
An Introduction to the Topological Theory of
Distributed Computing with Safe-consensus

Rodolfo Conde1,2 and Sergio Rajsbaum3,4

Instituto de Matemáticas
Universidad Nacional Autónoma de México

Ciudad Universitaria, México D.F. 04510, México

Abstract

The theory of distributed computing shares a deep and fascinating connection with combinatorial and
algebraic topology. One of the key ideas that facilitates the development of the topological theory of
distributed computing is the use of iterated shared memory models. In such a model processes communicate
through a sequence of shared objects. Processes access the sequence of objects, one-by-one, in the same
order and asynchronously. Each process accesses each shared object only once. In the most basic form of an
iterated model, any number of processes can crash, and the shared objects are snapshot objects. A process
can write a value to such an object, and gets back a snapshot of its contents.
The purpose of this paper is to give an introduction to this research area, using an iterated model based on
the safe-consensus task (Afek, Gafni and Lieber, DISC’09). In a safe-consensus task, the validity condition
of consensus is weakened as follows. If the first process to invoke an object solving a safe-consensus task
returns before any other process invokes it, then the process gets back its own input; otherwise the value
returned by the task can be arbitrary. As with consensus, the agreement requirement is that always the
same value is returned to all processes.
A safe-consensus-based iterated model is described in detail. It is explained how its runs can be described
with simplicial complexes. The usefulness of the iterated memory model for the topological theory of
distributed computing is exhibited by presenting some new results (with very clean and well structured
proofs) about the solvability of the (n, k)-set agreement task. Throughout the paper, the main ideas are
explained with figures and intuitive examples.

Keywords: distributed system, wait-free, set agrement, consensus, safe-consensus, topology.

1 Introduction

The theory of distributed computing is an actively developed field of computer sci-

ence that shares a deep and fascinating connection with combinatorial and algebraic

topology. One of the key ideas that facilitates the development of the topological

1 Supported by a CONACyT grant.
2 Email: rodolfo@math.unam.mx
3 Supported by DGAPA-PAPIME and PAPIIT grants.
4 Email: rajsbaum@math.unam.mx

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 283 (2012) 29–51

1571-0661 © 2012 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2012.05.004
Open access under CC BY-NC-ND license.

mailto:rodolfo@math.unam.mx
mailto:rajsbaum@math.unam.mx
mailto:rodolfo@math.unam.mx
mailto:rajsbaum@math.unam.mx
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2012.05.004
http://dx.doi.org/10.1016/j.entcs.2012.05.004
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

theory of distributed computing is the use of iterated shared memory models, in-

troduced in [10]. In such a model processes communicate through a sequence of

shared objects. Processes access the sequence of objects, one-by-one, in the same

order and asynchronously. Each process accesses each shared object only once.

In the most basic form of an iterated model, any number of processes can crash,

and the shared objects are snapshot objects. A process can write a value to such

an object, and gets back a snapshot of its contents. It is known that this model is

equivalent to the standard wait-free read/write shared memory model [10,15], but

its runs are more structured and easier to analyse than the runs in the standard

shared memory model. The recursive nature of the iterated shared memory model

was instrumental for the results in [10] and for the proof of the Asynchronous

computability theorem of [19]. This theorem uncovered the intimate connection that

exists between topology and distributed computing. Extensions of the basic iterated

model have also been studied, where the processes communicate through a sequence

of objects more powerful than snapshot objects [16] or where the asynchrony of the

system is limited to model failure detectors [22]. For an overview of the iterated

approach see [21].

The purpose of this paper is to give an introduction to this research area (for the

non-specialist), using an iterated model based on the safe-consensus task of Afek,

Gafni and Lieber [2]. In a safe-consensus task, the validity condition of consensus

[13] is weakened as follows. If the first process to invoke an object solving a safe-

consensus task returns before any other process invokes it, then the process gets

back its own input; otherwise the value returned by the task can be arbitrary. As

with consensus, the agreement requirement is that always the same value is returned

to all processes. The safe-consensus task was introduced in [2] (as a generalization

of the consensus problem) to show the equivalence of the g-tight-group-renaming

task of [3] and the consensus task for g processes. The paper also proves that the

safe-consensus task is as powerful as consensus.

We define an iterated safe-consensus-based shared memory model in two ways:

the classical fashion and the “topological way”. After that, we show its usefulness,

and its connection with topology by exhibiting some new results (with easy, well

structured proofs) about the solvability of consensus and (n, k)-set agreement [11]

(where n is the number of processes). While in the consensus task processes agree

on at most one value, the (n, k)-set agreement task allows processes to agree on at

most k different values.

The iterated model studied in this paper, is an extension of the iterated model

of [10] with the power of safe-consensus objects. A safe-consensus object is a shared

object that receives input values from the processes and returns to the processes

output values consistent with the safe-consensus task specification (Section 3). The

new model allows the processes to communicate by using a sequence of snapshot ob-

jects and safe-consensus objects. As with any iterated model, computation proceeds

in iterations, accessing copies of the objects, asynchronously, and in the same order.

In each iteration, each process first writes to the shared memory, then it invokes a

safe-consensus object and finally it takes a snapshot of the shared memory. As the

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5130

purpose of this paper is to give an easy to read introduction to the area, we will put

an additional restriction in our new extended model: Each safe-consensus object

in the sequence must be invoked by all the processes (and in the same order). We

call this model of computation the iterated shared memory with full safe-consensus

objects (IFSC) model.

Specifically, the results we present are:

• The (n, n − 1)-set agreement task can be implemented in the IFSC model using

only one safe-consensus object (with a simple one-round protocol, Theorem 3.2);

• It is impossible to solve the consensus problem for n processes in the IFSC model

(Theorem 3.6).

These results say that the IFSC model is indeed more powerful than the basic it-

erated model, because (n, n− 1)-set agreement cannot be solved using only shared

memory [8,18,23]. But the IFSC model still has limitations as it cannot solve

consensus (while consensus is solvable using safe-consensus objects [2] without re-

strictions). This impossibility does not come from the fact that we are working in

an iterated model, rather, it is caused by the requirement that processes access the

same safe-consensus object altogether in each iteration.

Also, in connection with the topological theory of distributed computing, to

represent executions of protocols in the iterated model (and in the extended IFSC

model), we will have something to say about Theorem 3.6. It is known that the

protocol complexes in the iterated shared memory model are connected and because

of this, it is impossible to solve consensus [7,19]. In this paper, we argue that the

protocol complexes in the IFSC model are disconnected, yet, these protocols cannot

solve consensus. The discussion about Theorem 3.6 is in Section 3.

In summary, our aims in this introductory paper include explaining:

(i) How to analyze protocol complex connectivity in an iterated model;

(ii) how does the power of the communication objects affects the connectivity of a

protocol complex;

(iii) and what are the consequences of connectivity for task solvability.

As mentioned above, the iterated shared memory model has been extended

with objects more powerful than read/write registers [16], but these objects were

at most as powerful as the set agreement task. To our knowledge, this is the first

time in which an attempt is made to study an iterated model by adding objects as

powerful as the consensus problem. Nevertheless, we stress that our intention in

this paper is not to provide new results, but to give an introduction to the area. In

a sequel to this paper [12] we study in more depth iterated models extended with

safe-consensus objects. One of these models is the IFSC model.

The outline of the paper is as follows. In Section 2 we give an introduction to

the basic concepts of the iterated shared memory model (in the usual combinatorial

way), and then we show how to represent the behavior of protocols in terms of

combinatorial topology, using simplicial complexes. Here we also give the definition

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 31

of the (n, k)-set agreement task [11], the task in which we will focus our attention. In

Section 3 we extend the basic iterated model of shared memory, adding the power

of safe-consensus objects to obtain the IFSC model described above. We study

the IFSC model using the tools introduced in Section 2. Throughout the paper, we

explain the main ideas behind concepts and proofs with figures and simple examples.

Section 4 contains our concluding remarks.

2 The iterated shared memory model

We now introduce the iterated shared memory model of distributed computing [10],

and explain how the runs of protocols in this model have a well behaved geometric

structure given in terms of simplicial complexes.

2.1 Basic model of computation

Our formal model is standard, see e.g. [6], so we do not state it here in detail. A

system consists of n processes p1, . . . , pn. A process is a deterministic state machine,

which has a (possible infinite) set of local states, including a subset called the initial

states and a subset called the output states. Processes communicate by means of a

shared memory, structured as a sequence of arrays SM (i) [1 · · ·n] (i � 0) of a finite

number of single-writer multi-reader atomic registers. Each register may attain

values from some domain, which includes a special “undefined” value ⊥. We make

no assumptions about the size of the registers, and therefore we may assume that

each process pi can write its entire state in a single register. Each shared memory

SM (i) provides two atomic operations that can be used at most once by a process.

• SM (i).write(): writes some value to the register SM (i) [j], where j is the id of

process pj .

• SM (i).snapshot(): returns a copy of the whole shared memory array SM (i).

We assume w.l.o.g. that a process always alternated write and snapshot opera-

tions. Notice that the snapshot operation can be implemented in read/write shared

memory [1].

A (system) state consists of the local states of the processes and all the registers

in the shared memory. Formally, a state is a vector

S = 〈s1, . . . , sn;SM〉,

where si is the local state of process pi and SM is the shared memory of the system.

An initial state is a state in which every local state is an initial local state and all

register in the shared memory are set to ⊥. A decision state is a state in which all

local states are output states.

Events and round schedules

An event of the system is performed by a single process pi, which applies only one

of the following actions: a write (W) or read (R) operation (i.e. a snapshot). Any

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5132

of these operations may be preceded/followed by some local computation, formally

a change of the process to its next local state. It is convenient to consider events

performed concurrently. If E is any event and pi1 , . . . , pik are processes, then we

denote the fact that pi1 , . . . , pik execute concurrently the event E by E(i1, . . . , ik).
A round schedule is a finite sequence of the form

E1(j11, . . . , j1p1), . . . ,Er(jr1, . . . , jrpr),

that encodes the way in which processes perform the events E1, . . . ,Er. For example

the round schedule given by

W(1, 3),R(1, 3),W(2),R(2),

means that processes p1, p3 perform the write and read events concurrently; af-

ter that, p2 executes solo its read/write events. Similarly, the round schedule

W(1, 2, 3),R(1, 2, 3) says that p1, p2, p3 execute concurrently the write/read oper-

ations. Let n̄ = {1, . . . , n}. Then we denote E(1, . . . , n) by E(n); if A ⊂ n and

n − A = {i1, . . . , iq}, E(n − A) denotes E(i1, . . . , iq); when A = {i}, E(n − A) is

E(n− i).

Decision tasks

A decision task Δ is a relation that has a domain I of input values and a domain O
of output values; Δ specifies for each assignment of the inputs to processes on which

outputs processes can decide. Examples of tasks includes consensus [13], renaming

[9,3] and the set agreement task [11] (to be defined later).

(1) init ri ← 0; smi ← inputi; deci ← ⊥;

(2) loop forever
(3) ri ← ri + 1;
(4) SM(ri).write(smi);
(5) smi ← SM(ri).snapshot();

(6) if (deci = ⊥) then
(7) deci ← δ(smi);
(8) end if
(9) end loop

Figure 1. General form of a protocol in the iterated model (code for pi)

2.2 The basic iterated model

The state machine of each process pi models a local protocol Ai, that determines

the steps taken by pi. We assume that all local protocols are identical; i.e. Pro-

cesses have the same state machine. A protocol is a collection A of local protocols

A1, . . . ,An. In this paper, we are interested in protocols in the iterated read/write

shared memory model of distributed computing. From now on we just call it the

basic iterated model. For the sake of simplicity, we give protocols specifications us-

ing pseudocode and we establish the following conventions: A lowercase variable

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 33

denotes a local variable, with a subindex that indicates to which process it belongs;

the shared memory (which is visible to all processes) is denoted with uppercase

letters. Figure 1 shows the general form of a protocol in the iterated model.

An execution of a protocol A is a finite or infinite alternating sequence of states

and round schedules S0, π1, . . . , Sk, πk+1, . . . , where S0 is an initial state and Sk is

the resulting state of applying the sequence of events performed by the processes

in the way described by πk. An r-round partial execution of A is a finite execution

of A of the form S0, π1, . . . , Sr−1, πr, Sr, that is, an execution of A until the end of

round r. A state P is said to be reachable in A if there exists an r-round partial

execution of A (r � 0) that ends in the state P and when there is no confusion, we

just say that S is reachable.

We identify two special components of each process’ states: an input and an

output. It is assumed that initial states differ only in the value of the input compo-

nent; moreover, the input component never changes. The protocol cannot overwrite

the output, it is initially ⊥; once a non-⊥ value is written to the output component

of the state, it never changes; when this occurs, we say that the process decides.

The output states are those with non-⊥ output value.

A protocol solves a decision task Δ if any finite execution α can be extended

to an execution α′ in which all processes decide on values which are allowable

(accordingly to Δ) for the inputs in α. Because the outputs cannot be overwritten,

if a process has decided on a value in α, it must have the same output in α′. This

means that outputs already written by the processes can be completed to outputs

for all processes that are permissible for the inputs in α.

A protocol is wait-free if in any execution of it, a process either it has a finite

number of events or it decides. This implies that if a process has an infinite number

of events, it must decide after a finite number of events.

We do not require the processes to halt; they solve the decision task and decide

by writing to the output component; processes can continue to participate. We

typically consider the behavior of a process until it decides, and therefore, the

above distinction does not matter.

Properties of states

Let A be a protocol in the iterated model and let S,R be states, we say that R is

a successor of S in A, if there exists an execution α of A such that

α = S0, π1, . . . , Sr = S, πr+1, . . . , πr+k, Sr+k = R, . . . ,

i.e., starting from S, we can run the protocol A k rounds (for some k � 0) such that

the system enters state R. If π is any round schedule and S is a state, the successor

of S in A obtained by running the protocol (starting in the state S) one iteration

with the round schedule π is denoted by S · π.
Two states S, P are said to be adjacent if there exists a non-empty subset X ⊆ n

such that all processes with ids in X have the same local state in both S and P .

