Do Now: Find the lengths of the missing sides in each right triangle. Answers must be in radical form.

60

?

Aim: How can we use a unit circle and special triangles to find exact trigonometric values?

If we wanted to draw an angle of positive 30° starting at the x-axis, which direction would we go:

Clockwise or Counter-Clockwise

(hint - remember transformations)

Aim: How can we use a unit circle and special triangles to find exact

trigonometric values?

Drawing an angle on a coordinate grid:

Initial Side: The positive x-axis

Terminal Side: The ray where the measurement of an angle stops (counter-clockwise).

Unit Circle: A circle, centered at the origin, with a radius of 1.

How do we draw an angle of 30°

How do we draw an angle of 60°

Using a unit circle, determine the following:

 $sin(60^{\circ})$ We'll do this one together

cos(45°)

tan(30°)

Aim: How can we use a unit circle and special triangles to find exact

trigonometric values? Turn and Talk

What are the coordinates of point A, B, and C?

Aim: How can we use a unit circle and special triangles to find exact

Try this on your own: Fill in the following chart with exact values (radical form):

X	0	30	45	60	90
sin(x)					
cos(x)					
tan(x)					

The left hand trick:

