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Abstract

The noisiness of a channel can be measured by comparing suitable functionals of the input
and output distributions. For instance, the worst-case ratio of output relative entropy to input
relative entropy for all possible pairs of input distributions is bounded from above by unity, by
the data processing theorem. However, for a fixed reference input distribution, this quantity may
be strictly smaller than one, giving so-called strong data processing inequalities (SDPIs). The
same considerations apply to an arbitrary Φ-divergence. This paper presents a systematic study
of optimal constants in SDPIs for discrete channels, including their variational characterizations,
upper and lower bounds, structural results for channels on product probability spaces, and the
relationship between SDPIs and so-called Φ-Sobolev inequalities (another class of inequalities
that can be used to quantify the noisiness of a channel by controlling entropy-like functionals of
the input distribution by suitable measures of input-output correlation). Several applications
to information theory, discrete probability, and statistical physics are discussed.
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1 Introduction

The well-known data processing inequality for the relative entropy states that, for any two proba-
bility distributions µ, ν over an alphabet X and for any stochastic transformation (channel) K with
input alphabet X and output alphabet Y,

D(νK‖µK) ≤ D(ν‖µ),

where µK denotes the distribution at the output of K when the input has distribution µ (and
similarly for νK). However, if we fix the reference distribution µ and vary only ν, then in many
cases it is possible to show that D(νK‖µK) is strictly smaller than D(ν‖µ) unless ν ≡ µ. To
capture this effect, we define the quantity

η(µ,K) , sup
ν 6=µ

D(νK‖µK)

D(ν‖µ)
,

and we say that the channel K satisfies a strong data processing inequality (SDPI) at input dis-
tribution µ if η(µ,K) < 1. In a remarkable paper [1], Ahlswede and Gács have uncovered deep
relationships between η(µ,K) and several other quantities, such as the maximal correlation (see [2]
and references therein) and so-called hypercontractivity constants of a certain Markov operator
associated to the pair (µ,K). For example, they have shown that if X = Y = {0, 1}, µ = Bern(1/2),
and K = BSC(ε), then η(µ,K) = (1− 2ε)2, which is also equal to the squared maximal correlation
in the joint distribution PXY with PX = PY = Bern(1/2) and PY |X = BSC(ε), the so-called doubly
symmetric binary source (DSBS) with parameter ε [3].

After the pioneering work of Ahlswede and Gács, the contraction properties of relative entropy
(and other Φ-divergences [4,5]) under the action of stochastic transformations have been studied by
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several other authors [6–10]. In particular, Cohen et al. [6], who were the first ones to take up this
subject after [1], showed that the SDPI constant of any channel K with respect to any Φ-divergence
is always upper-bounded by the so-called Dobrushin contraction coefficient of K [11, 12], another
well-known numerical measure of the amount of noise introduced by a channel. (This result of
Cohen et al. was rediscovered five years later in the machine learning community [13].) In the
last couple of years, strong data processing inequalities became the subject of intense interest in
the information theory community [14–22] due to their apparent usefulness for establishing various
converse results.

In this paper, we revisit the problem of characterizing the strong data processing constant
η(µ,K) [and its generalizations for arbitrary Φ-divergence] and establish a number of new upper
and lower bounds, as well as new structural results on SDPI constants in product probability
spaces. We also address the relationship between strong data processing inequalities and so-called
Φ-Sobolev inequalities [23]. These inequalities also quantify the noisiness of a Markov operator
(probability transition kernel) by relating certain “entropy-like” functionals of the input to the
rate of increase of suitable “energy-like” quantities from the input to the output. (Logarithmic
Sobolev inequalities, widely studied in the theory of probability and Markov chains [8, 24–27], are
a special case.) In particular, we show that the optimal constants in Φ-Sobolev inequalities for a
reversible Markov chain can be related to SDPI constants of certain factorizations of the transition
kernel of the chain as a product of a forward channel and a backward channel. Such factorizations
correspond to all possible realizations of the one-step transition of the chain as a two-component
Gibbs sampler [28], which is a standard technique in Markov chain Monte Carlo [29,30]. Conversely,
for a fixed input distribution µ on X, the SDPI constants of a given channel K with input in X and
output in Y are related to Φ-Sobolev constants of the reversible Markov chain on X obtained by
composing the forward channel K with the backward channel K∗ determined via Bayes’ rule. To
keep things simple, we focus on the discrete case, when both X and Y are finite, although some of
our results generalize easily to the case of arbitrary Polish alphabets (see, e.g., [21]).

The remainder of the paper is organized as follows. After giving some necessary background
on Φ-entropies and Φ-divergences in Section 2, we proceed to the study of strong data processing
inequalities in Section 3. Next, in Section 4, we define the Φ-Sobolev inequalities and characterize
their relation with SDPIs. Several examples of applications are given in Section 5. Section 6
provides a summary of key contributions. A number of auxiliary technical results are stated and
proved in the Appendices.

1.1 Notation

We will denote by P(X) the set of all probability distributions on an alphabet X and by P∗(X) the
subset of P(X) consisting of all strictly positive distributions. The set of all real-valued functions on
X is denoted by F (X); F∗(X) and F 0

∗ (X) are the subsets of F (X) consisting of all strictly positive
and nonnegative functions, respectively. Any channel1 with input alphabet X, output alphabet Y,
and transition probabilities {K(y|x) : x ∈ X, y ∈ Y} acts on probability distributions µ ∈ P(X)
from the right by

µK(y) =
∑
x∈X

µ(x)K(y|x), y ∈ Y

1We will also use the terms “stochastic transformation” or “Markov kernel.”
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or on functions f ∈ F (Y) from the left by

Kf(x) =
∑
y∈Y

K(y|x)f(y), x ∈ X.

The set of all such channels will be denoted by M (Y|X). The affine map µ 7→ µK naturally
extends to a linear map on the signed measures on X, since any such measure ν can be uniquely
represented as α1µ1 − α2µ2 for some constants α1, α2 ≥ 0 and some µ1, µ2 ∈ P(X); thus, we set
νK = α1µ1K − α2µ2K. The linear map f 7→ Kf is positive [i.e., K(F 0

∗ (Y)) ⊆ F 0
∗ (X)], and

unital [i.e., K1 = 1, where 1 denotes the constant function that takes the value 1 everywhere on
its domain]. If µ⊗K ∈P(X× Y) denotes the distribution of a random pair (X,Y ) ∈ X× Y with
PX = µ and PY |X = K, then Kf(x) = E[f(Y )|X = x] for any f ∈ F (Y) and x ∈ X.

We will say that a pair (µ,K) ∈P(X)×M (Y|X) is admissible if µ ∈P∗(X) and µK ∈P∗(Y).
For any such pair, there exists a unique channel K∗ ∈M (X|Y) with the property that

E[g(Y )Kf(Y )] = E[K∗g(X)f(X)] (1.1)

for all g ∈ F (Y), f ∈ F (X). This backward or adjoint channel can be specified explicitly via the
transition probabilities

K∗(x|y) =
K(y|x)µ(x)

µK(y)
, (x, y) ∈ X× Y (1.2)

(this is simply an application of Bayes’ rule). If (X,Y ) ∼ µ⊗K, then K∗ = PX|Y , so in particular
K∗f(y) = E[f(X)|Y = y] for any f ∈ F (X) and y ∈ Y. Strictly speaking, K∗ depends on both µ
and K, and we may occasionally indicate this fact by writing K∗µ instead of K∗.

Given a number p ∈ [0, 1], we will often write p̄ for 1− p. For p, q ∈ [0, 1], we let p ? q , pq̄+ p̄q.
Thus, if X ∼ Bern(p) and Z ∼ Bern(q) are independent random variables, then Y = X ⊕ Z has
distribution Bern(p ? q). For a, b ∈ R, we let a ∨ b , max{a, b} and a ∧ b , min{a, b}. Other
notation and definitions will be introduced in the sequel as needed.

2 Background on Φ-entropies and Φ-divergences

Let F denote the set of all convex functions Φ: R+ → R. For any Φ ∈ F , the Φ-entropy of a
nonnegative real-valued random variable U is defined by

EntΦ[U ] , E[Φ(U)]− Φ(EU), (2.1)

provided E[Φ(U)] < ∞ (see [23] and [31, Chap. 14]). For example, if Φ(u) = u2, then EntΦ[U ] =
Var[U ]; if Φ(u) = u log u, then

EntΦ[U ] = E[U logU ]− E[U ] logE[U ].

The Φ-entropy is nonnegative by Jensen’s inequality.
The Φ-divergences2 between probability distributions [4, 5] arise as a special case of the above

definition. Fix some µ ∈ P∗(X) (this restriction is sufficient for our purposes, and helps avoid

2We use the term “Φ-divergence” instead of the more common “f -divergence” because we reserve f for real-valued
functions on X.
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certain technicalities involving division by zero). Then, for any Φ ∈ F , the Φ-divergence between
an arbitrary probability distribution ν ∈P(X) and µ is defined as

DΦ(ν‖µ) , Eµ
[
Φ

(
dν

dµ

)]
− Φ(1).

Note that this differs from the usual definition by the subtraction of Φ(1). There are two reasons
behind this modification: (a) DΦ(µ‖µ) = 0 for any µ,3 and (b) any two Φ,Φ′ such that Φ − Φ′ is
affine determine the same divergence. If we now consider a random variable X ∈ X with distribution
µ and let f = dν/dµ, then

DΦ(ν‖µ) = EntΦ [f(X)] .

Moreover, if Φ(1) = 0, we can write DΦ(ν‖µ) = Eµ[Φ ◦ f ] since E[f(X)] = 1. Here are some
important examples of Φ-divergences [5]:

1. The relative entropy

D(ν‖µ) = Eν
[
log

dν

dµ

]
= Eµ

[
dν

dµ
log

dν

dµ

]
is a Φ-divergence with Φ(u) = u log u.

2. The total variation distance

‖ν − µ‖TV =
1

2
Eµ
∣∣∣∣dνdµ
− 1

∣∣∣∣
is a Φ-divergence with Φ(u) = 1

2 |u− 1|.

3. The χ2-divergence

χ2(ν‖µ) = Eµ

[(
dν

dµ
− 1

)2
]

is a Φ-divergence with Φ(u) = (u− 1)2 or Φ(u) = u2 − 1. This is a particular instance of the
fact that any two Φ,Φ′ ∈ F that differ by an affine function determine the same divergence.

4. The squared Hellinger distance

H2(ν, µ) = Eµ

(√dν

dµ
− 1

)2


is a Φ-divergence with Φ(u) = (
√
u− 1)2 or Φ(u) = 2− 2

√
u.

3However, unless u 7→ Φ(u) is strictly convex at 1, DΦ(ν‖µ) = 0 does not necessarily imply that ν = µ.
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An important class of Φ-divergences arises in the context of Bayesian estimation. Given a parameter
λ ∈ (0, 1), consider a random pair (Θ, X) with

Θ ∼ Bern(λ) and PX|Θ=θ =

{
µ, if θ = 0

ν, if θ = 1
.

Fix an action space A and a loss function ` : {0, 1} × A → R — in other words, if Θ = θ and an
action a ∈ A is selected, then we incur the loss of `(θ, a). Consider the problem of selecting an
action in A based on some observation Z related to (Θ, X) via the Markov chain Θ → X → Z —
i.e., Z and Θ are conditionally independent given X. If A = γ(Z) for some function γ, then we
incur the average loss

E[`(Θ, γ(Z))] = λ̄E[`(0, γ(Z))] + λE[`(1, γ(Z))].

The goal is to pick γ to minimize this expected loss for a given observation channel PZ|X . In the
extreme case when Z is independent of X, the best we can do is to take

a∗ = arg min
a∈A

[
λ̄`(0, a) + λ`(1, a)

]
,

giving us the average loss of

L∗λ , inf
a∈A

[
λ̄`(0, a) + λ`(1, a)

]
.

On the other hand, if Z = X, then we can attain the minimum Bayes risk

L∗λ(ν, µ) , inf
γ
E[`(Θ, γ(X))]

= inf
γ

{
λ̄

∫
X
`(0, γ(x))ν(dx) + λ

∫
X
`(1, γ(x))µ(dx)

}
,

where the infimum is over all measurable functions γ : X → A. The following result is well-known
(see, e.g., [32, p. 882]), but the proof is so simple that we give it here:

Proposition 2.1. The quantity

D`,λ(ν‖µ) , L∗λ − L∗λ(ν, µ)

is a Φ-divergence.

Proof. Define the function

Φ`,λ(u) , sup
a∈A

[
L∗λ − λ̄`(0, a)− λ`(1, a)u

]
, u ≥ 0.

Being a pointwise supremum of affine functions of u, it is convex. Moreover, Φ`,λ(1) = 0. With
this, we can write

L∗λ − L∗λ(ν, µ) = sup
γ

(
L∗λ −

∫
X
µ(dx)

[
λ̄`(0, γ(x)) + λ

dν

dµ
(x)`(1, γ(x))

])
=

∫
X
µ(dx) sup

a∈A

[
L∗λ − λ̄`(0, a)− λ`(1, a)

dν

dµ
(x)

]
= Eµ

[
Φ`,λ

(
dν

dµ

)]
.
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We consider two particular cases:

• A = {0, 1}, `(θ, a) = 1{θ 6=a}. An easy calculation shows that L∗λ = λ ∧ λ̄ and

Φ`,λ(u) =
[
λ ∧ λ̄− λ̄u

]
∨
[
λ ∧ λ̄− λ̄

]
= λ ∧ λ̄− (λu) ∧ λ̄.

Alternatively, we can write

L∗λ =
1

2
− 1

2
‖Bern(λ)− Bern(λ̄)‖TV =

1

2
− 1

2
|1− 2λ|

and

L∗λ(ν, µ) =
1

2
− 1

2
‖λν − λ̄µ‖TV,

where the total variation norm ‖ν‖TV of a signed measure ν on X is given by

‖ν‖TV =
1

2

∑
x∈X
|ν(x)|.

The optimal decision function is

γ∗(x) = 1{
λ dν

dµ
(x)≤λ̄

}.
The resulting divergence is known as the Bayes or statistical information [33]

Bλ(ν‖µ) =
1

2
‖λν − λ̄µ‖TV −

1

2
|1− 2λ|.

In fact, any Φ-divergence can be expressed as an integral of statistical informations [5,
Thm. 11]: for any Φ ∈ F , there exists a unique Borel measure MΦ on [0, 1], such that

DΦ(ν‖µ) =

∫
[0,1]

Bλ(ν‖µ)MΦ(dλ). (2.2)

• A = R, `(θ, a) = (a− θ)2. Then L∗λ = λλ̄ and

Φ`,λ(u) = λλ̄

(
1− u

λu+ λ̄

)
,

which gives

L∗λ(ν, µ) = λλ̄Eµ
[

dν/dµ

λdν/dµ+ λ̄

]
,

with the optimum decision function

γ∗(x) =
λdν

dµ(x)

λdν
dµ(x) + λ̄

.
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The corresponding divergence is then given by

D`,λ(ν‖µ) = λλ̄

(
1− Eµ

[
dν/dµ

λdν/dµ+ λ̄

])
= (λλ̄)2Eµ

[
(dν/dµ− 1)2

λdν/dµ+ λ̄

]
,

where the second expression follows after some algebraic manipulations. Note that the func-

tions u 7→ (u−1)2

λu+λ̄
for 0 < λ < 1 also belong to F . The divergences generated by these

functions (modulo multiplicative constants) have appeared throughout the statistical litera-
ture [34, 35]. In particular, Le Cam [34] considers the case λ = 1/2 with the above Bayesian
hypothesis testing interpretation, while Györfi and Vajda [35] look at arbitrary λ (including
the endpoints 0 and 1). For our purposes, it will be convenient to work with the function

u 7→ λλ̄ (u−1)2

λu+λ̄
, which gives the Le Cam divergence with parameter λ ∈ (0, 1):

LCλ(ν‖µ) , λλ̄Eµ
[

(dν/dµ− 1)2

λdν/dµ+ λ̄

]
≡ 1

λλ̄
D`,λ(ν‖µ). (2.3)

The Le Cam divergences LC0(·‖·) and LC1(·‖·) are also well-defined and are identically zero.

More examples of Φ-divergences, as well as a wide variety of inequalities between them, can be
found in [36].

From now on, when dealing with quantities indexed by Φ, we will often substitute Φ with some
mnemonic notation related to the corresponding Φ-divergence, e.g., TV, χ2, etc. Moreover, for the
case of the relative entropy we will often omit the index Φ altogether and write Ent(·), D(·‖·), etc.

2.1 Subadditivity of Φ-entropies

Let U and Y be jointly distributed random variables, where U takes nonnegative real vaues and Y
is arbitrary. Given a function Φ ∈ F , define the conditional Φ-entropy of U given Y :

EntΦ[U |Y ] , E[Φ(U)|Y ]− Φ(E[U |Y ]). (2.4)

This is a random variable, since it depends on Y . Combining (2.4) with (2.1) gives the following
generalization of the law of total variance:

EntΦ[U ] = E [EntΦ[U |Y ]] + EntΦ[E[U |Y ]] (2.5)

(see [23, pp. 351–352]).

Remark 2.1. We may think of

JΦ(U |Y ) , E [EntΦ[U |Y ]]

as a kind of “Fisher Φ-information” about U contained in Y .4 Indeed, let us consider the following
special case: let (Y, Y ′) be an exchangeable pair on some space Y (i.e., PY,Y ′(y, y

′) = PY,Y ′(y
′, y) for

4We are grateful to P. Tetali for suggesting this interpretation.
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all y, y′), and let U = f(Y ) for some f : Y → R+. Let K be the stochastic transformation PY ′|Y .
Then E[U |Y ′] = E[f(Y )|Y ′] = K∗f(Y ′) has the same distribution as E[f(Y ′)|Y ] = K∗f(Y ), and

JΦ(U |Y ) = EntΦ[U ]− EntΦ[E[U |Y ]]

= EntΦ[f(Y )]− EntΦ[K∗f(Y )].

By convexity of Φ,

Φ(u+ v) ≥ Φ(u) + vΦ′(u).

If we write K∗ = id +L, where id is the identity operator on F (Y), then

JΦ(U |Y ) = EntΦ[f(Y )]− EntΦ[f(Y ) + Lf(Y )]

≤ −E[Φ′(f(Y ))Lf(Y )].

Moreover, if we have a continuous-time reversible Markov chain on Y with stationary distribution
PY and with infinitesimal generator L, then (Y0, Yt) is an exchangeable pair for each t, and

JΦ(f(Y0)|Yt) = EntΦ[f(Y0)]− EntΦ[K∗t f(Y0)]

= −tE[Φ′(f(Y0))Lf(Y0)] + o(t)

Dividing both sides by t and taking the limit as t→ 0, we get

d

dt
JΦ(f(Y0)|Yt)

∣∣∣
t=0

= lim
t→0

JΦ(f(Y0)|Yt)
t

= −E[Φ′(f(Y0))Lf(Y0)],

which coincides with the Φ-Fisher information functional of Chafäı [23, Eq. (1.14)]. �

We say that the Φ-entropy is subadditive if the inequality

EntΦ [f(Xn)] ≤
n∑
i=1

E
[
EntΦ

[
f(Xn)

∣∣X\i]] (2.6)

holds for any tuple Xn = (X1, . . . , Xn) of independent random variables taking values in some
spaces X1, . . . ,Xn and for any function f : X1 × . . . × Xn → R+, such that EntΦ[f(Xn)] < +∞.
Here, X\i denotes the (n−1)-tuple (X1, . . . , Xi−1, Xi+1, . . . , Xn) obtained by deleting Xi from Xn.
We are interested in the following question: what conditions on Φ ensure that this subadditivity
property holds?

For example, if Φ(u) = u2, then EntΦ[U ] = Var[U ], and in this case the subadditivity property
(2.6) is the well-known Efron–Stein–Steele inequality [37, 38]

Var[U ] ≤
n∑
i=1

E
[
Var[U |X\i]

]
, U = f(Xn).

It is also not hard to show that the “ordinary” entropy Ent[U ] [i.e., the Φ-entropy with Φ(u) =
u log u] is subadditive. In general, an induction argument can be used to show that subadditivity
is equivalent to the following convexity property [39]: for any two probability spaces (X1, ν1) and
(X2, ν2) and any function f : X1 × X2 → R+,

EntΦ

[∫
X2

f(X1, x2)ν2(dx2)

]
≤
∫
X2

EntΦ

[
f(X1, x2)

]
ν2(dx2), (2.7)

where X1 ∼ ν1. The following criterion for subadditivity is useful [39,40]:
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Proposition 2.2. Let C be the class of all convex functions Φ: R+ → R that are twice differentiable
on (0,∞), and such that either Φ is affine or Φ′′ > 0 and 1/Φ′′ is concave. Then the Φ-entropy is
subadditive for all Φ ∈ C. Conversely, if Φ is twice differentiable with Φ′′ > 0 and the Φ-entropy is
subadditive, then 1/Φ′′ is concave.

3 Strong data processing inequalities

We now turn to the main subject of the paper: strong data processing inequalities.

Definition 3.1. Given an admissible pair (µ,K) ∈ P∗(X) ×M (Y|X) and a function Φ ∈ F , we
say that K satisfies a Φ-type strong data processing inequality (SDPI) at µ with constant c ∈ [0, 1),
or SDPIΦ(µ, c) for short, if

DΦ(νK‖µK) ≤ cDΦ(ν‖µ) (3.1)

for all ν ∈P(X). We say that K satisfies SDPIΦ(c) if it satisfies SDPIΦ(µ, c) for all µ ∈P∗(X).

We are interested in the tightest constants in SDPIs; with that in mind, we define

ηΦ(µ,K) , sup
ν 6=µ

DΦ(νK‖µK)

DΦ(ν‖µ)
,

ηΦ(K) , sup
µ∈P∗(X)

ηΦ(µ,K).

For future reference, we record the following straightforward results:

Proposition 3.1 (Functional form of SDPI). Fix an admissible pair (µ,K) and let (X,Y ) be a
random pair with probability law µ⊗K. Then ηΦ(µ,K) ≤ c if and only if the inequality

EntΦ[f(X)] ≤ 1

1− c
E [EntΦ[f(X)|Y ]] (3.2)

holds for all nonconstant f ∈ F 0
∗ (X) with E[f(X)] = 1. Consequently,

ηΦ(µ,K) = sup

{
EntΦ [K∗f(Y )]

EntΦ [f(X)]
: f ∈ F 0

∗ (X), f 6= const, E[f(X)] = 1

}
(3.3)

= 1− inf

{
E [EntΦ[f(X)|Y ]]

EntΦ[f(X)]
: f ∈ F 0

∗ (X), f 6= const, E[f(X)] = 1

}
. (3.4)

Proof. Fix a probability distribution ν 6= µ and let f = dν/dµ. Then f 6= const, E[f(X)] = 1, and

d(νK)

d(µK)
= K∗f

by Lemma A.1 in the Appendix. Therefore,

DΦ(ν‖µ) = EntΦ

[
dν

dµ
(X)

]
and DΦ(νK‖µK) = EntΦ

[
d(νK)

d(µK)
(Y )

]
.

Conversely, for any nonconstant f ∈ F 0
∗ (X) with E[f(X)] = 1 there exists a probability distribution

ν ∈ P(X) such that ν 6= µ and f = dν/dµ. In that case, the above formulas for the Φ-entropies
hold as well.

Now, if c = 1, then (3.2) holds trivially, so assume c < 1. In that case, the result follows from
Eq. (3.2) and the law of total Φ-entropy, Eq. (2.5).
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Definition 3.2. We say that the Φ-entropy EntΦ[·] is homogeneous if there exists some function
κ : (0,∞)→ (0,∞), such that the equality

EntΦ[cU ] = κ(c) EntΦ[U ] (3.5)

holds for any nonnegative random variable U such that EntΦ[U ] < +∞ and for any positive real
number c.

For example, Φ(u) = u log u satisfies (3.5) with κ(c) = c, while Φ(u) = uα−1
α−1 , α > 1, satisfies (3.5)

with κ(c) = cα.

Proposition 3.2. Suppose that (3.5) holds. Then

ηΦ(µ,K) = sup

{
EntΦ [K∗f(Y )]

EntΦ [f(X)]
: f ∈ F 0

∗ (X), f 6= const

}
= 1− inf

{
E [EntΦ[f(X)|Y ]]

EntΦ[f(X)]
: f ∈ F 0

∗ (X), f 6= const

}
. (3.6)

Moreover, if κ is an invertible function, then

ηΦ(µ,K) = ηΦ(µ,K, t) , sup

{
EntΦ[K∗f(Y )]

EntΦ[f(X)]
: f ∈ F 0

∗ (X),EntΦ[f(X)] ≤ t
}
, ∀t > 0. (3.7)

Again, (X,Y ) is a random pair with law µ⊗K.

Proof. Eq. (3.6) is obvious from homogeneity. To prove (3.7), pick an arbitrary nonconstant f ∈
F 0
∗ (X) and let

c = κ−1

(
t

EntΦ[f(X)]

)
.

Let g = cf . Then EntΦ[g(X)] = EntΦ[cf(X)] = κ(c) EntΦ[f(X)] = t. Therefore,

EntΦ[K∗g(Y )] ≤ ηΦ(µ,K, t) EntΦ[g(X)].

Since EntΦ[K∗g(Y )] = EntΦ[cK∗g(Y )] = κ(c) EntΦ[K∗g(Y )], and since c > 0 by the properties
of κ, we conclude that EntΦ[K∗f(Y )] ≤ ηΦ(µ,K, t) EntΦ[f(X)], which implies that ηΦ(µ,K) ≤
ηΦ(µ,K, t). The reverse inequality, ηΦ(µ,K) ≥ ηΦ(µ,K, t), is obvious.

Proposition 3.3 (Convexity in the kernel). For a given choice of X, Y, and µ ∈P∗(X), the SDPI
constants ηΦ(µ,K) and ηΦ(K) are convex in K ∈M (Y|X).

Proof. For fixed ν, µ ∈ P(X), the functional K 7→ DΦ(νK‖µK)
DΦ(ν‖µ) is convex because of the joint

convexity of DΦ(·‖·) [41, Lemma 4.1].5 Now,

ηΦ(µ,K) = sup
ν

DΦ(νK‖µK)

DΦ(ν‖µ)
and ηΦ(K) = sup

µ
sup
ν

DΦ(νK‖µK)

DΦ(ν‖µ)

are pointwise suprema of convex functionals of K, and therefore are convex in K.

5Joint convexity of DΦ(·‖·) follows from the fact that, for any convex function Φ : R+ → R, the perspective function
(p, q) 7→ qΦ(p/q) is jointly convex in (p, q) ∈ R+ × R+ [42, Prop. 2.2.1].
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3.1 A universal upper bound via Markov contraction

A universal upper bound on ηΦ(K) was originally obtained by Cohen et al. [6] in the discrete case
and subsequently extended by Del Moral et al. [10] to the general case. We state this bound and
give a proof which is more information-theoretic in nature:

Theorem 3.1. Define the Dobrushin contraction coefficient [11,12] of a channel K ∈M (Y|X) by

ϑ(K) , max
x,x′∈X

‖K(·|x)−K(·|x′)‖TV. (3.8)

Then for any Φ ∈ F we have

ηΦ(K) ≤ ϑ(K). (3.9)

Moreover, ηTV(K) ≡ ϑ(K).

Proof. By the integral representation (2.2), it suffices to show that (3.9) holds for the statistical
informations Bλ(·‖·), 0 ≤ λ ≤ 1. For that, we need the following strong Markov contraction
lemma [6, Lemma 3.2]: for any signed measure ν̃ on X and any Markov kernel K ∈M (Y|X),

‖ν̃K‖TV ≤ ϑ(K)‖ν̃‖TV +
1− ϑ(K)

2
|ν̃(X)|. (3.10)

Let ν̃ = λν − λ̄µ. Then ν̃K = λνK − λ̄µK and ν̃(X) = 2λ− 1. Thus, using (3.10), we get

‖λνK − λ̄µK‖TV ≤ ϑ(K)‖λν − λ̄µ‖TV +
1− ϑ(K)

2
|1− 2λ|.

Therefore,

Bλ(νK‖µK) =
1

2
‖λνK − λ̄µK‖TV −

1

2
|1− 2λ|

≤ ϑ(K) ·
(

1

2
‖λν − λ̄µ‖TV −

1

2
|1− 2λ|

)
= ϑ(K) ·Bλ(ν‖µ).

This establishes the bound (3.9). It remains to show that this bound is achieved for ‖ · ‖TV.
To that end, let us first assume that |X| > 2. Let x0, x1 ∈ X achieve the maximum in (3.8),

pick some ε1, ε2, ε ∈ (0, 1) such that ε1 6= ε2, ε1 + ε < 1, ε2 + ε < 1, and consider the following
probability distributions:

• ν that puts the mass 1−ε1−ε on x0, ε1 on x1, and distributes the remaining mass of ε evenly
among the set X\{x0, x1};

• µ that puts the mass 1 − ε2 − ε on x0, ε2 on x1, and distributes the remaining mass of ε
evenly among the set X\{x0, x1}.

Then a simple calculation gives

‖ν − µ‖TV = |ε1 − ε2|
‖νK − µK‖TV = |ε1 − ε2| · ‖K(·|x0)−K(·|x1)‖TV

= ϑ(K) · ‖ν − µ‖TV.

For |X| = 2, the idea is the same, except that there is no need for the extra slack ε.

12



Remark 3.1. Theorem 3.1 says that any channel K with ϑ(K) < 1 satisfies an SDPI for any Φ ∈ F
at any reference input distribution µ ∈ P(X). However, the bounds it gives are generally loose.
For example, for K = BSC(ε) with ε ∈ (0, 1), we have ϑ(K) = |1− 2ε| < 1, so by Theorem 3.1

ηΦ (Bern(p),BSC(ε)) ≤ |1− 2ε| < 1

for all Φ ∈ F and all p ∈ [0, 1]. However, as we know from [1],

η (Bern(1/2),BSC(ε)) = (1− 2ε)2 < |1− 2ε|.

Later on, we will develop tighter bounds on SDPI constants for a broad class of Φ-entropies. �

Remark 3.2. Suppose that the channel K ∈ M (Y|X) has the following property: There exist a
constant 0 < α ≤ 1 and a probability distribution µ̃ ∈P(Y), such that

K(y|x) ≥ αµ̃(y) (3.11)

for all x ∈ X and y ∈ Y (in Markov chain theory, this is known as a Doeblin minorization condition
[43, Sec. 4.3.3]). Then ηΦ(K) ≤ 1−α. This bound can be proved using a nice operational argument.
Indeed, if (3.11) holds, then

K̃(y|x) ,
K(y|x)− αµ̃(y)

1− α
, (x, y) ∈ X× Y

defines a channel from X to Y. Let e be a special erasure symbol, and let Eα ∈ M (X ∪ {e}|X)
denote the symmetric erasure channel on X with erasure probability α: any input symbol x ∈ X
is erased with probability α and reproduced exactly with probability ᾱ. Then a simple calculation
shows that K = T ◦ Eα, where the channel T ∈M (Y|X ∪ {e}) is defined by

T (·|x) = K̃(·|x), x ∈ X

T (·|e) = µ̃(·).

In that case, for any µ, ν ∈P(X),

DΦ(νK‖µK) = DΦ((νEα)T‖(µEα)T )

≤ DΦ(νEα‖µEα)

= DΦ(ᾱν + αδe‖ᾱµ+ αδe)

≤ ᾱDΦ(ν‖µ),

where the first inequality is by the usual data processing inequality, while the second inequality is
by convexity. It is not hard to show that if (3.11) holds, then ϑ(K) ≤ 1− α. �

3.2 Bounds via maximal correlation

For any pair (µ,K) ∈P(X)×M (Y|X), the maximal correlation is defined as

S(µ,K) , sup
f,g

E[f(X)g(Y )],

where (X,Y ) ∼ µ ⊗K, and the supremum is over all f ∈ F (X), g ∈ F (Y) satisfying E[f(X)] =
E[g(Y )] = 0 and E[f2(X)] = E[g2(Y )] = 1 (see [2] and the references therein). The square of
S(µ,K) is the SDPI constant of the pair (µ,K) for the χ2-divergence:
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Theorem 3.2. Consider the χ2-divergence

χ2(ν‖µ) = Eµ

[(
dν

dµ
− 1

)2
]
≡ Varµ

[
dν

dµ

]
.

Then, for any (µ,K) ∈P(X)×M (Y|X),

ηχ2(µ,K) = S2(µ,K).

Remark 3.3. This result has appeared in the literature in different forms (see, e.g., [10]). We give
a short proof for completeness. �

Proof. For this proof, it is convenient to use operator-theoretic ideas, following Witsenhausen [2]
(see also [44]). If we equip the space F (X) with the inner product

〈f, g〉µ , E[f(X)g(X)], where X ∼ µ

then it becomes the Hilbert space L2(X, µ); the Hilbert space L2(Y, µK) is constructed in the same
way. Moreover, the channels K and K∗ become mutually adjoint linear operators K : L2(Y, µK)→
L2(X, µ) and K∗ : L2(X, µ)→ L2(Y, µK), i.e.,

〈f,Kg〉µ = 〈K∗f, g〉µK , ∀f ∈ L2(X, µ), g ∈ L2(Y, µK).

For f = dν/dµ, we have χ2(ν‖µ) = Var
[
f(X)

]
and χ2(νK‖µK) = Var

[
K∗f(Y )

]
. Using this

together with the fact that Var[U + c] = Var[U ] for any c ∈ R and that E[K∗f(Y )] = E[f(X)], we
can write

ηχ2(ν,K) = sup
ν 6=µ

χ2(νK‖µK)

χ2(ν‖µ)

= sup
f∈H0(X)

Var
[
K∗f(Y )

]
Var

[
f(X)

] ,

where H0(X) is the closed linear subspace of L2(X, µ) consisting of all f satisfying 〈f, 1〉µ = 0, i.e.,
E[f(X)] = 0. For any f ∈ H0(X),

Var
[
f(X)

]
= ‖f‖2µ, Var

[
K∗f(Y )

]
= ‖K∗f‖2µK .

Since K and K∗ are adjoint operators, we have

‖K∗f‖2µK = 〈K∗f,K∗f〉µK = 〈f,KK∗f〉µ,

which gives

ηχ2(µ,K) = sup
f∈H0(X)

〈f,KK∗f〉µ
〈f, f〉µ

.

Moreover, K∗ maps H0(X) into H0(Y), and K maps H0(Y) into H0(X). Thus, by the Courant–
Fischer–Weyl minimax principle [45], ηχ2(ν, µ) is the largest eigenvalue of the operator KK∗ :
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H0(X) → H0(X). The square root of this largest eigenvalue is the largest singular value of the
operator K∗ : H0(X)→ H0(Y), so, by definition,√

ηχ2(ν, µ) = sup
f,g
〈K∗f, g〉

= sup
f,g

E[E[f(X)|Y ]g(Y )]

= sup
f,g

E[f(X)g(Y )],

where the supremum is over all f ∈ H0(X) and g ∈ H0(Y) with ‖f‖µ = ‖g‖µK = 1. This is precisely
the maximal correlation S(µ,K).

Remark 3.4 (Maximum correlation and the spectral gap). In the literature on Markov chains
(see, e.g., [25,46,47]), one often sees the following definition: given a pair (µ,K) ∈P(X)×M (X|X)
such that µ is invariant w.r.t. K, i.e., µ = µK, the (absolute) spectral gap of K is equal to

γ∗(µ,K) , 1− sup
f∈H0(X)

‖K∗f‖µ
‖f‖µ

(here we are using the Hilbert space notation from the proof above). Thus, the spectral gap and
the maximal correlation are related by γ∗(µ,K) = 1− S(µ,K) = 1−

√
ηχ2(µ,K). �

The maximal correlation S2(µ,K) also provides a lower bound on the SDPI constants ηΦ(µ,K)
for a certain subset of F :

Theorem 3.3. For any Φ ∈ F which is three times differentiable and has Φ′′(1) > 0, we have

ηΦ(µ,K) ≥ S2(µ,K), (3.12)

ηΦ(K) ≥ S2(K), (3.13)

where S2(K) , supµ∈P(X) S
2(µ,K).

Remark 3.5. The second bound, Eq. (3.13), was proved by Cohen et al. [6], generalizing the results
of Ahlswede and Gács [1] for Φ(u) = u log u. However, more or less the same proof technique also
gives the distribution-dependent bound (3.12). A recent paper of Polyanskiy and Wu [21] presents
an extension of Theorem 3.3 to abstract alphabets.

Proof. Without loss of generality, we assume that Φ(1) = 0. Let us expand Φ in a Taylor series
around u = 1:

Φ(u) = Φ(1) + Φ′(1)(u− 1) +
1

2
Φ′′(1)(u− 1)2 + o

(
(u− 1)2

)
= Φ′(1)(u− 1) +

1

2
Φ′′(1)(u− 1)2 + o

(
(u− 1)2

)
,

where the second step uses the fact that Φ(1) = 0. Therefore, for any bounded real-valued random
variable U and any ε > 0 such that 1 + εU ≥ 0 a.s., we have

EntΦ[1 + εU ] =
Φ′′(1)

2
ε2 Var[U ] +O(ε3).
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Now, fix an admissible pair (µ,K). For any ν 6= µ, consider the mixture νε , ε̄µ + εν. Let
f = dν/dµ− 1. Then

DΦ(νε‖µ) = EntΦ[1 + εf(X)]

=
Φ′′(1)

2
ε2 Var[f(X)] + o(ε2)

=
Φ′′(1)

2
ε2χ2(ν‖µ) + o(ε2)

and

DΦ(νεK‖µK) = EntΦ[1 + εK∗f(Y )]

=
Φ′′(1)

2
ε2 Var[K∗f(Y )] + o(ε2)

=
Φ′′(1)

2
ε2χ2(νK‖µK) + o(ε2),

where in the first step we have used Lemma A.1 in the Appendix and the linearity of K∗. Using
the fact that Φ′′(1) > 0, for any ε > 0 we have

ηΦ(µ,K) ≥ sup
ν 6=µ

DΦ(νεK‖µK)

DΦ(νε‖µ)

= sup
ν 6=µ

χ2(νK‖µK) + o(ε)

χ2(ν‖µ) + o(ε)
.

Taking the limit as ε↘ 0, we get

ηΦ(µ,K) ≥ sup
ν 6=µ

χ2(νK‖µK)

χ2(ν‖µ)
= ηχ2(µ,K).

This proves (3.12), and (3.13) follows after taking the supremum over all µ.

For example, the function Φ(u) = u log u that induces the usual relative entropy satisfies the
conditions of Theorem 3.3, as does the function Φ(u) = (

√
u − 1)2 that gives rise to the squared

Hellinger distance.
Under additional regularity conditions on Φ, we can obtain an upper bound on ηΦ which is

proportional to the maximal correlation S2(µ,K):

Theorem 3.4. Suppose that Φ ∈ F is twice differentiable, strictly convex, has a nonincreasing
second derivative, and the function

Ψ(u) ,
Φ(u)− Φ(0)

u
(3.14)

is concave. Then, for any admissible pair (µ,K),

ηΦ(µ,K) ≤ 2Ψ′(1)

Φ′′(1/µ∗)
S2(µ,K), (3.15)

where µ∗ , minx∈X µ(x) is the smallest mass of µ.
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Remark 3.6. It can be shown (see, e.g., [31, Lm. 14.5]) that if Φ ∈ F ∩C, where the function class
C is defined in Proposition 2.2, then the function Ψ defined in (3.14) is concave. For example, if
Φ(u) = u log u, then Ψ(u) = log u. �

Proof. Let (X,Y ) be a random pair with law µ ⊗K. Fix any probability distribution ν 6= µ and
let f = dν/dµ. Then we have the following chain of estimates:

EntΦ[K∗f(Y )] ≤ Ψ′(1) Var[K∗f(Y )] (3.16)

≤ Ψ′(1)S2(µ,K) Var[f(X)] (3.17)

≤ 2Ψ′(1)

Φ′′(‖f(X)‖∞)
S2(µ,K) EntΦ[f(X)], (3.18)

where (3.16) is by Lemma A.2 in Appendix A, (3.17) is by Theorem 3.2, and (3.18) is by Lemma A.3
in Appendix A. Now, since

‖f(X)‖∞ =

∥∥∥∥dν

dµ

∥∥∥∥
∞
≤ 1

µ∗
,

we have Φ′′(‖f(X)‖∞) ≥ Φ′′(1/µ∗). By the arbitrariness of ν (and hence f), we obtain (3.15).

For example, functions of the form Φp(u) = up−1
p−1 for 1 < p ≤ 2 satisfy the conditions of the

theorem with Ψp(u) = up−1

p−1 and Φ′′p(u) = pup−2. This gives the bound

ηΦp(µ,K) ≤ 2µp−2
∗
p

S2(µ,K). (3.19)

Note that Φ2(u) = u2 − 1 induces the χ2-divergence, so ηΦ2(µ,K) = ηχ2(µ,K) = S2(µ,K), and in
that case the bound (3.19) holds with equality. Moreover, as p ↘ 1, we have EntΦp [U ] → Ent[U ],
and in that limit (3.19) becomes

η(µ,K) ≤ 2

µ∗
S2(µ,K). (3.20)

Of course, the bound (3.19) is nontrivial only if S2(µ,K) < p

2µp−2
∗

; similarly, the bound (3.20) is

nontrivial only if S2(µ,K) < µ∗
2 . As recently shown by Makur and Zheng [22], the constant 2 in

(3.20) can be reduced to 1, but it is not clear how to extend their techniques to Φ(u) 6= u log u.

3.3 Upper bounds for operator convex Φ

Theorem 3.4 gives an upper bound on the SDPI constant ηΦ(µ,K) in terms of the squared maximal
correlation S2(µ,K), but this bound has a multiplicative constant that depends on µ. Given the
lower bound of Theorem 3.3, it is natural to ask whether there is a matching upper bound without
such a multiplicative constant. A partial result in this direction was obtained by Choi et al. [7],
who showed that the equality ηΦ(K) = ηχ2(K) = S2(K) holds for all functions Φ ∈ F that are
operator convex (see below for definitions). In this section, we will derive a distribution-dependent
upper bound on ηΦ(µ,K) that implies the result of Choi et al.

In preparation for this result, we first need some facts from matrix analysis [45]. Let Hn denote
the space of all n× n Hermitian matrices, and let Hn(I) denote the subset of Hn consisting of all
matrices whose eigenvalues lie in a given finite or infinite interval I of the real line. Any function
Φ : I → R can be extended to a matrix-valued function Φ : Hn(I)→ Hn as follows:
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• if A ∈ Hn(I) is diagonal, i.e., A = diag(a1, . . . , an) for some a1, . . . , an ∈ I, then we let

Φ(A) , diag (Φ(a1), . . . ,Φ(an)) .

• if A ∈ Hn(I) can be diagonalized as A = UΛU∗, where U is a unitary n × n matrix and
Λ ∈ Hn(I) is diagonal, then we let

Φ(A) , UΦ(Λ)U∗.

We introduce the following partial order on Hn: given any two A,B ∈ Hn, we write A � B if B−A
is positive semidefinite. We say that a function Φ : I → R is n-convex if

Φ(λA+ (1− λ)B) � λΦ(A) + (1− λ)Φ(B)

for all A,B ∈ Hn(I) and all λ ∈ [0, 1]. If Φ is n-convex for all n ∈ N, then we say that it is operator
convex. By definition, any operator convex function is a fortiori convex in the ordinary sense, but
the converse is generally not true. We are particularly interested in functions Φ : R+ → R that are
operator convex; here are some examples and counterexamples [45, Ch. V]:

• Φ(u) = u log u is operator convex;

• Φ(u) = up is operator convex if and only if p ∈ [−1, 0] ∪ [1, 2].

• Φ(u) = −up is operator convex for 0 ≤ p ≤ 1.

In general, it is not easy to determine whether a given function is operator convex. However, there
is a deep result known as Loewner’s theorem [48], which shows that operator convex functions
possess very special integral representations:

Theorem 3.5. A function Φ : R+ → R with Φ(0) = 0 is operator convex if and only if there exist
some constants α ∈ R, β ≥ 0 and a positive measure υ on R+ satisfying

∫∞
0 (1 + t2)−1υ(dt) < ∞,

such that

Φ(u) = αu+ βu2 +

∫ ∞
0

(
tu

1 + t2
− u

u+ t

)
υ(dt). (3.21)

For example, the operator convex function Φ(u) = u log u can be represented in the form (3.21) with
α = β = 0 and with υ given by the restriction of the Lebesgue measure to R+ [45, Example V.4.18];
the operator convex function Φ(u) = up, 1 < p < 2, can be represented in the form (3.21) with

α = cos
πp

2
, β = 0, υ(dt) =

sin(πp)

π
tpdt

[45, Example V.4.19].
We also recall the definition of the Le Cam divergence with parameter λ ∈ (0, 1), cf. Eq. (2.3):

LCλ(ν‖µ) = λλ̄Eµ
[

(dν/dµ− 1)2

λdν/dµ+ λ̄

]
= 1− Eµ

[
dν/dµ

λdν/dµ+ λ̄

]
,
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which is a Φ-divergence with

Φ(u) = 1− u

λu+ λ̄
.

Note that LC0(·‖·) = LC1(·‖·) = 0. For λ ∈ (0, 1), consider the SDPI constant

ηLCλ(µ,K) = sup
ν 6=µ

LCλ(νK‖µK)

LCλ(ν‖µ)
.

Now we are in a position to state our result:

Theorem 3.6. Suppose that Φ ∈ F is operator convex. Then

S2(µ,K) ≤ ηΦ(µ,K) ≤ max

(
S2(µ,K), sup

0<λ<1
ηLCλ(µ,K)

)
. (3.22)

Remark 3.7. Since all explicit examples of functions in C seem to be operator convex, it is tempting
to think that all operator convex Φ are elements of the function class C (cf. Proposition 2.2).
However, this is not the case. For example, the function Φ(u) = (

√
u − 1)2, which generates the

Hellinger divergence, is operator convex. However, 1/Φ′′(u) = 2u3/2 is not concave, so Φ 6∈ C. �

Proof. By Loewner’s theorem (Theorem 3.5), Φ admits the integral representation (3.21). Any
Φ that can be represented in this form is infinitely differentiable and strictly convex at u = 1.
Therefore, ηΦ(µ,K) ≥ S2(µ,K) by Theorem 3.3. This establishes first inequality in Eq. (3.22).

Now we prove the second inequality in (3.22). First, let us rewrite (3.21) as

Φ(u) = βu2 −
∫ ∞

0

u

u+ t
υ(dt) +A(u),

where A(u) is an affine function. A change of variables λ = 1
t+1 gives

Φ(u) = βu2 −
∫ 1

0

λu

λu+ λ̄
Υ(dλ) +A(u), (3.23)

where Υ is some positive measure on [0, 1]. Since any two elements of F that differ by an affine
function determine the same divergence, Eq. (3.23) allows us to express DΦ(ν‖µ) as

DΦ(ν‖µ) = βχ2(ν‖µ) +

∫ 1

0
λLCλ(ν‖µ)Υ(dλ)

The same holds for νK and µK, so

DΦ(νK‖µK) = βχ2(νK‖µK) +

∫ 1

0
λLCλ(νK‖µK)Υ(dλ)

≤ βS2(µ,K)χ2(ν‖µ) +

∫ 1

0
ληLCλ(µ,K) LCλ(ν‖µ)Υ(dλ)

≤ max

(
S2(µ,K), sup

0<λ<1
ηLCλ(µ,K)

)
·DΦ(ν‖µ).
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We can now recover the result of Choi et al. [7] as a corollary:

Corollary 3.1. Suppose that Φ ∈ F is operator convex. Then

ηΦ(K) = S2(K)

for any discrete channel K.

Remark 3.8. Since Φ(u) = u log u is operator convex, this is a broad generalization of a result of
Ahlswede and Gács [1, Thm. 8]. It should be emphasized that Corollary 3.1 does not mean that
ηΦ(µ,K) = S2(µ,K) for a given input distribution µ ∈ P∗(X); however, this may be the case for
specific choices of µ and K, as we show in the example after the proof. �

Proof. It suffices to show that

sup
0<λ<1

ηLCλ(µ,K) ≤ S2(K).

To that end, we first note that the Le Cam divergence LCλ(ν‖µ) can be written as a convex
combination of two χ2-divergences:

LCλ(ν‖µ) = λχ2(ν‖λν + λ̄µ) + λ̄χ2(µ‖λν + λ̄µ).

From this, it follows that

LCλ(νK‖µK) = λχ2(νK‖λνK + λ̄µK) + λ̄χ2(µK‖λνK + λ̄µK)

≤ S2(K)
[
λχ2(ν‖λν + λ̄µ) + λ̄χ2(µ‖λν + λ̄µ)

]
= S2(K) LCλ(ν‖µ).

Example 3.1. Let µ = Bern(1/2) and K = BSC(ε). For any q 6= 1/2 and ν = Bern(q), we have
µK = Bern(1/2) and νK = Bern(q ? ε). Moreover,

χ2(ν‖µ) = χ2(Bern(q)‖Bern(1/2)) = (1− 2q)2

and

χ2(νK‖µK) = χ2(Bern(q ? ε)‖Bern(1/2)) = (1− 2(q ? ε))2 = (1− 2ε)2(1− 2q)2.

Therefore,

ηχ2(µ,K) ≡ S2(µ,K) = (1− 2ε)2. (3.24)

Moreover, for any λ ∈ (0, 1),

LCλ(ν‖µ) = LCλ(Bern(q)‖Bern(1/2))

= 1− 1

2

(
2q

2λq + λ̄
+

2q̄

2λq̄ + λ̄

)
=

λλ̄(1− 2q)2

1− λ2(1− 2q)2
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and

LCλ(νK‖µK) = LCλ(Bern(q ? ε)‖Bern(1/2))

=
λλ̄(1− 2(q ? ε))2

1− λ2(1− 2(q ? ε))2

=
λλ̄(1− 2ε)2(1− 2q)2

1− λ2(1− 2ε)2(1− 2q)2
.

