential energy per molecule—consisting of two ions, thus
the factor of 2. This is usually written as

u = −αkeq
2

a
, where α ≡ −2

N/2∑
j=1

(−1)j

j
(2.3)

and α is called the Madelung constant. Let us employ Mathematica to Madelung constant in
one dimensioncalculate the Madelung constant for a one-dimensional ionic crystal.

This calculation involves simply evaluating the sum in Equation (2.3),
for which we type in
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In[1]:= alph[n ]:= 2 Sum[(-1)ˆ(j+1)/j,{j,1,n}]
where we have included the negative sign outside in the exponent of (−1),
and used n for N/2. For all practical purposes, n is infinite. Thus, we have
to take n to be very large. For series that are rapidly convergent, “very
large” could be 50, 100, or 500. However, the series above happens to be
converging rather slowly, as Table 2.1 shows.

Typing in N[alph[n]] for various n, Mathematica yields the entries of
Table 2.1. The “N” in the command is necessary if a decimal representation
of the answer is desired. Without it, a rational representation—with large
integers in the numerator and denominator—will be outputted. The next-
to-last entry is obtained by typing in N[alph[Infinity]] and the last
entry by typing in alph[Infinity]. The summation in (2.3) is a well-MM, pp. 225 and 235
known series in calculus, and Mathematica recognizes this series.

2.2.2 Two-Dimensional Crystal
With a little more effort, one can find the Madelung constant for a more
realistic two-dimensional crystal. Once again, we place a positive charge
at the origin, invoke the symmetry of the crystal, and use U = 1

2NqΦ0 to
calculate the potential energy of N charges arranged symmetrically in two
dimensions on squares of side a as shown in Figure 2.5.

It is convenient to designate the charges and their positions with a double
index. Thus, qij is the charge located at a point Pij with coordinates (ia, ja)
in the xy-plane, and Φij is the electrostatic potential at Pij due to all other
charges. The potential energy of a crystal is therefore

U = 1
2

∑
i,j

qijΦij = 1
2NqΦ00 (2.4)

where we have used the symmetry of the crystal, i.e., that qijΦij is the same
for all sites, and therefore, the sum is simply N times one of the terms,
which we have chosen to be that corresponding to the origin. Denoting the
position vector of Pjk by rjk, we have

Φ00 =
n∑

j=−n

n∑
k=−n

keqjk

|rjk| =
n∑

j=−n

n∑
k=−n

keq(−1)j+k√
(ja)2 + (ka)2

where we have used qij = q(−1)j+k corresponding to a positive charge at
the origin with other charges alternating in sign in both x and y directions.
Here n is a large number related to N . In fact, the reader may verify that
n =

√
N/2. Substituting the result above in Equation (2.4) gives

U = 1
2N

keq
2

a

n∑
j=−n

n∑
k=−n

(−1)j+k√
j2 + k2

(2.5)
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n alph(n) n alph(n)
20 1.33754 5000 1.38609
50 1.36649 10000 1.38619

100 1.37634 15000 1.38623
500 1.38430 20000 1.38624

1000 1.38529 30000 1.38626
2000 1.38579 ∞ 1.38629
4000 1.38604 ∞ 2 Log[2]

TABLE 2.1. The values of the sum in Equation (2.3) for increasing number of
terms of the sum.

Let us first sum over k. This can be split into three pieces:

n∑
k=−n

=
−1∑

k=−n

+(k = 0 term) +
n∑

k=1

The first and last pieces give identical results, because the summand is a
function of k2, which is insensitive to the sign of k. We thus have

U = 1
2N

keq
2

a

n∑
j=−n

{
(−1)j√
j2

+ 2
n∑

k=1

(−1)j+k√
j2 + k2

}

= 1
2N

keq
2

a




n∑
j=−n

(−1)j√
j2

+ 2
n∑

j=−n

n∑
k=1

(−1)j+k√
j2 + k2




= 1
2N

keq
2

a


2

n∑
j=1

(−1)j

j
+ 4

n∑
j=1

n∑
k=1

(−1)j+k√
j2 + k2

+ 2
n∑

k=1

(−1)k

√
k2




where we split the sum over j as we did for k. The first and third terms in
the curly brackets of the last line are equal. It follows that Madelung constant in

two dimensions

u = −αkeq
2

a
where α ≡ −4

n∑
j=1

(−1)j

j
− 4

n∑
j=1

n∑
k=1

(−1)j+k√
j2 + k2

(2.6)

where u is, as before, the potential energy (or binding energy, as it is usually
called) per ion, of which there are N/2.

To find a numerical estimate for the two-dimensional Madelung constant,
type in

In[1]:= Mad2D[n ]:= -4 Sum[(-1)ˆj/j,{j,1,n}]
-4 Sum[(-1)ˆ(j+k)/Sqrt[jˆ2+kˆ2],{j,1,n},{k,1,n}]
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FIGURE 2.5. A two-dimensional ionic crystal with equidistant ions in both per-
pendicular directions. One can also calculate the potential energy by adding con-
tributions of squares (three of which are shown) centered around the origin. We
shall not pursue such a calculation.

where n is a very large number. Note that Mathematica can do double (or
nested) sums. Because of the double sum, it will take Mathematica longer
to evaluate Mad2D[n] for large values of n, as the number of calculations
involved is n2. Table 2.2 shows some sample results.

2.2.3 Three-Dimensional Crystal
The real, three-dimensional Madelung constant can now be calculated using
our experience with the two-dimensional case. We can actually start as
we did in the case of two dimensions and write the potential as a triple
sum, the generalization of Equation (2.5). Then split the sum into three
pieces corresponding to negative values, zero, and positive values of the
summation index. However, we can use the two-dimensional result as a
guide to facilitate the present calculation.

The sums in the Madelung constant α in Equation (2.6) have a plausi-
ble geometric explanation. The first sum calculates the contribution to thegeometric interpretation

of 2D Madelung
constant

binding energy of the charges on the axes. The factor 4 counts the num-
ber of semiaxes: right, left, up, and down. The second sum calculates the
contribution of the charges off the axes in the four quadrants.

This geometric interpretation can be easily generalized to three dimen-
sions. There must be six single sums corresponding to the positive and neg-
ative sides of each axis. Now each of the three planes has four quadrants.
Therefore, we expect 12 double summations. Finally, the remaining charges
will occupy the eight octants, leading to eight triple sums. It now follows
that for the three-dimensional ionic crystal, we should have u = −αkeq2

a
with3D Madelung constant
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n Mad2D(n) n Mad3D(n)
10 1.54824 20 1.7194
20 1.58105 30 1.72864

100 1.60851 40 1.73331
200 1.61202 60 1.73802
400 1.61378

TABLE 2.2. Some approximations for the Madelung constant in two and three
dimensions.

α ≡ −6
n∑

j=1

(−1)j

j
− 12

n∑
j=1

n∑
k=1

(−1)j+k√
j2 + k2

− 8
n∑

i=1

n∑
j=1

n∑
k=1

(−1)i+j+k√
i2 + j2 + k2

(2.7)

where n is again a very large number (equal to 3
√
N/2).

To find a numerical estimate for the three-dimensional Madelung con-
stant, type in

In[1]:= Mad3D[n ]:= -6 Sum[(-1)ˆj/j,{j,1,n}]
-12 Sum[(-1)ˆ(j+k)/Sqrt[jˆ2+kˆ2],{j,1,n},{k,1,n}]
-8 Sum[(-1)ˆ(i+j+k)/Sqrt[iˆ2+jˆ2+kˆ2],{i,1,n},

{j,1,n},{k,1,n}]
Because of the triple sum, it will take Mathematica much longer to evaluate
Mad3D[n] for large values of n. In fact, the time is proportional to n3. Thus,
for a modest n = 100, the time required is 10,000 times the duration of a
one-dimensional calculation with the same number of ions. Table 2.2 shows
some sample results.

Remarks: A few comments on the physics of the ionic crystals are in
order. First we note that there is little difference among the Madelung con-
stants in one, two, or three dimensions. Since this determines the bonding
of the molecules, we conclude that the binding energy per molecule is not
terribly sensitive to the dimensionality of the crystal. Next, in all cases, the
Madelung constant is positive, leading to a negative energy per ion. This
indicates that the binding energy is negative. What is the significance of
this? Imagine taking the ions and separating them so far that they would
not feel the electrostatic forces of one another. Such a state would corre-
spond to a zero potential energy. If the ions are moving at all, then their
total energy, which is equal to the total kinetic energy, will be positive, and
the energy per ion (or molecule) will be positive.

Conservation of energy now tells us that, if we wish to “break up” the
crystal completely—i.e., send the ions infinitely far from one another—we
have to supply each ion with some positive energy to overcome its negative
binding energy. With ke = 9 × 109, q = 1.6 × 10−19, and a a typical
molecular distance (a few Ångstrøm), the binding energy per ion will be
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about 5×10−19 Joule. With a typical crystal sample having approximately
1030 molecules, we see that a tremendous amount of energy, something like
5 × 1011 Joules, is required to completely dissociate the crystal. On the
other hand, if we are interested in simply breaking the crystal in half, we
need to overcome the binding energy of the ions at the interface of the
two resulting halves. This amounts to the binding energy of about 1020

molecules or 50 Joules, something quite manageable.
The Madelung constant has been the subject of intense numerical study,

and many series representations of this constant are by far superior to the
series discussed in this section [Cran 96, pp. 73–79]. One such representa-
tion for the Madelung constant in three dimensions is

α = 12π
∞∑

j=0

∞∑
k=0

sech2
(π

2

√
(2j + 1)2 + (2k + 1)2

)
(2.8)

= 1.7475645946331821906362120355443974034851614366247 . . .

Even using 2 instead of infinity in the double sum above will give the
three-dimensional Madelung constant to six significant figures.

2.3 Tubing Curves

This section deals with a topic that from the standpoint of physics is irrele-
vant, but from a Mathematica standpoint is quite interesting. The problem
treated here is to find a “tube” that follows the shape of a curve with a given
parametric equation. Specifically, suppose that the parametric equation of
a curve is given by

x = f(t), y = g(t), z = h(t)

We are interested in finding the equation of the surface with a circular
cross section of radius a that surrounds this curve [Figure 2.6(a)].

A point P on the desired surface can be reached by adding two “natural”
vectors: a vector r(t) that connects the origin to a point on the curve, and a
vector a(u) that connects that point to a point on the surface. If R denotes
the position vector of P , then

R(t, u) ≡ 〈X(t, u), Y (t, u), Z(t, u)〉 = r(t) + a(u)

The first vector r(t) has components 〈f(t), g(t), h(t)〉, corresponding to the
parameterization of the curve, and the second vector has components

〈a cosu cosϕ, a cosu sinϕ, a sinu〉 (2.9)

where u is the angle that a(u) makes with the cylindrical unit vector êρ,
and ϕ is the angle that êρ makes with the positive x-axis [see Figure 2.6(b)].
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FIGURE 2.6. (a) A curve with its surrounding tube. (b) Details of circular cross
section.

We need to express the coordinates of P as a function of two parameters,
which we choose to be t and u. To this end we find cosϕ and sinϕ in terms
of t:

cosϕ =
x

ρ
=

f(t)√
f2(t) + g2(t)

, sinϕ =
y

ρ
=

g(t)√
f2(t) + g2(t)

It now follows that

X(t, u) = f(t) + a cosu cosϕ = f(t)

(
1 +

a cosu√
f2(t) + g2(t)

)

Y (t, u) = g(t) + a cosu sinϕ = g(t)

(
1 +

a cosu√
f2(t) + g2(t)

)
(2.10)

Z(t, u) = h(t) + a sinu

To create some plots, we type in these equations in Mathematica:

In[1]:= X[t ,u ,a ]:= f[t](1+aCos[u]/Sqrt[f[t]ˆ2+g[t]ˆ2])

In[2]:= Y[t ,u ,a ]:= g[t](1+aCos[u]/Sqrt[f[t]ˆ2+g[t]ˆ2])

In[3]:= Z[t ,u ,a ]:= h[t] + a Sin[u]

First let’s make a torus, for which the curve is a circle in the xy-plane.

In[4]:= f[t ]:= 3 Cos[t]; g[t ]:= 3 Sin[t]; h[t ]:= 0;

We also take the radius of the cross section to be 1 (i.e., a = 1). To create
the plot, we use Axes and Boxed options

for 3D plots
In[5]:= ParametricPlot3D[{X[t,u,1],Y[t,u,1],Z[t,u,1]},

{t,0,2 Pi},{u,0,2 Pi}, Axes->False, Boxed->False]



62 2. Vectors and Matrices in Mathematica

FIGURE 2.7. A torus, a clover leaf tube, and a helix.

Axes->False and Boxed->False will eliminate the axes and the box sur-
rounding the plot, respectively. The result is the graph displayed on the
left in Figure 2.7.

Next we produce a tubing of a clover leaf. We need to clear all functions
that are to be inserted in the components of ParametricPlot3D. This is
necessary, because Mathematica will not “forget” the definitions of func-
tions unless you explicitly remove them using Clear:

In[6]:= Clear[f,g]

We still want h to be zero. Now define the f and g corresponding to a
clover leaf:

In[7]:= f[t ]:=4 Cos[t] Cos[2t]; g[t ]:=4 Sin[t] Cos[2t];

Instead of 4 multiplying the trigonometric functions, we could have chosen
any other constant. This constant determines the length of each leaf. To
create the plot, we once again use

In[8]:= ParametricPlot3D[{X[t,u,1],Y[t,u,1],Z[t,u,1]},
{t,0,2 Pi},{u,0,2 Pi}, PlotPoints->25,Axes->False,
Boxed->False]

We used PlotPoints->25 to make the plot a little smoother. The defaultPlotPoints option for
3D plots value of 15 was fine for the torus, because a torus is intrinsically smooth.

The result is displayed in the center of Figure 2.7.
The last plot we want to produce is a helical tube. We first clear the

functions:

In[9]:= Clear[f,g,h]

This time we are clearing h because it is nonzero for a helix. Now we type
in the functions describing a helix,

In[10]:= f[t ]:= 3 Cos[t]; g[t ]:= 3 Sin[t];
h[t ]:= 0.5 t;
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and increase the plot points to 40 for smoother graphics:

In[11]:= ParametricPlot3D[{X[t,u,1],Y[t,u,1],Z[t,u,1]},
{t,0,6 Pi},{u,0,2 Pi}, PlotPoints->40,Axes->False,
Boxed->False]

The result is displayed on the right in Figure 2.7. By replacing the functions
f , g, and h with any other triplet, one can produce a variety of tubes.

Let us examine more closely what we have done so far. It is clear from our
discussion that what determines the surface is the vector a(u). Equation
(2.9) shows that the vector sum of the first two components of a(u) is a
vector in the êρ-direction. Therefore, a(u) is in the plane formed by r(t)
and the z-axis. So, the circular cross sections are not really circular. A true
circular cross section should describe a circle perpendicular to the curve.
Because r(t) and the z-axis are automatically perpendicular to the circular
curve generating the torus, the cross section is automatically perpendicular
to that curve. However, the other two curves do not satisfy this property,
although this fact is less clear for the helix. But the clover leaf shows this
lack of circularity in a pronounced way, especially close to the origin.

To make the circular cross section perpendicular to the curve, we have
to choose a(u) to be of constant length and perpendicular to the curve at
its point of contact.2 This means that a(u) is to be perpendicular to an
element of length dr of the curve. But

dr = 〈df, dg, dh〉 = 〈f ′(t), g′(t), h′(t)〉 dt
So a(u) must be perpendicular to r′(t) ≡ 〈f ′(t), g′(t), h′(t)〉. Letting a(u)
have components s, v, and w, we have our first relation:

r′(t) · a(u) = 0 = 〈f ′(t), g′(t), h′(t)〉 · 〈s, v, w〉
We therefore start our Mathematica program by typing in

In[1]:= r[t ]:={f[t],g[t],h[t]}; rp={s,v,w};
In[2]:= r’[t].rp==0

where we have used rp for a(u).3 Recall that equations (rather than assign-
ments) require two equal signs in Mathematica, and that Mathematica is
familiar with prime (′) representing the derivative of a function of a single
variable.

As before [see Figure 2.6(b)], we want to define an angle u on the circular
cross section to measure the direction of a(u). For this, we need a fiducial

2The variable u is as yet not defined but will be chosen below.
3We cannot use a[u], because Mathematica would expect a to have been defined as

a function of u. We do not want to use a, because we want to reserve a for the radius of
the cross section.
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axis relative to which we measure the angle. This axis must lie on the plane
of the circle, of course [and, therefore, must be perpendicular to the curve,
i.e., to r′(t)], but is otherwise arbitrary. A vector that defines such an axis
could be taken to be 〈h′(t), 0,−f ′(t)〉, as the reader may easily verify. Thus,
we get our second equation:

In[3]:= horV:={h’[t],0,-f’[t]};
In[4]:= Cos[u]==rp.horV/(a Sqrt[h’[t]ˆ2+f’[t]]ˆ2);

where a is the length of the vector rp, which gives us the last equation we
need:

In[5]:= rp.rp==aˆ2;

In[4] uses the definition of the ordinary dot product to find the (cosine of
the) angle between a(u) and the fiducial axis.

The three equations in In[2], In[4], and In[5] could be solved to yield
s, v, and w in terms of u. Thus, we ask Mathematica to do so:

In[6]:= Solve[{%2,%4,%5},{s,v,w}]
The result is a list of solutions with very long expressions. We now simplify
the result

In[7]:= FullSimplify[%]

and get something a little shorter than before. The solution contains two
values for each component of rp. We want to choose the first one for each.
Let us first pick s. This is done by typing in

In[8]:= s /. %7

This is of the form expr /. sol as discussed in Section 1.5. Here expr is
just s and solution has no name but is given (in its simple form) in Out[7]
(not printed here). The two solutions for s will be put out as a list. Since
we want the first choice, we type inhow to get part of a list

In[9]:= Part[%,1]

where Part[list,n] yields the nth element of list.4 The output, after
applying FullSimplify, will be

ah′


 cosu√

f ′2 + h′2 +
a sin2 uf ′g′2√

a2 sin2 ug′2h′2(f ′2 + h′2)(f ′2 + g′2 + h′2)




To extract the powers out of the radical, we apply PowerExpand to the
expression. In fact, the inputuse of PowerExpand

4First[list] has the same effect as Part[list,1].



2.3 Tubing Curves 65

In[10]:= S[t ,u ,a ]:=PowerExpand[%]

defines the function S(t, u, a) as given below:

S(t, u, a) =
ah′ cosu√
f ′2 + h′2 +

af ′g′ sinu√
(f ′2 + h′2)(f ′2 + g′2 + h′2)

(2.11)

This is what we had called s before, but now we have explicitly articulated
its dependence on t and u (and a for later use).

To select v, go through the same steps:

In[11]:= v /. %7;

and

In[12]:= Part[%,1]

and

In[13]:= V[t ,u ,a ]:= PowerExpand[%]

to obtain

V (t, u, a) = −a sinu
√
f ′2 + h′2√

f ′2 + g′2 + h′2 (2.12)

Finally, the three inputs

In[14]:= w /. %7;

In[15]:= Part[%,1];

and

In[16]:= W[t ,u ,a ]:= PowerExpand[%]

yield

W (t, u, a) = − af ′ cosu√
f ′2 + h′2 +

ag′h′ sinu√
(f ′2 + h′2)(f ′2 + g′2 + h′2)

(2.13)

What is left now is adding these functions to the components of r(t) to
get the functions needed for the three-dimensional parametric plot:

In[17]:= X[t ,u ,a ]:=f[t]+S[t,u,a];
Y[t ,u ,a ]:=g[t]+V[t,u,a];
Z[t ,u ,a ]:=h[t]+W[t,u,a];
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FIGURE 2.8. A tubing of a clover leaf whose cross section is circular.

For plane curves—lying in the xy-plane—we have h(t) = 0, and the
expressions for S, V , and W simplify considerably. In fact, we have

X(t, u, a) = f(t) +
ag′ sinu√
f ′2 + g′2

Y (t, u, a) = g(t) − af ′ sinu√
f ′2 + g′2 (2.14)

Z(t, u, a) = a cosu

Using the new expressions will not affect the torus and will have a small
and unnoticeable effect on the helix. But the effect is conspicuous for the
clover leaf, so with

In[19]:= Clear[f,g,h]

and

In[20]:= f[t ]:= 4 Cos[t] Cos[2t]; g[t ]:=
4 Sin[t] Cos[2t]; h[t ]:=0

we obtain Figure 2.8, which depicts a circular cross section unlike the clover
leaf of Figure 2.7.

2.4 Matrices

Ever since the discovery of quantum mechanics, matrices have been playing
an increasingly important role in physics. It is therefore worth our effort to
gain some familiarity with how Mathematica handles matrix manipulations.MM, Chapter 4

A matrix is typed in as a list of lists, although the BasicInput palette
allows typing in the matrix as elements in rows and columns, as is normally
done. For example,
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In[1]:= m= {{a11,a12,a13},{a21,a22,a23},{a31,a32,a33}};
is the matrix 

a11 a12 a13
a21 a22 a23
a31 a32 a33




and we can verify that by typing in MatrixForm[m] for which the output use of MatrixForm
will display the matrix in rows and columns. Of course, one can construct
matrices whose numbers of rows and columns are not equal.

One can multiply two matrices as long as the matrix on the left has the
same number of columns as the one on the right has rows. Thus, with

In[2]:= A= {{1,2,3},{-4,-5,6},{7,8,9}};
and

In[3]:= B= {{-1,1},{1,0},{1,1}};
we can type

In[4]:= A.B

and get

Out[4]:= {{4,4},{5,2},{10,16}}
but B.A will generate an error message conveying the incompatibility of the
matrices for the operation of product.

When a matrix has the same number of rows and columns, one can define
its determinant. Calculating the determinant of a (square) matrix is easy MM, pp. 171–176
in Mathematica. For example, if we are interested in the determinant of the
matrix A above, we type

In[5]:= Det[A]

and obtain 72 as the result. The determinant is an important property of
a matrix. It determines whether the matrix has an inverse. Since multipli-
cation is defined for any two square matrices of equal number of rows and
columns, one can ask if a matrix exists whose product with a given ma-
trix yields the identity matrix.5 It turns out that only if its determinant is MM, p. 189
nonzero does a matrix have an inverse. We have seen that the determinant
of A is nonzero. So, let us evaluate its inverse: type in

In[6]:= invA=Inverse[A]

5The reader recalls that the identity matrix has 1’s on its main diagonal and zero
everywhere else.
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to get the following output:{{
−31

24
,

1
12
,
3
8

}
,

{
13
12
,−1

6
,−1

4

}
,

{
1
24
,

1
12
,

1
24

}}
To check Mathematica’s result, type in

In[7]:= invA.A

and obtain

Out[7]:= {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}
Similarly, switching the order

In[8]:= MatrixForm[A.invA]

yields

Out[8]:= 
1 0 0

0 1 0
0 0 1




Some common operations on matrices are collected below:

{{a,b,c},{d,e,f}} the matrix
(
a b c
d e f

)
a A multiply the matrix A by the scalar a
A.B the matrix product of A and B

Inverse[A] the inverse of the matrix A

Det[A] the determinant of the matrix A

Transpose[A] the transpose of the matrix A

Part[A,i,j] give the ijth element of the matrix A

One of the applications of matrices is in solving systems of linear equa-
tions. We consider the special case in which the number of equations is
equal to the number of unknowns. To be concrete, let’s consider the fol-
lowing system of four equations in four unknowns:

x+ y − z + 2w = 1
2x− y + z − w = −1
x+ 2y − z + w = 2

x+ y − 2w = −2



2.4 Matrices 69

As the reader may know, this equation can be written in matrix form:


1 1 −1 2
2 −1 1 −1
1 2 −1 1
1 1 0 −2





x
y
z
w


 =




1
−1
2

−2


 or AX = B

Generally, if A has an inverse, we can multiply both sides of the matrix
equation by A−1 to obtain

A−1AX = A−1B or 1X = A−1B or X = A−1B

In the case at hand, all we need to do is to have Mathematica calculate
A−1. To this end, we enter A and B:

In[1]:= A={{1,1,-1,2},{2,-1,1,-1},{1,2,-1,1},{1,1,0,-2}};
B={1,-1,2,-2};

and quickly obtain the solution:

In[2]:= {x,y,z,w}=Inverse[A].B;
Typing x yields − 3

4 ; and typing y, z, and w yields 13
4 , 6, and 9

4 , respectively.
The procedure above works as long as the matrix of coefficients A is

invertible and the system of equations is inhomogeneous (not all numbers
on the right-hand side are zero). If A is not invertible, the inhomogeneous MM, Section 4.7
system may or may not have a solution, but the homogeneous system of
equations (where all numbers on the right-hand side are zero) has at least
one solution. When A is invertible, the only solution to the homogeneous
system is the trivial (zero) solution. We shall not pursue the theory of
systems of linear equations any further.

For symbolic calculations, Mathematica can generate a different variety
of matrices with specific elements that can be manipulated. The following
is a partial list of such matrices:

Array[a,{m,n}] build an m× n matrix with the
ijth element being a[i, j]

Table[f[i,j],{i,m},{j,n}] build an m× n matrix by evaluating f
with i ranging from 1 to m
and j ranging from 1 to n

IdentityMatrix[n] generate an n× n identity matrix
DiagonalMatrix[list] generate a diagonal matrix with the

elements in list on the diagonal



70 2. Vectors and Matrices in Mathematica

Generate two 3 × 3 matrices with elements a[i,j] and b[i,j]:

In[1]:= A=Array[a,{3,3}]; B=Array[b,{3,3}];
The element [2,3] of the product AB can be extracted as follows:using Part to find an

element of a matrix
In[2]:= Part[A.B,2,3]

The result is

Out[2]:= a[2,1] b[1,3]+a[2,2] b[2,3]+a[2,3] b[3,3]

2.5 Normal Modes

One of the nicest numerical application of matrices is in the calculation
of normal modes in solids. A typical solid is a collection of regularly orga-
nized (crystal) atoms or molecules interacting electromagnetically among
one another. This interaction can be approximated by a harmonic oscillator
potential, i.e., one can assume that the constituents of a solid are attached
to their neighbors by a spring. Most of the interesting properties of solids
are then connected to the various “modes” in which these springs oscillate.

These modes, called normal modes, are described by special angular
frequencies with which the entire collection of constituents oscillate. These
frequencies are obtained by solving a matrix equation that guarantees the
existence of solutions to the equations of motion of the constituents of
the solid. In order to make the discussion simple, we consider only one-
dimensional solids. Thus, we solve the problem of a collection of identical
masses attached by identical massless springs along a single straight line,
on which the masses are constrained to move.

2.5.1 A System of Two Masses
To begin, consider the simple case of two identical masses m connected by
a single spring of spring constant k, as shown in Figure 2.9. Let the position
of the first and second mass from some origin be x1 and x2, respectively.
The equations of motion for the two masses are

mẍ1 = k(x2 − x1 − L)
mẍ2 = −k(x2 − x1 − L)

where L is the unstretched length of the spring. The negative sign in
the second equation arises because when the spring is stretched (so that
x2 − x1 > L) the direction of the force on the second mass is opposite
to the direction of x2. We want to write the equations above in terms of
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FIGURE 2.9. Two masses attached by a string moving along a straight line on a
frictionless horizontal surface.

displacements from equilibrium. Let us call the equilibrium positions of the
two masses x10 and x20. Then it is clear that L = x20 − x10; and if we let

u1 ≡ x1 − x10, u2 ≡ x2 − x20

then the equations of motion become

mü1 = k(u2 − u1)
mü2 = −k(u2 − u1) (2.15)

because ẍ1 = ü1 and ẍ2 = ü2.
Now we want to solve these equations. From our experience with a single

mass, we know that the two masses will execute simple harmonic motions.
Thus, both displacements will have the general form

u = a sinωt+ b cosωt

To simplify this further, we assume that at t = 0 both displacements are
zero. It follows that

u1 = a1 sinω1t and u2 = a2 sinω2t

Substituting these in Equation (2.15) yields why the two oscillators
must have the same
frequency(−mω2

1 + k)a1 sinω1t− ka2 sinω2t = 0

−ka1 sinω1t+ (−mω2
2 + k)a2 sinω2t = 0 (2.16)

These two equations must hold for any value of t. Hence, the coefficient
of each sine term must vanish. If ω2 �= ω1, then the first equation gives
a2 = 0, and the second equation yields a1 = 0, a trivial solution. Thus, for
nontrivial solutions, we need to assume that ω2 = ω1 ≡ ω. From Equation
(2.16) it follows that

[(−mω2 + k)a1 − ka2] sinωt = 0

[−ka1 + (−mω2 + k)a2] sinωt = 0

For this equation to hold for arbitrary t, we must have

(−mω2 + k)a1 − ka2 = 0

−ka1 + (−mω2 + k)a2 = 0
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or, in matrix form,(
k −mω2 −k

−k k −mω2

)(
a1
a2

)
=
(

0
0

)
(2.17)

In order to obtain a nontrivial solution to Equation (2.17), we must
demand that the 2 × 2 matrix in that equation not be invertible. This
requires that its determinant vanish, yielding a polynomial equation in ω.
The roots of this polynomials are the normal frequencies corresponding
to the normal modes of the system of two masses. Thus, we demand that

det
(
k −mω2 −k

−k k −mω2

)
= 0 or (k −mω2)2 − k2 = 0

orcondition for the
existence of solutions m2ω4 − 2kmω2 = 0

whose solution set is ω = 0 and ω =
√

2k/m, ignoring the negative roots.
The zero frequency corresponds to the nonoscillatory motion of the center
of mass, and it is usually not counted as a normal mode. Thus, there is
only one normal mode for two masses connected by a spring.

“Mode” designates more than just the frequency. It describes the man-
ner in which the two masses move relative to one another. Equation (2.17)
contains not only the angular frequency ω, but also the amplitudes a1 and
a2. Substituting the single nonzero frequency found for this case (namely
ω =

√
2k/m) in Equation (2.17), we obtain a single relation between am-

plitudes: a2 = −a1. No further specification of the amplitudes is possible
here because we have not specified the second initial condition—for exam-
ple, the speed of the two masses—necessary for a complete determination
of the motion. In terms of a1, the motion of the two masses can be given
asmotion of the (only)

mode
u1 = a1 sinωt, u2 = a2 sinωt = −a1 sinωt = −u1 (2.18)

Let us understand the physical meaning of this.
The center of mass of the two springs can generally be written as

xcm =
m1x1 +m2x2

m1 +m2
=
x1 + x2

2
=
u1 + u2

2
+
x10 + x20

2
or

xcm =
u1 + u2

2
+ x0cm

where we have used the definition of u1 and u2 and the fact that m1 =
m2 = m. x0cm is simply the initial position of the center of mass. But (2.18)
implies that u1 + u2 = 0, so that xcm maintains it initial value of x0cm for
the entire motion: the system as a whole does not move. Let us choose the
origin to be the center of mass, i.e., set x0cm = 0. Then x20 = −x10, and

x2 = u2 + x20 = −u1 − x10 = −x1
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FIGURE 2.10. Three masses attached by two strings moving along a straight line
on a frictionless horizontal surface.

It follows that the only nonzero mode of oscillation of the two masses corre-
sponds to the case where they oscillate in unison but in opposite directions
about the center of mass.

2.5.2 A System of Three Masses
To gain further insight into the motion of a system of masses and springs, let
us examine three masses connected by two springs, as shown in Figure 2.10.
The equations of motion for this system are

mẍ1 = k(x2 − x1 − L)
mẍ2 = −k(x2 − x1 − L) + k(x3 − x2 − L)
mẍ3 = −k(x3 − x2 − L)

Note that the middle mass is pulled by two springs: one to the right and
one to the left. As in the case of two masses, we reduce the x’s to the u’s,
getting

mü1 = −ku1 + ku2

mü2 = ku1 − 2ku2 + ku3 (2.19)
mü3 = ku2 − ku3

Furthermore, we assume that all masses move according to u = a sinωt with
appropriate angular frequencies and amplitudes to be determined later.
This turns (2.19) into

[(−mω2 + k)a1 − ka2] sinωt = 0

[−ka1 + (−mω2 + 2k)a2 − ka3] sinωt = 0

[−ka2 + (−mω2 + k)a3] sinωt = 0

Again, for this equation to hold for arbitrary t, we must have
k −mω2 −k 0

−k 2k −mω2 −k
0 −k k −mω2




a1
a2
a3


 =


0

0
0


 (2.20)
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In order to obtain a nontrivial solution, we demand that

det


k −mω2 −k 0

−k 2k −mω2 −k
0 −k k −mω2


 = 0

orcondition for the
existence of solutions m3ω6 − 4km2ω4 + 3k2mω2 = 0

Then, ignoring the ω = 0 solution, we get

m2ω4 − 4kmω2 + 3k2 = 0

whose roots are ω1 =
√
k/m and ω2 =

√
3k/m. Thus, there are two normal

modes for three masses connected by two springs.
Substituting ω1 in Equation (2.20), we obtain

 0 −k 0
−k k −k
0 −k 0




a1
a2
a3


 =


0

0
0


 ,

which yields a2 = 0, and a3 = −a1. The displacements are, therefore,oscillation of the first
mode

u1 = a1 sinω1t, u2 = 0, u3 = a3 sinω1t = −a1 sinω1t = −u1 (2.21)

As before, we assume that the center of mass does not move. Then Equa-
tion (2.21) describes a mode in which the middle mass is stationary, and
the other two masses move in opposite directions with equal amplitudes.
This situation is depicted in the vertical sequence of graphs on the left of
Figure 2.11, where k, m, and a1 are all set equal to 1. The top plot is u1,
the middle plot shows u2 (which is zero, thus no displacement), and the
bottom plot shows u3, which is opposite to the direction of u1.

Substitution of ω2 in Equation (2.20) results in
−2k −k 0

−k −k −k
0 −k −2k




a1
a2
a3


 =


0

0
0




which yields a2 = −2a1 = −2a3, leading to the displacementsoscillation of the second
mode

u1 = u3 = a1 sinω2t, u2 = −2a1 sinω2t (2.22)

Equation (2.22) describes a mode in which the end masses are moving
in unison in the same directions, while the middle mass is moving in the
opposite direction with twice the amplitude, keeping the center of mass
stationary. This motion is depicted in the vertical sequence of graphs on
the right of Figure 2.11.
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FIGURE 2.11. The two motions corresponding to the normal modes of three
masses. The left column of graphs shows the motion corresponding to ω1. The
right column shows the motion corresponding to ω2. In each case, the top plot
shows u1, the middle u2, and the bottom u3.

2.5.3 A System of Five Masses
The analytic study of the two cases of two and three masses has prepared
us for the investigation of the general case. However, before doing so (in
the next section), let us first solve the problem of five masses with the help
of Mathematica. This will prepare us to attack the general case using the
power of Mathematica.

Generalizing the three-mass case, the reader can show that the relevant
matrix equation for five masses connected by four springs is

k −mω2 −k 0 0 0

−k 2k −mω2 −k 0 0
0 −k 2k −mω2 −k 0
0 0 −k 2k −mω2 −k
0 0 0 −k k −mω2






a1
a2
a3
a4
a5


 =




0
0
0
0
0




Our task is to have Mathematica solve this equation for ω and the ampli-
tudes.

First, we type in the matrix

In[1]:= m5={{k-m wˆ2,-k,0,0,0}, {-k,2 k-m wˆ2,-k,0,0},
{0,-k,2 k-m wˆ2,-k,0},
{0,0,-k,2 k-m wˆ2,-k}, {0,0,0,-k,k-m wˆ2}};
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Then we set its determinant equal to zero, solve the resulting equation for
ω, and use sol to denote the solution:Recall that solutions

come with → and { }.
In[2]:= sol=Solve[Det[m5]==0,w]

{
{w → 0}, {w → 0},

{
w → −

√
3k−√

5k
m√
2

}
,
{
w →

√
3k−√

5k
m√
2

}
,

{
w → −

√
5k−√

5k
m√
2

}
,
{
w →

√
5k−√

5k
m√
2

}
,
{
w → −

√
3k+

√
5k

m√
2

}
,

{
w →

√
3k+

√
5k

m√
2

}
,
{
w → −

√
5k+

√
5k

m√
2

}
,
{
w →

√
5k+

√
5k

m√
2

}}
Next, we pick the positive frequencies and label them 1 through 4:In[3] shows one way of

getting rid of → and { }
to obtain the “naked”
solution.

In[3]:= omeg1=Part[sol,4];w1=w/.omeg1;
omeg2=Part[sol,6];w2=w/.omeg2;
omeg3=Part[sol,8];w3=w/.omeg3;
omeg4=Part[sol,10];w4=w/.omeg4;

Here omeg1 is the fourth part of sol, i.e.,

{
w →

√
3k−√

5k
m√
2

}
and w1=w/.omeg1 instructs Mathematica to evaluate w in omeg1 and call
it w1. The rest of In[3] evaluates w2 through w4. So now we have all the
nonzero frequencies.

