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Abstract

In the current work the authors present several approaches to the high performance sim-
ulation of human diseases propagation using hybrid two-component imitational models. The
models under study were created by coupling compartmental and discrete-event submodels.
The former is responsible for the simulation of the demographic processes in a population while
the latter deals with a disease progression for a certain individual. The number and type of
components used in a model may vary depending on the research aims and data availability.
The introduced high performance approaches are based on batch random number generation,
distribution of simulation runs and the calculations on graphical processor units. The emphasis
was made on the possibility to use the approaches for various model types without considerable
code refactoring for every particular model. The speedup gained was measured on simulation
programs written in C++ and MATLAB for the models of HIV and tuberculosis spread and the
models of tumor screening for the prevention of colorectal cancer. The benefits and drawbacks
of the described approaches along with the future directions of their development are discussed.

Keywords: mathematical epidemiology, individual-based modeling, computer simulation, Monte Carlo
methods, parallel computing, C++, MATLAB, OpenMP, MPI, GPGPU, CUDA

1 Introduction

In the contemporary mathematical epidemiology there exists a sufficient number of different
modeling approaches, from populational modeling by means of analytically tractable ordinary
differential equations to explicit compute-intensive agent—based modeling. Each of the ap-
proaches has its unique features, the question of choosing one for the particular scientific re-
search is a matter of discussion [10]. In the last years a certain interest has arisen to the
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employment of multicomponent models which combine several approaches in one composite
model structure [2], [14].

In our works on disease propagation dynamics [5], [8] we came to use of two-component
stochastic models incorporating a compartmental submodel and a discrete-event simulation.
The employment of several submodels with different levels of detail allowed us to describe thor-
oughly the modeling processes of foremost importance and at the same time to stay reasonable
in terms of computer power and amount of input data demanded for the sake of simulation.
Still, the simulation time was becoming unsatisfactory when big populations were simulated
or multiple launches with different input parameter sets were performed, that’s why we have
decided to turn to high performance algorithms. Various types of those are used to accelerate
particular epidemic models and modeling frameworks [3], [4], also they are often included into
software packages for epidemic modeling [11], [15].

The important issue is that the researcher’s efforts spent on converting the serial modeling
algorithm to parallel one is not always compensated by the resulting overall time economy,
especially when (a) the model is not planned to be reusable (i.e. it is built to address particular
research issues and will be discarded after several experiments) and (b) the serial algorithm
speed seems more or less satisfactory to the researcher. Both (a) and (b) hold true in our case,
so we’ve decided that performing tedious algorithm optimization for every particular model
is not worthwhile. However, we have found out that a number of general high performance
techniques could bring a speed boost for a big class of our models (including the existing
ones and those which could be created later) and hence compensate the time spent on the
algorithm modification. In this paper we introduce three possible approaches for the simulation
speedup with different tradeoff between the algorithm universality, performance and easiness of
implementation.

2 Two-component Individual-based Models

Population structure. The population under study is regarded as an aggregate of groups
C ={Ay, As,..., A, } reflecting spacial and social heterogeneity along with difference in disease
states of individuals. We distinguish a subset of our aggregate C, F C C', which contains groups
of individuals affected by the disease. While all the individuals within a state A; € C\F are
considered indistinguishable, each individual z in a fixed state A; € F' has a certain value of
the continuous non—negative parameter (a scalar or a vector) which changes via time according
to some deterministic or stochastic law and corresponds to the extent of disease impact on
the individual. The interpretation of this parameter depends on the regarded disease and the
particular model: it could be tumor size, virus density in blood or a unit—less value reflecting
the disease burden. The quantities of individuals in each state change due to processes of birth,
death, migration and transitions from one state to another. All these processes are considered
stochastic and described by random variables.

