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Abstract. In its bare and natural form, the Dirac Equation describes only spin-1/2
particles. The main purpose of this reading is to make a valid and justified mathematical
modification to the Dirac Equation so that it describes any spin particle. We show that
this mathematical modification is consistent with the Special Theory of Relativity (STR).
We believe that the fact that this modification is consistent with the STR gives the present
effort some physical justification that warrants further investigations. From the vantage
point of unity, simplicity and beauty, it is natural to wonder why should there exist
different equations to describe particles of different spins? For example, the Klein-Gordon
equation describes spin-0 particles, while the Dirac Equation describes spin-1/2, and the
Rarita-Schwinger Equation describes spin-3/2. Does it mean we have to look for another
equation to describe spin-2 particles, and then spin-5/2 particles etc? This does not look
beautiful, simple, or at the very least suggest a Unification of the Natural Laws. Beauty
of a theory is not a physical principle but, one thing is clear to the searching mind – i.e.,
a theory that possesses beauty, appeals to the mind, and is (posteriori) bound to have
something to do with physical reality if it naturally submits itself to the test of experience.
The effort of the present reading is to make the attempt to find this equation.
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“The methods of theoretical physics should be applicable to all those branches of thought
in which the essential features are expressible with numbers.”

– Paul Adrien Maurice Dirac (1902 − 1984)

I. INTRODUCTION

This reading, is part of a series of readings on a program to
modify the Dirac Equation. This on-going program – to add
on to the Dirac Equation, began with the reading Nyambuya
(2008) and this reading (Nyambuya 2008) is an off-spring
of the reading Nyambuya (2007) where an attempt has been
made on an all encampusing Unified Field Theory (UFT). In
this reading we generalize the Dirac Equation so that it can
describe a general spin-s/2 particle where s = ±1,±2,±3, ...
etc. The Dirac Equation describes only spin-1/2 particles, we
ask here; why only spin-1/2 and not and say spin-3/2, spin-
5/2 particles etc? For the sake of simplicity and unity, should
not there be one equation to describe all fermions and peharps
bosons as-well?

For the sake of completeness, we shall begin by giving a
historic derivation of the Dirac Equation and its first major
achievements which is its being able to describe the gyromag-
netic ratio of the Electron. The Dirac Equation is a relativistic
quantum mechanical wave equation invented by Paul Dirac
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in 1928 (Dirac 1928a, b) originally designed to overcome the
criticism leveled against the Klein-Gordon Equation. The
Klein-Gordon equation gave negative probabilities and this is
considered to be physically meaningless. Despite this fact,
this equation accounts well for Bosons – that is, spin zero par-
ticles. This criticism leveled against the Klein-Gordon equa-
tion, is what motivated Dirac to successfully seek an equation
devoid of negative probabilities.

The Dirac Equation is consistent with Quantum Mechanics
(QM) and fully consistent with the Special Theory of Relativ-
ity (STR). This equation accounts in a natural way for the na-
ture of particle spin as a relativistic phenomenon and amongst
its prophetic achievements was its successful prediction of the
existence of antiparticles. In its bare form, the Dirac Equation
provided us with an impressive and accurate description of the
Electron hence it being referred in most of the literature as the
“Dirac Equation for the Electron”. It also accounts well for
quarks and other spin-1/2 particles, although in some of the
cases, there is need for slight modifications while in others
it fails - for example, Dirac’s Equation in its bare and modi-
fied form can not account for the Neutron’s gyromagnetic ra-
tio; the Neutron, which as the Electron, is a spin-1/2 particle.
The Neutron is a composite particle and for this reason, it is
thought that the Dirac Equation can not describe it [Neutron]
because it [the Dirac Equation] does not describe composite



particles but fundamental particles.

The first taste of glory of the Dirac Equation was it being able
to account for the gyromagnetic ratio of the Electron, that is
g = 2, which can not be accounted for using non-relativistic
QM. For several years after it’s discovery, most physicists be-
lieved that it described the Proton and the Neutron as-well,
which are both spin-1/2 particles. In simple terms, it was
thought or presumed that the Dirac Equation was a universal
equation for spin-1/2 particles.