Now we want to find the five amplitudes for each frequency. We construct
the column matrix containing a1 through a5:

In[4]:= A={a1,a2,a3,a4,a5};
and multiply A on the left by m5:

In[5]:= mDotA=m5.A

Out[5]:=

{ − a2k + a1(k −mw2),−a1k − a3k + a2(2k −mw2),−a2k − a4k

+ a3(2k −mw2),−a3k − a5k + a4(2k −mw2),−a4k + a5(k −mw2)}
This is the column vector whose components are set equal to zero and
subsequently solved for a2 through a5 in terms of a1. So we set up the
following five expressions:
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In[6]:= lhs1=Part[mDotA,1]/.w->w1;
lhs2=Part[mDotA,2]/.w->w1;
lhs3=Part[mDotA,3]/.w->w1;
lhs4=Part[mDotA,4]/.w->w1;
lhs5=Part[mDotA,5]/.w->w1;

The first line defines lhs1 to be the first part of mDotA with w1 substituted
for w; similarly for the other expressions. The input

In[7]:= solution=Solve[{lhs1==0,lhs2==0,lhs3==0,lhs4==0,
lhs5==0},{a2,a3,a4,a5}]

produces{{
a5 → −1

4

(
−1 +

√
5
)(

1 +
√

5
)
a1, a4 → −1

2

(
−1 +

√
5
)
a1,

a3 → 0, a2 → 1
2

(
−1 +

√
5
)
a1
}}

Now we have to untangle the amplitudes from the curly brackets and In[8] shows another
way of getting rid of →
and { }.

arrows. This is done as follows:

In[8]:= a2=a2/.solution;a2=First[a2];
a3=a3/.solution;a3=First[a3];
a4=a4/.solution;a4=First[a4];
a5=a5/.solution;a5=First[a5];

The first statement of each line extracts an amplitude from the solution;
but it is in the form of a list (it still has curly brackets around it). The sec-
ond statement then defines the new amplitude to be the first—and only—
element of this list.

With the amplitudes corresponding to ω1 determined, we can plot the
five displacements. Again, we set k, m, and a1 equal to 1. The first mode
is shown in Figure 2.12 on the left. In this mode the end masses oscillate
in opposite directions with the same amplitude, and the next two masses
also oscillate in opposite directions with the same amplitude that is smaller
than those of the end masses. The middle mass has no motion relative to
the center of mass, which happens to be at rest.

The remaining modes can also be interpreted. In the second mode, the
end masses move in phase with the same amplitude. The second and fourth
masses also move in phase, but with half the amplitude of the end masses.
To keep the center of mass stationary, the middle mass helps the second and
fourth masses by oscillating in their direction with an amplitude equal to
that of the end masses. The third mode is similar to the first mode, except
that the end masses are oscillating with the smaller amplitude. The last
mode is similar to the second mode, but the amplitude of the end masses
is now small, causing the middle mass to oscillate in phase with them.
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FIGURE 2.12. The four motions corresponding to the four normal modes of five
masses. Each column of graphs shows the motion of the five masses corresponding
to a particular frequency.

2.6 Normal Modes of a System of n Masses

We have a pretty good idea of how normal modes work—at least for up to
five masses. We now want to solve the problem for n masses. In the process
of solving this problem, we learn a great deal about how Mathematica deals
with matrices and vectors.

The first—and biggest—challenge is to construct the n× n matrix that
generalizes the 5 × 5 matrix of the last section. We saw that only two or
three elements of any given row are nonzero. Therefore, there is no single
“formula” for elements of the matrix, or even its rows. In fact, the values of
the row elements are conditional upon their locations. Mathematica handles
conditional cases using logical variables and operators. So, let us discuss
this briefly.

Suppose we want to define a function g(t) that is +1 if t is positive and 0
if t is negative. As the definition suggests, we have to incorporate conditions
in the definition of the function. This code accomplishes the task:how to construct a

discontinuous function

In[1]:= f[t ]:=If[t>0,+1,0]

The following are some of the logical expressions used in Mathematica:
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FIGURE 2.13. Discontinuous graphs such as this can be obtained by using If
and other logical operators.

If[test,e1,e2] give e1 if test succeeds, and e2 if it fails
|| the logical operator or
&& the logical operator and
! the logical operator not

Note that e1 and e2 could be mathematical expressions. For example,

In[1]:= g[t ]:=If[t>1 && t<2,5(t-1),tˆ2];
Plot[g[t],{t,0,2.5},PlotRange->All]

will produce Figure 2.13. The discontinuities at t = 1 and t = 2 are caused
by a change in the formula of the function.

So, how do we use conditional statements to construct our n×n matrix?
Let us start with conditional statements

used to construct the
normal-mode matrixIn[1]:= b[i ,j ]:=If[(j<i-1||j>i+1),0,-k];

bDiag[i ,n ]:=If[(i!=1)&&(i!=n),2k-m wˆ2,k-m wˆ2];

What does this input mean? The first line defines the off-diagonal elements
of the matrix. It instructs Mathematica to put zero for the jth element of
the ith row if j < i − 1 or j > i + 1. Everywhere else, including at the
ith location, Mathematica puts −k. This is fine because the next statement
overrides the unwanted result. The second line of the input defines the
diagonal elements. It tells Mathematica to substitute 2k−mω2 when i �= 1
and i �= n, and k −mω2 otherwise.

The two statements of In[1] define certain functions, but they are not
connected and by themselves do not construct the elements of a matrix.
However, the ijth element of our matrix connects them: elements of the matrix

of normal mode
constructedIn[2]:= c[i ,j ,n ]:=If[i!=j,b[i,j],bDiag[i,n]]
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where c[i,j,n] stands for the ijth element of an n×n matrix. Notice that
c[i,j,n] uses b[i,j] when i �= j and bDiag[i,n] otherwise (i.e., when
i = j). Having constructed the elements, we can build the matrix itself
using Table:the matrix itself

constructed
In[3]:= matr[n ]:=Table[c[i,j,n],{i,1,n},{j,1,n}]

To test our code, we type in

In[4]:= matr[5]//MatrixForm

and Mathematica produces the output

k −mω2 −k 0 0 0

−k 2k −mω2 −k 0 0
0 −k 2k −mω2 −k 0
0 0 −k 2k −mω2 −k
0 0 0 −k k −mω2




which is the matrix we encountered in our discussion of the normal modes
of five masses.

Since the roots of polynomials of degree 5 and above cannot be found
using radicals, we have to resort to numerical solutions; and for this, we
need to assign numerical values to all the parameters of the problem. So
we set k and m equal to 1 for convenience:

In[5]:= k=1; m=1;

and find the roots of the determinant of the matrix numerically:solving for normal
frequencies

In[6]:= sol[n ]:=NSolve[Det[matr[n]]==0,w]

This is possible because the determinant of matr[n] is always a polynomial
in ω.

Next, we want to extract the frequencies from sol[n], i.e., get rid of the
arrows and curly brackets. This is done as before:extracting the normal

frequencies from
solutions In[7]:= omeg[m ,n ]:=Part[sol[n],n+m+1];

w[m ,n ]:=w/.omeg[m,n]

Note that the mth frequency is the n + mth Part of sol[n]. This is be-
cause Mathematica orders the roots of the determinant in ascending order
starting with the negative solutions. This ordering results in the nth and
n+ 1st frequencies being zero. Therefore, the frequencies defined in In[7]
include only the positive frequencies—a total of n− 1—in ascending order.

We now define the column vector of amplitudes and multiply it on the
left by our matrix:constructing the vector

of amplitudes
In[8]:= A[n ]:=Array[a,n];mDotA[n ]:=matr[n].A[n]
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where the command Array[a,n] produces a vector with elements a[1]
through a[n]. The other function, mDotA[n], is an n-dimensional column
vector whose elements are to be set equal to zero and the resulting equations
solved to yield the amplitudes. The left-hand sides of these equations are
obtained thus: constructing the

left-hand side of
amplitude equationsIn[9]:= lhs[m ,j ,n ]:=Part[mDotA[n],m]/.w->w[j,n]

Earlier, we listed the equations and the sought-after amplitudes explic-
itly, as in In[7] of the five-mass system. Since n is arbitrary, we cannot
have an explicit listing of the amplitudes here. We have to replace the
explicit list with a Table. The following code will do the job: solving for n − 1

amplitudes in terms of
a[1]In[10]:= solution[j ,n ]:=Chop[Simplify[NSolve[Table

[lhs[i,j,n]==0,{i,1,n-1}],Table[a[i],{i,2,n}]]]]
Let us explain the statement above. Chop eliminates any insignificant small use of Chop
number left over from numerical calculations. The first Table lists the first
n− 1 equations involving the amplitudes. Although there are n equations,
they are not all independent. After all, we are interested in n−1 amplitudes
given in terms of the first; and for this we do not need all n equations. We
could get away with this “overspecification” in the case of three and five
masses, because we listed the amplitudes explicitly. In this general case,
we receive an error message if we try to solve all n equations. The second
Table lists a[2] through a[n], and NSolve solves this set of n−1 equations
in n− 1 unknowns.

The remaining task is to extract the amplitudes from In[10] and con-
struct the solutions. The following statement extracts the amplitudes: extracting amplitudes

from solutions
In[11]:= tbl[j ,n ]:=Table[a[i]/.solution[j,n],{i,2,n}];

a[i ,j ,n ]:=Part[tbl[j,n],i-1];
amp[nAmp ,nMode ,nSpring ]:=First[a[nAmp,
nMode,nSpring]]

The first line makes a list of the amplitudes obtained in solution[j,n].
The second line takes the (i− 1)st Part of the resulting table and calls it
a[i,j,n] with i ≥ 2. The last line gets rid of the curly brackets around
a[i,j,n]. Note that in the last line we changed the dummy variables to a
more suggestive notation.

The solutions can now be written down: equation of each mode
of oscillation

In[12]:= u[nAmp ,nMode ,nSpring ,t ]:=
amp[nAmp,nMode,nSpring] Sin[w[nMode,nSpring] t]
u[1,nMode ,nSpring ,t ]:=

a[1] Sin[w[nMode,nSpring] t]

If desired, we can plot the displacements of various masses as a function
of time. For example, to plot the displacement of the second mass in a
collection of seven masses corresponding to the third frequency, we type in
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FIGURE 2.14. The displacement corresponding to the third frequency of the
second mass in a collection of seven masses.

In[13]:= Plot[u[2,3,7,t],{t,0,2 Pi/w[3,7]}]
and obtain Figure 2.14.

2.7 Problems

Problem 2.1. Using Mathematica,
(a) find the dot product of a = 〈1, 1,−1〉 with the cross product of the two
vectors b = 〈2,−1, 3〉 and c = 〈1,−1, 2〉.
(b) Find the cross product of a = 〈1, 1,−1〉 with the cross product of the
two vectors b = 〈2,−1, 3〉 and c = 〈1,−1, 2〉.
Problem 2.2. Let a = 〈ax, ay, az〉, b = 〈bx, by, bz〉, and c = 〈cx, cy, cz〉.
Using Mathematica,MM, Problem 1.14
(a) find the double cross product a × (b × c) in terms of the components
of the three vectors. Check your answer against the so-called bac cab rule.
(b) Verify the following two identities:

a · (b × c) = c · (a × b) = b · (c × a)

(a × b) · (a × b) = |a|2|b|2 − (a · b)2

Problem 2.3. Using Equation (2.7) and an n larger than 60, try to achieve
a value for the three-dimensional Madelung constant accurate to two deci-
mal places (i.e., 1.74).

Problem 2.4. In Equation (2.8) replace n for ∞ in both sums. See how
large n should be for the double sum to yield the Madelung constant given
in the second line of Equation (2.8).

Problem 2.5. Using Equation (2.14), “tube” a spiral whose equation in
polar coordinates is r = 0.01θ. Try different values for the radius of the
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tube. Make sure the range of θ is large enough for you to see a few turns of
the spiral in the parametric plot of the tube. Hint: Write the single polar
equation as two Cartesian equations.

Problem 2.6. Refer to your calculus book, and using Equation (2.14),
“tube” some of the nicer-looking polar curves you find there.

Problem 2.7. Using Mathematica, “prove” that if you exchange the first
and second rows of a general 3 × 3 matrix, its determinant changes sign.

Problem 2.8. Using Mathematica, “prove” that if two rows or two columns
of a general 4 × 4 matrix are equal, its determinant vanishes.

Problem 2.9. Solve the following linear systems of equations using ma-
trices in Mathematica.

x+ y − 2z = 1 2x− y = 3
(a) 3x− y + z = 2 (b) x+ y − z = −1

x+ 4y − 3z = 0 −x+ 2y + 2z = 2

x+ y − z + 2w = 1 x+ 2y − 3z + 2w = 1
2x− y + z − w = −1 x− y − z + 3w = −1

(c) x+ 2y − z + w = 2 (d) 2x+ y − z + 2w = 3
x+ y − 2w = −2 4x+ 3y − 2z + w = 0

Problem 2.10. Four 1-kg masses are linearly connected by three springs
with spring constant k = 0.02. Find the normal frequencies and plot the
motion of each of the four masses corresponding to any two normal fre-
quencies.

Problem 2.11. Six 1-kg masses are linearly connected by four springs
with spring constant k = 50. Find the normal frequencies and plot the
motion of each of the five masses corresponding to the lowest normal fre-
quency.

Problem 2.12. Eight 1-kg masses are linearly connected by five springs
with spring constant k = 2. Find the normal frequencies, and plot the
motion of each of the six masses corresponding to the two lowest normal
frequencies.
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3
Integration

The significance of the concept of integration as one of the most fundamen-
tal processes of mathematical physics is no doubt familiar to the reader. In
fact, it is no exaggeration to claim that modern mathematics and physics
started with this concept. Generally speaking, physical laws are given in
local form while their application to the real world requires a departure
from locality. For instance, the universal law of gravity is given in terms of
point particles, actual mathematical points, and the law, written in the lan- Physical laws are given

for mathematical points
but applied to extended
objects.

guage of mathematics, assumes that. In real physical situations, however,
we never deal with a mathematical point. Usually, we approximate the ob-
jects under consideration as points, as in the case of the gravitational force
between the Earth and the Sun. Whether such an approximation is good
depends on the properties of the objects and the parameters of the law. In
the example of gravity, on the sizes of the Earth and the Sun as compared
to the distance between them. On the other hand, the precise motion of
a satellite circling the Earth requires more than approximating the Earth
as a point; all the bumps and grooves of the Earth’s surface will affect the
satellite’s motion.

The application of physical laws—given for mathematical points—to ex-
tended everyday objects requires integration, the subject of this chapter.
We shall consider various examples from selected branches of physics.
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3.1 Integration in Mathematica

Mathematica has a wide variety of integration techniques, but these tech-
niques are not conveniently available to the user. One has to use discretion
in one’s choice of the method of integration. For example, although Math-
ematica can handle multiple integrals, it is often good practice to have
it perform some of the integrals separately and then feed the results into
the remaining integrals. It may also be expedient—when doing a definiteIntegration in

Mathematica is an art,
not a science!

integral—to break up the process into two parts: first have Mathematica
do the indefinite integral, then tell it to substitute the limits. In short, in-
tegration in Mathematica is an art rather than a science, and we shall see
numerous examples of this in the following.

There are two commands for integration in Mathematica, Integrate andanalytical and numerical
integration in
Mathematica

NIntegrate, with the second one doing numerical integration only. For the
first, the analytical one, we can either specify the limits of integration
(definite integral), or ignore it (indefinite integral). Here is the syntax for
the analytical integration:

Integrate[f[t],t] give the indefinite integral of f

Integrate[f[t],{t,a,b}] evaluate
∫ b

a

f(t) dt

Integrate[f[t,u],{t,a,b},{u,c,d}] evaluate
∫ b

a

dt

∫ d

c

duf(t, u)

In the double integral, the u integration is done first and then the t inte-
gration. Furthermore, c and d could be functions of t.

3.1.1 The Simple Example of a Pendulum
Let us start with a simple example from mechanics, where it is shown that
the period of a pendulum is given in terms of a definite integral as follows:MM, pp. 271–273

T = 4

√
l

g

∫ π/2

0

du√
1 − sin2(θm/2) sin2 u

(3.1)

where l is the length of the pendulum, g is the gravitational acceleration
at the location of the pendulum, and θm is the maximum angle—from
vertical—reached by the pendulum. Note that for small maximum angle
(θm ≈ 0) the integrand reduces to 1 and the period becomes T = 2π

√
l/g,

a familiar result stating in particular that the period is independent of the
(small) angle—a result that was familiar to Galileo. To tell Mathematica
to do the integral of Equation (3.1), type in
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FIGURE 3.1. The period of a pendulum of length 50 cm as a function of the
maximum angle (in radians).

In[1]:= period[theta ,length ,g ]:=4 Sqrt[length/g]
Integrate[1/Sqrt[1-Sin[theta/2]ˆ2 Sin[u]ˆ2],
{u,0,Pi/2}]

With the function period so defined, we can tell Mathematica to plot it
for us. The command

In[2]:= Plot[period[t,0.5,9.8],{t,0,1.4}]
will produce Figure 3.1 for l = 0.5 meter and g = 9.8 m/s2. Notice how we
used t instead of theta as the first argument of period. Once the function
is defined, any symbol can be used as its argument.

3.1.2 Shortcomings of Numerical Integration in Mathematica
We are not always as lucky as the example above may suggest! In many
instances Mathematica does a poor job of integrating a function. For exam-
ple, consider the innocent-looking function e−x2

, whose integral over the
entire real line is

√
π = 1.772454. If you integrate this function over the MM, pp. 96–97

interval (−5, 5), and ask for an answer to seven significant figures,

In[3]:= N[NIntegrate[Exp[-xˆ2],{x,-5,5}],7]
you will get 1.772454. However, if you try to make the integral more ac-
curate by extending the region of integration, you will succeed at the be-
ginning, but when you reach large values of the integration limits, you will
get surprising results! For instance, upon the input
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FIGURE 3.2. The “smooth” function e−x2
(left) in the interval (−5, 5) becomes

less smooth in the interval (−20, 20) in the middle, until it turns into a very sharp
spike in the interval (−100, 100).

In[4]:= NIntegrate[Exp[-xˆ2],{x,-500,500}]

Mathematica will yield 0.88631 after complaining about slow convergence
of the numerical integration. What is the reason? As the output of In[3]
indicates, most of the contribution to the integral comes from values be-
tween −5 and +5. When Mathematica evaluates an integral numerically
over an interval of the real line, it takes sample points of the interval, eval-
uates the function at those points, and sums up the contributions. In the
interval (−500, 500), which is 100 times the size of the interval (−5, 5),
in which the function lends its entire contribution, Mathematica will miss
most of the latter interval. The result is that it adds up a lot of small
numbers. In fact, the larger you make the interval, the smaller the result
will be! For the interval (−800, 800), you will get 8.56868 × 10−17, and for
(−1000, 1000), the result will be 1.34946 × 10−26.

Figure 3.2 gives an “explanation” for all this. While the function e−x2

is smooth in the interval (−5, 5), it turns into a sharp spike in the interval
(−100, 100). In numerically integrating a function, Mathematica has only a
finite sequence of values for the function. Therefore, it has to make certain
assumptions about the behavior of the function. In particular, it assumes
that the function is smooth over the interval of integration; i.e., that the
function does not change abruptly. For e−x2

and the interval (−5, 5), this
assumption is valid, but—as Figure 3.2 clearly indicates—once you reach
intervals larger than (−100, 100), the assumption no longer holds.

One can improve the result by forcing Mathematica to include an interval
in the neighborhood of the peak. This is done by inserting the end values of
the interval of interest between the two limits of integration. For example,

In[5]:= NIntegrate[Exp[-xˆ2],{x,-500,-3,3,500}]

will return 1.77241.
The following are the various numerical integration commands in Math-

ematica:
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NIntegrate[f[t],{t,a,b}] evaluate
∫ b

a

f(t) dt numerically

NIntegrate[f[t,u],{t,a,b},{u,c,d}] evaluate
∫ b

a

dt

∫ d

c

du f(t, u)

numerically

NIntegrate[f[t],{t,a,c . . . ,d,b}] evaluate
∫ b

a

f(t) dt numerically

making sure to include
points c, . . . , d

The first one is the simplest kind of numerical integration command; the
second is a double integral—which could be extended to any number of
dimensions—in which the u integration is done first and then the t integra-
tion. The limits of u could be functions of t. The third inserts some strategic
points in the interval of integration, forcing Mathematica to sample points
in the inserted intervals.

3.1.3 Other Intricacies of Integration in Mathematica
To learn more about the intricacies of integration in Mathematica, let us
calculate the area of a circle of radius a in Cartesian coordinates. This is a
double integral of the form

∫ a

−a

dt

∫ √
a2−t2

−√
a2−t2

du

We first do this numerically for a circle of unit radius. So, we type in

In[1]:= NIntegrate[1,{t,-1,1},{u,-Sqrt[1-tˆ2],
Sqrt[1-tˆ2]}]//Timing

and get {1.44Second, 3.14159}, indicating that it took Mathematica 1.44
seconds to obtain the value of π—the area—to six significant figures.1 Note
the use of //Timing, which tells Mathematica to display the time spent on use of //Timing
the calculation.

Now let us do the same calculation analytically by typing in

In[2]:= Integrate[1,{t,-a,a},{u,-Sqrt[aˆ2-tˆ2],
Sqrt[aˆ2-tˆ2]}]//Timing

1Actually the displayed result has six significant figures of accuracy. The internal
calculation is more accurate.
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and waiting, . . . , and waiting! After 15 minutes we give up2 and try to
do the integral a different way. As indicated earlier, it is a good idea to
break up the two integrations. We can easily do the trivial u integration,
and have Mathematica do the single integral

2
∫ a

−a

√
a2 − t2 dt

So, we type in

In[3]:= Integrate[Sqrt[aˆ2-tˆ2],tˆ2],{t,-a,a}]//Timing
and wait, . . . , and wait! Another 15 minutes go by, and Mathematica is
still “thinking.” We abort the calculation, and try to find yet another way
of calculating the integral.

Now we tell Mathematica to find the indefinite integral:

In[4]:= g=Integrate[Sqrt[aˆ2-tˆ2],tˆ2],t]//Timing

and get the answer in a fraction of a second:{
0.26Second, t

√
a2 − t2 − a2 ArcTan

[
t
√
a2 − t2

−a2 + t2

]}

We try to evaluate this expression at the limits of integration. So, we type
in

In[5]:= (g/.t->a)-(g/.t->-a)

But Mathematica cannot handle the implicit infinity in the argument of
ArcTan and so returns Indeterminate as the output.

The inclusion of the parentheses in In[5] is extremely important. Let
us illustrate why. If you enter f=zˆ2 first and then f/.z->b-f/.z->a, you
will get (a − b2)2 as the output! Enclosing the the terms in parentheses
gives the intended answer, b2 − a2.

The output Indeterminate may seem reasonable, as both the numera-
tor and the denominator of the argument of the ArcTan are zero. However,
even if you simplify the argument to −t/√a2 − t2—something Mathemat-
ica does not do automatically—and then type in g/.t->a, the output is
still Indeterminate, which is wrong! Although Mathematica knows that
ArcTan[∞] is π/2 and that t/

√
a2 − t2 is infinite at t = a, it cannot make

the connection.
How do we make Mathematica evaluate g at the two limits of integra-

tion? Let’s try using Limit[f[t],t->a], which is equivalent to limt→a f(t).taking limits of functions
Typing in

2The calculation was done on an iMac using the front end of a remote kernel.
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In[6]:= Limit[g,t->a]

yields −a2π/2, which, except for the sign, is what we are looking for. The
problem is that the lower-limit calculation, i.e., Limit[g,t->-a], yields
exactly the same result; so the area is calculated to be zero! The reason
for the dilemma is not making a distinction between the two different ap-
proaches to a. When we take the limit to a, we are approaching it from
below, because we want to remain in the range of integration. On the other
hand, when we take the limit to −a, we are approaching it from above, for
the same reason. So try Directional limits are

sometimes useful in
evaluating integrals.In[7]:= Limit[g,t->a,Direction->1]

and obtain a2π/2. Similarly,

In[8]:= Limit[g,t->-a,Direction->-1]

yields −a2π/2, which together with the output of In[7] gives the area of
the circle.

Here are the appropriate commands for various limits.

Limit[f[t],t->a] find the limit of f(t) as t
approaches a

Limit[f[t],t->a,Direction->1] find the limit as t approaches a
from below

Limit[f[t],t->a,Direction->-1] find the limit as t approaches a
from above

The signs in the directional limits may be confusing, but if you think about
approaching +1 and −1 from the origin, they make sense.

3.2 Integration in Mechanics

The master equation in mechanics is of course Newton’s second law of
motion. This is a differential equation and, as such, is most appropriately
discussed in a treatment of that subject. Nevertheless, there are some prob-
lems that could be solved by integration. We treat some such problems in
one dimension in which the applied force is a function of position only.

3.2.1 Position-Dependent Forces
In this subsection, we apply the second law of motion to a particle under
the influence of a force that depends only on the position of the particle.
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Let x be the coordinate of a particle of mass m, and f(x) the force acting
on it. The equation of motion is

m
d2x

dt2
= f(x) or

dv

dt
=
f(x)
m

where v = dx/dt is the speed of the particle. Now we use the common trick:

dv

dt
=
dv

dx

dx

dt
= v

dv

dx

and rewrite the equation of motion as

v
dv

dx
=

1
m
f(x) ⇒ v dv =

1
m
f(x) dx

With x0 and v0 as initial position and speed, we can integrate the last
equation:3MM, pp. 82 and 100 ∫ v

v0

u du =
1
m

∫ x

x0

f(s) ds or 1
2v

2 − 1
2v

2
0 =

1
m

∫ x

x0

f(s) ds

We now have a new equation to integrate:

v2 = v2
0 +

2
m

∫ x

x0

f(s) ds ⇒ dx

dt
=
(
v2
0 +

2
m

∫ x

x0

f(s) ds
)1/2

or

dx√
v2
0 + 2

m

∫ x

x0
f(s) ds

= dt or
∫ x

x0

dx√
v2
0 + 2

m

∫ x

x0
f(s) ds

= t (3.2)

Equation (3.2) gives the solution of the equation of motion implicitly ;
it gives t as a function of x. Therefore, one has to “solve” the equation
for x as a function of t. It may be impossible to solve such an equation
analytically, but the numerical solution may not be out of reach.

To start the process of solving Equation (3.2), let us define two functions
in Mathematica:

In[1]:= F[x ,x0 ]:=Integrate[f[s],{s,x0,x}];
g[x ,x0 ,v0 ]:=Integrate[1/Sqrt[v0ˆ2 +F[u ,x0 ]],
{u,x0,x}];

where, for simplicity, we have set m = 2. The solution then consists of
solving the equation g(x, x0, v0) = t for given values of x0 and v0 and
various values of t. First, to get some insight, we let x0 = 1, let v0 = 1, and

3We follow the important advice that variables of integration are to be different from
the symbols used for limits of integration. (See MM, pp. 82 and 100.)
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try a value for t equal to 1. We have to know the force function, of course.
So let f(s) = s.

Chapter 1 gave a brief description of methods for solving equations. Since
Solve and NSolve work only for polynomials, we have no choice but to use
FindRoot. So, let us type in

In[2]:= f[s ]:=s; FindRoot[g[x,1,1]==1,{x,1}]

Out[2]:= {x → 2.34603}

The solution is in the form of a rule, not a number. However, if we type

In[3]:= x/.%

we get the number 2.34603—without a substitution rule—as the output.
Because % always refers to the previous expression, we can give a name
to the expression in In[2] and refer to that name in In[3]. Specifically,
rewrite In[2] as

In[4]:= f[s ]:=s; y=FindRoot[g[x,1,1]==1,{x,1}];
z=x/.y; z

and get the output

Out[4]:= 2.34603

Now all we have to do is to come up with a way of repeating the procedure
above for many values of t. First we have to generate such values for t. In
mathematics, we would label these as t1, t2, t3, . . . ; in Mathematica we
label them as t[1], t[2], t[3], . . . . There is a command in Mathematica
that is particularly suited for this process; it is called Do. For our present using Do to find values

for the independent
variable

purpose, the syntax goes as follows:

In[5]:= t[0]=0; deltat[T ,n ]:= Do[t[i]=t[i-1]+T/n,{i,n}]
The first statement sets the initial time t0 equal to zero. In the second
statement, we have defined a function deltat of two variables n and T .
The first variable gives the “final” time (or the duration of the observation
of motion), and the second variable is the number of divisions of the time
interval. The right-hand side of the second statement takes the previous
value t[i-1] and adds an increment T/n to it to arrive at the new value
t[i]. This calculation is done n times, as indicated by the list {i,n}. As
an example, the input

In[6]:= deltat[5,10]; Table[t[i],{i,0,10}]
yields the following array as an output:

Out[6]:= {0, 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4., 4.5, 5.}
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We have thus far learned how to divide the time values—the horizontal
axis in a plot—and how to solve for x for a given value of t. We now have
to combine these procedures and generate the x-values—the vertical axis
in a plot. For this, we use the loop command For. The syntax of some of
these repetition commands are given below:

Do[expr,{i,n}] evaluate expr with i running from
1 to n

Do[expr,{i,m,n,di}] evaluate expr with i running from
m to n in steps of di

For[start,test,incr,body] evaluate start, then repetitively
evaluate body and incr until test fails

Table[f[i],{i,m,n}] make a list of the values of f with i
running from m to n

The argument start in For usually has a counting index i whose initial
value is given in start and is increased according to the rule in incr. This
rule is typically written as i=i+di, where di is the step size (or increment)
for i. When i++ is used as incr, the value of i is increased by one unit in
each evaluation; thus i++ is equivalent to i=i+1. The test is usually of the
form i ≤ n, whereby the evaluation is repeated until i = n at which time
the evaluation stops. The body is the heart of the calculation, and it can
involve several commands separated by colons.

We are now ready to write down the commands that evaluate the implicit
function of (3.2) for various values of t. It isusing For to calculate

values of dependent
variable for given values
of independent variable

In[7]:= displ[n ,x0 ,v0 ]:= For[i=1;t[0]=0;x[0]=x0,i<=n,
i++, y=FindRoot[g[x,x0,v0]==t[i],{x,x[i-1]},
MaxIterations->50]; x[i]=x/.y;]

A number of remarks are in order. First, the argument start in In[7]
introduces i as the counting index and initializes it to 1. Similarly, t and
x are initialized to 0 and x0, respectively. Second, the test in this case is
i ≤ n, written as i<=n. Third, we have used xi−1 as the starting value in
FindRoot. This is reasonable, because we expect xi—the solution x to the
equation—to be close to xi−1. So the latter should be a good estimate for
the next value of x. Finally, because of the shortcomings of FindRoot, we
have introduced the option MaxIterations->50 to allow for more iterationusing the option

MaxIterations than is allowed by Mathematica’s default value of 15.
So far we have suppressed outputs and only defined functions. For Mathe-

matica to perform calculations, we need to put in some actual functions and
numbers. Let us take f(s) = 19.6 corresponding to the uniformly acceler-
ated free-fall motion on earth (recall that m = 2). We study the motion for
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5 time units (5 seconds) and divide the time interval into 20 subintervals.
The syntax for all of this is

In[8]:= f[s ]:=19.6; deltat[5,20]; displ[20,0.001,0.001];

where we have taken the initial speed and position to be some small num-
bers.4 We still have no displayed results. We want to make a plot of dis-
placement versus time. For this, we need a table of the variable and the
function. The necessary commands are given below:

Table[f[i],{i,m,n}] make a list of the values of f with i
running from m to n

Table[{x[i],y[i]},{i,m,n}] build an array of pairs {xi, yi}
with i ranging from m to n

ListPlot[table] plot table, where table consists
of pairs of numbers, the first one
treated as the x-coordinate, the
second one as y-coordinate

Recall that the last statement in In[8] creates the x[i]’s for the t[i]’s
generated by deltat[5,20]. To put them in a table, we type in

In[9]:= tab=Table[{t[i],x[i]},{i,0,20}];
and tell Mathematica to plot the list: the option PlotJoined

for ListPlot
In[9]:= ListPlot[tab,PlotJoined->True];

The result—the usual parabola associated with a uniformly accelerated
motion—is shown in Figure 3.3. The option PlotJoined->True draws a
smooth curve through the points specified by the Table. Without this
option, Mathematica simply plots the points.

The preceding routine works pretty well with many position-dependent
forces. However, some of the most common forces such as the restoring
force of a spring—Hooke’s law—cause difficulties. This is due to the oscil-
latory nature of the solutions in such cases, and the inadequacy of Newton’s
method in finding the roots of oscillatory functions. This problem is only
illusory, as the efficient way of treating motion is through differential equa-
tions, to which we shall return later.

3.2.2 Gravitational Fields
The gravitational field of a continuous mass distribution is given by MM, p. 79

4If you take v0 = 0 = x0, Mathematica will give error and warning messages, because
it will have difficulty evaluating the integrals.
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FIGURE 3.3. Uniformly accelerated motion as numerically calculated by Math-
ematica using Equation (3.2).

g(r) = −
∫∫
Ω

Gdm(r′)
|r − r′|3 (r − r′) (3.3)

where Ω is the region of integration, r is the position vector of the field point,Field point is where the
field is calculated; source
point is where the
element of mass is
located.

r′ is the position vector of the source point, and
∫∫

Ω is a generic notation
for an integral that does not specify the dimensionality of integration—it
could be a single, a double, or a triple integral.

Field of a Spheroid

The Earth is a sphere that is slightly flattened at the poles. For all practical
purposes, we can ignore this flattening, because the difference between the
radius at the equator and at the poles is extremely small, being 6378 km
at the equator and 6357 at the poles. Nevertheless, it is a good numerical
exercise to calculate the gravitational field of such a spheroid. Assuming
that the shape of the Earth is described by

x2

a2 +
y2

a2 +
z2

b2
= 1 (3.4)

we can express its gravitational field at a point (x, y, z) in terms of the
following triple integral:MM, pp. 125–126

g(r) =
∫ a

−a

dx′
∫ √

a2−x′2

−√
a2−x′2

dy′

∫ b
a

√
a2−x′2−y′2

− b
a

√
a2−x′2−y′2

dz′ 〈x− x′, y − y′, z − z′〉
[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2 (3.5)

From this integral we can calculate the three components of the gravita-
tional field at any point (x, y, z). However, we are mostly interested in two
specific points: (a, 0, 0) on the equator, and (0, 0, b) at the North Pole.
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First let us concentrate on the equatorial point, for which there is only
one component, gx, which is given by

gx =
∫ a

−a

dx′
∫ √

a2−x′2

−√
a2−x′2

dy′

∫ b
a

√
a2−x′2−y′2

− b
a

√
a2−x′2−y′2

dz′ x− x′

[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2 (3.6)

The z′ integration can be done analytically. So, rather than having Math-
ematica do the entire triple integral, we first ask it to do the indefinite
integral and then substitute the limits. This is because, as mentioned ear-
lier, Mathematica is more efficient in evaluating certain indefinite integrals
than their definite counterparts. To start, we type in important use of

Evaluate in integration
In[1]:= f1[x ,xp ,y ,yp ,z ,zp ]=Evaluate[

Integrate[((x-xp)ˆ2+(y-yp)ˆ2+(z-zp)ˆ2)ˆ3/2,zp]];

We have Evaluated the integration so that we can substitute for z′ (or zp)
the upper and lower limits of integration. Without Evaluate Mathematica
will substitute the new values of zp before integration and will get confused.

Now we evaluate the integrand of the remaining two variables. This in-
volves evaluating f1 at the two limits of zp integration and multiplying the
result by x− x′. So, we type in

In[2]:= fx[x ,xp ,y ,yp ,z ,a ,b ]=(x-xp)
(f1[x,xp,y,yp,z,(b/a)Sqrt[aˆ2-xpˆ2-ypˆ2]]-
f1[x,xp,y,yp,z,-(b/a)Sqrt[aˆ2-xpˆ2-ypˆ2]])

Finally, we integrate fx numerically to find gx:

In[3]:= gx[x ,y ,z ,a ,b ]=NIntegrate[fx[x,xp,y,yp,z,a,b],
{xp,-a,a},{yp,-Sqrt[aˆ2-xpˆ2],Sqrt[aˆ2-xpˆ2]}]

where we have ignored the constant −Gρ in front of the integral.
At the North Pole, the surviving component is gz. Thus, we have to

evaluate

gz =
∫∫∫

z − z′

[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2 dx
′dy′dz′ (3.7)

and the natural tendency is to perform the z′ integration first. However, another example of the
subtleties of integration
in Mathematica

this approach will cause such severe singularities in the process of inte-
gration that Mathematica will quit the calculation. Switching the order of
integration will alleviate the problem, and Mathematica will sail through
the calculation with only minor inconvenience; another indication of the
fact that integration is an art with lots of tricks to get acquainted with. So
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we perform the x′ integration first and leave the z′ integration for last and
write

gz =
∫ b

−b

(z − z′) dz′
∫ √

a2−(az′/b)2

−
√

a2−(az′/b)2
dy′

∫ √
a2−y′2−(az′/b)2

−
√

a2−y′2−(az′/b)2

dx′

[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2 (3.8)

Thus, as in the previous case, we type in

In[4]:= h1[x ,xp ,y ,yp ,z ,zp ]=Evaluate[
Integrate[((x-xp)ˆ2+(y-yp)ˆ2+(z-zp)ˆ2)ˆ3/2,xp]];

Then evaluate the integrand of the remaining two variables. This involves
evaluating h1 at the two limits of xp integration and multiplying the result
by z − z′. So, we type in

In[5]:= fz[x ,y ,yp ,z ,zp ,a ,b ]=(x-xp)
(h1[x,xp,y,yp,z,Sqrt[aˆ2-ypˆ2-(a zp/b)ˆ2]]-
h1[x,xp,y,yp,z,-Sqrt[aˆ2-ypˆ2-(a zp/b)ˆ2]])

Finally, we integrate fz numerically to find gz:For details of finding
correct limits of
integration, see MM,
pp. 93–96.