Both of these divergences are invariant with respect to the transformation q 7→ 1− q, so

ηLCλ(µ,K) = sup
0≤q<1/2

(1− 2ε)2(1− λ2(1− 2q)2)

1− (1− 2ε)2λ2(1− 2q)2
= (1− 2ε)2, (3.25)

where the supremum is achieved at q = 1/2 (but not at any q 6= 1/2). (As an aside, it is not hard
to show that the expression under the supremum in (3.25) is a concave function of q.) Comparing
Eqs. (3.24) and (3.25), we see that

ηχ2(µ,K) = sup
0<λ<1

ηLCλ(µ,K) = (1− 2ε)2.

Therefore, by Theorem 3.6,

ηΦ(Bern(1/2),BSC(ε)) = (1− 2ε)2

for all operator convex Φ ∈ F .

3.4 Upper bounds via subgaussian concentration and information-transportation
inequalities

Fix an admissible pair (µ,K) ∈P∗(X)×M (Y|X), and let (X,Y ) be a random pair with probability
law µ⊗K. We expect the SDPI constant η(µ,K) to be small if the channel output Y of K is nearly
independent of the channel input X ∼ µ. In this section, we present upper bounds on η(µ,K) that
capture this intuition in terms of the properties of the posterior likelihood ratio

a(x, y) ,
dPX|Y=y

dPX
(x) =

K∗(x|y)

µ(x)
. (3.26)

Theorems 3.7 and 3.8 quantify near-independence by looking at how tightly the random variable
a(X, y) concentrates around its expected value 1 for each fixed y. Moreover, Theorem 3.8 shows
a connection between SDPI for the relative entropy and information-transportation inequalities
introduced in the pioneering work of Marton [49,50].

First, we collect some preliminaries. A real-valued random variable U is called subgaussian
with parameter v (or v-subgaussian) if E[et(U−EU)] ≤ evt

2/2 for all t ∈ R [31, Sec. 2.3]. For any
v-subgaussian random variable U we have the tail estimate

P(|U − EU | ≥ t) ≤ 2e−t
2/2v, ∀t ∈ R.

To get the tightest such bound, we define the subgaussian constant

σ2(U) , inf
{
v ≥ 0 : E[et(U−EU)] ≤ evt2/2, t ∈ R

}
.

With these definitions in place, we have the following theorem:
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Theorem 3.7. For each y ∈ Y, let σ2(y) , σ2 (a(X, y)). Then

η(µ,K) ≤ 2E[σ2(Y )]. (3.27)

Proof. Fix any ν ∈P(X) and let f = dν/dµ. Observe that E[a(X, y)] = E[f(X)] = 1. Then

D(νK‖µK) = Ent[K∗f(Y )]

≤ Var[K∗f(Y )]

=
∑
y∈Y

µK(y) (K∗f(y)− 1)2

=
∑
y∈Y

µK(y)

∣∣∣∣∣∑
x∈X

µ(x) [a(x, y)f(x)− 1]

∣∣∣∣∣
2

=
∑
y∈Y

µK(y) |Cov (a(X, y), f(X))|2 , (3.28)

where the inequality is by Lemma A.2 in Appendix A. Next, we make use of the fact that

Ent[U ] ≥ E[UZ]− E[U ] logE[eZ ] (3.29)

for any random variable Z jointly distributed with U and satisfying E[eZ ] < ∞ (see, e.g., [31,
Thm. 4.13]; in fact, this bound holds with equality for Z = logU). If we fix an arbitrary y ∈ Y and
then use (3.29) with U = f(X) and Z = ±t (a(X, y)− 1) for some t > 0, we get

|Cov (a(X, y), f(X))| ≤ 1

t

(
logE[et(a(X,y)−1)] + Ent[f(X)]

)
≤ σ2(y)t

2
+

Ent[f(X)]

t
.

Since this holds for an arbitrary t, we have

|Cov (a(X, y), f(X))| ≤ inf
t>0

{
σ2(y)t

2
+

Ent[f(X)]

t

}
=
√

2σ2(y) Ent[f(X)].

Using this estimate in (3.28), we get (3.27).

In order to apply Theorem 3.7, we need to compute or upper-bound the subgaussian constant
σ2(a(X, y)) for each y ∈ Y. In some situtations, it is possible to derive exact expressions for
subgaussian constants (as we show in the examples below); when the function x 7→ a(x, y) is
Lipschitz for each y ∈ Y, one can derive upper bounds using information-transportation inequalities
introduced in the pioneering work of Marton [49,50] (see, e.g., the text of Villani [51]). If we endow
the input alphabet X with a metric d, then we can define the L1 Wasserstein distance (or optimal
transportation distance) on P(X) by

W1(µ, ν) , inf
{
E[d(X, X̄)] : PXX̄ ∈P(X× X), PX = µ, PX̄ = ν

}
For example, for the trivial metric d(x, x′) = 1{x 6= x′} we recover the total variation distance:
W1(µ, ν) = ‖µ− ν‖TV. Given a function f : X→ R, denote by

δ(f) , sup
x,x′∈X
x 6=x′

|f(x)− f(x′)|
d(x, x′)

the oscillation (or the Lipschitz norm) of f w.r.t. the metric d.
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Theorem 3.8. Fix an admissible pair (µ,K) ∈ P∗(X) ×M (Y|X). Suppose that µ satisfies an
information-transportation inequality with constant c > 0, i.e.,

W1(ν, µ) ≤
√

2cD(ν‖µ), ∀ν 6= µ. (3.30)

Then

η(µ,K) ≤ 2cE
[
δ2 (a(·, Y ))

]
. (3.31)

Proof. By a result of Bobkov and Götze [52], a probability measure µ ∈ P(X) satisfies (3.30) if and
only if

Eµ
[
et(f(X)−Ef(X))

]
≤ e

ct2

2 , t ∈ R (3.32)

for every f ∈ F (X) with δ(f) ≤ 1. In particular, if (3.30) holds, then, by rescaling (3.32), we get

Eµ
[
et(a(X,y)−1)

]
≤ exp

(
cδ2 (a(·, y)) t2

2

)
.

This implies that σ2
(
a(X, y)

)
≤ cδ2 (a(·, y)). Substituting this into (3.27), we get (3.31).

Example 3.2 (Binary symmetric channels with asymmetric inputs). Let X = Y = {0, 1}, µ =
Bern(p), K = BSC(ε). We take the trivial metric d(x, x′) = 1{x 6= x′}. In this case, Theorems 3.7
and 3.8 give the same bound. Indeed, by a result of Ordentlich and Weinberger [53], µ = Bern(p)
satisfies an information-transportation inequality

‖ν − µ‖TV ≤
√

2c(p)D(ν‖µ), c(p) ,
p− p̄

2(log p− log p̄)
, (3.33)

and the constant in front of the relative entropy is optimal, i.e.,

inf
ν

D(ν‖µ)

‖ν − µ‖2TV

=
1

2c(p)
.

[The inequality (3.33) is a distribution-dependent refinement of Pinsker’s inequality, where we fix
µ and vary only ν.] A simple calculation gives

δ (a(·, 0)) =

∣∣∣∣ 1− 2ε

1− ε ? p

∣∣∣∣ , δ (a(·, 1)) =

∣∣∣∣1− 2ε

ε ? p

∣∣∣∣ ,
where ε ? p = εp̄+ ε̄p. Therefore, applying Theorem 3.8, we get the bound

η (Bern(p),BSC(ε)) ≤ 2c(p)(1− 2ε)2

(1− ε ? p)(ε ? p)
, (3.34)

This bound is, unfortunately, loose. Indeed, if we take the limit p↘ 1/2, then we get

η (Bern(1/2),BSC(ε)) ≤ 2(1− 2ε)2. (3.35)

which is off by a factor of 2, but still tighter than the Dobrushin contraction bound |1 − 2ε|
(Theorem 3.1) in the range 1/4 < ε < 3/4. Figure 1 shows a plot of the maximum value of the
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Figure 1: Maximum value of the right-hand side of (3.34) over p ∈ [0, 1] for each fixed ε.

right-hand side of (3.34) over p for each fixed value of the crossover probability ε; from this, we see
that the bound is nontrivial (i.e., takes values strictly smaller than 1) for ε & 0.156.

In order to apply Theorem 3.7, we need to know the subgaussian constants of a(X, y), y ∈ {0, 1}.
By a result of Bobkov et al. [54], for any function f : {0, 1} → R and for X ∼ Bern(p) we have

2σ2 (f(X)) = 2c(p) |f(0)− f(1)|2 . (3.36)

Applying (3.36) to f = a(·, 0) and a(·, 1), we get

2σ2(0) = 2c(p)

∣∣∣∣ 1− 2ε

1− ε ? p

∣∣∣∣2 , 2σ2(1) = 2c(p)

∣∣∣∣1− 2ε

ε ? p

∣∣∣∣2 ,
and indeed Theorem 3.7 gives the same bound (3.34).

Example 3.3 (Binary input channels). Let X = {0, 1} with µ = Bern(p), and consider an arbitrary
channel K ∈M (Y|X) with a finite (not necessarily binary) output alphabet Y. Then

a(x, y) =
K∗(x|y)

µ(x)
=
K(y|x)

µK(y)
,

where µK(y) = p̄K(y|0) + pK(y|1). If we again take d to be the trivial metric, then the same
analysis as in the previous example can be used to show that

2σ2 (y) = 2c(p)
|K(y|0)−K(y|1)|2

µK(y)2
,

and Theorem 3.7 gives the bound

η (Bern(p),K) ≤ 2c(p)
∑
y∈Y

|K(y|0)−K(y|1)|2

p̄K(y|0) + pK(y|1)
.

Example 3.4 (Random walk on a graph). Consider a connected undirected graph G = (V,E)
without self-loops or multiple edges, and let X = Y = V. If the vertices x and y are connected by
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an edge, we shall write x↔ y; the degree of a vertex x is defined as degG(x) , | {y ∈ V : x↔ y} |.
Define a probability measure µ = µG ∈ P(V) by

µG(x) ,
degG(x)

2|E|
, x ∈ V.