That is, for each i ∈ X, pi cannot distinguish between S and P . We denote this

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5134

by S
X∼ P and when X = {i} we use the notation S

i∼ P . States S and P are

connected if we can find a sequence of states S = P1, . . . , Pr = P such that for all j

with 1 � j � r − 1, Pj and Pj+1 are adjacent.

Equivalence of the iterated model with the standard model

It would seem that the iterated model that we have defined is too restrictive: a

process cannot go back and read again the same shared array. Moreover, all pro-

cesses must access all the shared arrays in the same order. Because of this, one

may think it does not have full generality when compared with the more standard,

non-iterated wait-free shared memory model, that does not have the restrictions

imposed to protocols in the iterated model. The crucial question is: Does there

exists a task that is solvable in the wait-free standard model and it is not solvable

in the iterated model? The answer is no. Every task that is solvable in the wait-

free standard model is also solvable in the iterated model. This is proved using an

algorithm that simulates the standard model in the iterated model, first in [10], and

more recently in [15]. Therefore, there is no loss of generality (for computability

purposes) in considering only protocols in the iterated model.

2.3 The geometry of the Iterated model

The framework we have described to study distributed algorithms can be given in

geometric terms, using simplicial complexes. We assume that the reader is familiar

with basic concepts from combinatorial topology [5,4].

We begin with an example, let n = 3 and suppose processes p1, p2 and p3 execute

a protocol A in the iterated model with their input values all equal to 0. In the

first round of A, there are several possible ways for the processes to execute their

actions of reading and writing to the shared memory; one possibility is that p1 and

p2 execute concurrently the basic operations and later, p3 executes the same steps.

This is represented by the round schedule W(1, 2),R(1, 2),W(3),R(3). At the end of

the round, the local view of the shared memory of p1 and p2 only contains the values

these processes wrote; they cannot see the value written by process p3 because they

executed faster that p3, which wrote its information in the shared memory after

p1 and p2 executed their reads (snapshots) operations 5 . But p3’s local view of

the memory contains the data of the three processes, so that p3 can see all the

information written by p1 and p2. This (system) state (which is reachable in A)
can be represented by a 2-simplex Δ2 as shown in the following figure.

5 This models the possibility that p3 is just running slower that p1 and p2 and also it models the situation
in which p3 crashes and does not take any steps at all.

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 35

p1 p2

p3
W(1, 2)
R(1, 2)
W(3)
R(3)

00⊥ 00⊥

000

Each vertex of Δ2 is labeled with the process id and the local state of that process

(this includes the local view of the memory). Now consider the case where the

three processes execute the shared operations concurrently (this is described with

the round schedule W(1, 2, 3),R(1, 2, 3)) and the views they have of the memory at

the end of the first round. As in the previous case, we represent this state as a

2-simplex Δ′
2.

W(1, 2)
R(1, 2)
W(3)
R(3)

W(1, 2, 3)
R(1, 2, 3)

W(3)
R(3)
W(1, 2)
R(1, 2)

00000⊥

00⊥

000

000 ⊥⊥0
p1

p3p2

p2

p1

p3

This time, all the processes can see each other’s input values and because p1 and

p2 have a different local view of the memory, they can distinguish between the

state given by Δ′
2 and the previous one (represented by Δ2); but p3 cannot tell the

difference, because it has exactly the same information in both states. This is the

reason why the simplexes Δ2 and Δ′
2 have the vertex with p3’s id as a common face,

p3 cannot distinguish between the two states, because in both of them it has the

same local state. In a similar way, the simplex that represents the reachable state

in A obtained by executing the first round of the protocol in the way described by

W(3),R(3),W(1, 2),R(1, 2), is adjacent to Δ′
2 (this time, p1 and p2 cannot distin-

guish).

We can represent all the possible reachable states in the first round of A as

2-simplexes and construct a simplicial complex, which we call the 1-round protocol

complex of A (Figure 2 (a)). It is just a subdivided triangle. Each simplex in this

complex represents a state S that the system can reach after the processes execute

the first round of A with a round schedule that makes the protocol enter into state

S.

In the second round, processes start to execute the protocol with the state they

had at the end of the first round, and then all the possible round schedules of the

first round can be repeated. If we represent the state that the processes have at

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5136

(a) (b)

Figure 2. The protocol complex for a 3-process protocol in the iterated model after the execution of the
first round (a) and the second round (b).

the beginning of round two as the corresponding 2-simplex of the 1-round protocol

complex of A (that is, as a reachable state of the first round of the protocol) then

using the fact that we are working with an iterated model of computing, we can

encode all the possible states of the system at the end of round two as a subdivision

of the triangle that represents the state that the processes had at the end of round

one. This subdivision is identical to the protocol complex of round one, so that we

can describe all the possible reachable states in round two of A as the simplicial

complex of Figure 2 (b), this is the 2-round protocol complex of A. Notice that

this complex is also a subdivided triangle, with several subcomplexes isomorphic

to the protocol complex of round one. This behavior is going to repeat itself for

all subsequent rounds– the k-round protocol complex for a protocol in the iterated

model for three processes will be a subdivision of the 2-simplex. To obtain the

complex of a subsequent round, we just take the complex of the previous round

and replace each simplex in it with the complex of Figure 2 (a) and we can see

that the k-round protocol complex has a simple and elegant recursive structure.

In general, if we have n + 1 processes, each possible initial or final local state

of a process is modeled as a vertex v = (i, smi), a pair consisting of a process id

i and the local state smi of process pi. We say that the vertex is coloured with

the process id. A set of n + 1 mutually compatible initial or final local states is

represented as an n-simplex Δn and with this we model a possible system state.

Given a protocol A in the iterated model, where each process pi receives the input

value vi (i = 1, . . . , n + 1), for each round number r � 0 all the possible reachable

states in A at the end of round r are represented as a n dimensional complex, the

r-round protocol complex (for brevity, we just say the “protocol complex”), PA, in
which each vertex is labeled with a process id and that process state at the end of

round r. Thus, each simplex in PA corresponds to an equivalence class of executions

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 37

of A that “look the same” to the processes at its vertices. It is argued in [10] that

PA is always a subdivided n-simplex.

There is more information about the protocol complex in [19]. In fact, the

definition we have presented of the r-round protocol complex PA (associated with

the input values that the processes have when they begin executing the protocol

A) is closely related with the notion of a span in [19, Definition 4.4, page 884].

Herlihy and Shavit define the protocol complex as a bigger geometric structure which

depends on all the possible input values of processes and all possible executions of

a protocol A. However, for most cases, it is sufficient to work with the definition of

protocol complex we have given. We find our definition sufficient for the purposes

of this introductory paper.

2.4 Set agreement tasks

We are interested in the (n, k)-set agreement task, where n is the number of

processes and k < n. This task was proposed the first time in [11] and it has been

fundamental in the study of distributed computing. It is described as follows:

The (n, k)-set agreement problem. In this task, every process starts with

some initial input value taken from a set I (|I| � n) and must output a value such

that:

• Termination: Each process must eventually output some value.

• k-Agreement: The set of output values from all processes must be of size at most

k.

• Validity: If some process outputs v, then v is the initial input of some process.