In[6]:= gz[x ,y ,z ,a ,b ]=NIntegrate[fx[x,y,yp,z,zp,a,b],
{zp,-b,b},{yp,-Sqrt[aˆ2-(a zp/b)ˆ2],
Sqrt[aˆ2-(a zp/b)ˆ2]}]

An interesting problem is to find the ratio a/b for which the field at
the pole is maximum when the mass of the spheroid is held fixed and the
density is uniform. Since the volume of the spheroid is 4

3πa
2b, for a spheroid

of density ρ, we have

M =
4
3
πρa2b or a =

√
3M
4πρb

Ignoring the constants, we let a = 1/
√
b. At the pole, x = 0 = y and

z = b, but to avoid singularities, we let z be just a little larger than b, say
z = 1.0001b. We can now plot gz as a function of b. Here is the command
that will accomplish that:

In[7]:= Plot[Chop[gz[0, 0, 1.0001 b, 1/Sqrt[b], b]],
{b, 0.1, 1}]

The command Chop gets rid of any negligible imaginary part that mayUse Chop to get rid of
the tiny imaginary part
of a calculation result.

accompany the result of integration. Figure 3.4 shows the plot of gz at the
North Pole as a function of the pole radius when the volume is fixed. It is
interesting to note that there is indeed a b for which the gravitational field
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FIGURE 3.4. Gravitational acceleration (field) at the North Pole as a function
of the pole radius b when the volume (or mass) is fixed.

is maximum and that the value of b is around 0.8. One may suspect that
the value should be at b = a = 1, corresponding to a sphere,5 but one has
to realize that a large value of b corresponds to a larger distance from the
center of mass and, therefore, a smaller field.

For Earth, a = 6378 km and b = 6357 km, so that the ratio a/b becomes
1.0033. With b = 1, we type in

In[8]:= gx[1.003301, 0, 0, 1.0033, 1]

and obtain 4.19706 + 2.87295 × 10−30 I. The small imaginary part is what
Chop gets rid of. Note that we have increased x slightly above a to avoid
singularities. Similarly, typing in

In[9]:= gz[0, 0, 1.000001, 1.0033, 1]

will produce 4.19983 + 2.92009 × 10−30 I. These are not actual values for
accelerations. To obtain the two values of g at the North Pole and at the
equator, we need to insert back the constants we ignored earlier. Since we
have set b = 1, all lengths are measured in terms of b. In particular, gx and
gz, which have dimension of length, are also measured in units of b. The
result of the integration in the two cases can be written as bA, where A is
one of the two numbers obtained above. We note that

g = GρbA = G
M

4
3πa

2b
bA =

GM

a2

3A
4π

5b = a and a = 1/
√
b imply that a = b = 1.
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With G = 6.67×10−11 andM = 5.98×1024, we can calculate the equatorial
and polar accelerations:

gpole =
(6.67 × 10−11)(5.98 × 1024)

(6.378 × 106)2
× 3 × 4.19983

4π
= 9.8311 m/s2

gequator =
(6.67 × 10−11)(5.98 × 1024)

(6.378 × 106)2
× 3 × 4.19706

4π
= 9.8246 m/s2

As expected, the polar acceleration is slightly larger than the equatorial
acceleration because poles are at lower “altitudes” than the equator. The
actual accelerations differ slightly from the two numbers given above, partly
due to the variation in density both locally and throughout the interior of
the Earth.

Evidence for Dark Matter

Gravity is the dominant force holding the large-scale structures in the uni-
verse, from planets to galaxies. This force acts between all objects that
have mass (or energy, using the equivalence of the two in relativity theory)
and causes them to accelerate. Since many celestial accelerations in the
universe are of centripetal type, a measurement of speed can give us an
indication of the nature of matter causing the acceleration.

Here we want to examine the acceleration of stars in a galaxy such as the
Milky Way assuming it has a very simple disklike structure with negligible
thickness and uniform surface mass density σ. The appropriate coordinates
to use for integration are cylindrical. Using Equation (3.3) and the following
informationMM, p. 18; p. 112 with

z = 0 = z′; figure on p.
113, with ϕ = 0

r = ρêρ, r′ = ρ′êρ′ , êρ · êρ′ = cosϕ′

in which we assume that our field point is on the x-axis, one can show that

gx = −Gσ
∫ 2π

0
dϕ′

∫ a

0
dρ′ ρ′(ρ− ρ′ cosϕ′)

(ρ2 + ρ′2 − 2ρρ′ cosϕ′)3/2

gy = 0 = gz

Thus, the nonvanishing component of the field becomes

gx = −Gσρ
∫ 2π

0
dϕ′

∫ a

0

ρ′ dρ′

(ρ2 + ρ′2 − 2ρρ′ cosϕ′)3/2︸ ︷︷ ︸
≡int1

+Gσ

∫ 2π

0
dϕ′ cosϕ′

∫ a

0

ρ′2 dρ′

(ρ2 + ρ′2 − 2ρρ′ cosϕ′)3/2︸ ︷︷ ︸
≡int2

(3.9)

We see that the problem boils down to the calculation of two double inte-
grals.
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We calculate the inner integral of each one and add the results. For the
first inner integral we type in

In[1]:= int1[r ,phi ,a ]:=Evaluate[Integrate[t/(tˆ2-
2 r t Cos[phi]+rˆ2)ˆ3/2],{t,0,a}]

where we have used r for ρ, phi for ϕ′, and t for ρ′. Mathematica calculates
the integral fairly quickly. However, if we do the same thing for the sec-
ond integral, Mathematica gets stuck. So we try evaluating the indefinite
integral by typing in

In[2]:= f2[r ,phi ,t ]:=Evaluate[Integrate[tˆ2/(tˆ2-
2 r t Cos[phi]+rˆ2)ˆ3/2],t];
int2[r ,phi ,a ]:=f2[r,phi,a]-f2[r,phi,0]

Now we add these two integrals—after multiplying by appropriate factors
and ignoring the factor −Gσ in front of the double integrals—to obtain the
integrand of the ϕ′ integration:

In[3]:= h[r ,phi ,a ]:=Simplify[r int1[r,phi,a]
-Cos[phi]int2[r,phi,a]]

Then, typing h[r,phi,a] produces

√
r2

r
− r√

a2 + r2 − 2ar cosϕ

+ cosϕ
( 2a√

a2 + r2 − 2ar cosϕ
+ Log

[√
r2 − r cosϕ

]
− Log

[
a− r cosϕ+

√
a2 + r2 − 2ar cosϕ

])
which we simplify manually and write as

h(r, ϕ, a) = 1 − r − 2a cosϕ√
a2 + r2 − 2ar cosϕ

+ cosϕLog [r − r cosϕ]

− cosϕLog
[
a− r cosϕ+

√
a2 + r2 − 2ar cosϕ

]
(3.10)

What is left now is to integrate h(r, ϕ, a) over ϕ. We do this term by
term, and try to integrate each term analytically, using as many tricks as
possible to give results. The first term is trivial and gives gx1 = 2π. For
the second term, we type in

In[4]:= gx2[r ,a ]:=Simplify[Integrate[
(r-2 a Cos[phi])/Sqrt[tˆ2- 2 r t Cos[phi]+rˆ2],
{phi,0,2 Pi}]]



102 3. Integration

to which Mathematica responds by giving

4
(
(a− r)2 EllipticE

[
− 4ar

(a−r)2

]
− a2 EllipticK

[
− 4ar

(a−r)2

])
√

(a− r)2r

The fact that the output is in terms of the so-called elliptic functions should
be of no concern to us.MM, Section 6.1.4

discusses elliptic
functions briefly.

The terms involving (natural) logarithm are more difficult to handle. A
direct request to Mathematica will yield no result. Even indefinite integra-
tion will produce no response. However, if we integrate by parts—and in the
process get rid of the log terms—we may have some luck. Recall that in inte-
gration by parts, one integrates the differential identity d(uv) = u dv+v du
to obtain

∫ b

a
u dv = uv|ba − ∫ b

a
v du. A judicious choice of u and v may sim-

plify the integration on the right-hand side considerably. With this in mind,
we type in

In[5]:= u1[r ,phi ,a ]:=Log[r-r Cos[phi]];
v[r ,phi ,a ]:=Evaluate[Integrate[Cos[phi],phi]]

We can evaluate uv|ba as follows:

In[6]:= uv1[r ,a ]:= Limit[u1[r,phi,a]v[r,phi,a],
phi->2 Pi]-Limit[u1[r,phi,a]v[r,phi,a],phi->0]

The reason for the appearance of Limit is that the direct substitution will
give an indeterminate result. Typing uv1[r,a] gives 0, showing that the
uv|ba part does not contribute to the integral. The remaining part, which
we call intuv1, is calculated by typing in

In[7]:= intuv1[r ,phi ,a ]:=
-Simplify[Evaluate[D[u1[r,phi,a],phi]] v[r,phi,a]]

and integrating the result

In[8]:= gx3=Integrate[intuv1[r, phi,a],phi,0,2 Pi]

yielding −2π as the final answer.
Now we proceed with the second log term. Since v is already defined, we

need only to define u, which we name u2:

In[9]:= u2[r ,phi ,a ]:=
Log[a - r Cos[phi] + Sqrt[aˆ2+rˆ2-2 a r Cos[phi]]

For the term uv|ba, we do as before and obtain zero. The remaining part,
which we call intuv2, is

In[10]:= intuv2[r ,phi ,a ]=
Simplify[Evaluate[D[u2[r, phi,a],phi]] v[r,phi,a]]
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whose output is

−
r

(
1 + a√

a2+r2−2ar cos ϕ

)
sin2 ϕ

a− r cosϕ+
√
a2 + r2 − 2ar cosϕ

or

− r sin2 ϕ

a− r cosϕ+
√
a2 + r2 − 2ar cosϕ

−
ra sin2 ϕ√

a2+r2−2ar cos ϕ

a− r cosϕ+
√
a2 + r2 − 2ar cosϕ

We integrate these separately by typing in

In[11]:= gx4[r ,a ]:=Simplify[-r Integrate[Sin[phi]ˆ2
/(a-r Cos[phi]+Sqrt[aˆ2+rˆ2-2a r Cos[phi])]];
gx5[r ,a ]:=Simplify[-r a Integrate[Sin[phi]ˆ2
Sqrt[aˆ2+rˆ2-2a r Cos[phi])]/(a-r Cos[phi]+
Sqrt[aˆ2+rˆ2-2a r Cos[phi])]]

To find the gravitational field, we add gx1 through gx5:

In[12]:= gx[r ,a ]:=Simplify[gx1+gx2[r,a]+gx3+
gx4[r,a]+gx5[r,a]]

with the final result [after changing back to the notation used in Equation
(3.9)]

gx(ρ, a) =
2(a− ρ)2

ρ
√

(a− ρ)2
EllipticE

[
− 4aρ

(a− ρ)2

]

− 2(a2 + ρ2)
ρ
√

(a− ρ)2
EllipticK

[
− 4aρ

(a− ρ)2

]
(3.11)

Now that we have the field as a function of distance from the center, we
can plot it. The command Plot[g[r,1],{r,0,2}] will produce the plot
of Figure 3.5. The field starts at zero at the center, as expected; increases
when approaching the rim, as expected; and falls off outside when moving
away from the disk, as expected. What seems to be surprising is the fact
that the field goes to infinity at the rim. Although this phenomenon is not
relevant to our present discussion, a detour into explaining it is worthwhile.

It is well known that the gravitational (or electrostatic, as the two obey
the same mathematical laws) field of a hollow spherical shell is zero inside
if the mass (or charge) is distributed uniformly on the shell. Although this MM, pp. 121–122 prove

that the field inside a
hollow spherical shell is
zero.

can be proved rigorously, a simple intuitive argument will shed light on the
infinity encountered in the case of a disk. Let point P be anywhere inside
a spherical shell as shown in Figure 3.6. Draw a diameter passing through
P (the dashed line in the figure), and construct the two cones—one larger,
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FIGURE 3.5. Gravitational acceleration (field) at a distance ρ from the center of
a disk. The disk is assumed to have a unit radius.

one smaller, but both infinitesimal—with the diameter as their common
axis. Let h1 denote the height of the small cone and h2 that of the large
one. Then the field at P due to AC is

G∆m1

h2
1

=
Gσ∆a1

h2
1

= Gσ∆Ω1

where σ is the surface mass density and ∆Ω1 is the solid angle subtended
by the cone at P . A similar calculation shows that the field due to BD is
Gσ∆Ω2, where ∆Ω2 is the solid angle subtended by the larger cone at P .
But the two solid angles are equal; so the two fields are equal, but in the
opposite directions. Therefore, inside, the field will be zero.

We can even calculate the field right at the surface outside. To do so,
let’s move P infinitesimally close to the surface. Then, the argument above
still holds, as long as P is inside. Just outside, the fields are still equal, but
in the same direction. So,

gout = 2Gσ∆Ω1 = 2Gσ(2π) = 4πGσ

because the solid angle subtended by AC when P is infinitesimally close to
it is 2π.6 We can rewrite the last equation as

gout = 4πG
M

4πa2 =
GM

a2

where M is the total mass of the shell and a its radius. This is the familiar
result that (just) outside a uniform spherical shell, the gravitational field
is the same as that of a point (with equal) mass located at the center of
the shell.

6This is analogous to the fact that the angle subtended by a line segment at a point
P approaches π as P approaches the line segment.
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FIGURE 3.6. For a spherical shell, the contributions from AC and BD cancel at
the boundary inside, but add at the boundary outside. For a ring, the contribu-
tions from AC is larger than that from BD, and gets larger and larger as P gets
closer and closer to AC.

Now let us study the behavior of the field inside and outside a ring.
Again refer to Figure 3.6, but assume that the circle is a ring rather than
a spherical shell. Then as before, we can write the contribution of the two
arcs of the circle to the gravitational field:

g1 =
G∆m1

h2
1

=
Gλ∆l1
h2

1
=
Gλ

h1

∆l1
h1

=
Gλ∆θ
h1

g2 =
G∆m2

h2
2

=
Gλ∆l2
h2

2
=
Gλ

h2

∆l2
h2

=
Gλ∆θ
h2

where λ is the linear mass density and ∆θ is the common angle subtended
by AC and BD at P . This result shows clearly that as P gets closer and
closer to the ring, g1 gets larger and larger without bound, while g2 ap-
proaches the finite value of Gλπ/(2a).

Thus, we should not be surprised if the gravitational field blows up at
the rim of an infinitely thin disk. A real disk, of course, has a thickness and
no sharp edges, and its gravitational field will be finite and well-defined at
all points in space.

Since we are interested only in the field outside, we need not worry about
the infinity at the rim. If there is an object orbiting the disk at the distance
ρ, it will have a speed given by g = v2/ρ. With g given by Equation (3.11),
we find the speed as

v2 =
−2Gσ√
(a− ρ)2

{
(a− ρ)2 EllipticE

[
− 4aρ

(a− ρ)2

]

− (a2 + ρ2) EllipticK
[
− 4aρ

(a− ρ)2

]}
(3.12)
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FIGURE 3.7. The speed decreases as the distance from the center of galaxy
increases.

where we have restored the constant factor we ignored at the beginning
of our calculation. Plotting v as a function of ρ produces the graph of
Figure 3.7, which shows a drop in v with distance from the center of the
disk.

Observation of many galaxies has indicated a fairly constant v for values
of ρ in the range of tens of millions of light years, way beyond the visible
edge of the galaxy, typically in the range of a hundred thousand light years.evidence for dark matter
In fact, if there is any change in speed with distance, it is in the form of an
increase! The only way this can happen—as an examination of Equation
(3.12) reveals instantly—is for σ not to stop at the visible edge of the galaxy,
but to continue its presence at larger distances, and this conclusion does not
depend on the shape of the galaxy. A spherical galaxy, or that of any other
shape, will lead to the same conclusion. However, this presence cannot be
visible, because the visible size of the galaxy is set by optical observations.
The only solution to this riddle is the existence of dark matter, a form
of matter that emits no electromagnetic signal but makes its presence felt
by its gravitational attraction.

Measurement of speed of objects attracted by nearby galaxies is only one
way of inferring the existence of dark matter. Other cosmological indicators
signal the presence of dark matter all over the universe. There is no doubt
that dark matter exists and that it constitutes the majority—about 90%—
of the mass of the universe.

3.3 Integration in Electrostatics

The electric field and electrostatic potential of a continuous charge distri-
bution are given byMM, pp. 79 and 377
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E(r) = −
∫∫
Ω

ke dq(r′)
|r − r′|3 (r − r′) (3.13)

and

Φ(r) = −
∫∫
Ω

ke dq(r′)
|r − r′| (3.14)

respectively, where Ω, r, and r′ are as in Equation (3.3).
Let us consider a linear charge distribution (a curve), described—in

Cartesian coordinates—parametrically by

r′ ≡ 〈x′, y′, z′〉 = 〈f(t), g(t), h(t)〉, a ≤ t ≤ b

where t = a gives the initial point of the curve and t = b its final point. If
the linear charge density is given by a function λ(x′, y′, z′), then

dq(r′) = λ(x′, y′, z′)
√

(dx′)2 + (dy′)2 + (dy′)2

or
dq(r′) = λ(f(t), g(t), h(t))︸ ︷︷ ︸

Call this Λ(t)

√
[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 dt

where f ′, g′, and h′ denote derivatives.
When we substitute all the above in Equation (3.13) and separate the

components of the field, we get See MM, p. 104.

Ex =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 [x− f(t)]{
[x− f(t)]2 + [y − g(t)]2 + [z − h(t)]2

}3/2 dt

Ey =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 [y − g(t)]{
[x− f(t)]2 + [y − g(t)]2 + [z − h(t)]2

}3/2 dt (3.15)

Ez =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2 [z − h(t)]{
[x− f(t)]2 + [y − g(t)]2 + [z − h(t)]2

}3/2 dt

Similarly, substituting the same information in Equation (3.14) yields See MM, p. 105.

Φ(x, y, z) =
∫ b

a

keΛ(t)
√

[f ′(t)]2 + [g′(t)]2 + [h′(t)]2{
[x− f(t)]2 + [y − g(t)]2 + [z − h(t)]2

}1/2 dt (3.16)

In particular, if the density is uniform, and we are interested in the potential
in the xy-plane of a curve that also lies in the xy-plane, then z = 0 and
h(t) = 0, and we have

Φ(x, y) = keλ

∫ b

a

√
[f ′(t)]2 + [g′(t)]2{

[x− f(t)]2 + [y − g(t)]2
}1/2 dt (3.17)

where λ is the constant linear density.
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FIGURE 3.8. The potential of a circular loop of uniformly charged ring in the
xy-plane. Note that at the ring the potential is infinite.

3.3.1 Potential of a Ring
Now consider a uniformly charged circular ring of unit radius lying in the
xy-plane. For such a charge distribution

f(t) = cos t, g(t) = sin t, 0 ≤ t ≤ 2π

Thus, Equation (3.17) becomes

Φ(x, y) =
∫ 2π

0

1{
[x− cos t]2 + [y − sin t]2

}1/2 dt (3.18)

in which we have ignored the constants outside the integral. We want to
plot this potential as a function of x and y. The Mathematica command
for the numerical integration of the potential is

In[1]:= f[x ,y ]:=NIntegrate[1/Sqrt[(x-Cos[t])ˆ2
+(y-Sin[t])ˆ2],{t,0,2 Pi}],

and its three-dimensional plot can be obtained using

In[2]:= Plot3D[f[x,y],{x,-2,2},{y,-2,2}, PlotPoints->40]

The option PlotPoints->40 increases the smoothness of the plot. Fig-
ure 3.8 shows such a plot, where the boundary of the ring—at which the
potential is infinite—is markedly conspicuous.
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3.3.2 Potential of a Spiral
Another interesting example is the potential of a uniformly charged flat
spiral in the xy-plane. The equation of a spiral is normally given in polar
coordinates. Suppose the polar equation of this spiral is r = 0.5θ. The
Cartesian equations of the spiral is then [see also Equation (1.3)]

x(θ) = r cos θ = 0.5θ cos θ ⇒ f(t) = 0.5t cos t
y(θ) = r sin θ = 0.5θ sin θ ⇒ g(t) = 0.5t sin t

Let us calculate the potential at the points of a plane parallel to the xy-
plane crossing the z-axis at z = 0.5. Evaluating f ′ and g′, substituting in
Equation (3.16), and simplifying—using Mathematica or otherwise—yields

Φ(x, y, 0.5) = keλ

∫ 20

0

0.5
√

1 + t2{
[x− 0.5t cos t]2 + [y − 0.5t sin t]2 + [0.5]2

}1/2 dt

(3.19)

where we have taken the final point of the parameter t to be 20 so that the
spiral can turn a few times. Ignoring the constants in front of the integral,
the Mathematica inputs for plotting the potential are now

In[3]:= f[x ,y ]:=NIntegrate[Sqrt[1+tˆ2]/Sqrt[(x-0.5 t
Cos[t])ˆ2+(y-0.5 t Sin[t])ˆ2+0.25],{t,0,20}],

and

In[4]:= Plot3D[f[x,y],{x,-8,8},{y,-8,8}, PlotPoints->40]

Figure 3.9 shows the three-dimensional plot of the potential as a function
of x and y. Notice that the potential is not infinite anywhere, because the
points of the new plane never touch the spiral.

3.3.3 Flat Surface Charge Distributions
If the electric charge is distributed in a region Ω of the xy-plane with
a known surface charge density σ, we can calculate its electric field and
potential at an arbitrary point in space. In fact, it is easy to show that MM, p. 116

Ex = ke

∫∫
Ω

σ(x′, y′)(x− x′) dx′ dy′

{(x− x′)2 + (y − y′)2 + z2}3/2

Ey = ke

∫∫
Ω

σ(x′, y′)(y − y′) dx′ dy′

{(x− x′)2 + (y − y′)2 + z2}3/2 (3.20)

Ez = kez

∫∫
Ω

σ(x′, y′)dx′ dy′

{(x− x′)2 + (y − y′)2 + z2}3/2
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FIGURE 3.9. The potential of a uniformly charged flat spiral in a plane parallel
to the xy-plane. Note the outline of the spiral at which the potential is maximum.

and

Φ(x, y, z) = ke

∫∫
Ω

σ(x′, y′)dx′ dy′√
(x− x′)2 + (y − y′)2 + z2

(3.21)

where x′ and y′ run over the points of Ω in the double integrals. For exam-
ple, for a uniformly charged square of side 2a and surface charge density
σ, whose center is the origin, the potential is

Φ(x, y, z) = keσ

∫ a

−a

∫ a

−a

dx′ dy′√
(x− x′)2 + (y − y′)2 + z2

(3.22)

= keσ

∫ a

−a

ln

[
a+ y +

√
(x− x′)2 + (y + a)2 + z2

−a+ y +
√

(x− x′)2 + (y − a)2 + z2

]
dx′

where we have observed the recommended practice of carrying out one of
the integrations analytically, leaving only a single integral for numerical
calculation.

3.4 Integration in Magnetism

The calculation of the magnetic fields of current carrying wires is done
using the Biot–Savart law. This law is necessarily written in terms of anMM, p. 111
integral, because unlike the electric and gravitational fields, whose mathe-
matical expressions involve local point charges and masses, magnetic fields
are caused by extended electric currents, and, as such, require integrals.

The Biot–Savart law for a filament carrying a current I at a point PBiot–Savart law for a
current-carrying wire
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with position vector r is given by

B(r) = kmI

∫
d r′ × (r − r′)

|r − r′|3/2 (3.23)

where the integral is over the coordinates of points of the filament. In the
numerical calculations below, we ignore the multiplicative constant kmI.

3.4.1 Circular Loop
Let us start with the simple example of a current-carrying circular loop of
radius a located in the xy-plane. With the center of the circle at the origin
of a cylindrical coordinate system, the three cylindrical components of the
magnetic field are MM, pp. 113–114

Bρ = kmIaz

∫ 2π

0

cos t dt
(ρ2 + a2 − 2aρ cos t+ z2)3/2

Bϕ = 0 (3.24)

Bz = −kmIa

∫ 2π

0

(ρ cos t− a) dt
(ρ2 + a2 − 2aρ cos t+ z2)3/2

We type the nonvanishing components in Mathematica:

In[1]:= Br[r ,z ]:=z Integrate[Cos[t]/(rˆ2+1-2rCos[t]+
zˆ2)ˆ3/2,{t,0,2Pi}]
Bz[r ,z ]:= Integrate[(rCos[t]-1)/(rˆ2+1-2rCos[t]+
zˆ2)ˆ3/2,{t,0,2Pi}]

where we have taken the radius of the loop to be unity and ignored the
constants in front of the integral. We could have used NIntegrate instead;
however, as it turns out, Mathematica can do the integrals analytically—in
terms of the elliptic functions.

It is instructive to render a graph of the field lines of the magnetic field.
To do so, we first have to load the special graphics package that draws field
lines. This is done by first typing in <<Graphics‘PlotField‘ and then the
command

In[2]:= PlotVectorField[{Br[r,z],Bz[r,z]},{r,-2,2},
{z,-1,1}]

The result is the diagram shown in Figure 3.10. The figure shows only a
cross section of the field lines cut by a plane perpendicular to the loop and
passing through its center. The cross section of the loop is shown as two
empty spots halfway to the right and left of the middle vertical.
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FIGURE 3.10. The magnetic field lines of a circular loop. The diagram shows
only the lines as they appear on a plane perpendicular to the loop and passing
through its center.

3.4.2 Current with General Shape
The example of a circular loop was very simple. We had the integrals at
our disposal, and all we had to do was evaluate them. Mathematica can
do much better than that. But it requires that we derive a general formula
for the magnetic field of a current-carrying filament whose shape is quite
arbitrary. We use Cartesian coordinates for simplicity.

Suppose that the filament is described in Cartesian coordinates by a
parametric equation of the form

r′ = 〈x′, y′, z′〉 = 〈f(t), g(t), h(t)〉
In Mathematica language this—and the coordinates of P—can be typed in
as

In[1]:= rp[t ]:={f[t],g[t],h[t]}; r[x ,y ,z ]:={x,y,z}
The integrand of Equation (3.23), which is a vector, is typed in simply as

In[2]:= intB[x ,y ,z ,t ]:= Cross[rp’[t],r[x,y,z]-rp[t]]
/((r[x,y,z]-rp[t]).(r[x,y,z]-rp[t]))ˆ3/2

where instead of d r′ we have used its derivative with respect to t, the latter
being the variable of integration.

We are interested in the components of the magnetic field in Cartesian
coordinates. To find these components, we first define our unit vectors:

In[3]:= ex={1,0,0}; ey={0,1,0}; ez={0,0,1};
Then take the dot product of these vectors with intB to find the compo-
nents of the integrand. So, we define three new integrands each correspond-MM, p. 6, Box 1.1.2
ing to one component of B:



3.4 Integration in Magnetism 113

1 2 3 4 5

-0.5
-0.25

0.25
0.5
0.75

1

1 2 3 4 5

0.5
1

1.5
2

2.5
3

3.5

FIGURE 3.11. The x- (left) and z- (right) component of the magnetic field of a
short solenoid of radius 1.

In[4]:= intBx[x ,y ,z ,t ]:=intB[x,y, t].ex;
intBy[x ,y ,z ,t ]:=intB[x,y, t].ey;
intBz[x ,y ,z ,t ]:=intB[x,y, t].ez;

and numerically integrate them to find the three components of the mag-
netic field:

In[5]:= Bx[x ,y ,z ,a ,b ]:=NIntegrate[intBx[x,y,z,t],
{t,a,b}];
By[x ,y ,z ,a ,b ]:=NIntegrate[intBy[x,y,z,t],

{t,a,b}];
Bz[x ,y ,z ,a ,b ]:=NIntegrate[intBz[x,y,z,t],

{t,a,b}];

3.4.3 Solenoid
With the general formulas for the three components of B at our disposal, we
can calculate the fields of currents of specific shape. One shape of interest
is the helix, corresponding to a solenoid. Let us type in

In[6]:= f[t ]:=Cos[t]; g[t ]:=Sin[t]; h[t ]:=0.05 t;
a=-5; b=5;

This describes a solenoid of radius 1, the beginning and end of whose fila-
ment occur at (cos(−5), sin(−5), 0.05×(−5)) [or (0.284,−0.96,−0.25)] and
(0.284,−0.96, 0.25), respectively. So, the length of the solenoid is 0.5, and
the spacing between consecutive windings is 0.05×2π = 0.314. Hence, there
are somewhat less than two windings on the solenoid.

Let us plot the x- and z-components of the magnetic field outside the
solenoid. We choose a plane parallel to the xy-plane intersecting the z-axis
at z = 1, and plot Bx and Bz as a function of x, i.e., for field points
along the x-axis. Since we have a general expression for the field, and the
functions describing the solenoid are all defined above, all we need to do is
plot the functions.
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FIGURE 3.12. The z-component of the magnetic field inside a solenoid of radius
1. The upper-left diagram is the field of the solenoid when its length L is 0.5.
Moving clockwise, we see Bz for L = 1, L = 2, L = 5, L = 8, and L = 10,
respectively.

In[7]:= Plot[Bx[x,0,1,a,b],{x,0,5},PlotRange->All]
produces the plot on the left of Figure 3.11 and

In[8]:= Plot[Bz[x,0,1,a,b],{x,0,5},PlotRange->All]
yields the plot on the right. These plots demonstrate the behavior of com-
ponents expected on physical grounds. For example, Bx is expected to be
maximum when the point is right on top of the wire (almost a single loop)
and Bz to be maximum at the center.

Now let us focus on points close to the xy-plane. In fact, let us find the
components of the field on that plane. This will help us investigate the
long-solenoid limit of the field, which is calculated in elementary physics
courses using Ampere’s circuital law. The reader recalls that for such a
solenoid, the field inside is constant and entirely in the z-direction, and
outside it is zero. It is the constancy of the field that we would like to
investigate as the length of the solenoid increases.

We start with the short solenoid of length L = 0.5 as above. An attempt
at calculating Bx or By will produce a complaint by Mathematica about the
integral being oscillatory and converging too slowly, but the answer given
out is almost zero. This “constant” magnetic field may be surprising, as
the length of the solenoid is a only fraction of its radius, and hardly could
be called “long.” However, a very short solenoid can be approximated by
a circular loop; and for a circular loop in the xy-plane, the field is entirely
in the z-direction [see Equation (3.24)].

The z-component of the magnetic field can, however, be calculated nu-
merically and plotted. The command

In[9]:= Plot[Bz[x,0,0,a,b],{x,0,0.9}]
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produces the diagram shown in the upper-left corner of Figure 3.12. This
figure clearly shows that Bz has some noticeable variation as one moves
away from the axis of the solenoid towards its lateral surface. The rest
of Figure 3.12 shows what happens when the length of the solenoid in-
creases. Our expectation—based on our experience in introductory physics
courses—is that the field should show less and less sensitivity to x as the
length of the solenoid increases. And this expectation is borne out in the
figure. Barring the fluctuation in the last diagram—caused by flaws in nu-
merical calculations—even for moderate lengths of 8 and 10 (only 4 and 5
times the diameter of the solenoid), Bz appears to be fairly constant for a
good fraction of the distance from the axis to the lateral surface.

The elementary treatment of a long solenoid tells us that the z-component
(the only nonvanishing component) of the magnetic field should remain con-
stant along the z-direction as well. Thus, if we plot Bz as a function of z, it
should remain fairly constant inside the solenoid. The insensitivity of the
field to both x and z can best be exhibited in a three-dimensional plot of
Bz as a function of x and z where the field should appear as a flat sheet
(except for values of x and z nearing the edges of the solenoid). Such a
three-dimensional plot can be produced by typing in

In[10]:= Plot3D[Bz[x,0,z,a,b],{x,0,0.9},{z,-3,3}]
The result is Figure 3.13. Notice that, aside from the rather strong varia-
tion at the lateral surface (corresponding to x close to 1), Bz is relatively
constant in both the x- and z-directions.

3.4.4 Rotating Charged Spherical Shell
Any charge in motion produces a magnetic field. This motion can be in the
form of a current generated by a battery or caused by a mechanical agent
acting on otherwise static charges. The general formula for the latter kind
of magnetic field is Biot–Savart law for

moving charges

B = km

∫∫
Ω

dq(r′)v(r′) × (r − r′)
|r − r′|3/2 (3.25)

where dq(r′) is the element of charge at r′ and v(r′) its velocity.
We are interested in the magnetic field generated by a uniformly charged

spherical shell of radius a spinning about one of its diameters with an
angular speed of ω. Because of the spherical geometry of the source, we use
spherical coordinates for the variables of integration. Then we have,

r = rêr, r′ = aêr′ , v = ωa sin θ′êϕ′ , dq(r′) = σa2 sin θ′ dθ′ dϕ′

For Mathematica manipulations, it is convenient to express all the unit
vectors in terms of Cartesian unit vectors with coefficients in spherical
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FIGURE 3.13. The z-component of the magnetic field inside a solenoid of radius
1, drawn as a function of x (distance away from the axis) and z (distance from
the center on the axis).

coordinates. These are

êr = êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ
êθ = êx cos θ cosϕ+ êy cos θ sinϕ− êz sin θ
êϕ = −êx sinϕ+ êy cosϕ

for the field point and similar expressions (with prime on the coordinates)
for the source point. The reason for doing this is that Mathematica treats
vectors as having Cartesian components. For instance, it adds components
to find the components of the sum, something that is not generally allowed
in the so-called “curvilinear coordinates.”See MM, Section 1.3,

especially p. 19 for
components of vectors
in various coordinate
systems.

Because of the symmetry of the problem, we do not expect the magnetic
field to depend on ϕ of the field point. So, for simplicity, we take ϕ to be
zero, i.e., we position the field point in the xz-plane. We can now write the
relevant code for Mathematica. First, we define the spherical unit vectors
at the field point (with ϕ = 0):

In[1]:= er[t ]:={Sin[t],0,Cos[t]};
et[t ]:={Cos[t],0,-Sin[t]}; ep:={0,1,0}

where we used t for θ and p for ϕ.7 For the source point we use 1 instead
of prime:

In[2]:= er1[t1 ,p1 ]:={Sin[t1]Cos[p1],Sin[t1]Sin[p1],
Cos[t1]};
et1[t1 ,p1 ]:={Cos[t1]Cos[p1],Cos[t1]Sin[p1],
-Sin[t1]};
ep1[p1 ]:={-Sin[p1],Cos[p1],0}

7Using the BasicInput palette, one can use Greek letters for variables.
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We also need the Cartesian unit vectors to find the Cartesian components
of the field:

In[3]:= ex={1,0,0};ey={0,1,0};ez={0,0,1};
The velocity and the entire integrand can now be typed in:

In[4]:= v[t1 ,p1 ,a ]:= a Sin[t1] ep1[p1];
int[r ,t ,t1 ,p1 ,a ] := (aˆ2 Sin[t1]
Cross[v[t1,p1,a],(r er[t]-a er1[t1,p1])])
/((r er[t]-a er1[t1,p1]).(r er[t]-
a er1[t1,p1]))ˆ(3/2);

For different components of the field, we need the corresponding compo-
nents of the integrand:

In[5]:= intx[r ,t ,t1 ,p1 ,a ]:=int[r,t,t1,p1,a].ex;
inty[r ,t ,t1 ,p1 ,a ]:=int[r,t,t1,p1,a].ey;
intz[r ,t ,t1 ,p1 ,a ]:=int[r,t,t1,p1,a].ez;

Finally, we numerically integrate these integrands to obtain the components
of the field:

In[6]:= Bx[r ,t ,a ]:=NIntegrate[Evaluate[intx[r,t,t1,
p1,a]],{t1,0,Pi},{p1,0,2Pi}];
By[r ,t ,a ]:=NIntegrate[Evaluate[inty[r,t,t1,
p1,a]],{t1,0,Pi},{p1,0,2Pi}];
Bz[r ,t ,a ]:=NIntegrate[Evaluate[intz[r,t,t1,
p1,a]],{t1,0,Pi},{p1,0,2Pi}]

where we set all the nongeometrical constants multiplying the integral equal
to unity.

If we type in Bx[0,0,1]—for the x-component of the magnetic field at
the center of a sphere of radius 1—we get 9.67208 × 10−18, indicating that
Bx = 0 at the center. Similarly, we get zero for By. If we change the field
point, we keep getting small numbers for Bx (and By) as long as we confine
ourselves to the interior points of the sphere. For instance, Bx[0.5,1.5,1]
produces −4.80235 × 10−8 and Bx[0.25,1,1] produces 2.3899 × 10−10.
The x- and y-components of the magnetic field of the rotating spherical
shell vanish inside. The z-component is nonzero, though, and a plot of Bz

as a function of r for θ = 0 is shown in Figure 3.14. r is allowed to vary
between 0 and 2. The graph on the left, produced by typing in

In[7]:= Bx[r ,t ,a ]:=Plot[Bz[r,0,1],{r,0,2}]
shows the result of calculation in detail indicating that the calculated value
of Bz is very close to 8.37758, but not exactly the same for all points inside.
The diagram on the right shows all values of Bz including those outside. It
is obtained by typing in
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FIGURE 3.14. The z-component of the magnetic field inside a uniformly charged
and uniformly spinning spherical shell of radius 1, drawn as a function of r for
θ = 0.

In[8]:= Bx[r ,t ,a ]:=Plot[Bz[r,0,1],{r,0,2},
PlotRange->{0,9}]

The horizontal line for r between 0 and 1 indicates that Bz is constant
inside—at least for points on the polar axis (θ = 0). A sample of values of
Bz for other points inside indicates that it is constant.8 For instance,

Bz[0.4,Pi/4,1], Bz[0.6,Pi/3,1], Bz[0.3,Pi/6,1],
Bz[0.9,Pi/2,1], Bz[0.8,3Pi/4,1], Bz[0.7,Pi,1]

all produce 8.33758. For points outside, the field drops to zero as the field
point moves farther and farther away from the sphere. This behavior is
evident in the diagram on the right in Figure 3.14.