Submodel interaction. The compartmental submodel is in charge of processes which are
connected with individuals within an aggregate C\F, as well as with the flows to all of the
groups (in general case it includes the processes of birth, migration, death from natural causes
and infection of susceptible individuals). The submodel is set by a discrete or continuous-time
Markov chain or a system of stochastic difference equations on group quantities for the moments
t = 1,2,...,T. The discrete-event submodel is used to simulate the transition between the
groups of F' independently for every single individual x € A;, A; € F. The starting condition of
discrete-event simulation is the appearance of an individual z in the group A; € F' due to birth,
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Figure 1: A two-component model of tuberculosis propagation from [8]. The compartmental
submodel handles two groups: susceptible individuals (S) and individuals with latent infection
(L). The aggregate F consists of six groups reflecting different disease stages (non-infectious,
infectious, in remission) and treatment status (diagnosed or not). The individuals acquire the
infection after contacting infectious individuals from the groups B and By.

migration or transition from the state A; € C\F. The ending condition is reached when the
individual z either moves to a group A; € C\F or entirely leaves the population. An example of
the two-component model is shown on figure 1. If in the particular research case we don’t need
to consider individual parameters connected with disease advance, then F' = & and the model
becomes purely compartmental. In some other cases, on the contrary, we could assume that
F = C and therefore work with purely discrete-event model — it’s convenient, for instance,
when we investigate the disease onset and advance within a fixed size group of individuals of
the same age, without birth and migration flows.

Output. The conventional output data includes the quantities of individuals in each group
at the fixed time moments ¢t = 1,2,...,T. Additional output could be studied according to
the research task: it could be number of deaths in population during modeling time, poten-
tial years of life lost, economical cost of medical interventions, etc. If the model is purely
compartmental, in some cases the values of output variables can be assessed analytically. For
instance, discrete-time compartmental models can be analyzed with the help of the systems
on mathematical expectations of group quantities which are used for searching the equilibrium
states [9] or building of deterministic approximations of the group quantities dynamics [8]. For
continuous-time compartmental models deterministic approximations could be used to study
the stationary probabilities distribution of a corresponding continuous-time Markov chain [1].
The mentioned techniques are not applicable to individual-based models, so in general case
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one needs to estimate the expectations and variances of the observed random variables with
the help of Monte Carlo methods which requires launching the modeling program several times
with different initial seeds for the random number generator.

Serial algorithm structure. Suppose one numerical experiment consists of N simulation
runs and the modeling time interval is 7. The general scheme of the algorithm could be
presented as follows.

A. Preparing the array R of initial seeds for the random number generator

B. fori=1,2,...,N

B.1. Setting an initial seed to R][i]
B.2. fort=1,2,...,T

B.2.1. Finding the migration flows, transition flows between the groups A; € C\F
and from A; € C\F to Ay € F during the time period (¢t — 1;¢], using the
compartmental submodel

B.2.2. For every individual x newly appeared in Ag, Ay € F:

B.2.2.1. Simulating state transitions and changes of value A, (t) using the discrete-
event submodel

B.3. Storing output variable values

C. Assessing the mathematical expectations and variances of output variables by the sample
of N values calculated during the simulation runs

In case if we perform uncertainty/sensitivity analysis of our model on M input parameter
sets, the algorithm will be implemented consequently M times for every set of initial values.

3 Parallel And Distributed Algorithm Approaches

In this section we describe the ideas of parallel algorithms and present their relative performance
for the particular models compared to the serial algorithm. The modeling programs used in
the experiments were implemented in MATLAB (a simulation program for the continuous-time
model of HIV spread between intravenous drug users [1]) and C++ (all the other programs
mentioned in this work). In each of the experiments the simulations were performed several
times and the best simulation time was considered for the speedup assessment. As the baseline
we used the serial modeling programs with Mersenne Twister random number generator.