The set agreement task is a natural generalization of consensus, which corre-

sponds to the (n, 1)-set agreement task. That is, processes must agree on a unique

output value. Before the set agreement task was defined, it was well known that the

consensus problem is not solvable in the presence of even only one faulty process [13].

This impossibility result uses simple graph connectivity arguments. But since the

(n, k)-set agreement task was conceived, it was an open question whether it could

be solved in the wait-free shared memory model (with the parameters 2 � k < n),

until 1993 when three independent teams [8,23,18] showed that there is no wait-free

protocol that can solve set agreement.

Theorem 2.1 ([8,23,18]) For 1 � k < n, the (n, k)-set agreement task has no

wait-free read/write solution in the iterated shared memory model.

As the iterated model is equivalent to the usual standard wait-free shared mem-

ory model, Theorem 2.1 implies the impossibility to solve the set agreement task

in the standard model. It is worth noticing that the set agreement task is not the

only distributed problem in which topological techniques have been useful. Other

examples are musical benches [14], renaming [19] and loop agreement [17] among

others.

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5138

3 An enrichment of the iterated model

In this section, we add more powerful shared objects to the iterated model, and

study the solvability of the set agreement task in this extended model.

3.1 The extended iterated model with safe-consensus

The objects we will add to the iterated model are based on a variant of the

consensus problem, which is called safe-consensus.

The safe-consensus task. In this task, every process starts with some initial

input value taken from a set I and must output a value such that:

• Termination: Each process must eventually output some value.

• Agreement: All processes output the same value.

• Validity: (1) If a process pi starts executing the task and outputs before any other

process starts executing the task, then the task’s output is pi’s proposed input

value. (2) Otherwise, if two or more processes initially access the safe-consensus

task concurrently, then the task can return any value from a countable set V such

that I is a proper subset of V .

The safe-consensus task is the result of weakening the validity condition of con-

sensus. It was first proposed by Yehuda, Gafni and Lieber [2]; they use it to show

that the g-tight-group-renaming task [3] is as powerful as consensus for g processes.

We can now define new objects to extend the basic iterated model.

A safe-consensus object is a shared object that can be used by any number of

processes. The object receives an input value from each process that invokes it, and

returns to all the processes an output value that satisfies the Agreement and Validity

condition of the safe-consensus task. In other words, a safe-consensus object is like

a “black box” that the processes can use to solve instances of the safe-consensus

task. The method of using distributed tasks as black boxes inside protocols is a

standard way to study the relative computational power of distributed tasks (i.e. if

one task is weaker than another).

It can be seen that the safe-consensus shared objects are primitives more power-

ful than the read/write shared memory. This is because in [2] the authors give two

protocols that solve the consensus problem for n processes in a model of distributed

computing that extends the standard shared memory model with safe-consensus ob-

jects (without any restriction in the way that the processes use the safe-consensus

objects) and this says that the safe-consensus task is as powerful as consensus. Re-

member that in this paper, in order to make a clear exposition of the field, we use

the safe-consensus objects by imposing some rules in the way in which processes

invoke the shared objects.

More precisely, we add to the basic iterated model defined in Section 2.2, an

infinite array of safe-consensus objects; each of these provides an exec method that

takes one parameter as input value and returns to all participating processes a

unique value, satisfying the properties of the safe-consensus task. We assume that

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 39

the input value that processes feed to the safe-consensus objects is their own ids 6 .

For the purposes of this paper, we also assume that in each iteration, all the pro-

cesses invoke the same safe-consensus object, that is, there is only one safe-consensus

object in each round and it is used by all processes. We call this model of com-

putation the Iterated shared memory with full safe-consensus objects (IFSC) model

(Figure 3). Finally, we extend the set of events of the iterated model with the event

of a call to a safe-consensus object. This event will be denoted by S.

(1) init ri ← 0; smi ← inputi; deci ← ⊥; screti ← ⊥;

(2) loop forever
(3) ri ← ri + 1;
(4) SM(ri).write(smi, screti);
(5) screti ← safe-consensus.exec(id);
(6) smi ← SM(ri).snapshot();

(7) if (deci = ⊥) then
(8) deci ← δ(smi, screti);
(9) end if
(10) end loop

Figure 3. General form of a protocol in the IFSC model (code for pi)

Before continuing with our exposition, we would like to make some remarks

concerning the model of distributed computing that we have defined. Notice in

Figure 3 that the calls to the safe-consensus objects have been placed between the

write and read (snapshot) shared memory operations. In the sequel to this paper

[12], we investigate different iterated models which arise from extending the basic

iterated model with safe-consensus objects. One issue we consider is precisely where

to place the calls to the safe-consensus objects. As we explain in [12], depending

on where we put the calls to safe-consensus objects, we can obtain quite different

models. In fact, one of the models investigated in [12] is an extension of the IFSC

model.

3.2 The protocol complex with safe-consensus

After we add to the basic iterated model the power to use safe-consensus objects, one

of the first questions that we would like to answer is: What happens to the protocol

complex in the extended model ? Are the topological properties unchanged ? In

order to answer this question, the first thing we must do is to formally define the

protocol complex for protocols in the new IFSC model. If A is a protocol in the

IFSC model for n processes, the protocol complex SA of A is defined in the same

way as we defined protocol complexes in Section 2.3, the only thing that changes is

the view associated to a vertex. A vertex of SA is a tuple v = (i, smi, val), where i

is the id of process pi, smi is the local state of pi and val is the return value of the

safe-consensus object invoked by all processes.

In Figure 4 we have a drawing of a part of the protocol complex SA of a one-

round execution of a protocolA for three processes in the IFSC model. The complete

6 It is not hard to see that this assumption is done without loss of generality.

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5140

W(3)
S(3)
R(3)
W(1, 2)
S(1, 2)
R(1, 2)

W(2, 3)
S(2, 3)
R(2, 3)
W(1)
S(1)
R(1)

W(1, 2, 3)
S(1, 2, 3)
R(1, 2, 3)

W(1, 2)
S(1, 2)
R(1, 2)
W(3)
S(3)
R(3)

W(1)
S(1)
R(1)
W(2, 3)
S(2, 3)
R(2, 3)

p3

p1

p1

p1

p3 p3

p3

p2

p2

p2

p1

p1

p1

p1

p3
p3

p3

p2

p2

p2

p1

p1

p1

p3
p3 p3

p2

p2

p2

p2

p1

p1

p1

p3

p3
p3

p2

p2

p2

Figure 4. Part of the one round Protocol complex of a protocol in the IFSC model. The entire complex
contains a countable number of copies of the subcomplex at the bottom. 3.1).

complex is a disconnected space with an infinite number of connected components.