3.4.5 Rotating Charged Hollow Cylinder
As the last example of magnetism (and of this chapter), we consider a
uniformly charged hollow cylindrical shell of radius a and length L that
is rotating with constant angular speed of ω. Once again we use Equation
(3.25); however, the appropriate coordinate system is cylindrical this time.
Thus,

r = ρêρ + zêz, r′ = aêρ′ + z′êz, v = ωaêϕ′ , dq(r′) = a dϕ′ dz′

and we express all the unit vectors in terms of Cartesian unit vectors with
coefficients in cylindrical coordinates. The Cartesian and cylindrical coor-
dinates share the same êz. The other two unit vectors are related as follows
(see MM, p. 33):

êρ = êx cosϕ+ êy sinϕ
êϕ = −êx sinϕ+ êy cosϕ

8It takes Mathematica much longer to plot Bz for nonzero values of θ. So, after a few
trials, we decided not to include such plots.
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As in the case of the rotating sphere, the azimuthal symmetry of the
cylindrical shell prevents the magnetic field to depend on ϕ of the field
point. So, once again, we take ϕ to be zero. The relevant code for Math-
ematica starts with defining the cylindrical unit vectors at the field point
(with ϕ = 0):

In[1]:= er:={1,0,0}; ep:={0,1,0}
Again for the source point we use 1 instead of prime:

In[2]:= er1[p1 ]:={Cos[p1],Sin[p1],0};
ep1[p1 ]:={-Sin[p1],Cos[p1],0}

and define the Cartesian unit vectors as usual:

In[3]:= ex={1,0,0};ey={0,1,0};ez={0,0,1};
The velocity and the entire integrand can now be typed in:

In[4]:= v[p1 ,a ]:= a ep1[p1];
int[r ,z ,p1 ,z1 ,a ]:= (a Cross[v[z1,p1,a],
(r er-a er1[p1]+(z-z1) ez)]) /((r er-a er1[p1]
+(z-z1) ez).(r er-a er1[p1]+(z-z1) ez))|ˆ(3/2);

For different components of the field, we need the corresponding compo-
nents of the integrand:

In[5]:= intx[r ,z ,p1 ,z1 ,a ]:=int[r,z,p1,z1,a].ex;
inty[r ,z ,p1 ,z1 ,a ]:=int[r,z,p1,z1,a].ey;
intz[r ,z ,p1 ,z1 ,a ]:=int[r,z,p1,z1,a].ez;

Finally, as before, we set all the nongeometrical constants multiplying the
integral equal to unity, and numerically integrate the integrands to obtain
the components of the field:

In[6]:= Bx[r ,z ,L ,a ]:=NIntegrate[Evaluate[intx[r,z,p1,
z1,a]],{z1,-L/2,L/2},{p1,0,2Pi}];
By[r ,z ,L ,a ]:=NIntegrate[Evaluate[inty[r,z,p1,
z1,a]],{z1,-L/2,L/2},{p1,0,2Pi}];
Bz[r ,z ,L ,a ]:=NIntegrate[Evaluate[intz[r,z,p1,
z1,a]],{z1,-L/2,L/2},{p1,0,2Pi}]

We are interested in the behavior of Bz as the field point moves in the
xy-plane. This could be done by using a command such as

Plot[Bz[r,0,10,1],{r,0,1.5}]
for a cylinder of unit radius and length L = 10. However, because of the
small values of the integral outside, Mathematica would require a long time
to do the plot. The judicious alternative is to make a table at selected values
of r, and, if desired, plot the table using ListPlot.
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r[i] c[i] b[i] r[i] c[i] b[i]

0.0 3.04779 12.5563 1.01 −4.4053 −0.00997618
0.2 3.13132 12.5563 1.15 −2.59646 −0.0100094
0.5 3.6704 12.5563 1.2 −2.13725 −0.0100065
0.8 5.3922 12.5563 1.25 −1.7705 −0.0100036
0.9 6.55391 12.5563 1.3 −1.47953 −0.0100006
0.95 7.26212 12.5564 1.35 −1.24818 −0.00999741
0.99 7.86082 12.5563 1.45 −0.913366 −0.00999073

TABLE 3.1. Values (c[i]) of the magnetic field of a short cylinder and a long
cylinder (b[i]).

The first cylinder has unit radius, length 0.5, and its magnetic field is
denoted by c[i]. To get the fifth value, for example, of Bz—corresponding
to r[5] (which is 0.9)—for this cylinder, one types in

c[5]=Bz[0.9,0,0.5,1]

The second cylinder has unit radius, length 50, and its magnetic field is
denoted by b[i]. To get the eighth value of Bz—corresponding to r[8]
(which is 1.01)—for this cylinder, one types in

b[8]=Bz[1.01,0,50,1]

In separate inputs, we assign values to r. For example,

r[1]=0; r[2]=0.2; r[3]=0.5; r[4]=0.8;

and similar inputs for r[5] through r[14].
To construct the table of values, we type in

Table[{r[i], c[i], b[i]}, {i, 1, 15}] // MatrixForm

and Mathematica produces a three-column table, which we have reproduced
(in six-column format) in Table 3.1. It is clear that the latter has the
characteristics of a long solenoid, i.e., constant magnetic field inside (the
left half of the table) and—almost—zero magnetic field outside (the right
half of the table).

3.5 Problems

Problem 3.1. A segment of the parabola y = x2 extending from x = −1
to x = 1 has a uniform linear charge density.
(a) Write a Mathematica code to calculate the electrostatic potential of
this charge distribution.
(b) Plot the potential for
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(i) points in the xy-plane, and
(ii) points in the plane z = 0.5 parallel to the xy-plane.

Hint: For the parameter of the curve, choose x = t, i.e., let f(t) = t, then
find g(t).

Problem 3.2. Consider a uniform linear charge distribution in the form
of an ellipse with a semimajor axis equal to 6 and a semiminor axis equal
to 1. Use Cartesian coordinates and the parametric equation of the ellipse
in terms of trigonometric functions.
(a) Write down the single integral that gives the electric potential at an
arbitrary point P in space.
(b) Specialize to the case where P lies in the plane of the ellipse. Plot the
resulting potential.
(c) Specialize to the case where P lies in the plane z = 0.5 parallel to the
xy-plane. Plot the resulting potential.

Problem 3.3. Using Equation (3.16), plot the potential of the ring of
Section 3.3.1 as a function of x and y for points in the plane z = 0.25
parallel to the xy-plane.

Problem 3.4. Using Equation (3.15), plot the x-component of the field of
the ring of Section 3.3.1 as a function of x and y for points in the xy-plane.

Problem 3.5. Using Equation (3.15), plot the y-component of the field
of the spiral of Section 3.3.2 as a function of x and y for points in the
xy-plane.

Problem 3.6. Electric charge is distributed uniformly on a thin straight
wire of unit length lying along the x-axis of a Cartesian coordinate system
with origin at its midpoint. Plot the electrostatic potential at points on
a plane parallel to the z-axis whose distance from xy-plane is 0.25. Hint:
Choose x′ to be the parameter of the curve; i.e., let f(t) = t.

Problem 3.7. Electric charge is distributed uniformly on a thin wire whose
equation in polar coordinates is r = 3 − 2 cos θ.
(a) Construct the figure of this curve by writing its equation in Cartesian
coordinates and using ParametricPlot.
(b) Plot the electrostatic potential Φ at points on a plane parallel to the
z-axis whose distance from xy-plane is 0.5.
(c) Use Equation (3.15) to write the components of the electric field at
points on the plane of part (b) in terms of integrals.
(d) Write three Mathematica expressions defining the three components of
the field—as functions of x and y—in terms of integrals.
(e) Write another Mathematica expression defining the absolute value of
the field—again as a function of x and y—in terms of the components.
(f) Plot the absolute value of the field at points on the plane of (b) as a
function of x and y.
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Problem 3.8. Electric charge is distributed uniformly on a square surface
of side 1. Use Equation (3.22) to plot the potential of this charge distribu-
tion for points of the plane z = 0.005 parallel to the xy-plane. Restrict the
plot to −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1.

Problem 3.9. Electric charge is distributed uniformly on a square surface
of side 1. Use Equation (3.20) to plot the magnitude of the electric field
of this charge distribution for points of the plane z = 0.005 parallel to the
xy-plane. Restrict the plot to −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Hint: You can
do one of the integrals of the double integration analytically.

Problem 3.10. Electric charge is distributed uniformly on a circular disk
of diameter 1. Use Equation (3.21) to plot the potential of this charge
distribution for points of the plane z = 0.005 parallel to the xy-plane.
Restrict the plot to −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Hint: You can do one of
the integrals of the double integration analytically.

Problem 3.11. Electric charge is distributed uniformly on a circular disk
of diameter 1. Use Equation (3.20) to plot the magnitude of the electric
field of this charge distribution for points of the plane z = 0.005 parallel to
the xy-plane. Restrict the plot to −1 ≤ x ≤ 1 and −1 ≤ y ≤ 1. Hint: You
can do one of the integrals of the double integration analytically.

Problem 3.12. Electric charge is distributed uniformly on an elliptical
disk of semimajor (along the x-axis) and semiminor (along the y-axis) axes
5 and 1, respectively. Use Equation (3.21) to plot the potential of this
charge distribution for points of the plane z = 0.005 parallel to the xy-
plane. Restrict the plot to −6 ≤ x ≤ 6 and −2 ≤ y ≤ 2. Hint: You can do
one of the integrals of the double integration analytically.

Problem 3.13. Electric charge is distributed uniformly on an elliptical
disk of semimajor (along the x-axis) and semiminor (along the y-axis) axes
5 and 1, respectively. Use Equation (3.20) to plot the magnitude of the
electric field of this charge distribution for points of the plane z = 0.005
parallel to the xy-plane. Restrict the plot to −6 ≤ x ≤ 6 and −2 ≤ y ≤ 2.
Hint: You can do one of the integrals of the double integration analytically.

Problem 3.14. Using the results of Section 3.4.2, find the magnitude of
the magnetic field of a current loop in the shape of an ellipse with a semi-
major axis equal to 8 and a semiminor axis equal to 1, and plot it as a
function of x and y for points on a plane z = 0.5 parallel to the xy-plane.
Hint: Find the parametric equation of the ellipse in terms of trigonometric
functions.

Problem 3.15. Using the results of Section 3.4.2, find the magnitude of
the magnetic field of a current loop in the shape of a helix with elliptical
cross section with a semimajor axis equal to 5 and a semiminor axis equal
to 1. Assume that the lower end of the helix is in the xy-plane, the distance
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between windings is 0.1, and the number of windings is 10. Plot the mag-
nitude of the field as a function of x and y for points on a plane z = −0.25
parallel to the xy-plane.
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4
Infinite Series and Finite Sums

The laws of physics are exact expressions of an inexact universe. They are
translations of concrete observations into the ideal language of mathemat-
ics. This kinship between the concrete and the ideal is the highest intellec-
tual achievement of mankind and the driving force behind our ability to
unravel the secrets of the universe. However, the laws, as they stand, are in-
capable of describing the objects of the universe, as they stand. Therefore,
one has to approximate the objects of the universe in such a way that the
laws can be applied to them. One method of approximation uses infinite
series, which are best studied in the context of infinite sequences.

4.1 Infinite Sequences

An infinite sequence is like a function, except that instead of real numbers,
its domain is the set of positive integers. In Mathematica we write sequences
in exactly the same way as functions. For example,

In[1]:= a[i ]:=(1+1/i)ˆi

represents the sequence MM, pp. 205–208

{
2, 1.52, (1 + 1

3 )3, . . .
}

or

{(
1 +

1
k

)k
}∞

k=1

An important sequence is the sequence of partial sums. As the name
suggests, it is a sequence whose members are sums of an increasing number
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of terms. For instance, if we define sn as1

sn =
n∑

k=0

(−1)k

k + 1

then we can construct a sequence—the sequence of partial sums—whose
members are s0, s1, s2, etc. An explicit enumeration of this sequence would
be {

1, 1 − 1
2 , 1 − 1

2 + 1
3 , 1 − 1

2 + 1
3 − 1

4 , . . .
}

In Mathematica this sequence could be defined as

In[2]:= s[n ]:=Sum[(-1)ˆk/(k+1),{k,0,n}]
We can tell Mathematica to display the sequence up to a certain number

of elements by using the Table command. Thus, for a[i] defined above

In[3]:= t=Table[a[i],{i,1,5}];
creates a list, which we have named t, consisting of a1 through a5. If we
type t, Mathematica puts out{

2,
4
9
,
64
27
,
625
256

,
7776
3125

}

Similarly,

In[3]:= Table[s[i],{i,0,5}];
puts out {

1,
1
2
,
5
6
,

7
12
,
47
60
,
37
60

}
The most important property of a sequence is the nature of its con-

vergence. This is particularly important in the case of the partial sums,
because the nature of convergence tells us whether the corresponding in-
finite series makes sense. The limit of a sequence is the ultimate number
obtained—if any—as the subscript (or the argument) gets larger and larger.
In Mathematica this is done using Limit. For example,use of Limit for

sequences in
Mathematica In[4]:= Limit[a[i],i->Infinity]

produces

Out[4]:= E

However,

1It is common in mathematics literature to distinguish members of a sequence by
their subscripts rather than arguments (as in functions).
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In[5]:= Limit[s[i],i->Infinity]

yields

Limit

[
Log[4]

2
− 1

2
(−1)n

(
PolyGamma

[
0,

2 + n

2

]

− PolyGamma
[
0,

3 + n

2

])
, n → ∞

]

the first term of which is equivalent to ln(2), the known value of the infinite
series. The remaining term is really zero, but the internal routine of taking MM, pp. 219 and 225
limits does not evaluate it to zero. However, if we type in

In[6]:= s[Infinity]

then Mathematica’s output will consist of only Log[4]
2 .

It turns out that Mathematica recognizes many infinite series, although
its output may appear strange. Suppose we construct a sequence of partial
sums by typing in

In[7]:= b[n ]:=Sum[1/kˆ2,{k,1,n}]
and tell Mathematica to evaluate the infinite series corresponding to this
partial sum:

In[8]:= b[Infinity]

The result is put out instantly as π2/6. In fact, Mathematica recognizes a
more general infinite series. Instead of the partial sum above, let us define

In[9]:= z[p ,n ]:=Sum[1/kˆp,{k,1,n}]
and then type in

In[10]:= z[p,Infinity]

Mathematica’s output will be Zeta[p]. The series turns out to be a famous
series in mathematical physics known as the Riemann zeta function de-
noted by ζ(p), where p can be any real (or complex) number. For even p, the Riemann zeta function
zeta function evaluates to a multiple of πp. For example, z[34,Infinity]
(or Zeta[34]) generates the output

151628697551π34

12130454581433748587292890625

However, z[33,Infinity] (or Zeta[33]) echoes the input. If we are inter-
ested in the approximation to the series, then we can insert the expression
in N[ ]. For example,
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FIGURE 4.1. The Riemann zeta function.

In[11]:= N[z[33,Infinity],15]

gives 1.00000000011642. It is clear from the definition of the zeta function
that ζ(p) approaches 1 as p goes to infinity. Furthermore, ζ(1) is infinite,
because the corresponding series can be shown to diverge. Figure 4.1, ob-
tained by typing in

In[12]:= Plot[Zeta[p],{p,1,10}]
summarizes the behavior of the Riemann zeta function.MM, pp. 215–216

Although Mathematica recognizes many infinite series, it does so in an
ostensibly unconventional way. For instance, the well-known seriesMM, p. 231

∞∑
k=0

(−1)k

(2k + 1)!

when typed in as

In[13]:= c[n ]:=Sum[(-1)ˆk/(2k+1)!,{k,0,n}]; c[Infinity]

produces √
π

2
BesselJ

[
1
2
, 1
]

instead of sin(1). Nevertheless, the two are completely equivalent.MM, p. 283

4.2 Numerical Integration

The recurrence of integration in all aspects of mathematical physics makes
the techniques of numerical integration worthy of careful study. Such a
study involves using sums, and since this chapter discusses the concept of
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sum and series, it is worth our time to take a brief detour into numerical
integration.

Recall that the integral of a function f is the limit of a sum in which
each term is the product of the width of a small interval and the value of
f at a point in that interval, i.e., the sum of the areas of (a large number
of) rectangles. We start with this notion and later find approximations to
integrals that are much more accurate than sums of rectangular areas.

The basic idea is to write∫ a+∆x

a

f(x) dx ≈
N∑

i=0

Wifi (4.1)

where ∆x is usually—but not necessarily—small, N is the number of in-
tervals in (a, a + ∆x), fi is f(xi) with xi the “evaluation” point in the
ith interval, and Wi is a “weight factor” to be determined for convenience
and accuracy. It is desirable to space all evaluation points equally and call
the spacing h. Depending on the number of intervals chosen, one obtains
various approximation formulas for the integral.

The general procedure is to choose N and demand that Equation (4.1)
hold exactly when f is any arbitrary polynomial of degree N . This is
equivalent to demanding that the equality hold for each power of x up
to N .

4.2.1 The Simplest Method
As the simplest case, assume that N = 0. Then the only restriction is∫ x1

x0

1 dx = W0 ⇒ x1 − x0 = W0 or W0 = ∆x = h

with x0 = a and x1 = a+ ∆x = a+ h. The approximation to the integral
is ∫ a+∆x

a

f(x) dx ≈ W0f0 ≡ hf0

i.e., the area of the rectangle shown in Figure 4.2(a).
It is clear that the approximation is very crude if ∆x is large and f varies

a great deal between a and a + ∆x. To remedy this situation one divides
the interval (a, a + ∆x) into a large number of subintervals and for each
subinterval the approximation above is applied. More specifically, consider
the integral of f over the interval (a, b). Divide the interval (a, b) into n
subintervals each of length (b− a)/n, which we call h.

Because of the smallness of the subintervals, each rectangle approximates
the area under the subinterval rather well. So, the sum of the areas of the
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f (x)

f0

x0 = a x1 = a+∆x

f1

f (x)

f0

x0 = a xn = b

fn

(a) (b)

FIGURE 4.2. (a) The simplest rule for numerical integration approximates the
area under a curve with that of a rectangle. (b) A better approximation is ob-
tained if the region of integration is divided into smaller subintervals.

small rectangles is a much better approximation to the true area than the
single rectangle [Figure 4.2(b)]. This sum can be explicitly calculated:∫ b

a

f(x) dx =
∫ a+h

a

f(x) dx+
∫ a+2h

a+h

f(x) dx+ · · · +
∫ a+nh

a+(n−1)h
f(x) dx

≈ hf0 + hf1 + · · · + hfn = h(f0 + f1 + · · · + fn) (4.2)

where fk = f(xk) = f(a+ kh) and xn = a+ nh = b.
To illustrate the discussion above, let us apply the method to the integral∫ 1

0 e
x dx, whose value we know to be e− 1. The Mathematica code for this

is very simple:

In[1]:= h[n ]:=1./n;intRec[n ]:=h[n] Sum[Eˆ(k h[n]),{k,0,n}]
We get a better and better approximation to the value of the integral
as we make n larger and larger. Thus, intRec[100] gives 1.73689 and
intRec[10000] gives 1.71848 compared to 1.7182818285, which is the exact
result to 11 significant figures. It is clear that this simple numerical method
of integration is not very accurate.

4.2.2 Trapezoid Rule
For better accuracy, we need to increase N . So now let N = 1 and demand
that the approximation in (4.1) be exact when f(x) = 1 and f(x) = x.
This leads to two equations:∫ x1

x0

1 dx = W0 · 1 +W1 · 1 ⇒ x1 − x0 = W0 +W1∫ x1

x0

x dx = W0x0 +W1x1 ⇒ x2
1 − x2

0

2
= W0x0 +W1x1
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f (x)
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x0 = a x1 = a+∆x

f1

f (x)

f0

x0 = a xn = b

fn

(a) (b)

FIGURE 4.3. (a) The trapezoid rule approximates the area under a curve with
that of a trapezoid obtained by replacing the curve with a straight line. (b) To
obtain accuracy, the interval of integration should be subdivided.

whose solution is easily found to be

W0 = W1 =
x1 − x0

2
=

∆x
2

≡ h

2
(4.3)

The integral itself is then trapezoid rule∫ a+∆x

a

f(x) dx =
∫ a+h

a

f(x) dx ≈ h

2
(f0 + f1) =

h

2
[f(a) + f(a+ h)]

(4.4)

This is called the trapezoid rule because we have effectively replaced the
area under a curve by the area under the trapezoid2 obtained by approxi-
mating the curve with a straight line as shown in Figure 4.3(a).

To find the numerical value of the integral
∫ b

a
f(x) dx, we divide the inter-

val (a, b) into n subintervals as before and let (b−a)/n = h [Figure 4.3(b)].
The sum of the areas of the small trapezoids can now be explicitly calcu-
lated:∫ b

a

f(x) dx =
∫ a+h

a

f(x) dx+
∫ a+2h

a+h

f(x) dx+ · · · +
∫ a+nh

a+(n−1)h
f(x) dx

≈ h

2
(f0 + f1) +

h

2
(f1 + f2) + · · · +

h

2
(fn−1 + fn)

where again fk = f(xk) = f(a+ kh) and xn = a+ nh = b. It now follows
that ∫ b

a

f(x) dx ≈ h

(
f0
2

+ f1 + f2 + · · · + fn−1 +
fn

2

)
(4.5)

2The reader may recall that the area of a trapezoid is the product of the sum of its
parallel sides and the perpendicular distance between those two sides.
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It is interesting to note that the difference between the trapezoid rule of
(4.5) and the rectangular method of (4.2) is only the two factors of 1

2
multiplying f0 and fn. This “small” change, however, makes a tremendous
difference in the outcome, as we illustrate shortly.

Let us apply the method to our integral
∫ 1
0 e

x dx. The Mathematica code
for this is easily written:

In[2]:= h[n ]:=1./n; intTrap[n ]:=(h[n]/2)(1+Eˆ(n h[n]))
+h[n] Sum[Eˆ(k h[n]),{k,1,n-1}]

Typing in N[intTrap[100],10] gives 1.718296147, which is a great im-
provement over the previous method.

4.2.3 Simpson’s Rule
If we want an improvement over the trapezoid rule, we let N = 2 in Equa-
tion (4.1) and demand that the approximation give exactly the same result
as the integral for 1, x, and x2. Then, with x0 = a, x1 = a + h, and
x2 = a+ ∆x = a+ 2h, we obtain∫ x2

x0

1 dx = W0 · 1 +W1 · 1 +W2 · 1 ⇒ x2 − x0 = W0 +W1 +W2∫ x2

x0

x dx = W0x0 +W1x1 +W2x2 ⇒ x2
2 − x2

0

2
= W0x0 +W1x1 +W2x2∫ x2

x0

x2 dx = W0x
2
0 +W1x

2
1 +W2x

2
2 ⇒ x3

2 − x3
0

3
= W0x

2
0 +W1x

2
1 +W2x

2
2

for whose solution we use Mathematica and type in

In[1]:= eqn1=2h==W0+W1+W2;
eqn2=((x0+2 h)ˆ2-x0ˆ2)/2==W0 x0+W1 (x0+h)
+W2 (x0+2 h);
eqn3=((x0+2 h)ˆ3-x0ˆ3)/3==W0 x0ˆ2+W1 (x0+h)ˆ2
+W2 (x0+2 h)ˆ2;

and

In[2]:= Solve[{eqn1,eqn2,eqn3},{W0,W1,W2}]
Mathematica then gives the following solution instantly:{{

W0 → h

3
, W1 → 4h

3
, W2 → h

3

}}
We thus obtain Simpson’s rule:Simpson’s rule ∫ a+2h

a

f(x) dx ≈ h

3
(f0 + 4f1 + f2) ≡ h

3
[f(a) + 4f(a+ h) + f(a+ 2h)]

(4.6)
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Simpson’s rule becomes useful only if h is small. This is achieved, as be-
fore, by dividing the interval (a, b) into a large (even) number n of subin-
tervals on each pair of which we apply the rule. It then follows that∫ b

a

f(x) dx =
∫ a+2h

a

f(x) dx+
∫ a+4h

a+2h

f(x) dx+ · · · +
∫ a+nh

a+(n−2)h
f(x) dx

≈ h

3
(f0 + 4f1 + f2) +

h

3
(f2 + 4f3 + f4) + · · · +

h

3
(fn−2 + 4fn−1 + fn)

or∫ b

a

f(x) dx ≈ h

3
(f0 + 4f1 + 2f2 + 4f3 + · · · + 2fn−2 + 4fn−1 + fn) (4.7)

where as before fk = f(xk) = f(a+ kh) and xn = a+ nh = b.
Once again, let us apply Simpson’s method to our integral

∫ 1
0 e

x dx. The
Mathematica code is only slightly more complicated:

In[3]:= h[n ]:=1./n; intSimp[n ]:=(h[n]/3)(1+Eˆ(n h[n]))
+(4 h[n]/3)Sum[Eˆ((2 k+1) h[n]),{k,0,(n-2)/2}]
+(2 h[n]/3)Sum[Eˆ(2 k h[n]),{k,0,(n-2)/2}]

Typing in intSimp[10] gives 1.71828—a great improvement over the trape-
zoid method—and N[intSimp[100],10] yields 1.7182818286, different from
the “exact” result only at the 11th significant figure.

We can continue this general procedure to obtain more and more accurate
results. Thus, with N = 3, we obtain

I ≈ W0f0 +W1f1 +W2f2 +W3f3

which we demand to hold exactly for f = 1, f = x, f = x2, and f = x3.
This yields four equations in four unknowns whose solution is found to be

W0 = W3 =
3h
8
, W1 = W2 =

9h
8

This leads to the Simpson’s three-eighths rule: Simpson’s three-eighths
rule∫ a+3h

a

f(x) dx ≈ 3h
8

(f0 + 3f1 + 3f2 + f3)

When N = 4, we obtain Boole’s rule: Boole’s rule∫ a+4h

a

f(x) dx ≈ 2h
45

(7f0 + 32f1 + 12f2 + 32f3 + 7f4)

These formulas can be used to find the integral of a function by dividing the
interval into a large number (a multiple of 3 for Simpson’s three-eighths
rule, and a multiple of 4 for Boole’s rule) of subintervals and using the
corresponding rule for each 3 or 4 subintervals. We leave the details to the
reader. We expect each rule to be more accurate than the preceding one in
the limit of smaller and smaller h.



134 4. Infinite Series and Finite Sums

4.2.4 Gaussian Integration
In the previous subsection, we assumed equidistant spacing h for the eval-
uation points. This, while convenient, is an unnecessary restriction that
can prevent us from exploring the possibilities afforded by the freedom
to choose the evaluation points. Gauss used this freedom as well as the
nice properties of orthogonal polynomials to come up with a very powerful
technique of evaluating integrals numerically called Gaussian quadra-
ture integration.Gaussian quadrature

integration Consider the integral∫ b

a

f(x)w(x) dx ≈
N∑

i=1

Wif(xi) (4.8)

where w(x) is a function that is always positive in the interval (a, b), for ex-
ample, w(x) = 1. Its presence allows us to use the machinery of orthogonalMM, pp. 193–197
polynomials as we shall see shortly. We have to find the 2N unknowns in
(4.8). These are the N weights Wi and the N abscissas xi. The determina-
tion of these unknowns requires 2N equations obtained by demanding that
Equation (4.8) hold exactly for polynomials of order 2N − 1 or less. Two
particular types of polynomials naturally produce simple equations from
which the unknowns can be calculated.

Let QN−1(x) be any polynomial of degree N − 1 and FN (x) an orthog-
onal polynomial of degree N defined on (a, b) with weight function w(x).
The product QN−1(x)FN (x) is a polynomial of degree 2N − 1. So, by as-
sumption, it must satisfy Equation (4.8) exactly:∫ b

a

QN−1(x)FN (x)w(x) dx =
N∑

i=1

WiQN−1(xi)FN (xi)

Since QN−1(x) is a polynomial of degree N−1, it can be written as a linear
combination of Fk(x) with k < N : QN−1(x) =

∑N−1
k=0 αkFk(x). Then∫ b

a

QN−1(x)FN (x)w(x) dx =
∫ b

a

N−1∑
k=0

αkFk(x)FN (x)w(x) dx

=
N−1∑
k=0

αk

∫ b

a

Fk(x)FN (x)w(x) dx︸ ︷︷ ︸
=0 because k �= N

= 0

It follows that
N∑

i=1

WiQN−1(xi)FN (xi) = 0

For this to hold for every polynomial, we must demand FN (xi) = 0, i.e. the
evaluation points (or abscissas) of (4.8) are the roots of the N th orthogonal
polynomial appropriate for the interval (a, b) and weight function w(x).
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To find Wi, we evaluate Equation (4.8) for a particular polynomial. Con-
sider the Lagrange’s interpolating polynomial Lagrange’s interpolating

polynomial

lj,N (x) ≡ (x− x1) · · · (x− xj−1)(x− xj+1) · · · (x− xN )
(xj − x1) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xN )

(4.9)

that has the property that

lj,N (xi) =

{
0 if i �= j

1 if i = j

This polynomial is of degree N − 1 and, therefore, it must satisfy (4.8)
exactly. This gives

∫ b

a

lj,N (x)w(x) dx =
N∑

i=1

Wilj,N (xi) = Wj

Thus, the weight factors Wi of (4.8) are given by

Wi =
∫ b

a

li,N (x)w(x) dx (4.10)

where li,N (x) is Lagrange’s interpolating polynomial of (4.9).
The Gaussian integration may seem restrictive due to the apparent speci-

ficity of the limits of integration and the weight function w(x) for orthog-
onal polynomials. For example, Gauss–Legendre integration—in which Gauss–Legendre

integrationLegendre polynomials are used—will work only if the interval of integration
happens to be (−1,+1) and w(x) = 1. While the latter condition makes
Legendre polynomials attractive (we don’t have to worry about any weight
functions), the fact that Legendre polynomials reside only in the interval
(−1,+1) may lead us to think that they are useless for a general interval
(a, b). However, this is not the case because the simple change of variable

y =
2

b− a
x− b+ a

b− a
or x =

b− a

2
y +

b+ a

2
(4.11)

changes the limits of integration from (a, b) to (−1,+1), as the reader may
verify.

Now let us evaluate the integral
∫ b

a
f(x) dx using the Gauss–Legendre

integration procedure and choosing N to be 2. First we transform the
variable of integration according to (4.11):∫ b

a

f(x) dx =
∫ 1

−1
f

(
b− a

2
y +

b+ a

2

)(
b− a

2
dy

)

≡
∫ 1

−1
g(y) dy =

∫ 1

−1
g(x) dx
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where in the last step we changed the dummy variable of integration and
defined g by

g(x) =
b− a

2
f

(
b− a

2
x+

b+ a

2

)
Next we find the evaluation points and the weight factors W1 and W2. The
evaluation points are simply the roots of the Legendre polynomial of degree
2. Since

P2(x) = 1
2 (3x2 − 1)

we have
x1 = − 1√

3
and x2 =

1√
3

The weight factors are obtained by using Equation (4.10), or

W1 =
∫ 1

−1
l1,2(x) dx =

∫ 1

−1

x− x2

x1 − x2
dx = −

√
3

2

∫ 1

−1

(
x− 1√

3

)
dx = 1

W2 =
∫ 1

−1
l2,2(x) dx =

∫ 1

−1

x− x1

x2 − x1
dx =

√
3

2

∫ 1

−1

(
x+

1√
3

)
dx = 1

Using these values yields∫ b

a

f(x) dx =
b− a

2

∫ 1

−1
f

(
b− a

2
x+

b+ a

2

)
dx ≈ W1g(x1) +W2g(x2)

=
b− a

2

[
f

(
−b− a

2
√

3
+
b+ a

2

)
+ f

(
b− a

2
√

3
+
b+ a

2

)]
Denoting b− a by h, we obtain∫ b

a

f(x) dx ≈ h

2

[
f

(
h

2

(
1 − 1√

3

)
+ a

)
+ f

(
h

2

(
1 +

1√
3

)
+ a

)]
(4.12)

Equation (4.12) can be used to evaluate integrals whose interval of in-
tegration has been divided into subintervals as in trapezoid and Simpson’s
rules. More specifically, suppose we are interested in the integral of f(x)
over the (large) interval (a, b). As usual we divide the interval into n subin-
tervals. Let xk denote the endpoint of the kth subinterval. Then∫ b

a

f(x) dx =
∫ x1

a

f(x) dx+
∫ x2

x1

f(x) dx+ · · · +
∫ b

xn−1

f(x) dx

=
n−1∑
k=0

∫ xk+1

xk

f(x) dx

where x0 ≡ a and xn ≡ b. For the integral inside the sum, we can use
(4.12). This leads to the following integration rule:Gauss–Legendre

integration rule



4.2 Numerical Integration 137

∫ b

a

f(x) dx ≈ h

2

n−1∑
k=0

[
f

(
h

2

(
1 − 1√

3

)
+ xk

)
+ f

(
h

2

(
1 +

1√
3

)
+ xk

)]

=
h

2

n−1∑
k=0

[
f

((√
3 − 1
2
√

3
+ k

)
h + a

)
+ f

((√
3 + 1
2
√

3
+ k

)
h + a

)]

(4.13)

where we used the fact that xk = a+ kh.
To evaluate our integral

∫ 1
0 e

x dx, we write the following Mathematica
code:

In[1]:= h[n ]:=1./n; intGauss[n ]:=(h[n]/2) Sum[Eˆ(k+0.5
-1/(2Sqrt[3]))h[n] +Eˆ(k+0.5+1/(2Sqrt[3]))h[n],
{k,0,n-1}]

Typing in intGauss[30] gives 1.718281828, a great improvement over
Simpson’s method, which yields this same result only if n = 130 instead of
30.

Equation (4.12) is derived by using two evaluation points in (4.8). One
can think of (4.12) as analogous to the trapezoid rule. If N = 3 in (4.8),
we obtain the analog of Simpson’s rule. Since Gaussian integration (with
N = 2) is already more accurate than Simpson’s rule, we should expect a
much better accuracy when we use N = 3 and higher.

Legendre polynomials are of course only a subset of orthogonal polynomi-
als, any set of which could be used in the Gaussian integration formula. Al-
though one can always transform any finite limits of integration to (−1, 1),
for integrals whose limits of integration include infinity, we shall have to
use other orthogonal polynomials. Thus, if the interval of integration is
(−∞,∞), Hermite polynomials with the weight function w(x) = e−x2

are the “naturals.” For (0,∞) one can use the Laguerre polynomials See MM, pp. 595–601
for Hermite and
pp. 604–607 for
Laguerre polynomials.

in which case the weight function is w(x) = e−x. One may think that the
appearance of the weight function would restrict the utility of Hermite and
Laguerre polynomials. This is not the case, because one can always multiply
and divide the integrand by the weight function. For example,∫ ∞

0
f(x) dx =

∫ ∞

0
e−x [exf(x)]︸ ︷︷ ︸

≡g(x)

dx =
∫ ∞

0
e−xg(x) dx

To use Gaussian integration formulas with different N , we need the ac-
tual values of the abscissas (evaluation points) as well as the weights Wi.
Fortunately both of these are independent of the integrand: the abscissas
are simply the roots of the orthogonal polynomials used, and the Wi are
obtained from Equation (4.10). The values of abscissas and Wi for various
N have been tabulated in books and handbooks on numerical analysis, so
there is no need to calculate these from scratch.
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4.3 Working with Series in Mathematica

We have thus far examined the infinite sequences and series of numbers.
The real power of these discussions comes about when the terms of the
sequence—and in particular series—are functions of a variable. There are
a number of functions used as terms of an infinite series. One of them,
(x− x0)n, and its special case in which x0 = 0 are extremely useful.

Mathematica has the internal command Series for representing infinite
series. For example,

In[1]:= Series[Eˆx,{x,0,5}]
which asks Mathematica to expand ex about x = 0 up to order 5 in x,
produces

1 + x+
x2

2
+
x3

6
+
x4

24
+

x5

120
+ O[x]6

The symbol O[x]6, which in mathematics literature—but not in Mathemat-
ica—is also written as O(x6), signifies the fact that the next term is a
multiple of x6. This symbol is a signature of the expression Series and
keeps track of the accuracy with which manipulations are to be performed.
When O[x], raised to some power, appears in an expression, Mathematica
treats that expression as an infinite series.

We can perform various operations on series. As as illustration, suppose
we type in

In[1]:= S1:=Series[Sin[x],{x,0,5}]
with the output

x− x3

6
+

x5

120
+ O[x]6

and

In[2]:= S2:=Series[Log[1+x],{x,0,8}]
with the output

x− x2

2
+
x3

3
− x4

4
+
x5

5
− x6

6
+
x7

7
− x8

8
+ O[x]9

Then the command

In[3]:= S1+S2

produces

2x− x2

2
+
x3

6
− x4

4
+

5x5

24
+ O[x]6

and all terms beyond power 5 are ignored. This is because we are ignorant
of what happens to S1 beyond the fifth power, and this ignorance has to
be carried over to the sum of the two series.

We can multiply two power series



4.3 Working with Series in Mathematica 139

In[4]:= S1 S2

and get

x2 − x3

2
+
x4

6
− x5

6
+

11x6

72
+ O[x]7

which may be surprising due to the appearance of O[x]7 and our ignorance
of S1 beyond the fifth power. The explanation of this apparent contradic-
tion is as follows. Think of O[x]6 as something like ax6 where a is unknown.
When the two series are multiplied, the term of lowest power that ax6 can
produce is ax7 because the term of lowest power in S2 is x. If S2 had a
lowest term of power different from 1, the result would be different. For
example, type in

In[5]:= S3:=Series[Sqrt[1+x],{x,0,6}]
with the output

1 +
x

2
− x2

8
+
x3

16
− 5x4

128
+

7x5

256
− 21x6

1024
+ O[x]7

and

In[6]:= S4:=Series[Sqrt[xˆ4+xˆ5],{x,0,6}]
with the output

x2 +
x3

2
− x4

8
+
x5

16
− 5x6

128
+ O[x]7

Then the product S1 S3 will yield

x+
x2

2
− 7x3

24
− x4

48
− 19x5

1920
+ O[x]6

and the product S1 S4 will yield

x3 +
x4

2
− 7x5

24
− x6

48
− 19x7

1920
+ O[x]8

When O[x]6 of S1 multiplies the lowest power of S3, it does not change,
but when it multiplies the lowest power of S4, its power increases by 2.