However, beginning with the experiments of Stern and Frisch
in 1933, the magnetic moments of these particles were found
to disagree significantly with the predictions of the Dirac
Equation. The Proton was found to have a gyromagnetic ratio
gp = 5.58 which is 2.79 times larger than that predicted by
the Dirac Equation. The Neutron, which is electrically neu-
tral spin-1/2 particle was found to have a gyromagnetic ratio
gn = −3.83.

These “anomalous magnetic moments” of the Neutron and
Proton which are clearly not confirmatory to the Dirac Theory
have been taken to be experimental indication that these parti-
cles are not fundamental particles. In the case of the Neutron,
yes it is clearly not a fundamental particle since it does decay
into a Proton, Electron and Neutrino, that is, n −→ p+ e− + ν.
If the Dirac Equation is a universal equation for fundamen-
tal fermion particles, then any fundamental fermion particle
must conform to this equation. Simple, any spin-1/2 particle
that can not be described by it, must therefore not be a funda-
mental particle of nature. By definition a fundamental particle
is a particle known to have no sub-structure, that is, it can not
be broken down into smaller particles thus will not decay into
anything else.

From the Standard Model, we know that the Proton and Neu-
tron are composed of quarks thus are not fundamental parti-
cles. The question is, is this the reason why these particle’s
gyromagnetic ratio is different from that predicted by the bare
Dirac Equation? Prevailing wisdom suggests that anomalous
gyromagnetic ratio arise because the particles under question
are not fundamental particles. We undertook our own initia-
tive in the reading Nyambuya (2008) to try an address this
problem and we believe we are on the right path of finding a
new version of the Dirac Equation that is applicable to curved
spaces and at the same time this equation will hold for all
spin-s/2 particles.

From this reading (Nyambuya 2008) we suggested that the
gyromagnetic ratio differs from the expected g = 2 because
particles do have a finite size and that spacetime is curved. In
this theory, for a particle of finite spatial size and mass, the
anomalous gyromagnetic ratio arises from the interaction of
spin with the Lorentz force in a curved spacetime. The derived
relation for the anomalous magnetic moment and the particle
size is similar to that deduced by Brodsky & Drell (1980) and
experimentally verified by Dehmelt (1989). Brodsky & Drell
(1980) proposed that fermions do have a sub-structure and this
gives rise to the anomalous gyromagnetic ratio which varies as
the spatial size and inverse to the mass.

As an expository and instructive exercise, in the next section
we shall go through the standard derivation of the Dirac Equa-
tion. In §III, again as an expository and instructive exercise
we go through the derivation of the historic fit of the Dirac
Equation, that is how it theoretically accounted so well for the
gyromagnetic ratio of the Electron. In §V, we do another ex-
pository and instructive exercise that is central to this reading,
we give a theoretical reason why the Dirac Equation is said to
describe spin-1/2 particles. In §IV, we derive our main result
and then seek its justification in $ VI. In §VIII we give the
modified energy equation resulting from the modification that
we have made to the Dirac Equation and there argue that this
found equation is consisted with the STR. Lastly, in §IX we
give a general discussion.

II. DIRAC’S DERIVATION

Suppose we have a particle of rest mass m0 and momentum p
and energy E, Albert Einstein, from his 1905 reading on the
STR, derived the basic equation:

E2 = p2c2 + m2
0c4, (1)

which later formed the basis of the Klein-Gordon Theory upon
which the Dirac Theory is founded. This equation can be writ-
ten in the matrix form:

m2
0c2 =


E/c
px
py
pz


T 

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




E/c
px
py
pz

 , (2)

where the 4 × 4 matrix sandwiched between the two column
vectors:

[ηµν] =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (3)

is the flat spacetime Minkowski metric and the superscript T
in the left hand side column vector represents the transpose
operation. Using the already established canonical quantisa-
tion procedures Klein and Gordon proposed the Klein-Gordon
equation:

�Ψ =
(m0c
~

)2
Ψ, (4)

which describes a spin-0 quantum mechanical scalar particle
whose wave-function is Ψ and:
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� =
1
c2

∂2

∂t2 − ∇
2. (5)

This equation allows for negative probabilities and as already
stated, Dirac was not satisfied with the Klein-Gordon Theory.
He noted that the Klein-Gordon equation is second order dif-
ferential equation and his suspicion was that the origin of the
negative probability solutions may have something to do with
this very fact. He was right!