Clearly, this complex is not the same complex of Figure 2. Each connected com-

ponent is associated with an output value of the safe-consensus task. To see why

this is true, let us take a closer look at the subcomplex, say T3, on top of Fig-

ure 4, it has a 2-simplex that represents a state in the first round of A that is

reachable by means of the round schedule W(3), S(3),R(3),W(1, 2), S(1, 2),R(1, 2).
In this execution, process p3 is faster that p1 and p2, thus it executed the safe-

consensus object in solo, hence by the Validity condition of the safe-consensus task,

the shared object returns the valid input value of 3 to all processes. Now, if we

consider the 2-simplex of T3 representing the state reachable through the schedule

W(2, 3), S(2, 3),R(2, 3),W(1), S(1),R(1) then we know that p2 and p3 were faster

that p1 and executed the safe-consensus object concurrently and by the Validity

condition of the safe-consensus task, the shared object can return any value to

all processes, so that there exists the possibility that the return value of the safe-

consensus object is 3. With a similar analysis of the other simplexes in T3, we can

conclude that the safe-consensus value given in the vertices of every 2-simplex of T3

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 41

is precisely 3. This subcomplex cannot have simplexes with a safe-consensus value

other that 3. For example, it is easy to show that the simplex representing the state

obtained with the execution of A given by W(1), S(1),R(1),W(2, 3), S(2, 3),R(2, 3)
cannot be adjacent to any simplex of T3 (because of the different safe-consensus

values). If we now take the subcomplex T1 in the leftmost part of the figure and the

subcomplex T2 in the rightmost part (both of them are isomorphic to T3), we can

prove that T1 contains only simplexes with vertices of safe-consensus value equal to

1 and all the simplexes of T2 have vertices with 2 as the safe-consensus value.

What about the subcomplex Bx at the bottom of the figure ? It contains sim-

plexes that represent states in which the safe-consensus object returns an invalid

output value x 	= 1, 2, 3. All the states represented in Bx come from executions in

which at least two processes invoke the safe-consensus task concurrently and the

value the processes obtain from the shared object is precisely x. But there are a

countable number of invalid output values that the task can return to the processes,

so that there should be in the complex of Figure 4 a subcomplex Bβ (isomorphic

to Bx) for each possible invalid value β. For simplicity, we only show one of these

subcomplexes. In summary, the protocol complex SA of the first round of the pro-

tocol is disconnected, with an infinite number of connected subcomplexes, one for

each possible output value of the safe-consensus task.

We have described the one-round protocol complex of a protocol in the IFSC

model. Because we work in an iterated model, in the second (third, fourth and so

on) round, the protocol complex is composed of many subcomplexes like T1, T2, T3
and Bx, each simplex of the previous round transforms into a subcomplex like SA.

It is not hard to prove that the behavior we have described for 3-processes proto-

cols in the IFSC model, generalizes to protocols with any number of processes n 	= 3.

The protocol complex of any protocol in the IFSC model is a disconnected complex

with an infinite number of connected subcomplexes. In general, the structure of the

protocol complex in the IFSC model is not as uniform as the well behaved structure

of the protocol complex in the basic iterated model.

3.3 Solving (n, n− 1)-set agreement tasks with safe-consensus

We now show that the difference between protocols in the basic iterated model and

protocols in the extended model with safe-consensus is not only about geometric

shapes. In this section, we prove that in the extended model we can solve the

(n, n−1)-set agreement task for n � 2 processes, a distributed task that we know is

unsolvable in the iterated model [18,23,8]. But we also prove that we cannot solve

every set agreement task, because n-consensus ((n, 1)-set agreement) is impossible

to solve in the IFSC model (when n � 3).

A protocol for (n, n− 1)-set agreement

The protocol in Figure 5 solves (n, n− 1)-set agreement for n � 2 processes in one

round with only one safe-consensus object. We proceed to prove its correctness.

Lemma 3.1 For any process pi that executes line 9 of the protocol in Figure 5,

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5142

(1) init deci, screti, smi ← ⊥;

(2) begin
(3) SM.write(inputi);
(4) screti ← safe-consensus.exec(id);
(5) smi ← SM.snapshot();
(6) if screti ∈ {1, . . . , n} ∧ smi [screti] �= ⊥ then
(7) deci ← smi [screti];
(8) else
(9) deci ← smi [αi] with αi = min{α | smi [α] �= ⊥};
(10) end if
(11) decide deci;
(12) end

Figure 5. A (n, n− 1)-set agreement protocol in the IFSC model (code for pi)

(a) The cardinality of the set Ai = {α | smi [α] 	= ⊥} is at least 2 and minAi 	= n.

(b) If n /∈ Ai then minAi 	= n− 1.

Proof (a) Suppose that process pi executes line 9 of the if/else block, then it must

be true that screti /∈ {1, . . . , n}∨smi [screti] = ⊥, so either the safe-consensus object
returned an invalid process id or process pscreti did not write its proposed value to

the shared memory before pi executed the snapshot operation (pscreti could be slow

or perhaps it crashed). In any case, by (2) of the Validity condition of the safe-

consensus task, there must exists two processes pr, ps that called the safe-consensus

object concurrently. These processes wrote their input values to the shared memory

before accessing the safe-consensus object, so that when pi takes a snapshot of the

memory, the local array smi contains at least two non-⊥ values and with this we

have that |Ai| � 2. Now suppose that αi = minAi is such that αi = n. There must

exists j ∈ Ai with j 	= n, but then j < n = αi which is a contradiction. Hence,

αi 	= n. (b) Given that n /∈ Ai, we can use a similar argument to that used in (a)

and obtain this case. �

Theorem 3.2 Let n � 2. The (n, n − 1)-set agreement problem is solvable in the

IFSC model in one round using one safe-consensus object.

Proof We prove that the protocol in figure 5 solves (n, n− 1)-set agreement. Triv-

ially, the protocol satisfies the Termination condition of the (n, n−1)-set agreement

task. Let pi be any process; after pi writes to the shared memory its input value,

it invokes the unique safe-consensus object and takes a snapshot of the memory,

pi executes the if/else block at lines 6-10. First suppose that screti ∈ {1, . . . , n}
and smi [screti] 	= ⊥. Then process pscreti wrote to the shared memory its input

value before pi took the snapshot and this implies that smi [screti] contains a valid

proposed input value and this is the decided value of process pi. On the other hand,

if smi [screti] = ⊥ or screti /∈ {1, . . . , n}, pi goes on to execute line 9. By (a) of

Lemma 3.1, the set Ai = {α | smi [α] 	= ⊥} is not empty, so that there exists a

minimum element αi ∈ Ai and then when pi assigns to deci the contents of the local

register smi [αi], it has a valid proposed input value, so that the decided value of

process pi is correct. Hence, the Validity condition of the (n, n − 1)-set agreement

problem is fulfilled by the protocol.

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 43

We now show that the set of values decided by the processes in any execution

of the protocol has size no bigger that n − 1. Suppose that processes pi1 , . . . , pir
(r � n, some processes may crash) finish an execution of the protocol and let D be

the set of values decided by the processes. We argue by cases.

Case 1. Two or more processes executed line 7 of the protocol. Then |D| � n−1,

because all processes invoked the same safe-consensus object and by the Validity

property of the safe-consensus task, the return value of the shared object is the

same for all processes, so that if at least two processes executed line 7, they

decided the same value.