Mathematica can divide two power series and get a third power series
as the quotient. For example with S1 and S2 as above, the input S1/S2
produces

1 +
x

2
− x2

4
− x3

24
− x4

240
+ O[x]5

Once again, the power of O[x] has changed—it has decreased this time—
because of the division by the lowest term of S2.

You can integrate a power series: integrating a power
series
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In[1]:= Integrate[S1,x]

x

2
− x4

24
+

x6

720
+ O[x]7

or differentiate a power series

In[1]:= D[S2,{x,3}]
2 − 6x+ 12x2 − 20x3 + 30x4 − 42x5 + O[x]6

Note that integration raises the power of O[x] and differentiation lowers it.
Some commands pertaining to series are outlined below:

Series[f[x],{x,a,n}] find the power series expansion
of f about x = a to order n

Normal[series] convert a power series to a
normal expression

SeriesCoefficient[series,n] give the coefficient of the nth-
order term in a power series

LogicalExpand[series1==series2] give the equations obtained by
equating coefficients of the two
power series

4.4 Equations Involving Series

Many of the special functions of mathematical physics came into existence
in the course of the eighteenth and nineteenth centuries as a result of the
mathematicians’ attempts at finding series solutions to (partial) differential
equations (DEs). Later, when these series were studied further, they became
separate entities worthy of careful and detailed analysis.

One of these functions is the set of Legendre polynomials Pn(u).
These are solutions of Legendre DE which arises when many of the partial
DEs of mathematical physics are solved in spherical coordinates. LegendreMM, Section 12.3.2
polynomials have a generating function g(t, u) given by

g(t, u) ≡ 1√
1 + t2 − 2tu

As the name suggests, g(t, u) generates the Legendre polynomials and does
it by differentiation. More specifically, we have

1√
1 + t2 − 2tu

=
∞∑

n=0

tnPn(u) (4.14)
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which shows that Pn(u) is, to within a constant, the nth derivative of g(t, u)
with respect to t evaluated at t = 0. More precisely MM, p. 547

Pn(u) =
1
n!
∂n

∂tn
1√

1 + t2 − 2tu

∣∣∣∣
t=0

(4.15)

We can write a simple Mathematica routine to calculate Pn(u) for us.
First we define the generating function

In[1]:= g[t ,u ]:=1/Sqrt[1+tˆ2-2 t u]

Next we evaluate its nth derivative with respect to t:

In[2]:= dn[t ,u ,n ]:=Evaluate[D[g[t,u],{t,n}]]
Finally we divide dn by n! and evaluate the result at t = 0 to obtain the
Legendre polynomial of order n.

In[3]:= p[u ,n ]:=Simplify[dn[t,u,n]/n! /. t->0]

We can now make a table of the Legendre polynomials. For example, the
command

In[4]:= Table[p[u,k],{k,0,4}]//TableForm
produces the following table:

1
u
1
2 (−1 + 3u2)
1
2u(−3 + 5u2)
1
8 (3 − 30u2 + 35u4)

which indeed lists the first five Legendre polynomials.
Our aim in this section is not, however, to practice differentiation or

to generate Legendre polynomials,3 but to acquaint ourselves with series
manipulations. Instead of differentiating the generating function, we want
to use its expansion to read off the Legendre polynomials.

Suppose we are interested in Legendre polynomials of order 5 or less. We
could simply expand the generating function up to order 5 and read off the
coefficients. So, we start with

In[1]:= ser=Series[1/Sqrt[1+tˆ2-2 t u],{t,0,5}]
and for any particular Legendre polynomial, we ask for the corresponding
coefficient. For example, SeriesCoefficient is

used here.

3Incidentally, Mathematica has a built-in function called LegendreP[n,x], which gen-
erates Legendre polynomials of any order.
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In[2]:= SeriesCoefficient[ser,3]

produces
1
3

(
−2u+

1
2
u
(−1 + 3u2))

which is the Legendre polynomial of order 3 in disguise and reveals its
identity after applying Simplify to it.

This is fine, but it would be more convenient if we didn’t have to type in
SeriesCoefficient[ser, ] every time we needed a Legendre polynomial.
We can achieve this by the command

In[3]:= legpol[k ,u ]:=Simplify[SeriesCoefficient[ser,k]]

Then, legpol[k,u] produces the Legendre polynomial of order k as long
as k is less than 5, the highest power of the expansion of ser.

Such a fixation of the order of ser is inconvenient, because for higher-
order polynomials, we will have to change the order and start from scratch.
Thus, a further improvement would be to replace 5 with a variable. So, let
us define

In[4]:= LegSer[t ,u ,m ] := Series[1/Sqrt[1+tˆ2-2t u],
{t, 0, m}]

Although Mathematica complains about m not being a machine-size inte-
ger, the scheme will work. All we need to do now is define the polynomials
we want:

In[5]:= LPol[k ,u ]:=Simplify[SeriesCoefficient
[LegSer[t,u,m],k]]

Then, LPol[k,u] produces the Legendre polynomial of order k as long as
k is less than m. To ensure this, we simply choose m to be k + 1. Thus,
finally, we obtain

In[6]:= LegPol[k ,u ]:=Simplify[SeriesCoefficient
[LegSer[t,u,k+1],k]]

where LegSer is defined in In[4]. Now we can generate Legendre polyno-
mials of any order.

A third way of generating the Legendre polynomials is to create two
series, one for the left-hand side of (4.14) and one for its right-hand side,
equate the corresponding coefficients, and solve the resulting equations. The
reason that we even discuss this (clumsy) procedure is to get acquainted
with the steps involved.

Define a series for the generating function

In[1]:= GenFnSer=Series[1/Sqrt[1+tˆ2-2 t u],{t,0,3}];
and the series for the right-hand side of (4.14)
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In[2]:= rhsSer=Sum[p[n] tˆn,{n,0,3}]+O[t]ˆ4;
The term O[t]ˆ4 turns the sum into a series. Now equate the corresponding
coefficients of the two series:

In[3]:= equations=LogicalExpand[GenFnSer==rhsSer]

and get

1 − p[0] == 0 && u− p[1] == 0 &&
1
2
(−1 + 3u2) − p[2] == 0 &&

1
3

(
−2u+

(
5
2
u(−1 + 3u2)

))
− p[3] == 0

Now solve these equations

In[4]:= solution=Solve[equations,{p[0],p[1],p[2],p[3]}]
to get{{

p[0] → 1, p[1] → u, p[2] → 1
2
(−1 + 3u2), p[3] → 1

2
(−3u+ 5u3),

}}
But we want the polynomials, not the assignment rules. A code that does
this is

In[5]:= Do[p[n]=First[p[n]/.solution],{n,0,3}]
where p[n]/.solution picks p[n] with curly brackets still around it, and
First picks the first—in this case the only—element of what is in the curly
brackets. Now the Legendre polynomials are available for use. Typing

In[6]:= Table[p[n],{n,0,3}]
produces {

1, u,
1
2
(−1 + 3u2),

1
2
(−3u+ 5u3)

}
The technique just outlined is used to find the power series represen-

tation of the solutions of differential equations. We solve the Hermite
differential equation

H ′′ − 2xH ′ + 2nH = 0 (4.16)

and construct Hermite polynomials. MM, pp. 593–601,
discusses Hermite
polynomials.

We start with the unknown series

In[1]:= y=Sum[a[k] xˆk,{k,0,8}]+O[x]ˆ9;
Note that O[x]ˆ9 is essential as it makes the above expression a series, not
just a sum. The idea is to find a[k] in such a way that y satisfies Equation
(4.16). Thus, we substitute y in the left-hand side of that equation
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In[2]:= lhs=Evaluate[D[y,{x,2}]]-2x Evaluate[D[y,x]]
+2n y;

and set it equal to zero and tell Mathematica to find the equations that
determine the coefficients a[k]:

In[3]:= equations=LogicalExpand[lhs==0]

The output will look like

2na[0] + 2a[2] == 0 && − 2a[1] + 2na[1] + 6a[3] == 0&&
− 4a[2] + 2na[2] + 12a[4] == 0 && − 6a[3] + 2na[3] + 20a[5] == 0&&
− 8a[4] + 2na[4] + 30a[6] == 0 && − 10a[5] + 2na[5] + 42a[7] == 0&&
− 12a[6] + 2na[6] + 56a[8] == 0

It turns out that if n in (4.16) is an integer (as it usually is in physical
applications), the solution will be a polynomial of degree n. Furthermore, if
n is even (odd), only even (odd) powers of x will appear in the polynomial,
and the coefficients of even (odd) powers of x will be a multiple of a[0]
(a[1]). Therefore, in solving the equations above for coefficients, we will
ignore a[0] and a[1]. So, the next step is to type in

In[4]:= answers=Simplify[Solve[equations,{a[2],a[3],
a[4],a[5],a[6],a[7],a[8]}]]

and get the output{{
a[7] → − 1

630
(−5 + n)(−3 + n)(−1 + n)a[1],

a[8] → (−6 + n)(−4 + n)(−2 + n)na[0]
2520

,

a[5] → 1
30

(−3 + n)(−1 + n)a[1],

a[6] → − 1
90

(−4 + n)(−2 + n)na[0], a[4] → 1
6
(−2 + n)na[0],

a[2] → −na[0], a[3] → −1
3
(−1 + n)a[1]

}}
Notice how all a[k] with even k are multiples of a[0], and those with odd
k are multiples of a[1]. Note also that if n is even (odd), the even (odd)
coefficients will be zero after a certain point. For example, if n = 4, a[6]
and a[8] will be zero.4 Just substitute 4 for n in the expressions for a[6]
and a[8], and note that they vanish.

Having found the coefficients, we substitute them in y. This is done as
follows:

4a[8] is the highest coefficient in our expansion. If there were higher coefficients, they
would be zero as well.
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In[5]:= y=y/.answers

This yields{
a[0] + a[1]x− na[0]x2

− 1
3
(−1 + n)a[1]x3 +

1
6
(−2 + n)na[0]x4

+
1
30

(−3 + n)(−1 + n)a[1]x5 − 1
90

(−4 + n)(−2 + n)na[0]x6

− 1
630

(−5 + n)(−3 + n)(−1 + n)a[1]x7

+
(−6 + n)(−4 + n)(−2 + n)na[0]

2520
x8 +O[x]9

}
Since we are interested in the expression in the curly brackets, we get rid
of them by typing

In[6]:= First[%]

Next, we get rid of O[x]9 by typing

In[6]:= h=Normal[%]

We now have everything at our disposal to create a table of Hermite
polynomials for varying n. If we repeat h for different n, we obtain these
polynomials to within a factor that depends on the order of the polyno-
mial. These factors have been determined by convention, and even without
them h (or y) will satisfy the Hermite differential equation.5 Thus, for even
polynomials we multiply h by 2(−1)(n/2)(n− 1)!/(n/2 − 1)!, and type in

In[7]:= tab=Table[Simplify[2h(-1)ˆ(n/2)(n-1)!/
((n/2-1)!)]/.{a[0]->1,a[1]->0},{n,2,8,2}]

to produce the following table:{
2(−1 + 2x2), 4(3 − 12x2 + 4x4), 8(−15 + 90x2 − 60x4 + 8x6),

1680
(

1 − 8x2 + 8x4 − 32x6

15
+

16x8

105

)}
Note that we set a[1] equal to zero to eliminate all odd powers of x. The
table shows the even Hermite polynomials of order 2 through 8. For higher-
order polynomials, we raise the power of x in the series y at the beginning.
If we are interested in odd polynomials, we have to multiply h by

2(−1)(n−1)/2n!
((n− 1)/2)!

5If we multiply a solution of Equation (4.16) by a constant factor, it will still satisfy
the equation.
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set a[0] equal to zero and a[1] equal to 1. In fact,

In[8]:= tab=Table[Simplify[2h(-1)ˆ((n-1)/2)n!/
(((n-1)/2)!)]/.{a[0]->0,a[1]->1},{n,3,7,2}]

produces

{
− 12

(
x− 2x3

3

)
, 8x(15 − 20x2 + 4x4),

− 1680
(
x− 2x3 +

4x5

5
− 8x7

105

)}

4.5 Fourier Series

Power series are extremely useful in representing functions. In fact, many
(if not most of the) functions of mathematical physics were discovered first
in the form of a power series. In many physical and engineering applica-
tions, however, series that use functions other than powers of x (or x−x0)
tend to be more convenient. Fourier series use the trigonometric functionsMM, pp. 243–247
(sines and cosines) as the basis of expansion. Because of their oscillatory
nature, expansion in terms of the trigonometric functions results in func-
tions that are periodic. This is particularly useful in electrical engineering,
where periodic signals of various shapes are used extensively.

Suppose we have a periodic function f(t), defined in the interval (a, b)
whose period is T , so that f(t+T ) = f(t). Then it can be shown that f(t)
can be written as an infinite series of sine and cosine terms as follows:

f(t) = a0 +
∞∑

n=1

(
an cos

2nπt
T

+ bn sin
2nπt
T

)
(4.17)

where

a0 =
1
T

∫ b

a

f(t) dt

an =
2
T

∫ b

a

f(t) cos
2nπt
T

dt (4.18)

bn =
2
T

∫ b

a

f(t) sin
2nπt
T

dt

Thus, if we calculate a0, an, and bn, and insert them in Equation (4.17),
in principle, we obtain a series representation of f(t). In practice, we keep
a finite number of terms of the series and obtain an approximation of the
function in terms of a finite sum. Applied to the production of periodic
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FIGURE 4.4. This ideal sawtooth potential can be approximated by a finite sum
of sines and cosines of appropriate amplitude (coefficient) and frequency.

voltages of various shapes such as the one shown in Figure 4.4, this corre-
sponds to adding a finite number of sine and cosine terms with appropriate
coefficients and frequencies.

As Figure 4.4 indicates, a Fourier series is often used to represent dis-
continuous functions or functions that have different “pieces” in different
regions of their interval of definition. Mathematica is capable of defining
such discontinuous functions. It does so using logical operators as discussed
in Section 2.6. In the following we make use of this technique to construct
functions, and use that construction to find their Fourier series.

To construct the Fourier series of a function, we need the coefficients
of the sine and cosine terms for the function at hand. We want to be as
general as we can, so we type in

In[1]:= aNaught[T ,t0 ]:=(1/T) Integrate[f[t],{t,t0,t0+T}];
anFS[n ,T ,t0 ]:=(2/T)Integrate[f[t]
Cos[2 Pi n t/T],{t,t0,t0+T}];
bnFS[n ,T ,t0 ]:=(2/T)Integrate[f[t]
Sin[2 Pi n t/T],{t,t0,t0+T}]

where (t0, t0 + T ) is the interval in which the function is defined and T is
the period of the function. These formulas can be used for any function
f(t), which we have to define separately. The best way to explain all of this
is to go through some examples in detail.

Let us find the Fourier series for the periodic voltage known as the
square wave. This is shown in Figure 4.5, where the voltage is seen to
oscillate between 1 volt (lasting for 2 seconds) and 0 (lasting for 1 second),
so that the period of the function is 3 seconds. The function that describes
this voltage in the interval (0, 3) is

In[2]:= f[t ]:=If[t<2,1,0]
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1

2 4 6 8

FIGURE 4.5. The square wave is a periodic voltage that oscillates between two
constant values. In this graph, the two values are 1 volt (lasting for 2 seconds)
and 0 (lasting for 1 second).

To find the coefficients of the Fourier series of this function, we execute
the integrals of In[1] above, and then type in

In[3]:= a0=aNaught[3,0]; a[n ]:=anFS[n,3,0];
b[n ]:=bnFS[n,3,0]

As a check, we tell Mathematica to output an,

In[4]:= a[n]

sin
( 4nπ

3

)
nπ

and bn

In[5]:= b[n]

−−1 + cos
( 4nπ

3

)
nπ

which are the results we expect.
Now that we have the coefficients, we can write down the Fourier series

as a finite sum with a variable number of terms:

In[6]:= FourierSer[m ,t ,T ]:=a0+Sum[a[k]Cos[2k Pi t/T]
+b[k]Sin[2k Pi t/T],{k,1,m}]

And if we are interested in seeing what FourierSer[m,t,T] looks like for
various values of m, we can plot it. For example,
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FIGURE 4.6. The finite-sum approximation to the Fourier series representation
of the square wave voltage with 5 terms (left), 10 terms (middle), and 20 terms
(right).

In[7]:= Plot[Evaluate[FourierSer[5,t,3]],{t,0,8.5}]
produces the diagram on the left in Figure 4.6. The command Evaluate
causes a much faster calculation for the plot. Changing 5 to 10 and 20 will
produce the middle and the right diagrams, respectively.

The sawtooth wave shown in Figure 4.4 is a common voltage in elec-
trical engineering, and we can easily construct its Fourier series represen-
tation. First we define the function in the interval (0, 2). It is a function
that rises linearly from 0 to 1 volt in 2 seconds, which is its period T . So,
f(t) = t/2, and we type in

In[8]:= f[t ]:=t/2

and execute the integrals defined earlier in In[1]. Next, we define the
coefficients

In[9]:= a0=aNaught[2,0]; a[ n]:=anFS[n ,2,0];
b[ n]:=bnFS[n ,2,0]

As a check, we note that

In[10]:= a[n]

yields
−1 + cos(2nπ) + 2nπ sin(2nπ)

2n2π2

and

In[11]:= b[n]

yields
−2nπ cos(2nπ) + sin(2nπ)

2n2π2

which simplify to an = 0 and bn = −1/(2nπ), respectively, but since Math-
ematica does not know that n is an integer, it will not simplify the expres-
sions any further.

Now we can execute FourierSer[m,t,T] of In[6] above to obtain the
finite-sum approximation to the Fourier series expansion of the sawtooth
wave. To see what FourierSer[m,t,T] looks like, we plot it for various
values of m. For example,
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FIGURE 4.7. The finite-sum approximation to the Fourier series representation
of the sawtooth voltage with 5 terms (left), 10 terms (middle), and 20 terms
(right).

In[12]:= Plot[Evaluate[FourierSer[5,t,2]],{t,0,6.2}]
produces the diagram on the left in Figure 4.7. Changing 5 to 10 and 20
will produce the middle and the right diagrams, respectively.

4.6 Problems

Problem 4.1. Write a single integral giving the area of a unit circle. Ap-
proximate the integral with a sum of 10 terms corresponding to each of
the methods of numerical integration discussed in Section 4.2. Which one
is the best approximation?

Problem 4.2. The gamma function is defined as

Γ(x) =
∫ ∞

0
tx−1e−t dt

Choose a large value for the upper limit of integration and evaluate the
integral using a finite sum corresponding to each of the methods of Sec-
tion 4.2 to calculate Γ(3/2). Compare your results with the “exact” value
produced by Mathematica. (Mathematica has an internal gamma function.)

Problem 4.3. The complete elliptic integrals of the first and second kinds
are defined as

K(x) =
∫ π/2

0

dt√
1 − x2 sin2 t

and E(x) =
∫ π/2

0

√
1 − x2 sin2 t dt

respectively. Evaluate each of these integrals using a finite sum correspond-
ing to each of the methods of Section 4.2 to calculate K(1/2) and E(1/2).
Compare your results with the “exact” values produced by Mathematica.

Problem 4.4. The molar heat capacity of a solid as a function of temper-
ature is given by [Call 85, p. 367]

c(τ) = 9Rτ3
∫ 1/τ

0

x4ex

(ex − 1)2
dx
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where R is the universal gas constant and τ is the temperature measured
in units of the Debye temperature.
(a) For each of the different methods of integration of Section 4.2, define
c(τ, n) to be the approximation to the above integral in terms of a sum of
n terms.
(b) Plot c(τ, n)/R as a function of τ for large enough n for each method.
Choose the range of τ to be from 0.01 to 2.
(c) Using NIntegrate in Mathematica, plot c(τ) for the same range of τ as
in (b) and compare the graph with the graphs obtained in (b).

Problem 4.5. Hermite and Laguerre polynomials of second order are

4x2 − 2 and 1
2 (x2 − 4x+ 2)

respectively. Use Gauss–Hermite or Gauss–Laguerre integration method
(similar to Gauss–Legendre method of Section 4.2.4) to find the numerical
values of the following integrals.

(a)
∫ ∞

−∞

dx

1 + x4 (b)
∫ ∞

0

dx

1 + x3 (c)
∫ ∞

−∞

dx

1 + x6

(d)
∫ ∞

0

e−x4

1 + x2 dx (e)
∫ ∞

0

e−x

1 + x3 dx (f)
∫ ∞

−∞

e−x2

1 + x6 dx

Problem 4.6. (a) See if Mathematica can sum the following series in
closed form:

∞∑
n=1

sinn
n2 ,

∞∑
n=2

1
n3 − 1

,

∞∑
n=1

n+ 5
n2 − 3n− 5

,

∞∑
n=2

1√
n lnn

∞∑
n=1

1
n2 + 1

,
∞∑

n=1

n

n2 + 1
,

∞∑
n=2

1
n ln2 n

,

∞∑
n=2

1
n lnn ln lnn

∞∑
n=1

2n + 1
3n + n

,
∞∑

n=1

(−1)n

n!
,

∞∑
n=1

5n

n!

(b) By summing 20, 50, and 100 terms of each series, decide if the series
converges (or diverges).

Problem 4.7. Find the power series expansion to order 7 of the following
functions about x = 0.

(a) tan−1 x (b)
sinx
ex

(c) tanhx

(d)
ln(1 + x)

cosx
(e)

√
1 + x

ex cosx
(f) tanx tanhx

(g)
ln(1 + x2)√

4 + x2
(h)

√
1 + cosx
ex2 (i) tanh(sinx)
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Problem 4.8. Find the power series expansion to order 8 of the following
products of functions about x = 0 in two ways: directly, and by multiplying
the series of each factor in the product.

(a) tan−1 x sinx (b) cosxex (c) tanhx ln(3 + 2x)

(d)
ln(1 + x2)

cosx
(e) 4

√
1 + xe−x (f) sinx sinhx

Problem 4.9. Using the technique of coefficient matching as done for Her-
mite polynomials on page 144, find the power series solution of the following
differential equations:

(a) y′ + y = 0 (b) y′′ − y = 0 (c) y′′ + y = 0
(d) y′′ + y′ + y = 0 (e) y′′ + 2y′ + y = 0 (f) y′′ + 5y′ + 4y = 0

(g) y′ + 2xy = 0 (h) y′ + 3x2y = 0

Compare your series with the series of the known solutions obtained using
Mathematica.

Problem 4.10. A voltage V (t) is given by

V (t) =

{
2t if 0 ≤ t ≤ 1
0 if 1 ≤ t ≤ 2

If this voltage repeats itself periodically, find the Fourier series expansion
of V (t) and plot the series for 3, 5, and 30 terms and 0 ≤ t ≤ 6.

Problem 4.11. A periodic voltage with period 2 is given by

V (t) =

{
cos(πt) if − 1/2 ≤ t ≤ 1/2
0 if 1/2 ≤ |t| ≤ 1

(a) Find the Fourier series of V (t).
(b) Evaluate both sides at t = 0 to show that

π

2
= 1 − 2

∞∑
n=1

(−1)n

4n2 − 1

This is one of the many series representations of π.
(c) How many terms of the series do you have to keep for the right-hand
side to agree with the left-hand side to six decimal places?

Problem 4.12. An electric voltage V (t) is given by

V (t) = sin
(
πt

2

)
and repeats itself with period 1. Find the Fourier series expansion of V (t),
and plot it for 3, 5, and 30 terms and 0 ≤ t ≤ 4.
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Problem 4.13. A periodic voltage is given by the formula

V (t) =

{
sin(πt/2) if 0 ≤ t ≤ 1
0 if 1 ≤ t ≤ 2

Find the Fourier series representation of this voltage, and plot it for 3, 5,
and 30 terms and 0 ≤ t ≤ 6.

Problem 4.14. A periodic voltage with period 4 is given by

V (t) =

{(
1 − t2

)
if |t| ≤ 1

0 if 1 ≤ |t| ≤ 2

Find the Fourier series of V (t), and plot it for 3, 5, and 30 terms and
−6 ≤ t ≤ 6.
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5
Numerical Solutions of ODEs: Theory

The ubiquity of differential equations in all areas of physics and their resis-
tance to analytical solutions in many cases of interest, plus the availability
of cheaper and cheaper high-speed computers, has led to an explosion of
interest in the numerical solution of differential equations. The techniques
used in solving DEs are not new; some of the earlier ones date back to
Euler himself.

Although unnecessary for using Mathematica to solve differential equa-
tions, the study of the techniques of the numerical solutions of DEs is
important enough that it is worth our time and effort understanding their
essential elements. Therefore, this chapter has very little to do with Math-
ematica, but a lot to do with what is happening “behind the scene,” so to
speak.

We start with a very general first-order DE written in the form

y′ = f(x, y) or
dy

dx
= f(x, y) (5.1)

The solution of this equation is a function y(x) whose derivative is equal to
f(x, y(x)). Let us assume that we know the solution at some initial value
of x, say x0, so that

y′(x0) = f(x0, y(x0)) = f(x0, y0) where y0 ≡ y(x0) (5.2)

Any procedure for solving a DE will have to start with the initial condition
(x0, y0) and generate a (large) set of pairs (xk, yk) interpreted as a tabular
representation of the function y(x). This requires being able to find y(x0+h)
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from the initial condition (5.2) and the DE (5.1). Here and in the sequel,
h is a (small) step size.

Many of the common procedures can be obtained by “integrating” (5.1)
from x0 to x0 + h:

y(x0 + h) = y(x0) +
∫ x0+h

x0

f(t, y(t)) dt (5.3)

This is not, of course, a solution of the problem because the integrand
contains y(t), which is the unknown function we are after! However, since
we know of different ways of approximating the integral, we may have a
chance of finding an approximate solution to the DE.

This approximation starts with noting that since h is small, we can as-
sume that the function f is continuous in the interval of integration, allow-
ing us to invoke the mean value theorem of calculus and write1

y(x0 + h) = y(x0) + hf(c, y(c)) ≡ y(x0) + hf(x0 + αh, y(x0 + αh)) (5.4)

where x0 ≤ c ≤ x0 + h and 0 ≤ α ≤ 1. Equation (5.4) is exact, and
therefore, not a solution to our DE. Although the mean value theorem
proves the existence of c (or α), it gives no clue as to how to find its actual
value. Thus, we are led to approximating c or α.

5.1 Various Euler Methods

The accuracy of the numerical solution of (5.1) depends on the sophistica-
tion with which we approximate the integral of (5.3). Section 4.2 treated a
number of approximations to an integral. We shall employ those approxi-
mations to obtain solutions to our DE with varying degree of accuracy.

5.1.1 Euler Method
If we let α assume its lowest possible value, namely zero, we obtain

y1 ≡ y(x0 + h) = y(x0) + hf(x0, y(x0)) = y(x0) + hf(x0, y0) ≡ y0 + hf0
(5.5)

where we have introduced the notation y1 for y(x0+h) and f0 for f(x0, y0).
We shall also use xk for x0 + kh. Iterating (5.5) yields

y2 ≡ y(x0+2h) = y(x0+h)+hf(x0+h, y(x0+h)) = y1+hf(x1, y1) ≡ y1+hf1

1Recall that the mean value theorem says that if g(t) is a continuous function on
(a, b), then

∫ b
a g(t) dt = (b− a)g(c) for some c in the interval (a, b).
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and, in general,

yk+1 = yk + hfk, k = 0, 1, . . . (5.6)

Thus, starting with x0, y0, and f0, we can generate as long a table as we
desire representing the solution of the DE (5.1). The problem with this
Euler method is that it is very crude, and unless h is (unreasonably)
small, the method will not give a good approximation to the solution. Euler method

5.1.2 Modified Euler Method
An improvement over the Euler method is obtained by taking c to be the
midpoint of the integration interval. This corresponds to α = 1/2 and

y(x0 + h) = y(x0) + hf(x0 + h/2, y(x0 + h/2)) (5.7)

The problem is that we do not know what y(x0 +h/2) is! However, we can
approximate it. How? By Taylor series:

y(x0 + h/2) ≈ y(x0) +
h

2
y′(x0) = y(x0) +

h

2
f(x0, y0) = y0 +

h

2
f0 (5.8)

It follows that

y1 ≡ y(x0 + h) = y(x0) + hf(x0 + h/2, y0 + h/2f0)

and, in general,

yk+1 = yk + hf(xk + h/2, yk + (h/2)fk), k = 0, 1, . . . (5.9)

where fk = f(xk, yk) = f(x0 + kh, y(x0 + kh)). Equation (5.9) is called the
modified Euler method. modified Euler method

Figure 5.1 shows the difference between Euler and modified Euler ap-
proximations to the integral. Generally speaking, by taking the height of
the elementary rectangles to be the value of the function evaluated at the
midpoint of the interval (x0, x0 +h), we cover parts of the actual area that
are missed in the simple Euler method.

5.1.3 Improved Euler Method
In our discussion of numerical integration in Section 4.2, we came across
techniques that gave more accurate results than the sum of simple rect-
angles. Can we use those techniques to improve our numerical solution of
ODEs? Let us try the trapezoid rule first. Using Equation (4.4) we obtain

y(x0 + h) = y(x0) +
∫ x0+h

x0

f(t, y(t)) dt

= y(x0) +
h

2
[f0 + f(x0 + h, y(x0 + h))] (5.10)
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 x0 x0+h
x

f (x,y(x))

 x0 x0+h
x

f (x,y(x))

x0+h/2

(a) (b)

FIGURE 5.1. (a) The Euler method corresponds to approximating the area by
the rectangle whose height is the value of the function at the initial point. (b) The
modified Euler method corresponds to approximating the area by the rectangle
whose height is the value of the function at the midpoint. We expect the latter
to be a better approximation to the actual area.

Now use Taylor series expansion to approximate y(x0+h) on the right-hand
side:

y(x0 + h) ≈ y(x0) + hy′(x0) = y0 + hf0

It now follows that

y1 ≡ y(x0 + h) ≈ y0 +
h

2
[f0 + f(x0 + h, y0 + hf0)]

and, in general,improved Euler method

yk+1 ≈ yk +
h

2
[fk + f(xk + h, yk + hfk)] (5.11)

This is called the improved Euler method.

5.1.4 Euler Methods in Mathematica
We can write a Mathematica routine to solve a first-order DE numerically
using any one of the Euler methods discussed so far. The idea is to make a
table with the first column holding equipartitioned values of the indepen-
dent variable x and the second column holding the corresponding values of
the dependent variable y.

The first line of this routine initializes the independent and dependent
variables to x0 and y0:

In[1]:= x[0]=x0; yEu[0]=y0; yMEu[0]=y0; yIEu[0]=y0;

with the obvious notation that yEu, yMEu, and yIEu represent the depen-
dent variable obtained using the Euler, modified Euler, and improved Euler
methods, respectively.
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Next, we create the values of the independent variable using the Do com-
mand:

In[2]:= IndVar[h , n ] := Do[x[i] = x0 + i h, {i, n}];
This creates an array of n+1 values xi by adding multiples of h to the initial
value x0. The values of the independent variable so created are now ready
to be used in the DE to obtain the corresponding values of the dependent
variable.

To create these values, we use the three Euler methods. For the simplest
Euler method, we employ Equation (5.6), and type in

In[3]:= Eul[h ,n ]:=Do[yEu[i+1]=yEu[i]+h f[x[i],yEu[i]],
{i, 0, n}];

For the modified Euler method, we use Equation (5.9):

In[4]:= MEul[h ,n ]:=Do[yMEu[i+1]=yMEu[i]+h f[x[i]+h/2,
yMEu[i]+(h/2) f[x[i],yMEu[i]]],{i, 0, n}];

Finally, for the improved Euler method, we make use of Equation (5.11):

In[5]:= IEul[h ,n ]:=Do[yIEu[i+1]=yIEu[i]+(h/2)(f[x[i],
yIEu[i]]+f[x[i]+h,yIEu[i]+h f[x[i], yIEu[i]]]),
{i, 0, n}];

In all the above statements, we have suppressed the output by using semi-
colons (although the use of := postpones the evaluation anyway).

As a special example, let us consider the simple DE

y′ = y, x0 = 0, y0 = 1

whose solution is known to be ex. To evaluate various solutions, we input
the initial data and the function for this particular DE:

In[6]:= x0 = 0; y0 = 1; f[x , y ] := y;

Then evaluate the array of the independent variable for h = 0.05 and
n = 20:

In[7]:= IndVar[0.05, 20];

Finally, the input

In[8]:= Eul[0.05, 20]; MEul[0.05, 20]; IEul[0.05, 20];

creates the array of the independent variable using the three Euler methods.
To display these functions in a table, we type in

In[9]:= Table[{x[i],yEu[i],yMEu[i],yIEu[i], Exp[x[i]]},
{i,0,20,2}]// MatrixForm
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x Euler Modified Euler Improved Euler ex

0.0 1 1 1 1
0.1 1.10250 1.10513 1.10513 1.10517
0.2 1.21551 1.22130 1.22130 1.22140
0.3 1.34010 1.34970 1.34970 1.34986
0.4 1.47746 1.49159 1.49159 1.49182
0.5 1.62889 1.64839 1.64839 1.64872
0.6 1.79586 1.82168 1.82168 1.82212
0.7 1.97993 2.01319 2.01319 2.01375
0.8 2.18287 2.22483 2.22483 2.22554
0.9 2.40662 2.45871 2.45871 2.45960
1.0 2.65330 2.71719 2.71719 2.71828

TABLE 5.1. Comparison of the Euler, modified Euler, and improved Euler formu-
las with the exact solution for f(x, y) = y. It is clear that modified and improved
Euler formulas give a more accurate result than the simple Euler method. The
equality of the modified and improved Euler methods is a coincidence.

and obtain a matrix with values as given in Table 5.1. Notice that although
the step size is 0.05 for better accuracy, the displayed step size is 0.1,
because we have specified the range of the index i by {i, 0, 20, 2}, in which
the last number gives the increment of i. The table shows that the modified
Euler and improved Euler methods give a much closer result to the exact
answer than the simple Euler method. The fact that modified Euler and
improved Euler results are the same is a coincidence brought about by the
special nature of f(x, y) in this example.

To differentiate between the last two Euler methods, let us look at an-
other differential equation. For f(x, y), take the function −2xy, which again
renders the DE analytically soluble, with the solution e−x2

if we impose
the same initial data as before. So, we type in

In[10]:= x0 = 0; y0 = 1; f[x , y ] := -2 x y;

and

In[11]:= Eul[0.05, 20]; MEul[0.05, 20]; IEul[0.05, 20];

to reevaluate the functions for the new f(x, y). The command

In[12]:= Table[{x[i],yEu[i],yMEu[i],yIEu[i],
Exp[-x[i]ˆ2]},{i,0,20,2}]// MatrixForm

then produces a matrix whose entries are shown in Table 5.2. The table
makes it clear that the simple Euler method is a poor approximation, while
the other two Euler methods give more accurate results, with the improved
Euler method gaining a little advantage over the modified method.
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x Euler Modified Euler Improved Euler e−x2

0.0 1 1 1 1
0.1 0.995 0.990037 0.990044 0.990050
0.2 0.970274 0.960742 0.960779 0.960789
0.3 0.927097 0.913833 0.913920 0.913931
0.4 0.867809 0.851987 0.852141 0.852144
0.5 0.795607 0.778591 0.778817 0.778801
0.6 0.714257 0.697427 0.697727 0.697676
0.7 0.627760 0.612361 0.612726 0.612626
0.8 0.540031 0.527036 0.527453 0.527292
0.9 0.454598 0.444636 0.445088 0.444858
1.0 0.374384 0.367713 0.368181 0.367879

TABLE 5.2. Comparison of the Euler, modified Euler, and improved Euler formu-
las with the exact solution for f(x, y) = −2xy. It is clear that modified and im-
proved Euler formulas give a more accurate result than the simple Euler method.

5.1.5 Alternative Derivation of the Improved Euler Method
The improved Euler method could also be obtained by another procedure
that will be useful later when we derive more accurate methods. The idea is
to substitute the RHS of Equation (5.10) for y(x0+h), the second argument
of f in the last line of (5.10). This yields

y(x0 + h) = y0 +
h

2
{f0 + f(x0 + h, y(x0) + h

2 [f0 + f(x0 + h, y(x0 + h))])}
Next we approximate the embedded function f(x0 + h, y(x0 + h)) by a
linear combination of the lower-order terms to which the function is being
added. In the case at hand, f(x0 + h, y(x0 + h)) is added to f0. So, “linear
combination” means simply a constant multiple of f0, and we write

f(x0 + h, y(x0 + h)) = αf0

This yields

y(x0 + h) = y0 +
h

2
{f0 + f(x0 + h, y0 + (h/2)[(1 + α)f0])} (5.12)

The constant α is determined by expanding both sides of this equation in a
Taylor series up to the accuracy of the RHS (in this case, h2) and equating
the coefficients on both sides. For the LHS, we have

LHS = y(x0 + h) = y0 + hy′(x0) +
h2

2
y′′(x0)

= y0 + hf(x0, y0) +
h2

2
[∂1f(x0, y0) + f(x0, y0)∂2f(x0, y0)]

≡ y0 + hf0 +
h2

2
[∂1f0 + f0∂2f0] (5.13)
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because

y′′(x) =
dy′

dx
=
df

dx
=
∂f

∂x
+
∂f

∂y

dy

dx
= ∂1f + y′∂2f = ∂1f + f∂2f

where ∂k means partial derivative with respect to the kth variable. For
the RHS—once we use the two-variable Taylor expansion for f(x, y)—we
obtain

RHS = y0 +
h

2
f0 +

h

2

[
f0 + h∂1f0 +

h

2
(1 + α)f0∂2f0

]

= y0 + hf0 +
h2

2

[
∂1f0 +

1 + α

2
∂2f0

]
Comparison of this expression with (5.13) gives α = 1. It follows from
Equation (5.12) that

y(x0 + h) = y0 +
h

2
[f0 + f(x0 + h, y0 + hf0)]

which is the improved Euler method.