He sought an equation linear in both the time and spatial
derivatives that would upon “squaring” reproduce the Klein-
Gordon equation. The equation he found was:

[
i~γµ∂µ − m0c

]
ψ = 0, (6)

where:

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
(7)

are the 4×4 Dirac gamma matrices (I and 0 are the 2×2 iden-
tity and null matrices respectively) and ψ is the four compo-
nent Dirac wave-function. Throughout this reading, the Greek
indices will be understood to mean µ, ν, ... = 0, 1, 2, 3 and
lower case English alphabet indices i, j, k... = 1, 2, 3.

III. DIRAC GYROMAGNETIC RATIO

It is shown here how the Dirac Equation discussed in the pre-
vious section accounts well for the gyromagnetic ratio of the
Electron – for this reason, it [Dirac Equation] is said to ac-
count very well for the Electron. This discussion follows
closely that of Zee (2003).

We immense the Electron inside an ambient electromagnetic
field Aex

µ and this is mathematically expressed by transforming
the partial derivatives: ∂µ 7−→ Dµ = ∂µ − ieAex

µ . Making this
replacement into (6) results in this equation reducing to:

[
i~γµDµ − m0c

]
ψ = 0. (8)

Now acting on this equation with:
(
i~γµDµ + m0c

)
, we ob-

tain:
(
γµγνDµDν + m2

0c2/~2
)
ψ = 0. We have: γµγνDµDν =

1
2
(
{γµ, γν} +

[
γµ, γν

])
DµDν = DµDµ − iσµνDµDν, and:

iσµνDµDν = (i/2)σµν
[
Dµ,Dν

]
= (e/2)σµνFex

µν, where: Fex
µν, is

the electromagnetic field tensor of the applied external field.
The above calculations reduce to:

DµDµ −
e
2
σµνFex

µν +
m2

0c2

~2

ψ = 0. (9)

Now consider a weak constant magnetic field in the z − axis
such that ~A = −(1/2)~r×~B where ~B = (0, 0, B) so that F12 = B.
Neglecting second order terms one is lead to:

(Di)2 = (∂i)2 − e(∂iAex
i + Aex

i ∂i) + O(A2
ex,i)

= (∂i)2 − eB(x1∂2 − x2∂1) + O(A2
ex,i)

= ~∇2 − e~B · ~L + O(A2
ex,i)

, (10)

where: ~L = ~r × ~p, is the orbital angular momentum operator
which means that the orbital angular momentum generates or-
bital magnetic moment that interacts with the magnetic field.
Now, if we write the Dirac four component wave-function

as ψ =
(
Φ

χ

)
, one finds that in the non-relativistic limit the

component χ dominates. Thus: eσµνFex
µν/2, acting on: Φ, is

effectively equals: e
2σ

3(Fex
12 − Fex

21) = 2e~B · ~S, since: ~S =
(~σ/2). Now writing: Φ = e−im0tΨ, where: Ψ oscillates much
more slowly than: eim0t, so that: (∂2

0 + m2
0c2/~2)e−im0c2t/~Ψ '

e−im0c2t/~ [−(2im0c/~)∂0Ψ]. Putting all the bits and pieces to-
gether, one is lead to:

[
~2

2m0

~∇2 + µB~B · (~L + 2~S)
]
Ψ = −i~

∂Ψ

∂t
, (11)

and this equation, above and below embodies the historic fit
of the Dirac Equation in that it automatically tells us that the
gyromagnetic ratio of the Electron is 2 – this is deduced from
the factor 2 in the spin term. However as already explained,
precise measurements put this value slightly above g = 2 and
this discrepancy in observations and theory caused the theorist
to go back to the drawing board to seek harmony with obser-
vations. The reading Nyambuya (2008) is an attempt to give
an alternative (to the existing explanation which makes use of
Feynman diagrams) explanation to this phenomena.