Fix a parameter ε ∈ (0, 1), and consider a channel K
(ε)
G with

K
(ε)
G (y|x) =


ε̄, if x = y

ε

degG(x)
, if x↔ y

0, otherwise

. (3.37)

Again, let d be the trivial metric, d(x, x′) = 1{x 6= x′}. Then W1(ν, µ) = ‖ν − µ‖TV, and we can

take c = 1/4 in (3.30), which is then just Pinsker’s inequality. It is not hard to show that K
(ε)
G is

reversible w.r.t. µG, i.e.,

µG(x)K
(ε)
G (y|x) = µG(y)K

(ε)
G (x|y), ∀x, y ∈ V.

Therefore, µGK
(ε)
G = µG, so the posterior likelihood ratio is given by

a(x, y) =
K

(ε)
G (y|x)

µG(y)
=

2|E|
degG(y)

K
(ε)
G (y|x).

Now, from the definition (3.37) of K
(ε)
G it follows that

∣∣∣K(ε)
G (y|x)−K(ε)

G (y|x′)
∣∣∣ =



∣∣∣ε̄− ε
degG(x′)1{x

′ ↔ y}
∣∣∣ , if x = y∣∣∣ε̄− ε

degG(x)1{x↔ y}
∣∣∣ , if x′ = y

ε
degG(x) , if x↔ y, x′ 6↔ y

ε
degG(x′) , if x 6↔ y, x′ ↔ y

ε
∣∣∣ 1

degG(x) −
1

degG(x′)

∣∣∣ , if x↔ y, x′ ↔ y

0, if x 6↔ y, x′ 6↔ y

where x 6↔ y means that x and y are not connected by an edge and that x 6= y. Therefore,

δ2 (a(·, y)) =
4|E|2

degG(y)
max
x,x′∈V

∣∣∣K(ε)
G (y|x)−K(ε)

G (y|x′)
∣∣∣2

=
4|E|2

degG(y)2

(
∆0(y, ε) ∨∆1(y, ε) ∨∆2(y, ε)

)
,

where

∆0(y, ε) , max
x∈V\{y}

(
ε

degG(x)

)2

1{degG(y) < |V| − 1} (3.38a)

∆1(y, ε) , max
x∈V\{y}

∣∣∣∣ε̄− ε

degG(x)
1{x↔ y}

∣∣∣∣2 (3.38b)

∆2(y, ε) , max
x,x′∈V\{y}

ε2

∣∣∣∣ 1

degG(x)
− 1

degG(x′)

∣∣∣∣2 1{x↔ y, x′ ↔ y}. (3.38c)
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Theorem 3.8 then gives the bound

η
(
µG,K

(ε)
G

)
≤ |E|

∑
y∈V

∆0(y, ε) ∨∆1(y, ε) ∨∆2(y, ε)

degG(y)
(3.39)

(note that degG(y) > 0 for each y, since G is connected).
For example, if G is a complete graph, then ∆0(y, ε) = ∆2(y, ε) = 0 for all y, while

∆1(y, ε) =

(
1− |V|
|V| − 1

ε

)2

, y ∈ V

so we get the bound

η
(
µG,K

(ε)
G

)
≤ |V|

2

2

(
1− |V|
|V| − 1

ε

)2

, (3.40)

which is nontrivial (i.e., strictly smaller than unity) in the range

(|V| − 1)
(
|V| −

√
2
)

|V|2
< ε <

(|V| − 1)
(
|V|+

√
2
)

|V|2
.

For the complete graph on the two-point set V = {0, 1}, the channel K
(ε)
G is just BSC(ε), and the

bound (3.40) reduces to (3.35).
As another example, let G be the path graph on the ternary vertex set V = {0, 1, 2}, i.e.,

E =
{
{0, 1}, {1, 2}

}
. Then µG(0) = µG(2) = 1/4 and µG(1) = 1/2. From (3.38), we get

∆0(y, ε) =

{
ε2, y ∈ {0, 2}
0, y = 1

∆1(y, ε) =

{(
1− 3ε

2

)2
, y ∈ {0, 2}

(1− 2ε)2, y = 1

∆2(y, ε) = 0, y ∈ {0, 1, 2}.

Substituting this into (3.39), we get

η
(
µG,K

(ε)
G

)
≤

{
13ε2 − 16ε+ 5, 0 ≤ ε ≤ 0.4

8ε2 − 4ε+ 1, 0.4 ≤ ε ≤ 1
. (3.41)

This bound, plotted in Figure 2, is nontrivial only in the range 8−2
√

3
13 < ε < 1

2 .

Example 3.5 (General discrete channel). Consider arbitrary finite alphabets X and Y, together
with an admissible pair (µ,K) ∈P∗(X)×M (Y|X). If we endow X with the trivial metric d(x, x′) =
1{x 6= x′}, then µ will satisfy the information-transportation inequality (3.30) for W1(ν, µ) =
‖ν − µ‖TV with optimal (µ-dependent) constant c(βµ), where the function c(·) is defined in (3.33),
and

βµ , min {µ(A) : A ⊆ X, µ(A) ≥ 1/2}
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Figure 2: The bound of Eq. (3.41) as a function of the noise parameter ε.

is a measure of “imbalance” of µ — in particular, when µ is the uniform distribution on X and |X| is
even, βµ = 1/2. Again, this is just the distribution-dependent refinement of Pinsker’s inequality [53].
Then

δ2 (a(·, y)) = max
x,x′∈X

∣∣∣∣K∗(x|y)

µ(x)
− K∗(x′|y)

µ(x′)

∣∣∣∣2
=

1

µK(y)2
max
x,x′∈X

∣∣K(y|x)−K(y|x′)
∣∣2

=
1

µK(y)2
δ2 (K(y|·)) ,

so Theorem 3.8 gives the bound

η(µ,K) ≤ 2c(βµ)
∑
y∈Y

δ2 (K(y|·))
µK(y)

. (3.42)

In general, the bounds of Theorems 3.7 and 3.8 are nontrivial only for channels that are “suffi-
ciently noisy,” in the sense that the posterior likelihood ratio (3.26) is nearly constant as a function
of the input symbol x for any fixed output symbol y. In particular, the function x 7→ a(x, y) is con-
stant for each y ∈ Y if and only if the output of K is independent of the input, i.e., if η(µ,K) = 0.
However, these bounds may be useful for capturing the scaling of the SDPI constant η(µ,K) with
various parameters of the problem. To the best of our knowledge, the first bound on η(µ,K) in
terms of a certain concentration property of the posterior likelihood ratio is due to Weitz [55] (see
also [56]), and can be stated in our notation as follows:

η(µ,K) ≤
(

c

(µK)∗

)2

E[τ(Y )], (3.43)

where c > 0 is some numerical constant, (µK)∗ = miny∈Y µK(y), and

τ(y) , inf
{
t ≥ 0 : P (|a(X, y)− 1| > t) ≤ e−2/t

}
.
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Since the function t 7→ e−2/t is increasing, converges to 1 as t→∞, and to 0 as t↘ 0, the quantity
τ(y) should be very close to zero for the bound (3.43) to be nontrivial. In contrast to the bounds
of Theorems 3.7 and 3.8, which involve quantities pertaining to large deviations of a(X, y) from its
mean, Weitz’s bound is in terms of a quantity that has to do with small deviations of a(X, y) from
its mean.

3.5 Tensorization

So far, we have considered the case of a single channel. However, many problems in information
theory involve multiple uses of the same channel (or, more generally, transmission of correlated
data over a memoryless channel with time-varying transition probabilities). In this context, it is of
interest to determine whether the resulting “super-channel” inherits any SDPI-type behavior from
the constituent channels.

In precise terms, let (µ1,K1), . . . , (µn,Kn) be n admissible pairs, where, for each i, µi ∈P∗(Xi)
andKi ∈M (Yi|Xi) for some alphabets Xi,Yi. Fix some Φ ∈ F , a product distribution µ = µ1⊗. . .⊗
µn ∈P∗(X1× . . .×Xn), and a product channel K = K1⊗ . . .⊗Kn ∈M (Y1× . . .×Yn|X1× . . .×Xn).
We say that the SDPI constant ηΦ(µ,K) tensorizes if

ηΦ(µ,K) = max
1≤i≤n

ηΦ(µi,Ki).

For instance, Witsenhausen [2] showed that ηχ2(µ,K) tensorizes, while a recent paper by Anan-
tharam et al. [15] presents two different proofs of the tensorization property of η(µ,K). In each
case, the proof relies on specific properties of the underlying Φ — Witsenhausen exploits the con-
nection between ηχ2(µ,K) and the eigenvalues of the linear operator KK∗ : L2(X, µ) → L2(X, µ),
whereas Anantharam et al. use the chain rule for the relative entropy. The question is, can one
give a unified proof of tensorization for a broader class of functions Φ ∈ F that contains both
Φ(u) = (u− 1)2 and Φ(u) = u log u? As we show next, the answer is ‘yes’ for all functions Φ whose
Φ-entropies are subadditive and homogeneous in the sense of Definition 3.2.

Theorem 3.9 (Tensorization). Suppose that Φ ∈ F induces a subadditive and homogeneous Φ-
entropy. Consider any n admissible pairs (µi,Ki) ∈P∗(Xi)×M (Yi|Xi). Then

ηΦ(µ1 ⊗ . . .⊗ µn,K1 ⊗ . . .⊗Kn) = max
1≤i≤n

ηΦ(µi,Ki).

Proof. For the sake of brevity, let η = ηΦ(µ1 ⊗ . . . ⊗ µn,K1 ⊗ . . . ⊗ Kn), ηi = ηΦ(µi,Ki), µ =
µ1 ⊗ . . .⊗ µn, and K = K1 ⊗ . . .⊗Kn.

To show that η ≥ ηi for all i, take ν ∈ P(X1 × . . . × Xn) of the form µ1 ⊗ . . . ⊗ µi−1 ⊗ νi ⊗
µi+1 ⊗ . . .⊗ µn for some νi ∈P(Xi)\{µi}. Then

DΦ(ν‖µ) = DΦ(νi‖µi),
DΦ(νK‖µK) = DΦ(νiKi‖µiKi).

Taking the supremum of DΦ(νK‖µK)
DΦ(ν‖µ) over all such ν, we conclude that η ≥ ηi.