5.2 The Kutta Method

We can continue improving the integration and, consequently, the method
of solving ODEs. For example, let us apply Simpson’s rule to the integral
in (5.3). Equation (4.6) then yields

y(x0 + h) = y(x0) +
∫ x0+h

x0

f(t, y(t)) dt ≈ y(x0) +
h

6
[f(x0, y0)

+ 4f(x0 + h/2, y(x0 + h/2)) + f(x0 + h, y(x0 + h))]

= y0 +
h

6
[f0 + 4z1 + z2] (5.14)

with

z1 ≡ f(x0 + h/2, y(x0 + h/2)) ≈ f(x0 + h/2, y0 + h/2f0) (5.15)

z2 ≡ f(x0 + h, y(x0 + h)) = f(x0 + h, y0 + h
6 [f0 + 4z1 + z2])

where we substituted the RHS of (5.14) for the second argument of z2.
Following the procedure outlined in the alternate derivation of the im-

proved Euler method, we write z2 = αf0 + βz1 and substitute this on the
RHS of the second equation of (5.15). Then Equation (5.14) becomes

y(x0 + h) = y0 +
h

6
[f0 + 4z1 + f(x0 + h, y0 + h

6 [(1 + α)f0 + (4 + β)z1])]

= y0 +
h

6
[f0 + 4z1 + f(x0 + h, y0 + h

6Z)] (5.16)
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where Z = (1 + α)f0 + (4 + β)z1.
We want to approximate the RHS of (5.16) in such a way that the Taylor

expansions of both its sides agree up to h2. The expansion of the LHS is
given by Equation (5.13). To obtain the expansion for the RHS, we need
the Taylor series of z1 up to order h. This is

z1 ≈ f(x0 + h/2, y0 + h/2f0) = f0 +
h

2
∂1f0 +

h

2
f0∂2f0

Similarly,

f(x0 + h, y0 + h
6Z) ≈ f0 + h∂1f0 + h

6Z∂2f0

= f0 + h∂1f0 + h
6 [(1 + α)f0 + (4 + β)z1]∂2f0

So, the RHS of (5.16) is

RHS = y0 +
h

6

[
f0 +

=4z1︷ ︸︸ ︷
4f0 + 2h∂1f0 + 2hf0∂2f0 +f0 + h∂1f0

+ h
6 [(1 + α)f0 + (4 + β)z1]∂2f0

]
= y0 + hf0 +

h2

2
∂1f0 +

h2

3
f0∂2f0 +

h2

36
[(1 + α) + (4 + β)]f0∂2f0

where in the last step, we approximated z1 by f0 because the term was
being multiplied by h2/36 already. Comparison of the last equation with
(5.13) shows that we must require

1 + α+ 4 + β = 6 ⇒ α+ β = 1

The two unknowns are not determined uniquely. Nevertheless, we have

z2 = f(x0 + h, y0 + (h/6)[(1 + α)f0 + (5 − α)z1])

It is convenient to cancel out the factor of 6 in the denominator. The
obvious choices α = 5 (making the coefficient of f0 equal to 6) or α = −1
(making the coefficient of z1 equal to 6) will eliminate either z1 or f0. A
choice that retains both terms and gets rid of the factor 6 is α = −7. Then

z2 = f(x0 + h, y0 + h(2z1 − f0))

We can now generalize Equation (5.14) to

yk+1 ≈ yk +
h

6

(
fk + 4z(k)

1 + z
(k)
2

)
(5.17)

where

z
(k)
1 = f

(
xk + 1

2h, yk + 1
2hfk

)
, z

(k)
2 = f

(
xk + h, yk + h(2z(k)

1 − fk)
)
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Equation (5.17) is called the Kutta method. It is more accurate than any
of the Euler methods.

Let us use the Kutta method to numerically solve the two DEs of Section
5.1.4. Aside from the initial data and the calculation of the independent
variable array, which are unchanged, for the Kutta method, we have to
type in Equation (5.17):

In[1]:= Kutta[h ,n ] := Do[yKut[i+1] =yKut[i]
+(h/6)(f[x[i],yKut[i]]+4(f[x[i]+0.5 h,
yKut[i]+0.5 h f[x[i],yKut[i]]])+f[x[i]+h,
yKut[i]+h (2 (f[x[i]+0.5 h,yKut[i]+0.5 h f[x[i],
yKut[i]]])-f[x[i],yKut[i]])]),{i,0,n}];

After running the input lines 1, 2, 6, and 7 of Section 5.1.4, as well as In[1]
of this section, we type in

In[2]:= Kutta[0.05, 20];

to generate the new array of dependent variables for f(x, y) = y. Then we
store the array so obtained in another array called y1 as follows:

In[3]:= Do[y1[i] = yKut[i], {i,0,20,2}];
Now we change the function f(x, y) to −2xy, run in[1] and in[2] above

once more, and store the resulting array in y2:

In[4]:= Do[y2[i] = yKut[i], {i,0,20,2}];
We can now display the results in a table for comparison with Tables 5.1
and 5.2. To do so, we type in

In[5]:= Table[{x[i],y1[i],Exp[x[i]],y2[i]
Exp[-x[i]ˆ2]},{i,0,20,2}]// MatrixForm

The output is a matrix with entries given in Table 5.3. Comparison of this
table with Tables 5.1 and 5.2 clearly shows that the Kutta method is by
far superior to any of the Euler methods.

5.3 The Runge–Kutta Method

Our alternative derivation of the improved Euler method and the deriva-
tion of the Kutta method point to a general procedure of obtaining more
and more accurate techniques for solving DEs. We noted in those deriva-
tions that the arguments of the function f(x, y) appearing in the DE were
evaluated at different points (x0 + rh, y0 +sh) where r and s were numbers
between 0 and 1. A powerful method, due to Runge and Kutta and others,
has been developed that gives extremely accurate results.
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x y1[i] ex y2[i] e−x2

0.0 1 1 1 1
0.1 1.10517 1.10517 0.990052 0.990050
0.2 1.22140 1.22140 0.960794 0.960789
0.3 1.34986 1.34986 0.913937 0.913931
0.4 1.49182 1.49182 0.852151 0.852144
0.5 1.64872 1.64872 0.778809 0.778801
0.6 1.82211 1.82212 0.697685 0.697676
0.7 2.01375 2.01375 0.612634 0.612626
0.8 2.22553 2.22554 0.527299 0.527292
0.9 2.45959 2.45960 0.444863 0.444858
1.0 2.71827 2.71828 0.367881 0.367879

TABLE 5.3. The result of applying the Kutta method to solve y′ = f(x, y). The
second column gives the solution for f(x, y) = y, and the fourth column the
solution for f(x, y) = −2xy.

The Runge–Kutta method starts with

yk+1 = yk + h


α0f(xk, yk) +

p∑
j=1

αjf(xk + µjh, yk + bjh)


 (5.18)

where α0 and {αj , bj , µj}p
j=1 are constants chosen so that if the RHS of

(5.18) were Taylor-expanded in powers of h, the coefficients of a certain
number of the leading terms would agree with the corresponding expansion
coefficients of the Taylor expansion of the LHS. It is customary to express Runge–Kutta method
the b’s as linear combinations of preceding values of f :

hbi =
i−1∑
r=0

λirzr, i = 1, 2, . . . , p

The zr are recursively defined as

z0 = hf(xk, yk), zr = hf(xk + µrh, yk + brh)

Then Equation (5.18) becomes

yk+1 = yk +
p∑

r=0

αrzr (5.19)

The (nontrivial) task now is to determine the parameters αr, µr, and λij .
In general, the determination of these constants is extremely tedious. Let

us consider the very simple case where p = 1, and let λ ≡ λ01 and µ ≡ µ1.
Then hb1 = λ01z0 = λz0, and we obtain

yk+1 = yk + α0z0 + α1z1 (5.20)
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where z0 = hf(xk, yk) and

z1 = hf(xk + µh, yk + hb1) = hf(xk + µh, yk + λz0)

Taylor-expanding z1, a function of two variables, gives2

z1 = hf(xk, yk) + h2(µfx(xk, yk) + λf(xk, yk)fy(xk, yk))

+
h3

2

[
µ2fxx(xk, yk) + 2λµf(xk, yk)fxy(xk, yk)

+ λ2f2(xk, yk)fyy(xk, yk)
]

+O(h4)

where fx ≡ ∂f/∂x and fxy ≡ ∂2f/∂x∂y, etc. Substituting this in (5.20) and
using notations such as fk, fx,k, fxx,k for evaluation of f and its derivatives
at (xk, yk), we get

yk+1 = yk + h(α0 + α1)fk + h2α1(µfx,k + λfkfy,k)

+
h3

2
α1(µ2fxx,k + 2λµfkfxy,k + λ2f2

kfyy,k) +O(h4)
(5.21)

On the other hand, with

y′ = f, y′′ =
dy

dx
=
∂y

∂x

dy

dx
+
∂f

∂x
= y′fy + fx = ffy + fx

y′′′ = fxx + 2ffxy + f2fyy + fy(ffy + fx)

the Taylor expansion of y(xk + h) gives

yk+1 = yk + hfk +
h2

2
(fkfy,k + fx,k) (5.22)

+
h3

6
[fxx,k + 2fkfxy,k + f2

kfyy,k + fy,k(fkfy,k + fx,k)] +O(h4)

If we demand that (5.21) and (5.22) agree up to the h2 term (we cannot
demand agreement for h3 or higher because of overspecification), then we
must have α0 +α1 = 1, α1µ = 1

2 , α1λ = 1
2 . There are only three equations

for four unknowns. Therefore, there will be an arbitrary parameter β in
terms of which the unknowns can be written:

α0 = 1 − β, α1 = β, µ =
1
β
, λ =

1
2β

Substituting these values in Equation (5.20) gives

yk+1 = yk + h

[
(1 − β)fk + βf

(
xk +

h

2β
, yk +

hfk

2β

)]
+O(h3)

2Recall from Section 4.3 that the symbol O(hm) means that all terms of order hm

and higher have been neglected.
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This formula becomes useful if we let β = 1
2 . Then xk+h/2β = xk+h, which

makes the evaluation of the second term in square brackets convenient. For
β = 1

2 , we have

yk+1 = yk +
h

2
[fk + f(x+ h, yk + hfk)] +O(h3) (5.23)

which the reader recognizes as the improved Euler formula.
Formulas that give more accurate results can be obtained by retaining

terms beyond p = 1. Such calculations are extremely tedious, and we shall
not reproduce them here, being content with the final results. For p = 2, if
we write

yk+1 = yk +
2∑

r=0

αrzr = yk + α0z0 + α1z1 + α2z2

there will be eight unknowns (three α’s, three λij ’s, and two µ’s), and the
demand for agreement between the Taylor expansion and the expansion
of f up to h3 will yield only six equations. Therefore, there will be two
arbitrary parameters whose specification results in various formulas. One
such formula is the Kutta formula (5.17), which we have encountered before.
A second formula, due to Heun, has the form Heun formula

yk+1 = yk + 1
4 (z0 + 3z2) +O(h4)

where

z0 = hf(xk, yk), z1 = hf(xk + 1
3h, yk + 1

3z0)

z2 = hf(xk + 2
3h, yk + 2

3z1 − z0)

Kutta and Heun formulas are of about the same order of accuracy. What
is nice about all such formulas is that we can plug in the known quantities
xk and yk—starting with k = 0—on the RHS and find yk+1.3

The accuracy of the Runge–Kutta method and the fact that it requires
no startup procedure (i.e., all quantities on the RHS of the yk+1 equation
are known) make it at once readily usable in computer programs and one
of the most popular methods for solving differential equations.

The Runge–Kutta method can be made more accurate by using higher
values of p. For instance, a formula used for p = 3 is

yk+1 = yk + 1
6 (z0 + 2z1 + 2z2 + z3) +O(h5) (5.24)

3Other—less accurate—methods, which we have not discussed, have quantities on
the RHS whose values are to be found using other techniques of approximation. See
[Hass 99], Chapter 13, for a discussion of these methods.
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where

z0 = hf(xk, yk), z1 = hf(xk + 1
2h, yk + 1

2z0)

z2 = hf(xk + 1
2h, yk + 1

2z1), z3 = hf(xk + h, yk + z2)

Equation (5.24) is the Runge–Kutta formula and is the main ammunition
in the arsenal of numerical solution of DEs.

5.4 Higher-Order Equations

Any nth-order differential equation is equivalent to n first-order differential
equations in n + 1 variables. Thus, for instance, the most general second-
order DE, y′′ = g(x, y, y′), can be reduced to two first-order DEs by defining
y′ = u and writing the original DE as the system of equations

u′ = g(x, y, u), y′ = u

These two equations are completely equivalent to the original second-order
DE. Thus, it is appropriate to discuss numerical solutions of systems of first-
order DEs in several variables. The discussion here is limited to systems
consisting of two equations. The generalization to several equations is not
difficult.

Consider the following system of coupled equations with the indicated
initial conditions:

y′ = f(x, y, u), y(x0) = y0, u′ = g(x, y, u), u(x0) = u0 (5.25)

Using an obvious generalization of Equation (5.24), we can write

yk+1 = yk + 1
6 (z0 + 2z1 + 2z2 + z3) +O(h5)

uk+1 = uk + 1
6 (w0 + 2w1 + 2w2 + w3) +O(h5) (5.26)

where

z0 = hf(xk, yk, uk), z1 = hf(xk + 1
2h, yk + 1

2z0, uk + 1
2w0)

z2 = hf(xk + 1
2h, yk + 1

2z1, uk + 1
2w1)

z3 = hf(xk + h, yk + z2, uk + w2)

and

w0 = hg(xk, yk, uk), w1 = hg(xk + 1
2h, yk + 1

2z0, uk + 1
2w0)

w2 = hg(xk + 1
2h, yk + 1

2z1, uk + 1
2w1)

w3 = hg(xk + h, yk + z2, uk + w2)
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These formulas are more general than needed for a second-order DE,
since, as mentioned above, such a DE is equivalent to the simpler system
in which f(x, y, u) ≡ u. Therefore, with

z0 = huk, z1 = h(uk + 1
2w0)

z2 = huk + 1
2hw1, z3 = huk + hw2

Equation (5.26) specializes to Numerical solution of a
second-order DE

yk+1 = yk + huk + 1
6h(w0 + w1 + w2) +O(h5)

uk+1 = uk + 1
6 (w0 + 2w1 + 2w2 + w3) +O(h5) (5.27)

where

w0 = hg(xk, yk, uk), w1 = hg(xk + 1
2h, yk + 1

2huk, uk + 1
2w0)

w2 = hg(xk + 1
2h, yk + 1

2huk + 1
4hw0, uk + 1

2w1)

w3 = hg(xk + h, yk + huk + 1
2hw1, uk + w2)

Equation (5.27) is especially suitable for initial-value problems in which
the solution and its derivative are specified at some initial time (usually
t = 0), and then subsequently both are calculated at later times (recall
that u is the derivative of y). Because of such determination of both the
solution and its derivative, Equation (5.27) is also useful in constructing
phase-space diagrams, a plot of the solution (usually the horizontal axis) phase-space diagram

definedversus its derivative (usually the vertical axis).
Since there are two coupled equations in y and u, we cannot use the Do

command. The suitable procedure is using For discussed in Section 3.2. So,
we type in4

In[1]:= RungKut[x0 , y0 , u0 , h , n ] :=
For[i=0; x[0]=x0; y[0]=y0; u[0]=u0, i<=n, i=i+1,
x[i]=x0+i h; w0=h g[x[i],y[i],u[i]];
w1=h g[x[i]+0.5 h,y[i]+0.5 h u[i],u[i]+0.5 w0];
w2=h g[x[i]+0.5 h,y[i] 0.5 h u[i]+0.25 h w0,

u[i]+0.5 w1];
w3=h g[x[i]+h,y[i]+h u[i]+0.5 h w1,u[i]+w2];
y[i+1]=y[i]+h u[i]+(h/6)(w0+w1+w2);
u[i+1]=u[i]+(1/6)(w0+2 w1+2 w2+w3)]

Once we know the function g(x, y, u) and the initial data, we can calculate
the array y[i].

As a specific example, let us solve the very simple DE y′′ + y = 0 with
the initial conditions y(0) = 0, y′(0) = 1. It should be obvious that the

4We could have used For instead of Do in Sections 5.1.4 and 5.2 as well.
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analytic solution of this DE is y(x) = sinx. The idea is to test the accuracy
of the Runge–Kutta method. For this problem g(x, y, u) = −y. So, we type
in

In[2]:= g[x ,y ,u ]:=-y

If we use the same step sizes as in the previous sections, we will not see
any difference between the Runge–Kutta solution and the exact solution.
So, first let us take the step size to be 0.1 and store every other value of
the solution in an array—of length 11—named yAccurate. We do this by
typing in

In[3]:= RungKut[0,0,1,0.1,20];

and

In[4]:= Do[yAccurate[i]=y[2i], {i,0,10}];
Now increase the step size to 0.2, and recalculate the—less accurate—array
(also of length 11):

In[5]:= RungKut[0,0,1,0.2,10];

To display the two solutions, and compare them with the exact result,
we type in

In[6]:= Table[{x[i],y[i],yAccurate[i],Sin[x[i]]},
{i,1,10}]//MatrixForm

The output will be a matrix with entries as given in Table 5.4. Even for
the fairly large step size of 0.1, there is hardly any noticeable difference
between the Runge–Kutta solution and the exact solution. Only when we
increase the step size to 0.2, do we notice differences; differences that are
noticeably smaller than any of the Euler methods, even when h = 0.05 for
the latter !

5.5 Eigenvalue Problems

When partial differential equations of mathematical physics are separated
into ODEs, they most often lead to a second-order linear DE known as aMM, Section 11.1
Sturm–Liouville system. The most general Sturm–Liouville system is of the
form

f2(x)y′′(x) + f1(x)y′(x) + f(x)y(x) = λy(x) (5.28)

where both y(x), called the eigenfunction of the system, and λ, called its
eigenvalue, are to be determined subject to appropriate boundary condi-
tions (BCs). In this context, the Sturm–Liouville system is also referred to
as an eigenvalue problem.
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x[i] y[i] yAccurate[i] Sin[x[i]]

0 0 0 0
0.2 0.198667 0.198669 0.198669
0.4 0.389413 0.389418 0.389418
0.6 0.564635 0.564642 0.564642
0.8 0.717347 0.717356 0.717356
1.0 0.841462 0.841470 0.841471
1.2 0.932031 0.932039 0.932039
1.4 0.985444 0.985449 0.985445
1.6 0.999571 0.999574 0.999574
1.8 0.973849 0.973848 0.973848
2.0 0.909304 0.909298 0.909297

TABLE 5.4. Comparison of the Runge–Kutta and exact solutions to the sec-
ond-order DE y′′ = −y with x0 = y0 = 0 and y′

0 = 1. The second and third
columns give values for the solution when h = 0.2 and h = 0.1, respectively.

There are various numerical techniques for finding the eigenvalues and
eigenvectors of an eigenvalue problem. We shall use the direct and general
method of discretization, whereby the DE is turned into a matrix equation.
To do this, we first have to approximate the derivative with a discrete
formula.

5.5.1 Discrete Differentiation
Any discrete quantity is an approximation to its continuous counterpart.
The art of numerical analysis is to make this approximation as close to
the exact value as possible while keeping the discrete expressions as simple
as possible. Let us begin by writing two Taylor expansions of an arbitrary
function f :

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) +

h4

4!
f iv(x) + . . .

f(x− h) = f(x) − hf ′(x) +
h2

2!
f ′′(x) − h3

3!
f ′′′(x) +

h4

4!
f iv(x) + . . . (5.29)

We rewrite the first equation as

f ′(x) =
f(x+ h) − f(x)

h
− h

2!
f ′′(x) − h2

3!
f ′′′(x) − h3

4!
f iv(x) + . . .︸ ︷︷ ︸

this remainder is denoted by O(h)

The symbol O(h) (read order of h) tells us that the largest term in the
remainder, which is the term with the lowest power of h, is multiplied by
h to the first power. It is the same “O” function encountered in Sections
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4.3 and 5.3. The long expression above can be shortened to

f ′(x) =
f(x+ h) − f(x)

h
+O(h)

indicating that the neglected terms were “of order h.” A good numerical
expression is that in which the neglected terms are of the highest possible
order in h: the higher the power of h in the largest term of the neglected
expression, the smaller the error. This is, of course, because h is a small
number in all numerical calculations. Can we come up with a formula for
the derivative with O(h2)? If we subtract the second series in Equation
(5.29) from the first, we get

f(x+ h) − f(x− h) = 2hf ′(x) +
h3

3
f ′′′(x) + . . .

or

f ′(x) =
f(x+ h) − f(x− h)

2h
− h2

6
f ′′′(x) − . . .

or

f ′(x) =
f(x+ h) − f(x− h)

2h
+O(h2) (5.30)

Thus, this central difference formula for the derivative, which we shall use
hereafter, is more accurate than the previous formula. One can obtain more
accurate expressions for the derivative with O(h4) for the remainder, but
the formulas become much more complicated. We shall stick to Equation
(5.30) for the first derivative.

The eigenvalue problem is a DE of the second order. So, we need the
second derivative as well. To obtain an expression for the second derivative,
we add the two series of (5.29). This yields

f(x+ h) + f(x− h) = 2f(x) + h2f ′′(x) +
h4

12
f iv(x) + . . .

or

f ′′(x) =
f(x+ h) − 2f(x) + f(x− h)

h2 − h2

12
f iv(x) − . . .

or

f ′′(x) =
f(x+ h) − 2f(x) + f(x− h)

h2 +O(h2) (5.31)

In terms of indices, the first and second derivatives are written as

Dfi =
fi+1 − fi−1

2h
+O(h2)

D2fi =
fi+1 − 2fi + fi−1

h2 +O(h2) (5.32)
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5.5.2 Discrete Eigenvalue Problem
We can now tackle the problem of solving our Sturm–Liouville system nu-
merically. Before doing so, we first simplify the DE. Specifically, we will
eliminate the first derivative in Equation (5.28). This can be done by defin-
ing a new function u(x) via

y(x) = w(x)u(x) where w(x) = exp
(

− 1
2

∫ x

a

f1(t)
f2(t)

dt

)
(5.33)

and a is a convenient constant. Then, the reader may show that u(x) sat-
isfies the following DE:

f2u
′′ +

(
f − f2

1 + 2f ′
1f2 − 2f ′

2f1
4f2

)
u = λu (5.34)

So, using different symbols for the coefficient functions, we can assume that
our DE is of the form

p(x)y′′(x) + q(x)y(x) = λy(x) or piD
2yi + qiyi = λyi (5.35)

where the second equation is the discretized version of the DE and the one
we want to solve.

Substituting the discretized second derivative from Equation (5.32) and
rearranging, we obtain the following master equation:

piyi+1 + (h2qi − 2pi)yi + piyi−1 = h2λyi (5.36)

The solution to this equation, i.e., the determination of λ and the set of yi,
requires some boundary conditions. We shall look at some specific examples
in the next chapter.

5.6 Problems

Problem 5.1. Choose some values for γ and k and some initial conditions
(initial values for x and ẋ), and use
(a) one of Euler’s methods and
(b) the Runge–Kutta method to find a numerical solution to the damped
harmonic oscillator DE

ẍ+ γẋ+ kx = 0

where the dot indicates differentiation with respect to time. Plot the so-
lution as a function of time and compare it with the plot of the known
analytic solution, making sure the time interval of motion is long enough
to observe a few oscillations of the system.
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Problem 5.2. The undamped, undriven pendulum obeys the DE

θ̈ + sin θ = 0

where θ is the angle the pendulum makes with the vertical, and the dot
indicates differentiation with respect to time. Assume that θ(0) = π/2 and
θ̇(0) = 0.
(a) Use the simplest Euler method and Runge–Kutta method to find a
numerical solution for this DE. Compare the results.
For the rest of the problem concentrate on the Runge–Kutta solution only.
(b) Plot the Runge–Kutta solution as a function of time. Make sure the
time interval of motion is long enough to observe a few oscillations of the
system.
(c) Using ParametricPlot, plot the phase-space diagram (see page 169)
with θ̇(t) as the vertical axis and θ(t) as the horizontal axis for θ(0) = π/10
and θ̇(0) = 0.
(d) Plot a second phase-space diagram for θ(0) = 179.98◦ and θ̇(0) = 1.

Problem 5.3. The damped, driven pendulum obeys the DE

θ̈ + γθ̇ + sin θ = ψ0 cos(ωt)

where θ is the angle the pendulum makes with the vertical, ω is the driving
frequency, φ0 is some constant, and the dot indicates differentiation with
respect to time.
(a) Use the Runge–Kutta method to find a numerical solution for this DE.
(b) Plot the phase-space diagram (see page 169) for γ = 0.3, φ0 = 0.5,
ω = 1, θ(0) = π/1.0001, θ̇(0) = 0, and 0 ≤ t ≤ 100.
(c) Change φ0 and ω in (b) to 1.15 and 2/3, respectively—keeping all the
other parameters the same—and replot the phase-space diagram.

Problem 5.4. The Lorenz DE is

ẋ(t) = σ[−x(t) + y(t)]
ẏ(t) = rx(t) − y(t) − x(t)z(t)
ż(t) = x(t)y(t) − qz(t)

where σ, r, and q are constants.
(a) Choose σ = 10, r = 76, and q = 9, and for some initial conditions of
your choice use the Runge–Kutta method to find a numerical solution for
this Lorenz DE.
(b) Plot y(t) versus x(t) using ParametricPlot.
(c) For the same σ, r, q, and initial conditions as in (a), plot z(t) versus
x(t) using ParametricPlot.
(d) For the same σ, r, q, and initial conditions as in (a), make a three-
dimensional parametric plot of the solution.
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Problem 5.5. The DE governing the motion of a particle with electric
charge q in an electromagnetic field is mr̈ = q(E + v × B), where m, r,
v, E, and B are, respectively, the mass of the particle, its position, its
velocity, the electric field, and the magnetic field. This Lorentz force law
can be written in component form as

ẍ(t) = q(Ex + ẏBz − żBy)
ÿ(t) = q(Ey + żBx − ẋBz)
z̈(t) = q(Ez + ẋBy − ẏBx)

Consider the case where the electric field is zero and the magnetic field
is constant (set it equal to 1) along the z-axis. Suppose that the particle
(of unit charge and unit mass) starts at the origin with ẋ(0) = 1 = ż(0)
and ẏ(0) = 0.
(a) Use the Runge–Kutta method to find a numerical solution for this set
of DEs.
(b) Using ParametricPlot3D, find the trajectory of the particle for 0 ≤
t ≤ 30.

Problem 5.6. Show that if one substitutes (5.33) in Equation (5.28) one
gets (5.34). Use Mathematica to do all the differentiations.
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6
Numerical Solutions of ODEs:
Examples Using Mathematica

The techniques of Chapter 5, in particular, the Runge–Kutta method, are
useful in solving differential equations that do not yield to analytic solu-
tions, and aside from a handful of exceptions, those are precisely the type
of DEs one encounters in practice. These methods have been used by pro-
grammers for decades and are still used in numerically intensive problems.

Mathematica, as a high-level computational software, is especially suited
for solving DEs both analytically (when such solutions exist) and numeri-
cally. Furthermore, one can take advantage of the highly versatile Graphics
package included in Mathematica to translate the solutions of DEs into so-
phisticated plots. In this chapter we examine a few DEs in great detail in
the hope that the reader will glean from them the essentials of how to use
Mathematica to solve DEs numerically.

6.1 Some Analytic Solutions

You can solve most of the elementary DEs with Mathematica using DSolve.
For example, using DSolve

In[1]:= DSolve[y’’[x] + 4 y[x] == 0, y[x], x]

yields

Out[1]:=

{{y[x]− > C[1] Cos[2x] + C[2] Sin[2x]}}
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including two unknown constants of integration. Note that because DE is
an “equation,” Mathematica requires the double equality sign. We can also
include some initial conditions as arguments of DSolve:

In[2]:= DSolve[{y’’[x] + 4 y[x] == 0, y[0] == 0,
y[Pi/4] == 1}, y[x], x]

and get

Out[2]:=

{{y[x]− > Sin[2x]}}
or specify only one initial condition

In[3]:= DSolve[{y’’[x]+4 y[x]==0, y[0]==0}, y[x], x]

to get

Out[3]:=

{{y[x]− > C[2] Sin[2x]}}
Mathematica recognizes most of the special DEs of mathematical physics.

Typing in the standard form of the Legendre DE,MM, p. 533 and
Box 12.3.2

In[4]:= DSolve[(1-xˆ2) y’’[x]-2 x y’[x]+n(n+1) y[x]==0,
y[x], x]

yields

Out[4]:=

{{y[x]− > C[1] LegendreP[n, x] + C[2] LegendreQ[n, x]}}
andMM, p. 564

In[5]:= DSolve[xˆ2 y’’[x]+x y’[x]+(xˆ2-mˆ2) y[x]==0,
y[x], x]

gives

Out[5]:=

{{y[x]− > BesselJ[m,x]C[1] + BesselY[m,x]C[2]}}
However, Mathematica can also find the relation—if it exists—between

a DE and the standard forms above. For example,

In[6]:= DSolve[(1+xˆ2) y’’[x]-2 x y’[x]+a y[x]==0,
y[x], x]

puts out
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Out[6]:=

{{y[x]− > (1 + x2)C[1] LegendreP
[ 1

2

(−1 +
√

9 − 4a
)
, 2, ix

]
+ (1 + x2)C[2] LegendreQ

[ 1
2

(−1 +
√

9 − 4a
)
, 2, ix

]}}
where LegendreP[n,m,x] and LegendreQ[n,m,x] are the associated Leg-
endre functions, denoted by Pm

n (x) and Qm
n (x) in the mathematics litera-

ture. Similarly,

In[7]:= DSolve[xˆ2 y’’[x]-x y’[x]-(xˆ2-mˆ2) y[x]==0,
y[x], x]

yields

Out[7]:=

{{y[x]− > xBesselJ
[√

1 −m2,−ix
]
C[1] + xBesselY

[√
1 −m2,−ix

]
C[2]

Almost all special functions of mathematical physics are related to the
hypergeometric function, and Mathematica recognizes the standard DE sat-
isfied by it, MM, p. 275

In[8]:= DSolve[x(1-x) y’’[x]-(c-(a+b+1)x) y’[x]
-a b y[x]==0, y[x], x]

Out[8]:=

{{y[x]− > C[1] Hypergeometric2F1[a, b, c, x]

+ (−1)(1−c)x(1−c)C[2] Hypergeometric2F1[1+a− c, 1+b− c, 2 − c, x]}}
and the nonstandard DE related to it:

In[9]:= DSolve[(ax+bxˆ2) y’’[x]-(c-dx) y’[x]-e y[x]==0,
y[x], x]

Out[9]:=

{{y[x]− > C[1] Hypergeometric2F1[−1
2

+
d

2b
− (b− d)2 − 4be

2b
,

− 1
2

+
d

2b
+

(b− d)2 − 4be
2b

,
c

a
,
bx

a
]

+ (−1)
a−c

a a− a−c
a b

a−c
a x

a−c
a

C[2] Hypergeometric2F1[
1
2

− c

a
+

d

2b
− (b− d)2 − 4be

2b
,

1
2

− c

a
+

d

2b
+

(b− d)2 − 4be
2b

, 2 − c

a
,
bx

a
]}}

As impressive as the list of differential equations familiar to Mathematica
is, the real power of Mathematica shows up in the numerical solutions of
DEs, which we illustrate next.
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FIGURE 6.1. A projectile being fired vertically with arbitrary velocity.

6.2 A One-Dimensional Projectile

In this first example, we want to investigate the motion of a projectile fired
straight up with some given velocity (Figure 6.1). We shall not put any
restriction on the initial speed of the projectile, making it possible for it
to reach heights that may be comparable to the Earth’s radius. With such
enormous distances possible, we can no longer assume that the weight of
the projectile—and therefore, its acceleration—is constant, but we have to
include variation of acceleration with distance.

It follows that the equation of motion of the projectile is

m
d2x

dt2
= − GmM

(R+ x)2
(6.1)

where m is the mass of the projectile, G is the universal gravitational
constant, having the value 6.6726 × 10−11 in the International System of
Units (SI), M is the mass of the Earth equal to 5.98 × 1024 kg, R is the
Earth’s radius equal to 6.37× 106 m, and x is the height above the Earth’s
surface. The negative sign is due to the fact that we have taken “up” to be
positive.

To make the problem more realistic, we want to include the air drag.
For x small compared to the thickness of the atmosphere, the drag force
is taken to be proportional to the velocity of the projectile. This approx-
imation is good as long as the density of the atmosphere is uniform; and
for small heights, this is indeed the case. However, we know that the atmo-
spheric density decreases (exponentially) with height. To incorporate this
variation, let us assume that the “constant” of proportionality multiplying
the speed—to give the drag force—is an exponentially decreasing function
of height. This is a reasonable assumption, because it is based on another
reasonable assumption, namely that the drag coefficient is proportional to
the density of the atmosphere. Including this force and dividing Equation
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(6.1) by m, we obtain

d2x

dt2
= − GM

(R+ x)2
− ae−bx dx

dt
(6.2)

where a is the drag coefficient at the surface of the Earth (x = 0), and b
determines the rate at which this coefficient decreases with height.

Our task now is to find a solution to the DE (6.2) using Mathematica.
So that we can use the equation for different situations, we take all terms
of Equation (6.2) to the left-hand side, and define the expression eqProj,
depending on the relevant parameters:

In[1]:= eqProj[G , M , R , a , b ] :=
D[x[t],{t,2}]+G M/(R+x[t])ˆ2+a Eˆ(-b x[t])
D[x[t], t]

Next, we solve the DE and give the process of solution a name:

In[2]:= proj[G ,M ,R ,a ,b ,x0 ,v0 ,T ] :=
NDSolve[{eqProj[G,M,R,a,b]==0,
x’[0]==v0, x[0]==x0}, x, {t,0,T}]

A couple of remarks are in order before we substitute actual numbers. First,
NDSolve is Mathematica’s command for solving DEs numerically (thus, N).
Second, the arguments of NDSolve consist of a list, followed by the depen-
dent variable of the DE, then another list. The first list is a set of equations,
starting with the DE, followed by initial conditions—as above—or bound-
ary conditions in which the value of x(t) is given at an appropriately chosen
number of times. As a rule, an nth-order DE requires n initial (or bound-
ary) conditions. Third, note that the initial (or boundary) conditions ought
to be written in the form of equations.

With a (parametrized) solution at our disposal, we can look at some
specific examples. First, let us consider the simplest case, where the drag
force is zero and the initial velocity is small enough that the maximum
height is negligible compared with the Earth’s radius. This is the familiar
case of constant acceleration with the simple solution

x(t) = v0t+ 1
2gt

2

where g = GM/R2 is the gravitational acceleration at the surface of the
Earth, whose value for the parameters given above is g = 9.8337103. For
v0 = 100 m/s, we get

x(t) = 100t− 4.9168552t2 (6.3)

whose plot is shown in Figure 6.2.
To find the corresponding plot of the numerical solution, we type in
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FIGURE 6.2. (Left) Plot of x(t) versus t using Equation (6.3). (Right) Plot of
the difference between Equation (6.3) and the solution obtained from numerical
calculation.

In[3]:= projMotion=proj[6.6726 10ˆ(-11), 5.98 10ˆ(24),
6.37 10ˆ6, 0, 0, 0, 100, 25]

and to plot the result, we type in

In[4]:= Plot[x[t] /. projMotion, {t, 0, 21}]
and obtain a graph almost identical to the one given in Figure 6.2 on the
left. To compare the two graphs more accurately, we plot the difference
between the two functions by typing in

In[5]:= Plot[100 t-4.9168552 tˆ2-(x[t]/.projMotion),
{t,0,21}]

The result is the plot given in Figure 6.2 on the right. The difference is
remarkably small: for heights reaching hundreds of meters, the maximum
difference is only 20 cm! The point we are trying to make is that the
numerical solution is very accurate.

The next step in our treatment of the projectile is to include the drag
force but still keep the heights small compared to the Earth’s radius. It
then follows that the variation of the drag coefficient is negligible, i.e., we
can set b = 0. Then the equation of motion becomes

d2x

dt2
= −g − a

dx

dt
or

dv

dt
= −g − av or

dv

g + av
= −dt

This can be easily integrated to give

v =
(
v0 +

g

a

)
e−at − g

a

where the constant of integration has been written in terms of the initial
speed v0. Integration of the last equation gives x(t):

x(t) = x0 +
(v0
a

+
g

a2

) (
1 − e−at

)− g

a
t (6.4)

Once again, we can compare the analytic and the numerical results. First
we write the analytic result in Mathematica



6.2 A One-Dimensional Projectile 183

5 10 15 20 25

200
400
600
800
1000

5 10 15 20 25

-0.2

-0.15

-0.1

-0.05

FIGURE 6.3. (Left) Plot of x(t) versus t using Equation (6.4). (Right) Plot of
the difference between Equation (6.4) and the solution obtained from numerical
calculation.