IV. SPIN OF THE DIRAC SPINOR

In this section we shall ask the obvious question, “How do
we know the Dirac Equation describes the Electron?” From a
practical point of view we know the gyromagnetic ratio pre-
dicted by the Dirac Equation is very close to that measured in
the laboratory. From a theoretical perspective (see e.g. Halzen
& Martin 1984, or any good book on relativistic QM), we
know that the Dirac Equation describes a spin-1/2 particle be-
cause the Dirac Hamiltonian, given:

HD = −i~cαk∂k + βm0c2, (12)
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where αk := γ0γk and β := γ0; commutes with the angular
momentum operator: J = L + S, that is:

[HD, J] = 0, (13)

where the orbital angular momentum: L = −i~~r × ~∇, and:

S =
1
2

(
σ 0
0 σ

)
where σ = σ1i + σ2j + σ3k. (14)

S, is the spin-operator and the vectors i, j and k, are the usual
orthogonal vectors defining the 3D space. The eigen value
of the spin-operator (14) is 1/2 hence the Dirac particle is
said to have spin-1/2. According to a theorem of QM, any
observable corresponding to an operator that commutes with
the Hamiltonian is a conserved quantity hence thus the total
angular momentum J is a conserved quantity. From this it
makes sense to say because the total angular momentum of a
spin-1/2 particle, which in this case is given by J commutes
with the Dirac Hamiltonian, then the spin of a Dirac particle
must be 1/2.

From the above arguments, it is pristine clear that if one can
find the total angular momentum for a general spin particle
Jg and also a corresponding Hamiltonian for this particle Hg

such that
[
Hg, Jg

]
= 0, then from the Schrödinger formula-

tion, the equation Hgψ = Eψ where E is total energy of the
particle; describes a general spin particle. Our task in the next
section is to successfully seek this generalized Hamiltonian
and total angular momentum for a general spin particle, hence
thus, we shall write down a Dirac Equation for a general spin
particle.

V. MODIFICATION

We can modify the Dirac Equation to describe in general, a
particle of spin s/2 where s = ±1,±2,±3, ..... To do this,
we note that if we make the transformation: ~∇ 7−→ s~∇, the
new Dirac Hamiltonian: HD (s) = −is~cαk∂k + βm0c2, will
commute with the total angular momentum operator: J (s) =
L (s) + S (s), where: L (s) = −is~~r × ~∇, and:

S (s) =
s
2

(
σ 0
0 σ

)
. (15)

By the same theoretical argument leading us to making the
conclusion that the Dirac Equation, whose Hamiltonian HD
commutes with J describes a particle of spin-1/2, we are
lead directly to conclude that the modified Dirac Hamilto-
nian HD (s) which commutes with the total angular mo-
mentum operator J (s) describes a particle of spin s/2. In-
stead of writing: HD (s) = −is~cαk∂k + βm0c2, let us write:
HD (s) = −i~cγk

s∂k+βm0c2, where: γk
s = sγk. For uniformity,

we shall also give γ0 the same notation, that is: γ0
s = γ

0. The
modification: γµ 7−→ γ

µ
s , leads to equation (6) describing any

spin-particle, that is:

[
i~γµs∂µ − m0c

]
ψ = 0. (16)

This is the equation we sought, now we need to justify it. This
equation is just the same as the Dirac Equation with the im-
portant difference that the Dirac matrices γµ have now been
replaced by γµs

VI. JUSTIFICATION

As a way of justification, we shall prove here that[
HD(s), J(s)

]
= 0. The entirety of the present reading hinges

on this very result
[
HD(s), J(s)

]
= 0, hence it is most log-

ical that this result be proved beyond any reasonable doubt
and this be done much to the satisfaction of the reader. We
begin:

[
HD(s), J(s)

]
=

[
HD(s), Jx(s) + Jy(s) + Jz(s)

]
since

J(s) = Jx(s)i + Jy(s)j + Jz(s)k, and from this it follows
that

[
HD(s), J(s)

]
can be split into the three components i.e.:[

HD(s), Jx(s)
]
i +

[
HD(s), Jy(s)

]
j +

[
HD(s), Jz(s)

]
k. Now

if
[
HD(s), J(s)

]
= 0, then each of the components must

equal zero, that is:
[
HD(s), Jx(s)

]
= 0,

[
HD(s), Jy(s)

]
=

0,
[
HD(s), Jz(s)

]
= 0. If just one of the component is zero,

the rest are also zero, hence thus
[
HD(s), J(s)