Name CPU type Number of cores RAM, Gb GPU type
desktop  Core i7-870 2.93 GHz 4 4 GeForce GTS 450 Ti
laptop  Core i5-4210U 1.7 GHz 2 8 GeForce GTS 730M

Table 1: Computer configurations used for the experiments
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3.1 Batch Random Number Generation on CPU and GPU

Method description. Due to the nature of the algorithms based on Monte Carlo methods
they require a lot of random numbers to operate with, so the increased speed of delivering
random numbers could result in dramatic acceleration of simulation process. As far as many
contemporary random number generators have fast methods for generating random numbers
in chunks, one of the possible means to achieve a speedup is to employ batch random num-
ber generation by means of CPU or GPU instead of generating single random numbers ”on
demand”. The drawback is the increased memory demand of the modified algorithm, as the
arrays of random numbers are to be stored in the memory.
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Figure 2: A speedup for different model types received by employing batch random number
generation on CPU and GPU

Numerical results. In Fig. 2 the speedup results are shown for the simulation programs of
three models: the two-component individual-based model of tuberculosis propagation [8], the
discrete-event model of tumor screening for the prevention of CRR [7] and its two-component
version [5]. For the batch random generation on CPU we used Mersenne Twister generator from
Intel Math Kernel Library, the class for batch random number generation on GPU was created
using NVIDIA CUDA technology and XORWOW generator from cuRAND library (CUDA
SDK). To store random numbers in computer memory a 2D array with the size 3 x 10® was
employed in each case. Every time when all the random numbers from the current 1D chunk
of size 10® were spent, the chunk was asynchronously refreshed by generating new random
numbers. The simulations were performed on both hardware configurations listed in Table 1,
however, as far as the resulting speedup didn’t depend much on the computer type, to avoid
redundancy we present the graphs only for the simulations performed on the laptop.

As we see from Fig. 2, we receive significant performance increase with batch random num-
ber generation both on CPU and GPU. On the exploited hardware configurations Intel MKL
outperforms cuRAND. Random number generation on GPU could dramatically outperform
that on CPU in case if the hardware configuration with a powerful graphical processor unit is
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used for the simulation [6], but the unavoidable operation of copying the random numbers from
GPU memory to RAM could diminish the difference in hardware performance, which appar-
ently happened in our case. So whether to choose batch random number generation on CPU or
GPU depends much on the configuration of the system. We could dare to presume that for the
majority of personal computers with a balanced hardware configuration using CPU for random
number generation should be slightly more effective.

It also came to fact that the same technique applied to MATLAB HIV modeling program
doesn’t affect positively on the simulation speed, on the contrary, the calculation time in-
creased both for CPU and GPU batch random generation compared to the initial algorithm.
The program profiling showed that the random number generation is not a bottleneck for the
performance of our particular MATLAB simulation. The explanation could be in difference of
operation costs in MATLAB and C++ or in the fact that our serial MATLAB code has flaws
and should be refactored before we try to receive benefits from the batch number generation.

3.2 Distribution of Simulation Runs

Method description. As far as the numerical experiment usually consists of performing
several simulation runs (the typical number is N = 100) which are executed independently
from each other and don’t require data transfer from one to another during the calculations,
the calculation speed could be increased by the distribution of simulation runs among the
available computational nodes. The resulting algorithm doesn’t depend on the structure of a
particular model and on the number of its submodels.

To implement this approach in our C++ simulations we modified the serial algorithm using
MPI and OpenMP technologies. The former is suitable for the computers with shared and dis-
tributed memory, whereas the latter could work only in shared memory. In MATLAB program
we used directives for shared memory algorithms from MATLAB Parallel Computing Toolbox.

To distribute simulation runs between the computational cores with the help of OpenMP
or MATLAB Parallel Computing Toolbox the only thing to be done is to parallelize the cycle
in line B of the serial algorithm (see section 2); #omp parallel for clause was used for that
purpose in C++ OpenMP programs and a similar parfor directive in MATLAB modeling
program. In MPI programs the delivering of input parameter values from the main thread to
the others should be provided, for that purpose a directive MPI_Send was put between the lines
A and B. After the simulation, before executing the line C, the main thread gathers the output
data with the help of directive MPI_Recv.