In[6]:= xAnal[t ,x0 ,v0 ,a ,g ] :=
x0+(v0/a+g/aˆ2) (1-Eˆ(-a t))-(g/a) t

Then we take the case of a parachute landing with a drag coefficient of
a = 0.2, in which v0 = 0 and x0 = 1000 m. So, the numerical solution is
obtained by typing in

In[7]:= projMotion = proj[6.6726 10ˆ(-11), 5.98 10ˆ24,
6.37 10ˆ6, 0.2, 0, 1000, 0, 25]

Plotting either the analytic or the numerical solution, we get the graph
on the left of Figure 6.3. Notice how after about 7 seconds, the graph
of height becomes a straight line. This is the part of motion when the
parachute reaches its terminal velocity, beyond which the motion has no
acceleration. The graphs are too similar to be a good basis for comparison.
However, if we plot the difference between the two functions by typing in

In[8]:= Plot[xAnal[t,1000,0,0.2,9.8337103]
-(x[t]/.projMotion),{t,0,25}]

we obtain the plot on the right of Figure 6.3. The difference is indeed
negligible!

Having gained confidence that the numerical solution is indeed valid, we
can now attack the problem of large velocities and altitudes. As before, we
first do the problem without drag. By typing in

In[1]:= projMotion=proj[6.6726 10ˆ(-11), 5.98 10ˆ(24),
6.37 10ˆ6, 0, 0, 0, 1000, 210];
Plot[x[t] /. projMotion, {t, 0, 210}]

we obtain the plot in Figure 6.4. The entire motion takes about 200 s
and the maximum height reached is approximately 50 km. Let us increase
the initial speed to 5000 m/s, and from the plot (not shown) read off
the duration of motion and the maximum height. These are 1350 s and
1.7 × 106 m. Continuing this process, we obtain 18,900 s for the duration
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FIGURE 6.4. The graph of the dragless projectile motion when the initial speed
is 1000 m/s.

and 2.52 × 107 m for the maximum height when the initial speed is 10,000
m/s. For the initial speed of 11,000 m/s, we get 282,000 s and 1.8 × 108 m
or 78.3 hr and 28 Earth radii. And if you increase the initial speed to
11,500 m/s, no maximum will be reached because the graph will be very
nearly a straight line. The projectile will be moving away forever with
(almost) constant speed. This is because 11,500 m/s happens to be larger
than the escape velocity of the Earth, which is 11,193 m/s.

How does all of this change if we include the drag force? Let’s take a
look! Let us set a = 0.2 and b = 0.0002. Then the command

In[2]:= projMotion=proj[6.6726 10ˆ(-11), 5.98 10ˆ(24),
6.37 10ˆ6, 0.2, 0.0002, 0, 1000, 110];
Plot[x[t] /. projMotion, {t, 0, 110}]

produces the plot in Figure 6.5. Note that in comparison with Figure 6.4,
the maximum height of about 7 km is very small. The drag force slows
down the projectile, causing it to stop at a lower altitude. Note also that as
the projectile reaches the ground, the large drag force slows it down even
further, accounting for the flatter slope at the bottom right portion of the
curve.

Because of the drag force, we expect the terminal velocity to be larger
than 11,193 m/s. In fact, changing the speed in In[2] to 11,500 m/s pro-
duces a curve with a maximum height of 4.8 × 107 m and a duration of
42,300 s. For the initial speed of 12,000 m/s, there will still be a maximum
height; but the initial speed of 12,200 m/s will send the projectile out of
the reach of the Earth’s gravitational field. It turns out that the escape
velocity in this case is somewhere between 12,190 m/s and 12,200 m/s.

For future reference, we record the command for solving DEs numerically
in Mathematica:
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FIGURE 6.5. The graph of the projectile motion with drag when the initial speed
is 1000 m/s.

NDSolve[{DE,Con},y,{x,a,b}]
solve DE with initial or boundary conditions Con and find y
as a function of x in the range x = a to x = b

NDSolve[{DEs,Con},{y1,y2, . . . },{x,a,b}]
solve a system of DEs

In these commands, all DEs are differential equations, i.e., they have double
equality signs. The derivatives in these equations operate on y[x] (not just
y). Similarly, Con are equations involving linear combination of y and its
derivatives, evaluated at some given points in the interval a ≤ x ≤ b.

6.3 A Two-Dimensional Projectile

Now let us bring in the other dimension. We attach a coordinate system
at a point on the surface of the Earth with vertical axis labeled y and the
horizontal axis labeled x as shown in Figure 6.6. It follows that the center
of the Earth is at (0,−R) in this coordinate system. The force of gravity
can be written in vector form as MM, p. 24

Fgrav = − GmM

|r − R|3 (r − R)

where r = (x, y) and R = (0,−R) are the position vectors of the projectile
and the Earth, respectively. In terms of the coordinates, the force becomes

Fgrav = − GmM

[x2 + (y +R)2]3/2 [xêx + (y +R)êy]
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FIGURE 6.6. The coordinate system used for the two-dimensional projectile mo-
tion.

Similarly, the drag force (divided by m) can be written as

Fdrag = −ae−b
[√

x2+(y+R)2−R
]
v = −ae−b

[√
x2+(y+R)2−R

](
dx

dt
êx +

dy

dt
êy

)
The exponent of the exponential is simply the difference between the dis-
tance from the projectile to the center of the Earth and the radius of the
Earth, giving the altitude above the Earth’s surface. It now follows that
the equations of motion we have to solve are

d2x

dt2
= − GM

[x2 + (y +R)2]3/2x− ae
−b

[√
x2+(y+R)2−R

]
dx

dt

d2y

dt2
= − GM

[x2 + (y +R)2]3/2 (y +R) − ae
−b

[√
x2+(y+R)2−R

]
dy

dt
(6.5)

We follow the same procedure as in the one-dimensional case. Thus, we
first write the two DEs:

In[1]:= XeqProj2D[G , M , R , a , b ] :=
D[x[t],{t,2}]+G M x[t]/(x[t]ˆ2+(y[t]+R)ˆ2)ˆ(3/2)
+a Eˆ(-b (Sqrt[x[t]ˆ2+(y[t]+R)ˆ2]-R))D[x[t],t];

YeqProj2D[G , M , R , a , b ] := D[y[t],{t,2}]
+G M (y[t]+R)/(x[t]ˆ2+(y[t]+R)ˆ2)ˆ(3/2)
+a Eˆ(-b (Sqrt[x[t]ˆ2+(y[t]+R)ˆ2]-R))D[y[t],t];

Next, we solve these equations subject to some initial conditions. This is
done in a general way by typing in

In[2]:= proj2D[G ,M ,R ,a ,b ,x0 ,y0 ,vx0 ,vy0 ,T ] :=
NDSolve[{XeqProj2D[G,M,R,a,b]==0,
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FIGURE 6.7. The projectile trajectory when there is no air drag (left), and when
there is a (strong) air drag (right). At the end of the motion, the horizontal speed
is practically zero, while the vertical motion—due to gravity—is still in operation.

YeqProj2D[G,M,R,a,b]==0,
x’[0]==vx0, y’[0]==vy0, x[0]==x0, y[0]==y0},
{x, y}, {t, 0, T}]

By entering appropriate parameters as arguments of proj2D, we can gen-
erate solutions for the DE with given initial (or boundary) conditions.

A convenient set of codes for this purpose is

In[3]:= T = 61; proj2DMotion = proj2D[6.6726 10ˆ(-11),
5.98 10ˆ24, 6.37 10ˆ6,0,0,0,0,200,300,T];
xMotion[t ] = Part[x[t] /. proj2DMotion, 1];
yMotion[t ] = Part[y[t] /. proj2DMotion, 1];
ParametricPlot[{xMotion[t], yMotion[t]},
{t, 0, T}, PlotRange -> All]

Let us look closely at these codes. The duration of the flight is set at the
beginning by T=61. Then the DEs are solved using proj2D with some ar-
guments, which include the initial conditions as well as the flight duration,
and the solution is given the name proj2DMotion. The next two statements
extract the values of x[t] and y[t] from their corresponding lists and re-
name them xMotion[t] and yMotion[t]. Finally, ParametricPlot plots
the actual trajectory of the projectile. With the values given in In[3], we
get the usual parabola as shown in the plot on the left in Figure 6.7.

If we want to see the effect of air drag, we change the values of a and b.
For a = 0.2, b = 0.0002, T = 36, and the remaining parameters unchanged,
we get the plot on the right in Figure 6.7. Notice how the range of the
projectile is reduced from 12,000 m to less than 1200 m because of drag.
Note also that the horizontal velocity is reduced considerably toward the
end of the motion, so that the fall is almost vertical.

Let us now experiment with larger velocities, and type in

In[4]:= T = 3000; proj2DMotion = proj2D[6.6726 10ˆ(-11),
5.98 10ˆ24,6.37 10ˆ6,0,0,0,0,6000,5000,T];
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FIGURE 6.8. The projectile trajectory when there is no air drag but the velocity
is fairly large.

xMotion[t ] = Part[x[t] /. proj2DMotion, 1];
yMotion[t ] = Part[y[t] /. proj2DMotion, 1];
ParametricPlot[{xMotion[t], yMotion[t]},
{t, 0, T}, PlotRange -> All,
AspectRatio -> Automatic]

We have turned off the drag force and followed the motion of the projectile
for 50 min. The option AspectRatio -> Automatic causes the horizon-
tal and vertical scales to be equal, so that the trajectory that we get is
not deformed. For the parameters of input line 4, we get the trajectory
in Figure 6.8. This Inter-Continental Ballistic Missile (ICBM) trajectory
changes slightly if we introduce a drag force with a = 0.1 and b = 0.0002.
However, something interesting happens when we change some of the other
parameters as well.

To illustrate the point, let us increase the components of the launch
velocity to vx0 = 30 km/s and vy0 = 30 km/s, the drag parameters to
a = 0.5 and b = 0.00002. As we increase the flight duration, from say
500 s to about 2900 s, we see the trajectory increase in length, as we
expect. However, after 2900 s we see no noticeable change in the length or
shape of the trajectory. Even a flight duration of 50,000 s will not produce
any change! Is the projectile stuck in mid-air? Not quite. To see what is
happening, we follow the motion more closely.

We want to look at the velocity (both magnitude and direction) of the
projectile at the altitudes reached toward the end of its motion. Three
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quantities that can help us understand this part of the motion are altitude,
magnitude of the velocity, and the radial component of the velocity. We
know how to calculate the altitude and the magnitude of the velocity:

alt =
√
x2 + (y +R)2 −R, v ≡ |v| =

√
v2

x + v2
y

The radial component of the velocity is v · êEarth, where êEarth is the unit MM, p. 6, Box 1.1.2
vector radially outward from the center of the Earth at the location of the
projectile. Since the position vector of the projectile relative to the center
of the Earth is r − R, we have

êEarth =
r − R
|r − R| =

xêx + (y +R)êy√
x2 + (y +R)2

and

vrad = v · êEarth =
xvx + (y +R)vy√
x2 + (y +R)2

All the information above is fed into Mathematica as follows:

In[5]:= velx[t ] := Evaluate[D[xMotion[t], t]];
vely[t ] := Evaluate[D[yMotion[t], t]];
velMag[t ] := Sqrt[velx[t]ˆ2 + vely[t]ˆ2]
vRadial[t ] := (velx[t] xMotion[t]+vely[t]
(yMotion[t] + 6.37 10ˆ6))/
Sqrt[xMotion[t]ˆ2+(yMotion[t] + 6.37 10ˆ6)ˆ2];

alt[t ] := Sqrt[xMotion[t]ˆ2+(yMotion[t]
+ 6.37 10ˆ6)ˆ2] - 6.37 10ˆ6;

info[t ] := {t, alt[t], velMag[t], vRadial[t]}
The first two lines evaluate the components of the velocity; the last line
outputs the information we are seeking in the form of a list.

Let us try some values for t. We rerun In[4] with the new parameters
for T = 5000. Then type in

In[5]:= info[2800]

and get
{2800, 186737.245, 6334.256,−4569.422}

informing us that 2800 s after the launch, the projectile is at an altitude of
186,737.245 m, moving at the speed of 6334.256 m/s with a radial velocity
of 4569.422 m/s toward the Earth. An input of info[2850] gives

{2850, 77506., 343.27,−288.977}

showing that the projectile has fallen a distance of about 109 km and slowed
down considerably. With info[3000], we get
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FIGURE 6.9. The projectile trajectory when there is a drag force with a = 10
and b = 0.000002. The horizontal and vertical components of velocity are 15
km/s and 1 km/s, respectively. The projectile is launched from an initial altitude
of 4000 km.

{3000, 63877.6, 69.8745,−69.8745}
showing a further fall and a huge slowdown. The new feature of this in-
formation is that the velocity is entirely radial ; i.e., the projectile is falling
vertically down. The air drag has completely eliminated any transverse mo-
tion. All subsequent motion is entirely vertical. After some trials, we dis-
cover that t = 4843.1 is the approximate flight time. In fact, info[4843.1]
yields

{4843.1, 0.893226, 19.683,−19.683}
suggesting that the projectile is at a height of 89.3 cm above the ground
while moving at the rate of 19.7 m/s. Not a safe landing! The process
of descent is very slow compared to the rest of the motion. It takes the
projectile about 2900 s to go from A to B, and about 1900 s to descend
vertically to Earth from B.

To see this vertical descent on the trajectory of the projectile, we need
to change the parameters somewhat. Figure 6.9 illustrates the trajectory
of a projectile launched from an initial altitude of 4000 km in a very thick
atmosphere whose density changes slowly with height. After four and a half
days, the projectile is descending vertically at a rate of less than 1.5 m/s
at an altitude of approximately 240 km.

We now ignore the drag and investigate the variety of orbits obtained
when the projectile is launched horizontally from a height of, say 1000 km.
The minimum speed required to keep the projectile from crashing down is√
GM/r—obtained by equating the gravitational acceleration g = GM/r2
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FIGURE 6.10. The different kinds of orbits for a projectile launched at a height
of 1000 km with different horizontal speeds.

to the centripetal acceleration—corresponding to a circular orbit. At an
altitude of 1000 km (and, therefore, r = 7.4×106 m), this speed is 7354 m/s.
The period of this orbit is 6300 s. Increasing the speed to 9000 m/s produces
an elliptical orbit with major and minor axes of about 3× 107 m and 2.5×
107 m, respectively. The period for this orbit is about 17,600 s. Increasing
the speed further to 10,000 m/s gives a longer elliptical orbit with major
and minor axes of about 108 m and 5× 107 m, respectively. The period for
this orbit is about 106,000 s. The speed of 10,500 m/s sends the projectile
out of the gravitational field of the Earth on a hyperbolic orbit. The escape
velocity is 10,400 m/s at an altitude of 1000 km. All these orbits are shown
in Figure 6.10.

6.4 The Two-Body Problem

The previous section discussed the motion of a projectile. In the context of
what we are about to investigate, we can call the motion of a projectile a
one-body problem: a single object under the influence of the gravitational
field of an infinitely heavy immobile body (the Earth). The natural gen-
eralization of a one-body problem is a two-body problem, in which each
of the two objects involved in the motion influences the other through a
gravitational force.

Thus, in a two-body problem, we are interested in the motion of each
object caused by the force of the other. Let r1 and r2 be the position
vectors of the two objects relative to the origin of some Cartesian coordinate
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system. Then there are two vector (differential) equations to be solved:

d2r1

dt2
=

Gm2

|r2 − r1|3 (r2 − r1) =
Gm2

|r|3 r

d2r2

dt2
=

Gm1

|r1 − r2|3 (r1 − r2) = −Gm2

|r|3 r (6.6)

where r = r2 − r1. These constitute six second-order ODEs, corresponding
to three coordinates of each of the two objects. To be able to solve these
uniquely, we need 12 initial (or boundary) conditions. We can write the 6
ODEs and the 12 initial conditions manually. But there is a more elegant
way, which uses some of the nice features of Mathematica.

We first define all the constants of our problem:

In[1]:= G=6.6726 10ˆ(-11); m1=5.98 10ˆ24; m2=7.35 10ˆ22

where we have chosen the Earth (m1) and the moon (m2) to be our two
objects. Next, we define the position vectors

In[2]:= r1[t ] := {x1[t], y1[t], z1[t]};
r2[t ] := {x2[t], y2[t], z2[t]};
r[t ] := r2[t] - r1[t];

We now want to write the DEs of Equation (6.6) with all the terms
moved to the left-hand side. The resulting left-hand sides are

In[3]:= eq1=D[r1[t],{t,2}]-G m2 r[t]/(r[t].r[t])ˆ(3/2);
eq2=D[r2[t],{t,2}]+G m1 r[t]/(r[t].r[t])ˆ(3/2);

Notice that by differentiating a vector, we differentiate all its components.
We have also used the dot product to evaluate the denominator.

Our next task is to turn these into a set of six DEs. We use the command
Thread to do that. Basically Thread applies a function or procedure to theusing Thread
elements of a list. For example, Thread[f[r1[t],r2[t]]] produces

{f[x1[t], x2[t]], f[y1[t], y2[t]], f[z1[t], z2[t]]}
Thus, we implement the boundary conditions (BCs) as

In[4]:= BC11 = Thread[r1[0] == {0, 0, 0}];
BC12 = Thread[Evaluate[r1’[0]] == {0, 0, 0}];
BC21 = Thread[r2[0] == {3.85 10ˆ8, 0, 0}];
BC22 = Thread[Evaluate[r2’[0]] == {0, 1022, 0}];

The first line is equivalent to

BC11 ={x1[0]==0, y1[0]==0, z1[0]==0}
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and places the Earth at the origin. The second line fixes the initial velocity
of the Earth to zero. The third line places the moon on the x-axis 3.85 ×
108 m away from the origin (or Earth). Finally, the last line gives the moon
an initial velocity of 1022 m/s in the positive y-direction.

We can thread the DEs as well. For example, Thread[eq1==0] produces
a list of DEs involving the components of r1; similarly with r2. This way,
we create a number of separate lists for DEs and boundary conditions. To
solve these numerically, we have to Join them. So, our next command will
be using Join

In[5]:= listEq=Join[Thread[eq1==0],Thread[eq2==0],
BC11, BC12, BC21, BC22];

which creates a single list consisting of 6 DEs and 12 BCs. We can now tell
Mathematica to solve them:

In[6]:= TwoBodies = NDSolve[listEq, Join[r1[t], r2[t]],
{t, 0, 5 10ˆ6}];

Earth[t ] = r1[t] /. TwoBodies;
moon[t ] = r2[t] /. TwoBodies;

The arguments of NDSolve are a list of DEs and BCs called listEq, a
list of independent variables consisting of the three components of r1 and
three components of r2 combined using Join, and a last list giving the
independent variable and its range—chosen to be about two revolutions of
the moon. The last two lines in In[6] define the Earth position Earth[t]
and the moon position moon[t] as the solutions of the system of DEs.

Now we can plot the trajectories of the moon and Earth. Typing in

In[7]:= ParametricPlot3D[{moon[t][[1,1]],moon[t][[1,2]],
moon[t][[1, 3]]}, {t, 0, 5 10ˆ6}, Ticks -> False]

produces the curve shown on the left of Figure 6.11.
The brackets after moon[t] in input 7 pick entries of that list. To demon-

strate this, type in moon[1000] and get

{{3.84999 × 108, 1.022 × 106, 0.}}
which is a list of one list with three entries, or a two-level list. The first
level is obtained by typing moon[1000][[1]], which puts out

{3.84999 × 108, 1.022 × 106, 0.}
i.e., the only element—which happens to be a list itself—of the outer list.
Each element of this inner list can be selected by entering a second number
after 1 separated by a comma. Thus, moon[1000][[1,1]] yields 3.84999×
108, etc.

Figure 6.11 shows some interesting results. First of all, the entire motion
of the two bodies takes place in the xy-plane. This is to be expected, because
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FIGURE 6.11. The orbit of moon (left) and Earth (right). The departure from
elliptical shape is due to the motion of the center of mass of the system.

the entire initial conditions occur in the same plane; and since the forces on
the two bodies have no components perpendicular to this plane, the bodies
cannot accelerate out of the plane. Second, the orbit (left of the figure) of
the moon is “moving” along the y-axis, so that after each revolution, the
moon starts on a new orbit displaced from the previous one by a small
amount. The reason is that the center of mass of the system is moving in
the y-direction. When we start the moon in the y-direction with a speed of
v20 = 1022 m/s, the center of mass picks up a speed of

vcm =
m2v20
m1 +m2

=
7.35 × 1022 × 1022

5.98 × 1024 + 7.35 × 1022 = 12.4 m/s

which in the course of a revolution (about 27 days) adds up to about
2.9 × 107 m, a noticeable displacement. Third, the Earth orbit (on the
right of the figure), which is a circle about the center of mass (see below),
becomes a cycloid—the curve traced by a point on the rim of a moving
wheel. Indeed, the Earth is a point on the wheel (its orbit) that moves
uniformly due to the uniform motion of the center of mass.

Let us now change the initial conditions so that the center of mass is at
the origin and has zero momentum initially (and, therefore, for all times).
This can be done by positioning the Earth at x = −[m2/(m1 +m2)]3.85 ×
108, the moon at x = −[m1/(m1 + m2)]3.85 × 108, and giving the Earth
a momentum equal in magnitude to the initial momentum of the moon,
but opposite in direction. The speed corresponding to this momentum is
(m2/m1)v20. So, we change input line 4 to

In[8]:= BC11=Thread[r1[0]=={-(m2/(m1+m2)) 3.85 10ˆ8,0,0}];
BC12 = Thread[Evaluate[r1’[0]] ==

{0, -(m2/m1) 1022, 0}];
BC21 = Thread[r2[0] ==

{(m1/(m1+m2))3.85 10ˆ8, 0, 0}];
BC22 = Thread[Evaluate[r2’[0]] == {0, 1022, 0}];



6.4 The Two-Body Problem 195

-4·108 -2·108 2·108

-4·108

-2·108

2·108

4·108

FIGURE 6.12. The orbit of moon is really an ellipse whose foci are very close.

and rerun input lines 5, 6, and 7. Once again, the motion of both objects
will be confined to the xy-plane. So, instead of a three-dimensional plot,
we make an ordinary plot of the trajectory of the Earth and the moon. For
example, for the moon, we type in

In[9]:= ParametricPlot[{moon[t][[1,1]],moon[t][[1,2]]}
{t, 0, 5 10ˆ6}]

and obtain the plot in Figure 6.12. Since the center of mass is at the origin
this time, the moon retraces its orbit in its second revolution (the upper
limit of t in In[9] is over twice the moon’s period).

Although it is not apparent from the plot, the moon’s orbit is an ellipse
with the center of mass (the origin) at one of its foci. In fact, by comparing
the location of the moon at t = 0 and at t = T/2, where T is the period
of the moon, one can find the distance between the two foci and show that
it is not zero. The details are left as an exercise for the reader. A careful
examination of Figure 6.12 indeed reveals that the origin of the figure is
not the center of the “circle.”

One can also plot the orbit of the Earth. That orbit is also an ellipse with
very small eccentricity (a circle has zero eccentricity). It is interesting to
note that the center of mass of the Earth–moon system is inside the Earth.
So, when we talk about the orbit of the Earth, we mean the motion of the
center of the Earth about the center of mass of the system.

In all the discussion above, the moon and Earth have been confined to
the xy-plane, because the initial conditions were confined to that plane. If
we give one of the objects an initial velocity along the z-axis, the motion



196 6. Numerical Solutions of ODEs: Examples Using Mathematica

-2·108

0

2·108
-2·108

0

2·108

4·108

0
5·107
1·108

-2·108

0

2·108

FIGURE 6.13. The orbit of moon when Earth is given an initial speed along the
z-direction.

will no longer take place solely in a plane. To see the effect of such an initial
condition, type in

In[10]:= BC11=Thread[r1[0]=={-(m2/(m1+m2)) 3.85 10ˆ8,0,0}];
BC12=Thread[Evaluate[r1’[0]]=={0, 0, 15}];
BC21=Thread[r2[0]=={(m1/(m1+m2))3.85 10ˆ8,0,0}];
BC22=Thread[Evaluate[r2’[0]]=={0,1022,0}];

giving the Earth an initial velocity of 15 m/s along the z-axis. Now run
input line 5 to set up the DEs, and 6 for 107 seconds to obtain the tra-
jectories. A three-dimensional parametric plot of the moon’s trajectory is
shown in Figure 6.13. Notice how the entire orbit is displaced along the y-
and z-axes. This is, of course, due to the uniform motion of the center of
mass, which, due to the initial velocities, has a y- as well as a z-component.

6.4.1 Precession of the Perihelion of Mercury
One of the earliest triumphant tests of the general theory of relativity
(GTR) was the precession of the orbits of planets. This precession is so
small that it is observable only for Mercury, the closest planet to the Sun,
and, therefore, in its strongest gravitational field.

Over many decades astronomers had noted that the orbit of Mercury
precessed about 532 arcseconds per century. Tidal perturbations due to
other planets accounted for 489 arcseconds per century, leaving 43 arcsec-
onds per century unaccounted for. When Einstein’s GTR was applied to
the motion of planets, it was noted that it too causes a precession of the
orbits, which only in the case of Mercury was large enough to be measur-
able. In fact, GTR predicts—to within 1% accuracy—the same amount of
precession that was unaccounted for classically.

To the first nontrivial approximation, Einstein’s GTR changes the force
of gravity by adding a force that varies as the inverse fourth power of
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distance. To be precise, the force of gravity due to a (large) mass m1 on a
(small) mass m2 including Einstein’s correction is

F12 = − Gm1m2

|r2 − r1|3 (r2 − r1) − 3L2
2Gm1m2

c2|r2 − r1|5 (r2 − r1)

where L2 is the angular momentum of m2 and c is the speed of light. We
will lump all the constants in the second term into one constant and call it
a.

Instead of the Earth–moon system discussed above, let us consider the
Sun–Mercury system. Since we are impatient and don’t want to wait a
hundred years to see only 43 arcseconds, we change some of the actual
parameters to expedite the precession. Two major changes are important
for our consideration. First, the (initial) orbital speed has to be increased
from the actual 47.9 km/s to 60 km/s to change the almost-circular orbit of
Mercury to a well-defined ellipse, because it is very hard to see a precession
if the orbit is almost circular. Second, to make the precession larger, we
change the actual value of a, which is approximately 1034, to 1040. Thus,
we use the following parameters:

In[1]:= G=6.6726 10ˆ(-11);m1=2 10ˆ30;m2=3.3 10ˆ23;a=10ˆ40

which, except for a, are the actual data for the Sun and Mercury.
The definitions of r1, r2, and r are as before. Thus input line 2 on page 192

will not change. However, input line 3 becomes

In[3]:= eq1=D[r1[t],{t,2}]-G m2 r[t]/(r[t].r[t])ˆ(3/2);
eq2=D[r2[t],{t,2}]+G m1 r[t]/(r[t].r[t])ˆ(3/2)
+ a r[t]/(r[t].r[t])ˆ(5/2);

For boundary conditions, we change input line 8 to

In[8]:= BC11=Thread[r1[0]=={-(m2/(m1+m2)) 5.79 10ˆ(10),
0,0}];

BC12 = Thread[Evaluate[r1’[0]] ==
{0, -(m2/m1) 60000, 0}];

BC21 = Thread[r2[0] ==
{(m1/(m1+m2)) 5.79 10ˆ(10), 0, 0}];

BC22 = Thread[Evaluate[r2’[0]] == {0, 60000, 0}];
with a larger initial speed. The heart of the calculation—input line 6—is
also changed accordingly:

In[6]:= TwoBodies = NDSolve[listEq, Join[r1[t], r2[t]],
{t, 0, 3 10ˆ8}];

Sun[t ] = r1[t] /. TwoBodies;
Mercury[t ] = r2[t] /. TwoBodies;
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FIGURE 6.14. Left: The orbit of Mercury without relativistic correction. Right:
The precession of orbit of Mercury due to the relativistic correction.

A parametric plot of Mercury’s orbit for t = 2 × 108 s produces the plot
on the right of Figure 6.14. With a = 0, i.e., without relativistic correction,
we get the plot on the left. It is clear that the perihelion of the orbit of
Mercury precesses because of the relativistic correction.

6.5 The Three-Body Problem

All the nonrelativistic calculations in the previous section can be done
analytically. In fact, historically that calculation was the first application
of Newton’s laws of motion to a “solar system” consisting of a Sun and a
single planet. This Kepler problem was the first of a long series of triumphs
of the classical laws of motion. However, when one tries to apply the laws
of motion to a real solar system with several planets of different masses,
one encounters difficulties. In fact, adding a single new body to a two-body
system renders it impossible to solve analytically. But with Mathematica
at our disposal, we can resort to a numerical solution.

6.5.1 Massive Star and Two Planets
The generalization of the two-body problem to the three-body problem is
straightforward. The first statement is

In[1]:= G=6.6726 10ˆ(-11); m1=2 10ˆ30; m2=5.98 10ˆ24;
m3=3.3 10ˆ23; x10=0; v10=0; x20=1.5 10ˆ(11);
v20 = 29800; x30 = 5.79 10ˆ(10); v30 = 47900;

where we have included the nonzero initial position coordinates and veloci-
ties. All data given here are actually those of the Sun, Earth, and Mercury.
We are not interested in the motion perpendicular to the xy-plane (i.e., we
fix the initial conditions so that no such motion develops). Thus, all our
vectors are two-dimensional, and the second statement is
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FIGURE 6.15. The orbits of Earth (larger circle) and Mercury retraced for 10
years (10 revolutions of Earth).

In[2]:= r1[t ]:={x1[t],y1[t]}; r2[t ]:={x2[t],y2[t]};
r3[t ]:={x3[t],y3[t]}; r12[t ]:=r2[t]-r1[t];
r13[t ]:=r3[t]-r1[t]; r23[t ]:=r3[t]-r2[t];

The left-hand sides of the differential equations are

In[3]:= eq1=D[r1[t],{t,2}]
-G m2 r12[t]/(r12[t].r12[t])ˆ(3/2)
-G m3 r13[t]/(r13[t].r13[t])ˆ(3/2)

eq2=D[r2[t],{t,2}]
+G m1 r12[t]/(r12[t].r12[t])ˆ(3/2)
-G m3 r23[t]/(r23[t].r23[t])ˆ(3/2)

eq3=D[r3[t],{t,2}]
+G m1 r13[t]/(r13[t].r13[t])ˆ(3/2)
+G m2 r23[t]/(r23[t].r23[t])ˆ(3/2)

and if we line up the Sun, Earth, and Mercury along the x-axis and give
them initial velocities along the y-axis, then the BCs will look like this:

In[4]:= BC11 = Thread[r1[0] == {x10, 0}];
BC12 = Thread[Evaluate[r1’[0]] == {0, v10}];
BC21 = Thread[r2[0] == {x20, 0}];
BC22 = Thread[Evaluate[r2’[0]] == {0, v20}];
BC31 = Thread[r3[0] == {x30, 0}];
BC32 = Thread[Evaluate[r3’[0]] == {0, v30}];

The system of DEs is obtained by the use of Thread and Join:
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In[5]:= listEq=Join[Thread[eq1==0],Thread[eq2==0],
Thread[eq3==0],BC11,BC12,BC21,BC22,BC31,BC32];

Finally, we solve these equations and extract the solutions for the Sun,
Earth, and Mercury:

In[6]:= ThreeBodies = NDSolve[listEq, Join[r1[t], r2[t],
r3[t]],{t, 0, 5 10ˆ6}];

Sun[t ] = r1[t] /. ThreeBodies;
Earth[t ] = r2[t] /. ThreeBodies;
Mercury[t ] = r3[t] /. ThreeBodies;

With the solution found, we can look at some plots. For instance,

In[7]:= ParametricPlot[
{{Mercury[t][[1,1]], Mercury[t][[1,2]]},
{Earth[t][[1,1]], Earth[t][[1,2]]}},
{t, 0, 3.2 10ˆ8}, AspectRatio->Automatic]

gives the orbits of Figure 6.15. It shows that—at least for 3.2 × 108 s, or
10 Earth years—the orbits are retraced.

What does the orbit of Mercury look like as seen from Earth? To answer
that, we need to find the position vector of Mercury relative to Earth. But
this is simply r3 − r2. Therefore, the command should be of the form

In[8]:= ParametricPlot[{Mercury[t][[1,1]]-Earth[t][[1,1]],
Mercury[t][[1,2]]-Earth[t][[1,2]]},
{t,0,6.4 10ˆ7}, Ticks -> False,
AspectRatio -> Automatic]

which produces the trajectory of Figure 6.16. This trajectory reveals athe retrograde motion of
Mercury relative to
Earth

feature known to the Hellenistic astronomers and for the explanation of
which they introduced the idea of the epicycle: Mercury loops backward
during some parts of its motion, while it also gets closer to Earth. This
part of Mercury’s motion is called the retrograde motion.

6.5.2 Light Star and Two Planets
The enormous mass of the Sun overshadows the other gravitational fields,
and, therefore, controls the motion of each planet as if the other planet
were not there. By changing the masses of the three bodies and their initial
positions and velocities, we can create very erratic trajectories. To reduce
the dominance of the Sun, we make Earth and Mercury more massive.
Consider the following parameters:

In[9]:= G=6.6726 10ˆ(-11); m1=2 10ˆ30; m2= 10ˆ29;
m3=6 10ˆ28; x10=0; v10=0; x20=1.5 10ˆ(11);
v20 = 30000; x30 = 8 10ˆ(10); v30 = 45000;
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FIGURE 6.16. The trajectory of Mercury as seen from Earth (at the origin).
Note the retrograde loops at which Mercury gets closest to Earth.

The masses of Earth and Mercury are now, respectively, 5% and 3% of the
Sun’s mass, and Mercury is initially closer to Earth than before. Feeding
these parameters to the system of DEs with the time interval between 0
and 5 × 107 s and plotting the two trajectories on the same graph for the
same time interval produce the left diagram in Figure 6.17, which is in
complete contrast to the nice periodic trajectories of Figure 6.15.

The complicated trajectories of Figure 6.17 herald the dangerous possi-
bility of a close encounter of the two planets. To examine this possibility,
we once again look at the trajectory of Mercury relative to Earth by typing
in

In[10]:= ParametricPlot[{Mercury[t][[1,1]]-Earth[t][[1,1]],
Mercury[t][[1,2]]-Earth[t][[1,2]]},{t,0,5 10ˆ7},
Ticks -> False, AspectRatio -> Automatic]

corresponding to a time span of 5 × 107, or about a year and a half. If the
trajectory passes through the origin, where the Earth is located, we have a
collision. The plot on the right in Figure 6.17 indicates a possible collision.
However, we have not given the system sufficient time to run its course. So,
we increase the upper limit of the time interval to 6×107 s in the argument
of NDSolve. Mathematica will give the following error message:

NDSolve::"ndsz": "At t == 5.204117984913484×107, step size
is effectively zero; singularity suspected."



202 6. Numerical Solutions of ODEs: Examples Using Mathematica

FIGURE 6.17. Left: The orbits of heavy Mercury and Earth around a light Sun.
Right: The trajectory of Mercury as seen from Earth (origin).

This should give us a clue about the time of close encounter! Thus, we
change the upper limit of the time interval to 5.204117984913484 × 107 s
in the argument of NDSolve.

How close do the planets get at this “singularity” time? To find out,
write the distance between them as a function of time:

In[11]:= dist[t ]:=Sqrt[
(Mercury[t][[1, 1]] - Earth[t][[1, 1]])ˆ2
+ (Mercury[t][[1, 2]] - Earth[t][[1, 2]])ˆ2]

Then

In[12]:= dist[5.204117984913484 10ˆ7]

yields 476,179. The centers of the two planets have come to within 476 km
of one another! This indicates a collision. We have to emphasize that this
is a strictly three-body phenomenon. Two-body collisions occur if a planet
has zero or very small initial velocity component perpendicular to the line
joining its center to the Sun. Once this transverse component of velocity
is large enough, there will never be a collision. The transverse velocities
in input line 9 are large enough to set each planet separately on a stable
orbit. However, once the three bodies interact with one another, those same
velocities put two of them on a collision course in less than two years. For a
detailed study of the three-body problem using Mathematica, see [Gass 98,
pp. 91–117].

6.6 Nonlinear Differential Equations

A variety of techniques, in particular, the method of infinite power series,
could solve almost all linear DEs of physical interest. However, some very
fundamental questions such as the stability of the solar system led to DEs
that were not linear, and for such DEs no analytic (including series repre-
sentation) solution existed. In the 1890s, Henri Poincaré, the great French
mathematician, took upon himself the task of gleaning as much information
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from the DEs describing the whole solar system as possible. The result was
the invention of one of the most powerful branches of mathematics (topol-
ogy) and the realization that the qualitative analysis of (nonlinear) DEs
could be very useful.

One of the discoveries made by Poincaré, which much later became the
cornerstone of many developments, was that unlike the linear DEs, non-
linear DEs may be very sensitive to the initial conditions. In other words,
if a nonlinear system starts from some initial conditions and develops into
a certain final configuration, then starting it with slightly different initial
conditions may cause the system to develop into a final configuration com-
pletely different from the first one. This is in complete contrast to the linear
DEs, where two nearby initial conditions lead to nearby final configurations.