]
= 0. We shall

prove for the x-component, that is:
[
HD(s), Jx(s)

]
= 0. We

know that:

J = −is~

∣∣∣∣∣∣∣∣
i j k
x y z
∂x ∂y ∂z

∣∣∣∣∣∣∣∣ = −is~
∣∣∣∣∣ y z
∂y ∂z

∣∣∣∣∣ i + is~
∣∣∣∣∣ x z
∂x ∂z

∣∣∣∣∣ j − is~
∣∣∣∣∣ x y
∂x ∂y

∣∣∣∣∣ k, (17)

and from this we pluck out the ith-component of J, hence it follows that:
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Jx(s) = is~
(

I(y∂x − z∂y) 0
0 I(y∂x − z∂y)

)
+

s~
2

(
σx 0
0 σx

)
, (18)

where I is the 2×2 identity matrix. From the above, it follows
that:

Jx(s) = s~
(

iI(y∂x − z∂y) + σx/2 0
0 iI(y∂x − z∂y) + σx/2

)
.

(19)

Now,
[
HD(s), Jx(s)

]
=

[
−i~cγk

s∂k + βm0c2, Jx(s)
]

and from

this we have
[
HD(s), Jx(s)

]
=

[
−i~cγk

s∂k, Jx(s)
]
+[

βm0c2, Jx(s)
]
. We shall compute the term

[
βm0c2, Jx(s)

]
=

m0c2 [
β, Jx(s)

]
, that is:

[
β, Jx(s)

]
= s~

{(
I 0
0 −I

) (
iI(y∂x − z∂y) + σx/2 0

0 iI(y∂x − z∂y) + σx/2

)
−

(
iI(y∂x − z∂y) + σx/2 0

0 iI(y∂x − z∂y) + σx/2

) (
I 0
0 −I

)}
.

(20)

Clearly the above is identically equal to zero i.e.[
β, Jx(s)

]
= 0, hence thus:

[
HD(s), Jx(s)

]
=

−i~c
[
γk

s∂k, Jx(s)
]
. Thus if we can proof or show that[

γk
s∂k, Jx(s)

]
= 0, this, according to arguments already

presented; automatically implies
[
HD(s), J(s)

]
= 0. Now the

term
[
γk

s∂k, Jx(s)
]

is equal to:

s~
{(

0 σk∂k
−σk∂k 0

) (
iI(y∂x − z∂y) + σx/2 0

0 iI(y∂x − z∂y) + σx/2

)
−

(
iI(y∂x − z∂y) + σx/2 0

0 iI(y∂x − z∂y) + σx/2

) (
0 σk∂k

−σk∂k 0

)}
,

(21)

where k = x, y, z, which is also the same as k = 1, 2, 3. Now,
dropping the factor s~, meaning to say the new expression is:[
γk

s∂k, Jx(s)
]
/s~. The reduced expression of this new expres-

sion
[
γk

s∂k, Jx(s)
]
/s~ , is:

 0 iσk∂k

[
I(y∂x − z∂y) + σx/2

]
−iσk∂k

[
I(y∂x − z∂y) + σx/2

]
0

− 0 i
[
I(y∂x − z∂y) + σx/2

]
σk∂k

−i
[
I(y∂x − z∂y) + σx/2

]
σk∂k 0

 .
(22)

The expression in the matrix on the left handside of the minus
sign: σk∂k[I(y∂x−z∂y)+σx/2] = σk

[
I(y∂x − z∂y) + σx/2

]
∂k,

and for expression in the matrix on the right handside of the

minus sign: [I(y∂x − z∂y) + σx/2]σk∂k = [I(y∂x − z∂y)σk +

σxσ
k/2]∂k hence, the above reduces to:

 0 i
[
σk(y∂x − z∂y) + σkσx/2

]
∂k

−i
[
σk(y∂x − z∂y) + σkσx/2

]
∂k 0

− 0 i
[
(y∂x − z∂y)σk + σxσ

k/2
]
∂k

−i
[
(y∂x − z∂y)σk + σxσ

k/2
]
∂k 0

 ,
(23)
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and I(y∂x − z∂y)σk = σk(y∂x − z∂y) and σxσ
k = I , hence, the final and clear expression emerging from all these calculations is:

 0 i
[
σk(y∂x − z∂y)∂k + I∂k/2

]
−i

[
σk(y∂x − z∂y)∂k + I∂k/2

]
0

− 0 i
[
σk(y∂x − z∂y)∂k + I∂k/2

]
−i

[
σk(y∂x − z∂y)∂k + I∂k/2

]
0

 ≡ 0

(24)

This completes the proof . . . , QED.