Numerical results. We measured the speedup for the simulation programs for compartmen-
tal and two-component individual-based models of tuberculosis propagation [8], the compart-
mental model of HIV propagation considering the social disadaptation of different population
groups [9] and the MATLAB HIV model. The experiment was held on the ”desktop” config-
uration (see Table 1), as it has twice as much physical cores as the laptop. The results are
shown in figure 3. It’s worth noting that the MPI algorithm used for the two-component TB
model shows lower speedup on 2 threads than its shared memory counterparts (C++ OpenMP
and MATLAB parfor) — that could be caused by the necessity for an MPI algorithm to spend
additional time on creating the copies of input variables and gathering the output values. At
the same time, the scalability of MATLAB and OpenMP programs doesn’t seem to be satisfac-
tory, which makes it possible for the MPI program to win in speedup on 8 threads. Possibly as
the number of threads increases, they start to hinder each other when working with the shared
data, while the MPI threads work with independent copies of variables and thus don’t have
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Figure 3: A speedup of simulation program versions for different models gained using OpenMP
and MPI technologies

this problem. Further investigation is planned to solve the issue and to make OpenMP and
MATLAB programs more scalable.

3.3 Simulation on GPU

As we saw in the section 3.1, a modern GPU has a big potential for general-purpose calculation,
but the simulation performance could be reduced due to necessity of sending data from GPU
to CPU. One of the ways to avoid unnecessary transactions between the CPU and the GPU is
to move the majority of the calculations to GPU. Due to their hardware structure GPUs are
especially good at performing massive-parallel operations when a small set of instructions ("a
kernel”, according to NVIDIA terminology) is applied to big arrays of data [12]. That gives
us a lot of ”lightweight” identical threads being launched simultaneously. The technique of
simulation runs distribution which we used in the previous section to perform calculations on
multi-core CPUs is not applicable here in general case, because a typical number of simulation
runs is only about 102, and, which seems even more important, one simulation run is usually
too "heavy” for a single GPU computational core in a sense of memory and processor power
consumption. The ways to overcome this obstacle and bring GPU into play for some classes of
models are discussed below.

Discrete-event models of non-infectious diseases. Assume we regard an onset and ad-
vance of some non-infectious disease in a group of m individuals of the same age. In this case
we can simulate the modeling processes (death, aging and disease occurrence and advance)
for any individual separately from others, hence a GPU kernel function will be in charge of
modeling the whole life of a fixed individual from the beginning of the simulation to its end.
The cycles at line B and B.2.2. of the serial algorithm are merged and replaced by one cycle
with N - m iterations, which gives us the number of parallel threads sufficient to benefit from
massive-parallel calculations on GPUs.
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Two-component models of non-infectious diseases. Let’s now assume that we start to
consider the processes of birth and migration, i.e we regard a full-fledged population which
requires a separate populational submodel. As far as the disease under study is non-infectious,
still all the processes happening with an individual are linear and their progress is not affected
by the behavior of the other individuals. So the modeling procedure in this case could have the
following algorithm:

e We serially launch NV simulation runs on CPU to perform compartmental submodel which
is in charge of the processes of birth and immigration for the given population.

e At the end of each simulation run we calculate the overall number of individuals m = m(7),
1 € 1, N, appeared in the population during that run.

e We launch in parallel the modeling processes for disease onset and progression for all
>% ,m; individuals simultaneously in a same fashion as it was done for the discrete-event
model from the previous paragraph, the only difference is that now every individual has two
additional parameters: a year of his arrival in the population and the index of simulation run.

e After getting the output results, such as the number of individuals died from the disease,
we distribute the statistics by years and simulation runs to assess the mathematical expectations
of the output variables.

Sensitivity analysis of compartmental models of infectious diseases. If the disease
we regard is infectious, the model should incorporate the infection process, which is non-linear,
so we cannot handle each individual in a separate thread from the beginning to end. That fact
makes it impossible to use the parallel computing approach described in the previous paragraph.
Creating of a general GPU simulation algorithm for our two-component models still remains a
challenge (and the question whether such an algorithm exists at all is arguable).