In general, the initial conditions are not known with infinite accuracy.
Therefore, the final states of a nonlinear dynamical system may exhibit
an indeterministic behavior resulting from the initial (small) uncertainties.
This is what has come to be known as chaos. chaos due to uncertainty

in initial conditionsAlthough analytic solutions are known only for a handful of nonlinear
DEs, the preponderance of computational tools has made the numerical
solution of these DEs conveniently possible. With personal computers be-
coming a household item, and fast powerful calculational software such as
Mathematica being available, an explosion of interest has been revived in
studying nonlinear differential equations. In this section we examine one
example of nonlinear DEs.

As a paradigm of a nonlinear dynamical system, we shall study the mo-
tion of a harmonically driven dissipative pendulum whose angle of oscilla-
tion is not necessarily small. The equation of motion of such a pendulum,
coming directly from the second law of motion, is

m
d2x

dt2
= F0 cos(Ωt) − b

dx

dt
−mg sin θ, (6.7)

where x is the length (as measured from the equilibrium position) of the
arc of the circle on which mass m moves (see Figure 6.18).

The first term on the RHS of Equation (6.7) is the harmonic driving force
with angular frequency Ω, the second is the dissipative (friction, drag, etc.)
force, and the last is the gravitational force in the direction of motion. The
minus signs appear because the corresponding forces oppose the motion.
Since the pendulum is confined to a circle, x and θ are related via x = lθ,
and we obtain

ml
d2θ

dt2
= F0 cos(Ωt) − bl

dθ

dt
−mg sin θ

Let us change t to t = τ
√
l/g, where τ is a dimensionless parameter mea-

suring time in units of T/(2π) with T = 2π
√
l/g being the period of the
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FIGURE 6.18. The displacement x and the gravitational force acting on the
pendulum.

small-angle pendulum. Then, with the dimensionless constants

γ ≡ b

m

√
l

g
, φ0 ≡ F0

mg
, ωD ≡ Ω

√
l

g

the DE of motion becomes

θ̈ + γθ̇ + sin θ = φ0 cos(ωDt) (6.8)

where now t is the “dimensionless” time, and the dot indicates differentia-
tion with respect to this t.

One of the devices that facilitates our understanding of nonlinear dynam-
ical systems is the phase-space diagram. The phase space of a dynamicalphase-space diagram
system is a Cartesian multidimensional space whose axes consist of posi-
tions and momenta of the particles in the system. Instead of momenta the
velocities of particles are mostly used. Thus a single particle confined to
one dimension (such as a particle in free fall, a mass attached to a spring,
or a pendulum) has a two-dimensional phase space corresponding to the
particle’s position and speed. Two particles moving in a single dimension
have a four-dimensional phase space corresponding to two positions and
two speeds. A single particle moving in a plane also has a four-dimensional
phase space because two coordinates are needed to determine the position
of the particle, and two components to determine its velocity, and a system
of N particles in space has a 6N -dimensional phase space.

A phase-space trajectory of a dynamical system is a curve in itsphase-space trajectory
phase space corresponding to a possible motion of the system. If we can
solve the equations of motion of a dynamical system, we can express all
its position and velocity variables as a function of time, constituting a
parametric equation of a curve in phase space. This curve is the trajectory
of the dynamical system.

Let us consider the simplest pendulum problem in which there is no driv-
ing force, the dissipative effects are turned off, and the angle of oscillation
is small. Then (6.8) reduces to the linear DE θ̈+θ = 0, whose most general
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solution is θ = A cos(t+ α) so that

θ = A cos(t+ α)

ω ≡ θ̇ ≡ dθ

dt
= −A sin(t+ α) (6.9)

This is a one-dimensional system (there is only one coordinate, θ) with a
two-dimensional phase space. Equation (6.9) is the parametric equation of
a circle of radius A in the θω-plane. Because A is arbitrary (it is, however,
determined by initial conditions), there are (infinitely) many trajectories
for this system.

Let us now make the system a little more complicated by introducing a
dissipative force, still keeping the angle small. The DE (still linear) is now

θ̈ + γθ̇ + θ = 0

and the general solution for the damped oscillatory case is

θ(t) = Ae−γt/2 cos(ω0t+ α) where ω0 ≡
√

4 − γ2

2

with
ω = θ̇ = −Ae−γt/2

{γ
2

cos(ω0t+ α) + ω0 sin(ω0t+ α)
}

The phase-space trajectories of this system can be plotted using Mathe-
matica’s ParametricPlot. Two such trajectories for A = 1 and A = 2 (but
the same γ of 0.5) are shown in Figure 6.19.

A new feature of this system is that regardless of where the trajectory
starts at t = 0, it will terminate at the origin. The analytic reason for this
is of course the exponential factor in front of both coordinates which will
cause their decay to zero after a long (compared to 1/γ) time. It seems
that the origin “attracts” all trajectories and for this reason is called an
attractor. attractor

We now turn to the numerical solution of the motion of the pendulum. To
be able to have access to the derivative of the angle, we turn the second-
order DE of the driven pendulum into a set of first-order DEs. First we
rewrite the DE describing a general pendulum [see Equation (6.8)] as

θ̈ + γθ̇ + sin θ = φ0 cosα

where α is simply ωDt. Then turn this equation into the following entirely
equivalent set of three first-order nonlinear DEs:

θ̇ = ω, ω̇ = −γω − sin θ + φ0 cosα, α̇ = ωD (6.10)

The two-dimensional (θ, ω) phase space has turned into a three-dimensional
(θ, ω, α) phase space. The reason behind introducing the new variable α
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FIGURE 6.19. The phase-space trajectories of a damped pendulum undergo-
ing small-angle oscillations with no driving force. Different spirals correspond to
different initial conditions.

is to avoid explicit appearance of the independent variable t. It turns
out that these autonomous systems—systems that have no explicit time
dependence—are more manageable than DEs with explicit time depen-
dence.

A brief Mathematica code for solving Equation (6.10) numerically is

In[1]:= pend[θ0 , ω0 , γ , φ0 , ωD , T ] :=
NDSolve[{θ’[t]==ω[t],
ω’[t]==-γω[t]-Sin[θ[t]]+φ0 Cos[α[t]],
α’[t]==ωD,
θ[0]==θ0, ω[0]==ω0, α[0] == 0},
{θ, ω, α}, {t, 0, T}];

where we have used the Mathematica palette containing the Greek alpha-
bet.

Just as in the linear case, it is instructive to ignore the damping and driv-
ing forces first. We set γ and φ0 equal to zero in Equation (6.10) and solve
the set of DEs numerically. For small angles, we expect a simple harmonic
motion (SHM) whose phase-space diagram is a circle. We are interested in
the phase-space diagrams when the maximum angular displacements are
large. With the initial angular velocity set at zero, the pendulum will ex-
hibit a periodic behavior represented by closed loops in the phase space.
Figure 6.20 shows four such closed loops corresponding—from small to large
loops—to the initial angular displacement of π/5, π/2, 2π/3, and (almost)
π. These loops are produced by typing in

In[2]:= sol1 = pend[Pi/5, 0, 0, 0, 0, 100];
sol2 = pend[Pi/2, 0, 0, 0, 0, 100];
sol3 = pend[2 Pi/3, 0, 0, 0, 0, 100];
sol4 = pend[Pi/1.0001, 0, 0, 0, 0, 100];



6.6 Nonlinear Differential Equations 207

-3 -2 -1 0 1 2 3
-2

-1

0

1

2

FIGURE 6.20. Phase-space diagrams for a pendulum corresponding to different
values of initial (maximum) displacement angles (horizontal axis). The initial
angular speed is zero for all diagrams.

and

In[3]:= ParametricPlot[Evaluate[{{θ[t], ω[t]}/.sol1,
{θ[t], ω[t]}/.sol2, {θ[t], ω[t]}/.sol3,
{θ[t], ω[t]}/.sol4}], {t, 0, 30},
PlotRange -> All, Frame -> True]

They represent oscillations only : the angular displacement is bounded be-
tween a minimum and a maximum value determined by θ(0). The closed
loops are characterized by the fact that the angular speed vanishes at max-
imum (or minimum) θ, allowing the pendulum to start moving in the op-
posite direction. Note that the time parameter in the plot of In[3] goes
up to 30 rather than 100. This is because only 30 units of time are required
to complete all the closed loops. In fact, the smaller loops need less time
to close on themselves; only the largest loop needs a minimum of 30 units
to get completed. The smaller loops retrace themselves during the extra
times.

Suppose now that we set θ(0) = −π and ω(0) = 1, corresponding to
raising the pendulum all the way up until it is above its pivot, and giving it
an initial speed. The angular displacement is unbounded: it keeps increasing
for all times. Physically, this corresponds to forcing the pendulum to “go
over the hill” at the top by providing it an initial angular velocity. If the
pendulum is pushed over this hill once, it will continue doing it forever
because there is no damping force. The rotations are characterized by a
nonzero angular velocity at θ = ±π. This is clearly shown in Figure 6.21,
produced by typing in

In[4]:= sol5 = pend[-Pi, 1, 0, 0, 0, 100];

and
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FIGURE 6.21. Phase-space diagrams for a pendulum corresponding to a maxi-
mum displacement angles of −π and an initial angular speed of ω = 1.

In[5]:= ParametricPlot[Evaluate[{θ[t], ω[t]}/.sol5],
{t, 0, 20}, PlotRange -> All, Frame -> True]

Note that the horizontal axis θ is not bounded: if we increase T beyond 20,
θ will also increase. However, the angular speed ω (the vertical axis) will
remain bounded because of the conservation of energy.

If the damping force is turned on (still without any driving force), the
trajectories will spiral into the origin of the phase space as in the case of
the linear (small-angle) pendulum. However, the interesting motion of a
pendulum begins when we turn on a driving force regardless of whether or
not the dissipative effect is present. Nevertheless, let us place the pendulum
in an environment in which γ = 0.3. Now drive this pendulum with a
(harmonic) force of amplitude φ0 = 0.5 and angular frequency ωD = 1.
For θ0 = π and ω0 = 0, Equation (6.10) will then give a solution that has
a transient motion lasting until t ≈ 32. From t = 32 onward, the system
traverses a closed orbit in the phase diagram as shown in Figure 6.22. This
orbit is an attractor in the same sense as a point is an attractor for a
dissipative nondriven pendulum. An attractor such as the one exhibited in
Figure 6.22 is called a limit cycle.limit cycle

As we increase the control parameter φ0, the phase-space trajectories go
through a series of periodic limit cycles until they finally become completely
aperiodic: chaos sets in. Figure 6.23 shows four trajectories whose common
initial angular displacement θ0, initial angular velocity ω0, damping factor
γ, and drive frequency ωD are, respectively, π, 0, 0.5, and 2/3. The only
(control) parameter that is changing is the amplitude of the driving force
φ0. This changes from 0.97 for the upper left to 1.2 for the lower right
diagram.

The main characteristic of chaos is the exponential divergence of neigh-
boring trajectories. A very nice illustration of this phenomenon for the
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FIGURE 6.22. The moderately driven dissipative pendulum with γ = 0.3 and
φ0 = 0.5. After a transient motion, the pendulum settles down into a closed
trajectory.

FIGURE 6.23. Four trajectories in the phase space of the damped driven pen-
dulum. The only difference in the plots is the value of φ0, which is 0.97 for the
upper left, 1.1 for the upper right, 1.15 for the lower left, and 1.2 for the lower
right diagrams.
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FIGURE 6.24. The projection onto the θω-plane of two trajectories starting at
approximately the same point near (−2, −2) diverge considerably after eight units
of time. The loop does not contradict the DE uniqueness theorem!

nonlinear pendulum is depicted in Figure 6.24, where two nearby trajecto-
ries in the neighborhood of point (−2,−2) are seen to diverge dramatically
(in eight units of time).

However, something peculiar is happening here! One of the trajectories
loops on itself. Why is this bad? Because of the uniqueness theorem for
DEs. For our purposes this theorem states that if the dynamical variables
and their first derivatives of a system are specified at some (initial) time,
then the evolution of the system in time is uniquely determined. In the
context of phase space this means that from any point in phase space only
one trajectory can pass. If two trajectories cross, the system will have a
“choice” for its further development starting at the intersection point, and
the uniqueness theorem does not allow this. So why is one of the trajectories
crossing itself? It is not! The plots in that figure are projections of the three-
dimensional trajectories onto the θω-plane. The three-dimensional figures
in which α is also included the trajectories never cross (see Figure 6.25).

6.7 Time-Independent Schrödinger Equation

Many, if not all, special functions of mathematical physics, with a wide
range of applications, are solutions to eigenvalue problems, i.e., second-
order DEs of the type discussed in Section 5.5. As an important paradigmChapters 12 and 13 of

MM discuss several
special functions of
mathematical physics.

of such eigenvalue problems and to gain insight into the method of solving
them, we consider a few examples of the time-independent Schrödinger
equation in one dimension, obtained by separating time from the (single)
space coordinate in the (time-dependent) Schrödinger equation. The time-
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FIGURE 6.25. The two trajectories of Figure 6.24 shown in the full
three-dimensional phase space.

independent Schrödinger equation is of the form

− �
2

2m
d2ψ

dx2 + V (x)ψ = Eψ (6.11)

where V (x) and E are, respectively, the potential and total energy of the
particle whose mass is m. This equation can be written as

d2ψ

dx2 + q(x)ψ = −k2ψ where q(x) = −2m
�2 V (x), k2 =

2m
�2 E (6.12)

which is identical to Equation (5.35).

6.7.1 Infinite Potential Well
As our simplest example, consider an electron in an infinite potential well
described by

V (x) =




0 if 0 < x < L

∞ otherwise

Since no particle can have an infinite amount of energy, it is forbidden to
go outside the region 0 < x < L. This means that whatever the solution
is for the inside, it must vanish at x = 0 and x = L. The potential energy
being zero inside, the Schrödinger equation (6.12) becomes

d2ψ

dx2 + k2ψ = 0, k2 =
2mE
�2 (6.13)
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Our task is to solve this simple equation by discretizing it and using Equa-
tion (5.36). But first a word on its analytic solution. The most general
solution of the DE in (6.13) is

ψ(x) = A cos kx+B sin kx

Because ψ(0) = 0, A must vanish; and ψ(L) = 0 gives

B sin kL = 0 ⇒ sin kL = 0 ⇒ kL = lπ or k =
lπ

L
, l = 1, 2, . . .

(6.14)

where B = 0 has been excluded because it leads to the trivial solution
ψ(x) = 0. This “quantization” of k leads directly to the quantization of
energy by Equation (6.13). We say that the energy eigenvalues and the
corresponding eigenvectors (or eigenfunctions) are

El =
�

2

2m

(
lπ

L

)2

ψl(x) = B sin
(
lπx

L

)
, l = 1, 2, . . . (6.15)

Note that B remains unspecified unless we impose some extra conditions,
such as normalization, i.e., the property that the integral of the square of
the eigenfunction over all values of x is one.1 Even so, the overall sign of the
eigenvectors will be arbitrary. Let us see if we can reproduce these results
using Equation (5.36).

With p(x) = 1, q(x) = 0, and λ = −k2, Equation (5.36) becomes

yi+1 − 2yi + yi−1 = −h2k2yi (6.16)

Let us take L to be 1, and divide the interval 0 < x < 1 into 10 parts with
y(0) = y0 = 0 and y(1) = y10 = 0. Then the nonzero y’s will be y1 through
y9, and (6.16) will consist of nine equations in nine unknowns, which can
be written in matrix form as


−2 1 0 0 0 0 0 0 0
1 −2 1 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0
0 0 1 −2 1 0 0 0 0
0 0 0 1 −2 1 0 0 0
0 0 0 0 1 −2 1 0 0
0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 1 −2 1
0 0 0 0 0 0 0 1 −2







y1
y2
y3
y4
y5
y6
y7
y8
y9




= −(0.1)2k2




y1
y2
y3
y4
y5
y6
y7
y8
y9




(6.17)

Equation (6.17) is a matrix eigenvalue equation, which can be solved usingMM, pp. 190–193

1This arises from the fact that the probability density (here, probability per unit
length) is |ψ(x)|2.
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Mathematica. The form of its matrix, called tridiagonal for obvious reasons,
recurs in many applications of the Schrödinger equation.

The dimensionality of the matrix of Equation (6.17), which coincides with
the number of divisions of the interval of interest, is too small for accurate
numerical calculations. Ideally, we want to be able to construct matrices of
variable dimensions so that we can gauge the accuracy of our calculations.
The matrix of Equation (6.17) is very similar to that encountered in Section
2.6, and we can use the code in that section to construct it. However,
Mathematica has a built-in command called Switch that fits in very nicely
here. If we type in using Switch in

Mathematica
In[1]:= mInfPotential[n ]:=Table[Switch[i-j,-1,1.0,0,-2.0,

1,1.0, ,0],{i,n},{j,n}]
then the command mInfPotential[9]//MatrixForm produces the matrix
of Equation (6.17). Here Switch works like this: it evaluates i − j in the
Table; if the result is −1 (the second argument) it places a 1.0 (the third
argument) in the ijth position; if the result is 0 (the fourth argument) it
places a −2.0, and if the result is 1 (the sixth argument) it places a 1.0
there; in the rest of positions it places zeros (see below for details).

We now find the eigenvalues and eigenvectors of our tridiagonal matrix.
For eigenvalues, we type in

In[2]:= EigVal[n ]:=(n+1)ˆ2Eigenvalues[mInfPotential[n]]

The left-hand side is just the name we have given our eigenvalues with the
first argument specifying which eigenvalue. The expression Eigenvalues
calculates the eigenvalues of a matrix as a list. The factor at the beginning
of the right-hand side is 1/h2, which cancels h2 in (6.16), leaving us with
−k2.

If we type in EigVal[100], Mathematica calculates a list of the eigen-
values of the 100× 100 matrix and arranges the result in descending order.
Let us give this list a name:

In[3]:= lisEigVal = EigVal[100];

Here we have used immediate assignment (=) to evaluate the right-hand immediate and delayed
assignmentsside immediately, so that lisEigVal is now a list of 100 actual numbers

available for our use. We could have used delayed assignment (:=), as in

lisEigVal[n ]:= EigVal[n]

in which case the evaluation of the right-hand side would have been delayed
until we requested it by typing in lisEigVal[100]. The disadvantage of the
latter is that every time we request the evaluation, it recalculates the right-
hand side. Sometimes that is what we want, but not when the calculation
involves a list, whose members ought to be available for manipulation at
different times.
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As noted above, Mathematica arranges the eigenvalues in descending
order. Normally, however, we want the lowest eigenvalue to be first. So, we
Reverse the order, and pick the jth eigenvalue using Part:use of Reverse in

Mathematica
In[4]:= OneEigVal[j ] := Part[Reverse[lisEigVal], j]

For example, OneEigVal[1] gives −9.86881, which is very close to the an-
alytic value of −π2 = −9.86960. Similarly, OneEigVal[2] gives −39.4657,
which is very close to the analytic value of −(2π)2 = −39.4784. For low-
lying states, which by definition have small eigenvalues, the numerical cal-
culation gives very good results. However, for large eigenvalues, the agree-
ment between numerical calculation and analytic result dwindles. For in-
stance, OneEigVal[50] yields −20, 084.7 as opposed to −(50π)2 = −24, 674.
The reason has to do with the eigenfunctions, which are discussed below.
Basically, the eigenfunctions of small eigenvalues are much smoother than
those of large eigenvalues. In fact, the 50th eigenfunction crosses the x-
axis 49 times between 0 and 1! For these to “appear” smooth, we have to
decrease h considerably.

Let us now calculate the eigenvectors. The command

In[5]:= EigVec[n ]:=Eigenvectors[mInfPotential[n]]

finds the list of the eigenvectors, to which we assign a name

In[6]:= lisEigVec = EigVec[100];

and pick the jth one (after we Reverse the order)

In[7]:= OneEigVec[j ] := Part[Reverse[lisEigVec], j]

The components of these vectors are the yi’s. For example, to find the
(components of the) first eigenvector, called the ground state, we type in

In[8]:= y[i ] := Part[OneEigVec[1], i]

To plot the function, we also need the x-values:

In[9]:= IndVar[n ] := Do[x[i]=i/(n+1), {i, 0, n+1}];
IndVar[100]

This produces a list, whose first member is x[0] with value 0 and whose
last member is x[101] with value 1. To plot our function, we need to pair
the x’s with the y’s. However, the y list goes from y[1] to y[100]. But we
know that y[0] and y[101] are both zero. So, we Join the zeroth and the
101st pairs to the rest, which are created by a Table command:

In[10]:= listOfPoints = Join[{{x[0],0}}, Table[{x[i],y[i]},
{i,1,100}], {{x[101],0}}];

We now use ListPlot to plot the function,
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FIGURE 6.26. The lowest energy eigenfunction, or the ground state, of an infinite
potential well calculated numerically.

In[11]:= ListPlot[listOfPoints, PlotJoined -> True,
PlotRange -> All]

which yields Figure 6.26.
It is to be noted that eigenfunctions are always determined to within

a multiplicative constant. Therefore, we have to compare the function of
Figure 6.26 to Equation (6.15) with this arbitrariness in mind. If we choose
B of (6.15) in such a way that the maxima of the two functions coincide,
then they should be (very nearly) equal. The maximum of the plotted
function can be obtained by typing in y[50], which yields 0.140702. With
n = 1, B = 0.1407025, and L = 1, (6.15) gives 0.1407025 sin(πx). Let us
plot the difference of the analytic and the calculated functions:

In[12]:= ListPlot[Table[{x[i],y[i]-0.1407025 Sin[Pi x[i]]},
{i,1,100}], PlotJoined->True, PlotRange->All]

The result, shown in Figure 6.27, indicates a small difference between the
analytic and the numerical solutions. This difference, of course, decreases
as we increase the sample points in the interval (0, 1).

The next eigenfunction can be obtained by changing In[8] to

In[13]:= y[i ] := Part[OneEigVec[2], i]

We then reevaluate In[10] and In[11] to obtain the first plot of Fig-
ure 6.28. We can use an input similar to In[13]—with 2 replaced by 3 and
4—to generate the other two plots of Figure 6.28. Readers familiar with
the solutions of the infinite-well potential will recognize these as the ex-
pected eigenstates with the characteristic increase in the number of nodes
(horizontal-axis crossings) with increase in n.

Before going any further, let us record the new Mathematica commands
we have learned:
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FIGURE 6.27. The difference between analytic and numerical calculation of the
lowest-energy eigenfunction of an infinite potential well.

Eigenvalues[m] find the list of the eigenvalues of matrix m

Eigenvectors[m] find the list of the eigenvectors of matrix m

Reverse[list] reverse the order of elements in the list
Switch[expr,a1,v1,a2,v2, . . . , ,u]

evaluates expr, then compares it with each of the ai,
in turn, evaluating and returning vi corresponding to the
first match found. After the matches are all tested, it fills
the rest of ijth spots with u.

6.7.2 The General Case
Instead of going directly to the next example, let us generalize the code
of the previous subsection. Thus, we translate Equation (5.36) into the
Mathematica language by typing in

In[1]:= mOneDSchEq[n ,xL ,xR ] := Table[Switch[i-j,-1,
p[x[i]],0,((xR-xL)/(n+1))ˆ2 q[x[i]]-2.0 p[x[i]],
1,p[x[i]], ,0], {i,n}, {j,n}]

where xR and xL are two (sufficiently large) values of x that define our
interval of calculation. These are potential-dependent values for which ψ is
so small that we can safely set it equal to zero. For the infinite potential
of the previous subsection, xL was 0 (the left boundary of the well) and
xR was 1 (the right boundary of the well). For other potentials they are
obtained either by physical intuition, or by trial and error. The functions
p(x) and q(x) ought to be defined in a separate statement.

Next we find the eigenvalues,
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FIGURE 6.28. The eigenfunctions of the first excited state with l = 2 (left), the
second excited state with l = 3 (middle), and the third excited state with l = 4
(right).

In[2]:= EigVal[n , xL , xR ] := ((xR-xL)/(n+1))ˆ2
Eigenvalues[mOneDSchEq[n, xR, xL]]

the defining statements for the coefficient functions, as well as assignments
of values to xL and xR

In[3]:= q[x ] := . . . ; p[x ] := . . . ; xL = a; xR = b;

and the array of the independent variable,

In[4]:= Xarray[n ] := Do[x[i] = xL+i(xR-xL)/(n+1),
{i, 0, n+1}]; Xarray[200]

The list of eigenvalues will then be created by a statement such as

In[5]:= lisEigVal = EigVal[100, a, b];

from which we can select the jth one:

In[6]:= OneEigVal[j ] := Part[Reverse[lisEigVal], j]

The eigenvectors are calculated similarly:

In[7]:= EigVec[n , xL , xR ] :=
Eigenvectors[mOneDSchEq[n, xR, xL]]

generates the list of eigenvectors, from which

In[8]:= OneEigVec[j ] := Part[Reverse[lisEigVec], j]

picks the jth vector. These vectors are not normalized; so, as we are trying
to devise a general procedure, let us include this normalization factor. The
normalization condition is ∫ +∞

−∞
|ψ(x)|2dx = 1

which is achieved by dividing ψ by the constant

N =

√∫ +∞

−∞
|ψ(x)|2dx
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In our case, the range of integration is (xL, xR). Thus, the normalization
constant becomes

N =

√∫ xR

xL

|ψ(x)|2dx

Using Simpson’s rule of integration (4.7), we obtain

N =

√√√√√h

3


4

n/2∑
k=1

(y2k−1)2 + 2
n/2−1∑
k=1

(y2k)2




where y0 and yn are set equal to zero.2 In Mathematica language, and for
the first eigenvector, this is written as

In[9]:= normConst[n ] := Sqrt[(xR-xL)/(3 (n+1))
(Sum[4.0 (Part[OneEigVec[1], 2 k-1])ˆ2, {k,1,n/2}]
+Sum[2.0(Part[OneEigVec[1],2 k])ˆ2,{k,1,n/2-1}])]

Then, for n = 100,

In[10]:= y[i ] := Part[OneEigVec[1], i]/normConst[100]

produces the components of the first normalized eigenvector.
Finally to plot the points so found, we write the statement

In[11]:= listOfPoints[in ,fin ] :=
Table[{x[i],y[i]}, {i,in,fin}];

where we have introduced arguments to specify the initial and final values
of i in the plot. In most cases, we don’t have to include all values of x,
because ψ drops to very small values—indistinguishable from zero on the
plots—before reaching xL and xR.

6.7.3 Finite Potential Well
With the general procedure at our disposal, we can look at some specific
examples. The first example is a finite potential well described by

V (x) =




0 if 0 < x < L

V0 otherwise

We are interested only in the bound states, i.e., states whose energies are
less than V0. As in the case of the infinite potential well, only the low-lying

2We should really set yn+1 = ψ(L) equal to zero. But since yn is presumably very
small, the error introduced is very small. We pick n because that is the number specified
in the code, rather than n+ 1.
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FIGURE 6.29. The normalized eigenfunction of the ground state of an electron
in a finite potential well with height 10 eV.

states are expected to be sufficiently accurate, and we shall concentrate
on those. Of course, by making h small enough (or the number of sample
points large enough), we obtain better accuracy for the higher eigenvalues.

We shall be using atomic units, and take L to be 1 nm (10−9 m). The
height of the potential is measured in electron volts, or eV, which is equal
to 1.6 × 10−19 Joule. Let us take V0 to be 10 eV. Then, for an electron,
with a mass of 9.1 × 10−31 kg, we have

q(x) =




0 if 0 < x < 1

−2mV0/�
2 = −255.5 eV−1 · nm−2 otherwise

It follows that the input line In[3] of the previous subsection should be
written as

In[3]:= q[x ] := If[x>0 && x<1, 0, -255.5]; p[x ]:=1.0;
xL=-2; xR=3;

The succession of the other input lines then produces −7.78481 for −k2

and Figure 6.29 for the normalized ground-state eigenfunction. The reason
the the plot has fallen below the x-axis is the arbitrariness in the overall
sign of the function. Mathematica has picked a negative sign for the ground
state.

It is worthwhile to point out that we have obtained the solution without
imposing any extra boundary conditions. In analytic solutions, not only do
we demand the vanishing of ψ at ±∞ (equivalent to its vanishing at xL
and xR in numerical calculation), but also the continuity of both ψ and its
derivative at the boundaries of the well, x = 0 and x = L. This is because of
the discontinuity of the potential at the boundary. In discrete calculations,
the notion of continuity does not exist, because one can always construct
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FIGURE 6.30. The normalized eigenfunctions of the first (left), second (middle),
and third (right) excited states of an electron in a finite potential well with height
10 eV.

continuous potentials that take the value (almost) zero for all the discrete
points inside the well and the value (almost) V0 for all the discrete points
outside.

How good is the numerical calculation? To find out, let us analytically
calculate the ground-state eigenvalue. First, we divide the x-axis into three
regions, left, inside, and right, with respective wave functions, ψl, ψin, and
ψr. With

κ =

√
2m
�2 (V0 − E) and k =

√
2mE
�2

and the infinity boundary conditions, the three ψ’s will reduce to

ψl(x) = Aeκx, ψin(x) = B cos kx+ C sin kx, ψr(x) = De−κx

Imposing the continuity of ψ and its derivative at the two boundaries of
the well (at x = 0 and x = L) gives the equation

κ =
k sin kL− κ cos kL

cos kL+ (κ/k) sin kL
Substituting the values for an electron in a 1-nm-wide potential of height
10 eV, the preceding equation gives (after a little algebra)

tan k =
−2k

√
255.5 − k2

255.5 − 2k2

This is a transcendental equation that can be solved only numerically. Typ-
ing in

FindRoot[Tan[k]+2 k Sqrt[255.5-kˆ2]/(255.5-2 kˆ2)==0,
{k, 2.6}]

yields {x → 2.79062}, which compares very favorably with our numerical
calculation of

√
7.78481 = 2.79013.

The first few excited states of the finite potential can also be solved by
changing a few parameters. Figure 6.30 shows the first three excited states.
For better accuracy, we took the number of divisions to be 200.

One can go to the limit of an infinite potential well by taking V0 to be
very large. How large? It turns out that to obtain the same ground-state
eigenvalue—to two decimal places—as the infinite potential, one has to
choose a V0 of 108 eV!
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FIGURE 6.31. The normalized eigenfunction of the ground state of a harmonic
oscillator.

6.7.4 Harmonic Oscillator
One of the most recurrent potentials in quantum theory is the harmonic
oscillator potential. This is because, to the first approximation, all poten-
tials look like a harmonic oscillator at their equilibrium point. With V (x) =
1
2kx

2 and ω =
√
k/m, Equation (6.12) will have q(x) = −(mω/�)2x2. For

simplification, we take the numerical value of ω to be �/m. Then, Equation
(6.12) becomes

ψ′′(x) + q(x)ψ(x) = −k2ψ(x) where q(x) = −x2 and k2 =
2E
�ω
(6.18)

The numerical solution of a quantum harmonic oscillator is obtained by
appropriate changes to the inputs of Section 6.7.2. In particular, for In[3]
we have

In[3]:= q[x ] := -xˆ2; p[x ]:=1.0; xL=-5; xR=5;

where we have chosen −5 and +5 for the endpoints of our interval. We then
execute the input lines of the eigenvalue evaluation, and get −0.999845,
−2.99923, and −4.99799 for the first three eigenvalues (−k2). Equation
(6.18) then implies the energies of the first three lowest-lying states are
0.4999225�ω, 1.499615�ω, and 2.498995�ω, respectively. These are to be
compared with the respective exact results of 1

2�ω, 3
2�ω, and 5

2�ω. It is
clear that, even with a meager 200 sample points, the procedure gives a
reasonably accurate result.

What about the eigenfunctions? By inserting 1, 2, and 3 for the argu-
ment of OneEigVec[ ] in appropriate places, we obtain the ground state
(Figure 6.31) and the first two excited states (Figure 6.32) of the harmonic
oscillator. The reader—bearing in mind the overall arbitrariness in sign—
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FIGURE 6.32. The normalized eigenfunctions of the first (left) and second (right)
excited states of a harmonic oscillator.

may wish to compare these plots with those of the analytic solutions,

ψ0(x) =
e−x2/2

π1/4 , ψ1(x) =
2xe−x2/2
√

2π1/4
, and ψ2(x) =

(2x2 − 1)e−x2/2
√

2π1/4

to determine the accuracy of our procedure for eigenfunction calculation.
In some applications, anharmonic oscillators become important. This

is because in a Taylor expansion of a potential, one may want to keep
higher orders beyond the harmonic oscillator term for a more accurate
representation of the potential. One term that is sometimes considered
is a quartic term. So, let us add to our harmonic oscillator potential a
(smaller) term of the fourth power in x and opposite in sign. Then we
have q(x) = −x2 + 0.1x4. Choosing xL = −8, xR = 8, and n = 300, and
executing the appropriate codes of Section 6.7.2, we obtain a ground-state
eigenvalue of 0.896746 and the plot of Figure 6.33 for the eigenfunction
of the ground state. At first, the graph looks strange, but upon a little
reflection, it emerges as feasible. Here is why. When x is small, the dominant
term of the potential is −x2, and we expect the function to look like the
ground state of the simple harmonic oscillator; and it does. Between x = ±2
and x = ±3.5, the graph shows a (exponential) decay, indicating some
kind of potential barrier. Beyond x = ±4, we see an oscillatory behavior
indicative of a free particle.

The graph of the potential in Figure 6.34 makes the claim above very
clear. Close to the origin, the figure is very similar to a parabola. The two
humps on either side act as (finite) barriers, through which the particle can
“tunnel,” decaying (and losing amplitude) in the process. Once it gets to
just over x = 3, the particle’s energy is larger than the potential energy,
and it is no longer bound. Like all free particles, it now oscillates with
a wavelength determined by the difference between E and the potential
energy. As it moves farther away from the origin, this difference increases,
resulting in shorter wavelengths.

Other eigenvalues and eigenfunctions of the anharmonic oscillator can
also be calculated. For example, the next eigenvalue will turn out to be
−2.06656, whose corresponding eigenfunction is shown in Figure 6.35.
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FIGURE 6.33. The normalized eigenfunction of the ground state of the anhar-
monic oscillator of Figure 6.34.

-4 -2 2 4

-3

-2

-1

1

2

FIGURE 6.34. The anharmonic oscillator potential x2 − 0.1x4.

6.8 Problems

Problem 6.1. Experiment with a one-dimensional projectile by varying
the drag coefficient a and its decay rate b [see Equation (6.2)]. Then plot
and interpret the result. Make sure you vary these two parameters over a
wide range to see some noticeable changes in the graphs.

Problem 6.2. The moon has a mass of 7.35 × 1022 kg and a radius of
1.74×106 m. Consider a one-dimensional projectile on the moon fired with
initial velocity v0.
(a) By assigning values to v0 and plotting the resulting plot [obtained
by solving Equation (6.2) with a = 0], estimate the escape velocity (the
smallest speed for which the projectile will not return) of the moon.
(b) If the moon had an atmosphere with a = 0.2 and b = 0.0002, what
would its escape velocity be?

Problem 6.3. Change Equation (6.5) in such a way that the drag force (at
height zero) is proportional to the square of velocity, so that the magnitude
of the force is av2 rather than av. Now write a Mathematica code to solve
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FIGURE 6.35. The normalized eigenfunction of the first excited state of the
anharmonic oscillator of Figure 6.34.

the new set of DEs. Plot the solution for your choice of the values of the
parameters. Hint: The vector multiplying the exponential can be written
as avv.

Problem 6.4. By evaluating the two values of y at T/2, find the semima-
jor axes of the bound orbits of Figure 6.10 and see if Kepler’s third law,
T 2 = ka3, holds.

Problem 6.5. By comparing the location of the moon at t = 0 and at
t = T/2, where T is the period of the moon, find the distance between the
two foci, and show that it is not zero. See Figure 6.12 and the discussion
of the two-body problem surrounding it.

Problem 6.6. Find the path of a particle of unit charge in a magnetic
field given by B = 2z pointing in the positive x-direction (see Problem 5.5
for the relevant DEs). Pick initial conditions of your choice for the particle.

Problem 6.7. The Duffing oscillator is an oscillator obeying the non-
linear DE

ẍ+ 2γẋ+ x+ x3 = a cos(ωDt).

(a) Employing the trick used in Equation (6.10), turn the Duffing equation
into a set of first-order DEs.
(b) For γ = 0.1, a = 3, and ωD = 4, find the solution of this equation, and
plot it for 0 ≤ t ≤ 30.
(c) Using part (b) and ParametricPlot, make a phase-space diagram of
this oscillator.
(d) With γ = 0.1 and ωD = 0.1, solve the Duffing equation for different
values of a, especially large values, and plot the phase-space trajectory of
the oscillator.

Problem 6.8. In the Lorenz equation of Problem 5.4, let σ = 10, r = 3,
and q = 8/3.
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(a) Solve the equation, and make a parametric plot of z versus y for 0 ≤
t ≤ 9 with the initial condition x(0) = 0, y(0) = 1, and z(0) = 0.
(b) Now change the initial conditions to x(0) = 0, y(0) = 1, z(0) = 1, and
make a three-dimensional parametric plot of the system.

Problem 6.9. Consider the electron in a finite potential well of depth V0.
Obtain solutions of the Schrödinger equation for larger and larger values
of V0. For what value of V0 is the eigenvalue equal to the infinite potential
case to within two decimal places?

Problem 6.10. Compare the analytic eigenfunctions for the lowest three
states of a harmonic oscillator of Section 6.7.4 with those obtained numer-
ically.

Problem 6.11. A one-dimensional potential V (x) is infinite for x ≤ 0 and
is equal to 2x for x > 0. Using the technique of Section 6.7.2, find the lowest
two eigenvalues and the plot of their corresponding eigenfunctions.
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