Case 2. Only one process pl executed line 7 of the protocol. Let v be the value

that the safe-consensus object returned to all participating processes. Then for

process pl we have that scretl = v and sml [v] (which is non-⊥) is the value

decided by pl. If v ∈ {1, . . . , n − 1} then |D| � n − 1, because for every process

pi with i 	= l, pi executed the second part of the if/else block and by (a) of

Lemma 3.1, pi could not decide the value proposed by process pn. On the other

hand, if v = n, then for all i 	= l, screti = n and smi [screti] = ⊥ and these

two facts imply that Ai ⊆ {1, . . . , n − 1}. With (b) of Lemma 3.1 we have that

minAi 	= n−1, so that all other processes with ids not equal to l decided at most

n − 2 values, which together with the value decided by pl, make up for at most

n− 1 different values, therefore |D| � n− 1.

Case 3. No process executed line 7 of the protocol. By (a) of Lemma 3.1, for

every process pi we have that αi ∈ {1, . . . , n−1}, so all processes decided at most

n− 1 values.

In any case, we conclude that the set of decided values has size at most n− 1, thus

the protocol satisfies the (n−1)-Agreement condition of the (n, n−1)-set agreement

problem, hence the protocol is correct. �

3.4 Impossibility of consensus in the IFSC model

Theorem 3.2 tell us that the IFSC model is more powerful that the basic iterated

model, because in the new model we can solve the (n, n−1)-set agreement task. But

now we will show that in the IFSC model, we cannot solve consensus, i.e., (n, 1)-set

agreement.

Trying to solve consensus in distributed systems

The impossibility results for consensus in various models of distributed comput-

ing [13,20,7] and the impossibility results for set agreement in the iterated model

[19,8,24], have shown that solving consensus in distributed environments is related

to connectivity of graphs (0-connectivity of simplicial complexes). Roughly speak-

ing, consensus is not solvable in a given model if for each valid input of the consensus

problem, the protocol complex (associated with that input 7) is connected.

7 Remember our discussion at the end of Section 2.3 about our definition of protocol complexes and its
relation with the definition of a span of [19].

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5144

In Theorem 3.6 we will prove that it is not possible to solve the consensus pro-

blem for n � 3 processes in the IFSC model, despite the fact that the protocols in

this model have disconnected protocol complexes (see Figure 4). We remark that

this impossibility comes from the restriction in the use of the safe-consensus objects

(all processes invoke the same object in each round) of the IFSC model, and not

from the fact that we are working in an iterated model 8 .

If A is a protocol for the consensus problem in the IFSC model and its protocol

complex SA is disconnected: Why is it impossible for A to solve consensus? We

can always find an execution of A in which when all the processes have decided

their output values, there are at least two processes that decided two distinct val-

ues, contradicting the Agreement property of the consensus task. Now, this “bad

execution” exists because we can choose i ∈ n and two simplexes Δi,Δn−i in the

complex SA such that

• Δi represents an execution in which process pi can see only his own input value

(that is, an execution in solo of pi).

• Δn−i represents an execution in which the other processes never see pi’s input

value.

• The simplexes Δi and Δn−i lie inside a connected component of SA.
As a consequence of the last point, there is a (graph) path from any vertex of

Δi to any vertex in Δn−i. Using one of these paths and an argument involving

non-distinguishable states, we can prove that the bad execution exists, so that A
cannot solve consensus. Thus we see that this impossibility is due to some kind of

“local connectivity” (between a specific pair of vertices) of SA. Before the formal

impossibility proof, we will workout an example with three processes.

Some definitions for consensus protocols

To be able to work with protocols that solve consensus, we need some additional

definitions. Let A be a consensus protocol; if v is a valid input value for processes

and S is a reachable state in A, we say that S is v-valent if in every execution

of A starting from S, there exists a process that outputs v. S is univalent if in

every execution starting from S processes always output the same value. If S is not

univalent, then S is bivalent. Fix i ∈ n and define the round schedules πi, π∗ and

πn−i as

(πi) W(i), S(i),R(i),W(n− i), S(n− i),R(n− i),

(π∗) W(n), S(n),R(n),

(πn−i) W(n− i), S(n− i),R(n− i),W(i), S(i),R(i).

8 In the sequel to this paper [12] we propose another iterated model with safe-consensus objects (which
can be seen as a generalization of the IFSC model) and prove that consensus can be implemented in that
model.

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 45

An example with three processes

If we take the case of n = 2 processes, then by Theorem 3.2, consensus of 2 processes

((2, 1)-set agreement problem) is solvable with safe-consensus objects. As we have

seen in this section, the protocol complexes of protocols in the IFSC model are

disconnected, so that one would expect to be able to solve consensus in this model,

but our next results argue otherwise.

Round 1:

Round 2:

I · π1
{2,3}∼ I · π∗

1∼ I · π3−1

W(1)
S(1)
R(1)
W(2, 3)
S(2, 3)
R(2, 3)

W(2, 3)
S(2, 3)
R(2, 3)
W(1)
S(1)
R(1)

W(1, 2, 3)
S(1, 2, 3)
R(1, 2, 3)

p2

p3
p1

p1

p1

p1

p2

p2

p3

p3

(I · π1) · π1
{2,3}∼ (I · π1) · π∗ ∼ · · · ∼ (I · π3−1) · π∗

1∼ (I · π3−1) · π3−1

p1

p1

p1

p1 p1

p1

p1

p1 p1

p1

p1

p2

p2

p2

p2

p2

p2

p2p2
p3

p3

p3p3

p3

p3

p3p3

Figure 6. Subcomplexes of the first and second round protocol complexes of a protocol in the IFSC model.

Let A be a protocol for three processes in the IFSC model and assume that A can

solve the consensus problem and for simplicity, suppose that the processes receive

as input values their own ids. Let I be the initial state in which the processes begin

to execute the protocol. If the processes run A only one round and then decide

a (unique) output value, then we know that the protocol complex SA is the space

shown in Figure 4. One of the subcomplexes of SA is depicted at the top of Figure

6, it represents all the reachable states in the first round of A for which the output

value of the safe-consensus object is 1. The round schedules π1, π∗ and π3−1 give

three possible ways to execute the first round of A and they take the protocol into

the states I ·π1, I ·π∗ and I ·π3−1 respectively and these states are represented in the

complex of Figure 6. Because the value returned by the safe-consensus object to all

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5146

processes in the three states is 1, it is easy to see that p2 and p3 cannot distinguish

between I · π1 and I · π∗ and p1 cannot distinguish between I · π∗ and I · π3−1, thus

we have the sequence of connected states

I · π1
{2,3}∼ I · π∗ 1∼ I · π3−1.

If the processes solve consensus in just one round, then these states are decision

states. As in the state I · π1 process p1 can see only itself, it has to decide its own

input value, which is 1 and by the Agreement property of consensus, p2 and p3 are

forced to decide 1; while in the state I · π3−1, p2 and p3 cannot see the input value

of p1 and this implies that p2, p3 decide a unique element u of the set {2, 3} and p1
also decides u. As we have said before, p2 and p3 cannot distinguish between the

states I ·π1 and I ·π∗ and they decide 1 in the state I ·π1, then they also decide 1 in

I ·π∗. On the other hand, p1 cannot distinguish between I ·π∗ and I ·π3−1 and in the

later state p1 decides u, gather that, p1 also decides u in I ·π∗. We conclude that in

the execution in which A enters the state I · π∗, p2 and p3 decide 1 but p1 decides

u 	= 1. This constitutes a violation of the Agreement condition of the consensus

problem, then the protocol cannot end in one iteration. If the processes execute A
for one more round and decide, then because we work in an iterated model, we can

prove that SA will contain the subcomplex given at the bottom of Figure 6; it has

simplexes representing reachable states in the second round of A of the form

(I · ρ) · σ ρ, σ ∈ {π1, π∗, π3−1},

and it can be verified that this complex contains a sequence of states that connect

(I · π1) · π1 with (I · π3−1) · π3−1 and this fact can be used to show that there is an

execution of the second round of A in which processes decide two different values,

again violating the Agreement property of consensus. As we work in an iterated

model, we can repeat the same argument in every round of A and that would imply

that A cannot solve the consensus problem for three processes.