Hence thus
[
HD(s), J(s)

]
= 0 meaning to say HD(s) is the

Hamiltonian of the particle whose total angular momentum is
J(s).

VII. IMPLIED GYROMAGNETIC RATIO

What is the gyromagnetic ratio expected from this equa-
tion (16)? To answer this, we simple redo the exercise
in §(III). We immense this particle in an electromagnetic
field Aex

µ where upon the derivatives transform as: ∂µ 7−→
Dµ = ∂µ − ieAex

µ . Making this replacement in equa-
tion (16) results in:

[
i~γµs Dµ − m0c

]
ψ = 0. Now act-

ing on this equation from the left with:
[
i~γµs∂µ − m0c

]†
,

one obtains the equation:
(
γ
µ
sγ

ν
sDµDν + m2

0c2/~2
)
ψ = 0.

From this, we obtain after some rearranging: γ
µ
sγ

ν
sDµDν =

1
2

({
γ
µ
s , γ

ν
s

}
+

[
γ
µ
s , γ

ν
s

])
DµDν = η

(s)
µνDµDν − iσµν(s)DµDν, where:

ηs
µν =


1 0 0 0
0 −s2 0 0
0 0 −s2 0
0 0 0 −s2

 . (25)

The relations: ηs
µν =

{
γ
µ
s , γ

ν
s

}
, and: σ

µν
s =

[
γ
µ
s , γ

ν
s

]
, hold

and from this flows: iσµνs DµDν = (i/2)σµνs

[
Dµ,Dν

]
=

(e/2)σµνs Fex
µν, where: Fex

µν, is the electromagnetic field tensor
of the applied external field. The above calculations reduce
to:

ηs
µνD

µDν −
e
2
σ
µν
s Fex

µν +
m2

0c2

~2

ψ = 0. (26)

We have: ηs
µνD

µDν = s2DiDi + s2D0D0 and in the non-
relativistic limit: s2DiDi = s2~∇2 − es~B · ~L(s) + s2O(A2

ex,i)
and s2D0D0 ' s2∂0∂

0. Now as in §III, if we write the
Dirac four component wave-function as ψ =

(
Φ χ

)T
, one

finds that in the non-relativistic limit the component χ domi-
nates. Thus: eσµνs Fex

µν/2, acting on: Φ, is effectively equals:

eσ3
s(Fex

12 − Fex
21)/2 = 2e~B · ~S(s), since: ~S(s) = (s~σ/2).

Now writing: Φ = e−im0tΨ, where: Ψ oscillates much more
slowly than: eim0t, so that: s2(∂2

0 + m2
0c2/~2)e−im0c2t/~Ψ '

s2e−im0c2t/~ [−(2im0c/~)∂0Ψ]. Putting all the bits and pieces
together, one is lead to:

(
~2

2m0

~∇2 + s−1µB~B ·
[
~L(s) + 2~S(s)

])
Ψ = −i~

∂Ψ

∂t
, (27)

This equation is exactly the same as the original (11) because
the spin factor s cancels out since ~L(s) = s~L and ~S(s) = s~S.
What this effectively means is that, an Electron of a higher
or lower spin will – contrary to what one would expect; have
the same gyromagnetic ratio g = 2. While this is contrary to
what one expects, true is the fact that no Electron in a higher
or lower spin state has ever been observed – expectations do
not translate to reality.

VIII. NEW ENERGY-MOMENTUM EQUATION

The modification made to the gamma-matrices results in the
energy equation being modified, so that the new energy equa-
tion for a spin-s/2 particle is given by:

E2 = s2 p2c2 + m2
0c4. (28)

Having modified the energy-momentum dispersion relation in
this manner, the first and most natural question that pops-up
is – relative to reality, what does this new energy-momentum
equation mean? Does it mean one can change the spin of an
Electron by accelerating it to higher energies? If this is pos-
sible, it would be catastrophic for matter because for ordinary
matter, it would mean Electrons, Neutrons and Protons would
become Bosons and we all know what would happen – matter
would collapse as the Pauli exclusion principle that is respon-
sible for the stability of matter would no longer hold since the
fermions have made a transition to Bosons. Fortunately, this
equation does not imply this.