So far we’ve managed to employ GPU for the sake of sensitivity analysis of the compart-
mental models. In this situation we need to perform N simulation runs for the each of M input
parameter sets which gives us M - N independent threads. The function which is performed
on the data is one simulation run, just like in section 2 — in case of compartmental models,
unlike for two-component ones, it’s often ”lightweight” enough to be performed on GPU com-
putational core. If this is not the case, or the environment for some reasons doesn’t allow to
present a whole simulation run as a kernel ', we can split a simulation run into consequent
time steps and regard each one (as the model is purely compartmental, it’s the line B.2.1 of
the serial algorithm) as a kernel. As a result the massive-parallel operations will be performed
consequently in a loop with index t =1,2,...,T.

Numerical results. We’ve applied three techniques described in the previous paragraphs
to the discrete-event model of colorectal cancer screening, two-component model of colorectal
cancer screening and HIV MATLAB model correspondingly. While in the first case the initial
algorithm was only slightly redesigned, in the second and third cases we had to rewrite the
algorithms sufficiently to make them suitable for massive-parallel calculations, which by itself
gave a 1.79-2.22 speedup for the two-component colorectal cancer model and 1.26-1.51 speedup
for the HIV model depending on the hardware configuration. These modified algorithms were
taken as a baseline. To move the calculations onto GPU we employed NVIDIA CUDA SDK
in C++ models, in MATLAB the same operation was made using gpuArray and arrayfun
functions (see [13]). The resulting speedup is shown on figure 4. As we see, the speedup values
for the purely discrete-event model and the two-component model are close to each other,
thus we can conclude that serial CPU calculations performed for the sake of compartmental

1We’ve faced this limitation in MATLAB while employing GPU calculations with arrayfun function
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submodel don’t affect much the algorithm scalability. The speedup for the MATLAB program
is not as inspiring, as in the case of colorectal cancer models (although it’s still sufficient),
apparently because of the necessity to perform consequent massive-parallel operations with
transferring the output to computer memory and back at every time step. We could increase
the simulation speed by embedding a kernel written in CUDA C into MATLAB program [13]
instead of using arrayfun function, but it requires additional programming we aimed to avoid
from the beginning (see ”Introduction”).

30
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Figure 4: A speedup of GPU simulation program versions

4 Conclusions and Perspectives

In this paper we have presented three parallel simulation approaches applicable for two-
component disease propagation models, and discussed their benefits and drawbacks. As one
can see, if the model under study doesn’t exhibit high level of detail, it seems reasonable to
apply general high performance approaches without thorough program code refinement and
optimization (like those based on simulation runs distribution or batch random number gen-
eration). Practically at no costs, merely by adding a few lines of code into the existing serial
programs, we could sufficiently reduce the simulation time which is always convenient even in
case if the serial simulation is not dramatically slow. For more compute-intensive simulations
the approaches involving massive-parallel computations on GPUs could be brought into play,
but that requires more thorough code refactoring. It’s up to the researcher to decide which
approach to choose in his modeling case.

At the moment of writing this article we are satisfied with the acceleration received with the
help of approaches described in the paper. If our future research tasks require more sophisticated
and time-consuming simulations, we find reasonable to drift towards coupling several high
performance approaches within one simulation, for instance, using OpenMP+GPU on personal
computers and MPI4+OpenMP+GPU on supercomputer clusters. The prospected work in this
direction requires solving the technical issues of approaches interconnection (such as deciding
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what algorithm parts are to be performed on CPUs and what are for GPUs) and investigating
new ways of GPU employment to make it possible to cover greater number of modeling cases.
Still, we don’t want to forget about the algorithm universality, so we hope to make these coupled
approaches suitable for a variety of models without considerable tuning in every particular case.
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