The formal results

We now formalize the main ideas of the example above to prove that it is impossible

to solve n-consensus (n � 3) in the IFSC model.

Lemma 3.3 Let n � 3, i ∈ n. If A is a protocol in the IFSC model and S is any

reachable state in some round r � 0 of A, then there exists the sequence

S · πi n−i∼ S · π∗ i∼ S · πn−i, (3.1)

of connected reachable states in round r + 1 of A. Moreover, the value of the safe-

consensus object is the same in all three states.

Proof Let S be a reachable state in A and i ∈ n. We first show that there exists

executions of A in which the return value of the safe-consensus object is the same

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 47

in the three states S · πi, S · π∗ and S · πn−i respectively. If this fact is true, then it

will be clear that the given states can be connected in the way described by (3.1).

In the state S ·πi, the value of the safe-consensus object is i, because pi executes
the shared object before any other process executes it and by the Validity condition

of the safe-consensus task, the return value must be the value proposed by pi. For

the states S · π∗ and S · πn−i, the value of the safe-consensus can be arbitrary.

This is true because in each round, all processes invoke the same safe-consensus

object and by hypothesis n � 3 (this implies that |n|, |n − i| � 2). Thus in the

executions of A (given by the round schedules π∗ and πn−i) that take the protocol

into the states S · π∗ and S · πn−i, at least two processes execute the safe-consensus

object concurrently. By the Validity property, the return value of the object can be

arbitrary. Therefore there exists the possibility that the value returned by the safe-

consensus object to all processes is precisely i in the states S ·πi, S ·π∗ and S ·πn−i.

It follows that the sequence (3.1) of connected reachable states in A exists. �

Lemma 3.4 Let n � 3, i ∈ n. If A is a protocol in the IFSC model and there exists

a sequence

S0
X1∼ · · · Xl∼ Sl (l � 1)

of connected reachable states in A such that for all j with 1 � j � l, Xj = n− i or

Xj = {i}. Then there exists a sequence

Q0
Z1∼ · · · Zs∼ Qs (s � 1)

of connected reachable states in A such that

(1) Every state Qt is a successor state of some Sj.

(2) For all m with 1 � m � s, Zm is such that Zm = n− i or Zm = {i}.

Proof We use induction on l, the round schedules πi, π∗, πn−i and Lemma 3.3 to

construct the sequence Q1, . . . , Qs of connected states with the desired properties.

For the base case, consider the states S0
X1∼ S1 where X1 = {i} ∨ X1 = n − i. It

is easy to see that the state S0 · ρ is adjacent to the state S1 · ρ, where ρ is πi if

X1 = {i} and is πn−i if X1 = n− i. Assume that we have build the sequence

Q0
Z1∼ · · · Zs′∼ Qs′ ,

of connected successor states of S1, . . . , Sq (1 � q < l) with Zm = n− i or Zm = {i}
for all m � s′. Each state Qm is of the form Qm = Sj · α, where α ∈ {πi, π∗, πn−i}.
We now show how to connect Qs′ (a successor state of Sq) with a successor state

of Sq+1. Let Xq+1 be the set of processes that cannot distinguish between Sq and

Sq+1. We have to deal with cases.

Case 1. Qs′ = Sq · πi. If Xq+1 = {i}, then we can connect Sq · πi with Sq+1 · πi
(pi cannot distinguish between these two states). Now, if Xq+1 = n − i, using

Lemma 3.3 we can build the sequence

Sq · πi n−i∼ Sq · π∗ i∼ Sq · πn−i
n−i∼ Sq+1 · πn−i.

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5148

Case 2. Qs′ = Sq ·π∗. Whether Xq+1 = {i} or Xq+1 = n− i we have the sequence

of connected states

Sq · π∗
Xq+1∼ Sq · πXq+1

Xq+1∼ Sq+1 · πXq+1 .

Case 3. Qs′ = Sq · πn−i. The argument here is very similar to Case 1, so we omit

it.

We have build with induction the sequence of connected states Q1, . . . , Qs from the

sequence S1, . . . , Sl satisfying the demanded properties. The result follows. �

Lemma 3.5 Let n � 3, i ∈ n. Suppose that A is a protocol in the IFSC model

that solves the consensus problem and that S0
X1∼ · · · Xl∼ Sl (l � 1) is a sequence of

connected reachable states in A that satisfies the hypothesis of Lemma 3.4 and also

assume that S0 is a v-valent state. Then Sl is v-valent.

Proof It is enough to prove the lemma for l = 1, as the general case follows easily

from this case. Suppose (without loss of generality) that S = S0 is v-valent and

that S′ = Sl is v′-valent (v 	= v′). Since S is v-valent, in every execution starting

from S, there is at least one process that outputs v and by the Agreement condition

of consensus, all processes must output v as the consensus value; the same is true

for S′, replacing v with v′. Let r be the round number of both S and S′ (this
makes sense, because S and S′ are adjacent, thus they must have the same round

number, which is part of the local state of each process), then combining Lemma

3.4 with an inductive argument, we can find for all m � r and any two r-round

partial executions

R0, π1, . . . , πr, Rr = S and P0, π
′
1, . . . , π

′
r, Pr = S′,

that end in S and S′ respectively, m-round partial executions

R0, π1, . . . , πr, Rr, πr+1, . . . , πm, Rm and P0, π
′
1, . . . , π

′
r, Pr, π

′
r+1, . . . , π

′
m, Pm,

such that Rm and Pm are adjacent states for all m � r. As the protocol solves the

consensus problem, there must exists a k such that Ru and Pu are decision states

for all u � k. Without loss, we can assume that k � r. Since Ru is a successor

state of S, which is a v-valent state, all processes decide v in Ru; simillary, as Pu is

a successor of S′ (a v′-valent state), processes must decide v′ in Pu. Let X be the

set of ids of processes that cannot distinguish between Ru and Pu. Then, for each

j ∈ X the local state of process pj in Pu and Ru must be the same and this includes

its output component. But this is a contradiction because in Ru, pj decides v while

in the state Pu, pj decides v′. We conclude that S′ must be v-valent, such as S. �

Theorem 3.6 For n � 3, there is no protocol in the IFSC model to solve consensus

for n processes.

Proof Assume that there exists a protocol A for consensus in the IFSC model and

(without loss of generality) suppose that 0,1 are two valid input values. Let i be

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 49

any process id and let O,U be the initial states in which all processes have as input

values 0s and 1s respectively. Clearly, O is a 0-valent state and U is a 1-valent state.