What we should realize is that, yes an Electron in an appropri-
ate energy state will, according to (28) transmute to a higher
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spin-state; the energy to elevate the Electron to higher spin-
states does not come from the Electron’s 4-momentum, but
from the vacuum itself. One will have to excite the vacuum to
its next or higher energy state. From the metric given in (25),
it must be clear that s is not a property of the particle but a
property of the vacuum. Thus, an Electron in a vacuum that
is in the spin-state s = 1 will never enter into a higher spin-
state no matter the energy applied to it. To change the spin of
the particle, one will have to excite the vacuum to a different
energy state.

Now given that E = γm0c2 where γ is the relativistic fac-
tor and the definition m0(s) = m0/s, we can write E(s) =
γm0(s)c2 = E/s2, given all this, and then dividing equation
(28) by s2, one is lead to:

E2(s) = p2c2 + m2
0(s)c4. (29)

Thus this theory advanced here is exactly the same as the STR
with the exception that the rest mass has been rescaled by the
spin factor s. The aforesaid means this theory does not violate
the first or the second postulates of the STR, hence thus it is
fully consistent with the STR. A clear suggestion emanating
from this is that an Electron or any particle for that matter, will
have its rest mass given by the relation m0(s) = m0/s.

IX. DISCUSSION

From the vantage point of unity, simplicity and beauty, it is
logical and most natural for one wondered why should there
be different equations to describe particles of different spins.
For example, the Klein-Gordon equation describes spin-0 par-
ticles, while the Dirac Equation describes spin-1/2, and the
Rarita-Schwinger Equation (Rarita & Schwinger 1947) de-
scribes spin-3/2. Does it mean we have to look for another
equation to describe spin-2 particles, and then spin-5/2 parti-
cles etc? This does not look beautiful, simple, or at the very

least suggest a Unification of the Natural Laws. Beauty of
a theory is not a physical principle but, one thing is clear to
the searching mind – that is, a theory that possesses beauty,
appeals to the mind, and is bound to have something to do
with physical reality if it naturally submits itself to the test
of experience – e.g. Newtonian Mechanics, Maxwell’s Elec-
tromagnetic Theory, Einstein’s STR, the Dirac Equation etc.
The list is long. Equipped with simple principles, the champi-
ons of these theories (Newton, Maxwell, Einstein, Dirac etc)
beautifully explained the working of the Universe in an ele-
gant fashion. For these and perhaps other reasons not men-
tioned here, we believe the modification made here needs to
be considered.

One of the reasons why this modification needs to be consid-
ered is the congruent predictions with Supersymmetry The-
ory (see e.g. Weinburg 1999; Cooper et al. 1995; Wess &
Bagger 1992) namely that, under an appropriate excitation
of a vacuum, a fermion can transmute to a Boson and vis-
versa. The current efforts of unifying all the forces of nature
includes Supersymmetry. Supersymmetry is a theory of a per-
fect sort of symmetry that relates Fermions to Bosons, where
each Fermion has a super-symmetric partner whose spin dif-
fers by half a unit of spin and vis-versa.

At present according to our current understanding, Bosons
and Fermions are distinct particles (just as electromagnetism
and gravitation seem to be distinct forces existing with no
clearly evident relationship to one another) and supersymme-
try is the only theory known that forges such an intimate re-
lationship between Fermions and Bosons. Given the present,
that if one takes the vacuum from state s = 1 7−→ 2 7−→ . . .
etc, Fermions and Bosons will switch from Fermion to Bo-
son and versa, it means our theory shares a common ground
with Supersymmetry. If supersymmetric particles are found,
Supersymmetry may claim their existence proves this theory
right. In closing, allow me to say; without any justification
we have chosen s to take integral values. Since s is associ-
ated with spin, clearly, one can derive from QM that s takes
integral values.
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