Let OU be the initial state in which pi has input value 0 and all other processes

have input value 1. Then in the first round of A, we have the following sequence of

connected reachable states in A:

O · πi i∼ OU · πi n−i∼ OU · π∗ i∼ OU · πn−i
n−i∼ U · πn−i.

Because O · πi is 0-valent, Lemma 3.5 tell us that the state U · πn−i is also 0-valent.

But this contradicts the fact that U · πn−i is a 1-valent state. Therefore no such

protocol A can exists. �

4 Conclusion

We have described the iterated model of distributed computing, a useful tool to

study and understand the behavior of distributed systems. Also, we described how

the runs of protocol in this model can be represented with simplicial complexes and

we presented some standard tools (i.e. connectivity of states, valency, etc.) com-

monly used to investigate distributed systems. Also, we described the set agreement

task, one of the most important distributed problems.

To show to the reader what sort of results can be achieved with the iterated

model and the topological approach, we defined the iterated shared memory with

full safe-consensus objects (IFSC) model, an extension of the basic iterated model

using the safe-consensus task of [2]. We showed how to analyze protocol complexes

in the IFSC model, and we discovered that the protocol complexes of protocols in

the IFSC model are (globally) disconnected. We explained why local connectivity

between some pairs of vertices of the protocol complex is sufficient to prove that

consensus is unsolvable in the IFSC model. Thus we see that connectivity of the

protocol complex (which is related to the notion of non-distinguishable states) is

indeed fundamental in the study of distributed computing.

But we also proved that in the new IFSC model we can solve (n, n − 1)-set

agreement. As this problem cannot be solved in the basic iterated model [8,23,18],

we can conclude that the IFSC model is indeed more powerful that the basic iterated

model.

Several questions remain open. For example, is there an iterated model extended

with safe-consensus objects that is equivalent (for task solvability) to the wait-free

standard model extended with safe-consensus objects?

References

[1] Afek, Y., H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit, Atomic snapshots of shared memory,
J. ACM 40 (1993), pp. 873–890.

[2] Afek, Y., E. Gafni and O. Lieber, Tight group renaming on groups of size g is equivalent to g-consensus,
in: Proceedings of the 23rd international conference on Distributed computing (DISC’09), LNCS 5805
(2009), pp. 111–126.

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–5150

[3] Afek, Y., I. Gamzu, I. Levy, M. Merritt and G. Taubenfeld, Group renaming, in: OPODIS ’08:
Proceedings of the 12th International Conference on Principles of Distributed Systems, LNCS 5401
(2008), pp. 58–72.

[4] Alexandrov, P. S., “Combinatorial topology. Vol. 1, 2 and 3,” Dover Publications Inc., Mineola, NY,
1998, 650 pp., translated from the Russian, Reprint of the 1956, 1957 and 1960 translations.

[5] Armstrong, M. A., “Basic Topology,” Springer-Verlag, 1983.

[6] Attiya, H. and S. Rajsbaum, The combinatorial structure of wait-free solvable tasks, SIAM J. Comput.
31 (2002), pp. 1286–1313.

[7] Biran, O., S. Moran and S. Zaks, A combinatorial characterization of the distributed 1-solvable tasks,
J. Algorithms 11 (1990), pp. 420–440.

[8] Borowsky, E. and E. Gafni, Generalized flp impossibility result for t-resilient asynchronous
computations, in: STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing (1993), pp. 91–100.

[9] Borowsky, E. and E. Gafni, Immediate atomic snapshots and fast renaming, in: PODC ’93: Proceedings
of the twelfth annual ACM symposium on Principles of distributed computing (1993), pp. 41–51.

[10] Borowsky, E. and E. Gafni, A simple algorithmically reasoned characterization of wait-free computation
(extended abstract), in: PODC ’97: Proceedings of the sixteenth annual ACM symposium on Principles
of distributed computing (1997), pp. 189–198.

[11] Chaudhuri, S., More choices allow more faults: set consensus problems in totally asynchronous systems,
Inf. Comput. 105 (1993), pp. 132–158.

[12] Conde, R. and S. Rajsbaum, Two normal forms of an iterated snapshot model and their power to solve
consensus from safe-consensus (2010), manuscript.

[13] Fischer, M. J., N. A. Lynch and M. S. Paterson, Impossibility of distributed consensus with one faulty
process, J. ACM 32 (1985), pp. 374–382.

[14] Gafni, E. and S. Rajsbaum, Musical benches, in: Proceedings of the 19th international conference on
Distributed computing (DISC’05), LNCS 3724 (2005), pp. 63–77.

[15] Gafni, E. and S. Rajsbaum, Distributed programming with tasks, in: OPODIS ’10: Proceedings of the
14th International Conference on Principles of Distributed Systems, Lecture Notes in Computer Science
6490 (2010), pp. 205–218.

[16] Gafni, E., S. Rajsbaum and M. Herlihy, Subconsensus tasks: Renaming is weaker than set agreement,
in: Proceedings of the 20th international conference on Distributed computing (DISC’06), LNCS 4167
(2006), pp. 329–338.

[17] Herlihy, M. and S. Rajsbaum, A classification of wait-free loop agreement tasks, Theoretical Computer
Science 291 (2003), pp. 55 – 77.

[18] Herlihy, M. and N. Shavit, The asynchronous computability theorem for t-resilient tasks, in: STOC ’93:
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing (1993), pp. 111–120.

[19] Herlihy, M. and N. Shavit, The topological structure of asynchronous computability, J. ACM 46 (1999),
pp. 858–923.

[20] Loui, M. C. and H. H. Abu-Amara, Memory requirements for agreement among unreliable asynchronous
processes, Parallel and Distributed Computing, Advances in Computing Research. F. P. Preparata ed.,
JAI Press, Greenwich, CT 4 (1987), pp. 163–183.

[21] Rajsbaum, S., Iterated shared memory models, in: LATIN ’2010: Proceedings of the 9th Latin American
Symposium on Theoretical Informatics, Lecture Notes in Computer Science 6034 (2010), pp. 407–416.

[22] Rajsbaum, S., M. Raynal and C. Travers, The iterated restricted immediate snapshot model,
in: COCOON ’08: Proceedings of the 14th annual international conference on Computing and
Combinatorics (2008), pp. 487–497.

[23] Saks, M. and F. Zaharoglou, Wait-free k-set agreement is impossible: the topology of public knowledge,
in: STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on Theory of computing (1993),
pp. 101–110.

[24] Saks, M. and F. Zaharoglou, Wait-free k-set agreement is impossible: The topology of public knowledge,
SIAM J. Comput. 29 (2000), pp. 1449–1483.

R. Conde, S. Rajsbaum / Electronic Notes in Theoretical Computer Science 283 (2012) 29–51 51

	Introduction
	The iterated shared memory model
	Basic model of computation
	The basic iterated model
	The geometry of the Iterated model
	Set agreement tasks

	An enrichment of the iterated model
	The extended iterated model with safe-consensus
	The protocol complex with safe-consensus
	Solving (n,n-1)-set agreement tasks with safe-consensus
	Impossibility of consensus in the IFSC model

	Conclusion
	References