For the reverse inequality η ≤ max1≤i≤n ηi, it suffices to consider the case n = 2; the general case
will follow by induction. Thus, let us fix two admissible pairs (νi,Ki) ∈P∗(Xi)×M (Yi|Xi), i = 1, 2,
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and an arbitrary nonconstant function f ∈ F 0
∗ (X1 × X2). Let (X1, X2, Y1, Y2) ∈ X1 × X2 × Y1 × Y2

be a random tuple, such that

PX1X2 = µ1 ⊗ µ2, PY1Y2|X1X2
= K1 ⊗K2.

Then, from (2.5),

EntΦ

[
K∗f(Y1, Y2)

]
= E

[
EntΦ

[
K∗f(Y1, Y2)

∣∣Y1

]]
+ EntΦ

[
E[K∗f(Y1, Y2)|Y1]

]
.

Define the functions f1 ∈ F 0
∗ (Y1 × X2) and f2 ∈ F 0

∗ (X1 × Y2) by

f1(y1, x2) =
∑
x1∈X1

PX1|Y1
(x1|y1)f(x1, x2)

f2(x1, y2) =
∑
x2∈X2

PX2|Y2
(x2|y2)f(x1, x2),

which can be written more succinctly as f1 = (K∗1 ⊗ id2)f and f2 = (id1⊗K∗2 )f , where id1 and id2

are the identity mappings on F (X1) and F (X2). Since Y1 and Y2 are independent, we can write

EntΦ

[
K∗f(Y1, Y2)

∣∣Y1 = y1

]
= E[Φ(K∗2f1(y1, Y2))]− Φ(E[K∗2f1(y1, Y2)])

= EntΦ

[
K∗2f1(y1, Y2)

]
≤ η2 EntΦ

[
f1(y1, X2)

]
≤ η2

∑
x1∈X1

PX1|Y1
(x1|y1) EntΦ

[
f(x1, X2)

]
,

where the first inequality uses (3.6), while the second inequality follows from the definition of f1

and from the convexity property (2.7), which is equivalent to the assumed subadditivity of EntΦ[·].
Therefore,

E
[
EntΦ

[
K∗f(Y1, Y2)

∣∣Y1

]]
=
∑
y1∈Y1

PY1(y1) EntΦ

[
K∗f(Y1, Y2)

∣∣Y1 = y1

]
≤ η2

∑
y1∈Y1

PY1(y1)
∑
x1∈X1

PX1|Y1
(x1|y1) EntΦ

[
f(x1, X2)

]
= η2

∑
x1∈X1

PX1(x1) EntΦ

[
f(x1, X2)

]
= η2 E

[
EntΦ

[
f(X1, X2)

∣∣X1

]]
.

Next, let g2(x1) = E[f2(x1, Y2)] = E[f2(X1, Y2)|X1 = x1]. Then

EntΦ [E[K∗f(Y1, Y2)|Y1]] = EntΦ [K∗1g2(Y1)]

≤ η1 EntΦ [g2(X1)]

= η1 EntΦ [E[f(X1, X2)|X1]] ,

where the first line follows from the fact that (X1, Y1) and (X2, Y2) are independent and from
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definitions, whereas in the last line we have used the fact that

g2(x1) = E[f2(x1, Y2)]

=
∑
y2∈Y2

PY2(y2)f2(x1, y2)

=
∑
y2∈Y2

PY2(y2)
∑
x2∈X2

PX2|Y2
(x2|y2)f(x1, x2)

=
∑
x2∈X2

PX2(x2)f(x1, x2)

= E[f(X1, X2)|X1 = x1].

Combining everything, we can write

EntΦ

[
K∗f(Y1, Y2)

]
≤ η2 · E

[
EntΦ

[
f(X1, X2)

∣∣X1

]]
+ η1 · EntΦ [E[f(X1, X2)|X1]]

≤ max
i=1,2

ηi ·

{
E
[
EntΦ

[
f(X1, X2)

∣∣X1

]]
+ EntΦ [E[f(X1, X2)|X1]]

}
= max

i=1,2
ηi · EntΦ [f(X1, X2)] ,

where in the last step we have used the law of total entropy (2.5). Since f was arbitrary, we obtain
the bound η ≤ max(η1, η2).

3.6 Mixtures of local channels

Another situation that often arises in stochastic simulation and machine learning is as follows:
Fix n channels Ki ∈ M (Xi|Xi), 1 ≤ i ≤ n, and a probability distribution p = (pi)

n
i=1 on the

set {1, . . . , n}. Given an input block xn = (x1, . . . , xn) ∈ X1 × . . . × Xn, a random output block
Y n = (Y1, . . . , Yn) ∈ X1 × . . .× Xn is generated as follows:

1. a random index J ∈ {1, . . . , n} is drawn according to p;

2. YJ is drawn according to KJ(·|xJ);

3. Y \J = x\J .

The overall stochastic transformation is described by the Markov kernel

K ,
n∑
i=1

pi (id1⊗ . . .⊗ idi−1⊗Ki ⊗ idi+1⊗ . . .⊗ idn) ,

where, for each i, idi is the idenitity mapping on F (Xi). Now let us also fix n probability distribu-
tions µi ∈ P(Xi), 1 ≤ i ≤ n. The question is: how does the SDPI constant ηΦ(µ1 ⊗ . . .⊗, µn,K)
for some Φ ∈ F depend on p and on the individual SDPI constants ηΦ(µi,Ki)?

Theorem 3.10. Under the same conditions as in Theorem 3.9,

1− ηΦ(µ1 ⊗ . . .⊗, µn,K) ≥ min
1≤i≤n

pi (1− ηΦ(µi,Ki)) . (3.44)
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Proof. Once again, it suffices to consider the case n = 2. Thus, we fix two admissible pairs
(µi,Ki) ∈P(Xi)×M (Xi|Xi), i ∈ {1, 2} and a parameter p ∈ [0, 1], and consider the channel

K = p(K1 ⊗ id2) + p̄(id1⊗K2).

Let µ = µ1 ⊗ µ2 denote the reference input distribution. We need to show that

1− ηΦ(µ,K) ≥ min
(
p(1− ηΦ(µ1,K1)), p̄(1− ηΦ(µ2,K2))

)
. (3.45)

As in the proof of Theorem 3.9, we adopt the shorthand notation ηi = ηΦ(µi,Ki) and

η = ηΦ(µ,K) = ηΦ (µ1 ⊗ µ2,K) .

Let (X1, Y1, X2, Y2) be a random tuple with (X1, X2) ∼ µ and PY1,Y2|X1,X2
= K. Also, define the

Radon–Nikodym derivatives

g1(y1, y2) ,
d(µ1K1 ⊗ µ2)

d(µK)
(y1, y2) =

µ1K1(y1)µ2(y2)

pµ1K1(y1)µ2(y2) + p̄µ1(y1)µ2K2(y2)
(3.46)

and

g2(y1, y2) ,
d(µ1 ⊗ µ2K2)

d(µK)
(y1, y2) =

µ1(y1)µ2K2(y2)

pµ1(y1)µ2K2(y2) + p̄µ1(y1)µ2K2(y2)
. (3.47)

A simple calculation shows that

PX1,X2|Y1,Y2
(·|y1, y2) = K∗(·|y1, y2)

= pg1(y1, y2)(K∗1 ⊗ id2)(·|y1, y2) + p̄g2(y1, y2)(id1⊗K∗2 )(·|y1, y2).

Now consider an arbitrary nonconstant function f ∈ F 0
∗ (X1 × X2). Then

EntΦ

[
f(X1, X2)

]
− EntΦ

[
K∗f(Y1, Y2)

]
= E

[
EntΦ

[
f(X1, X2)

∣∣Y1, Y2

]]
=
∑
y1∈Y1

∑
y2∈Y2

PY1,Y2(y1, y2)

[ ∑
x1∈X1

∑
x2∈X2

PX1,X2|Y1,Y2
(x1, x2|y1, y2)Φ

(
f(x1, x2)

)
− Φ

( ∑
x1∈X1

∑
x2∈X2

PX1,X2|Y1,Y2
(x1, x2|y1, y2)f(x1, x2)

)]

=
∑
y1∈Y1

∑
y2∈Y2

µK(y1, y2)

[
pg1(y1, y2)

∑
x1∈X1

∑
x2∈X2

K∗1 ⊗ id2(x1, x2|y1, y2)Φ
(
f(x1, x2)

)
+ p̄g2(y1, y2)

∑
x1∈X1

∑
x2∈X2

id1⊗K∗2 (x1, x2|y1, y2)Φ
(
f(x1, x2)

)]

−
∑
y1∈Y1

∑
y2∈Y2

µK(y1, y2)Φ

(
pg1(y1, y2)

∑
x1∈X1

∑
x2∈X2

K∗1 ⊗ id2(x1, x2|y1, y2)f(x1, x2)

+ p̄g2(y1, y2)
∑
x1∈X1

∑
x2∈X2

id1⊗K∗2 (x1, x2|y1, y2)f(x1, x2)

)
.
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From this, using the fact that Φ is convex and that pg1 + p̄g2 = 1, we get

EntΦ

[
f(X1, X2)

]
− EntΦ

[
K∗f(Y1, Y2)

]
≥ p

∑
y1∈Y1

∑
y2∈Y2

µK(y1, y2)g1(y1, y2)

[ ∑
x1∈X1

∑
x2∈X2

(K∗1 ⊗ id2)(x1, x2|y1, y2)Φ
(
f(x1, x2)

)
− Φ

( ∑
x1∈X1

∑
x2∈X2

(K∗1 ⊗ id2)(x1, x2|y1, y2)f(x1, x2)
)]

+ p̄
∑
y1∈Y1

∑
y2∈Y2

µK(y1, y2)g2(y1, y2)

[ ∑
x1∈X1

∑
x2∈X2

(id1⊗K∗2 )(x1, x2|y1, y2)Φ
(
f(x1, x2)

)
− Φ

( ∑
x1∈X1

∑
x2∈X2

(id1⊗K∗2 )(x1, x2|y1, y2)f(x1, x2)
)]

= p
∑
y2∈Y2

µ2(y2)
∑
y1∈Y1

µ1K1(y1)

[ ∑
x1∈X1

K∗1 (x1|y1)Φ
(
f(x1, y2)

)
− Φ

( ∑
x1∈X1

K∗1 (x1|y1)f(x1, y2)
)]

+ p̄
∑
y1∈Y1

µ1(y1)
∑
y2∈Y2

µ2K2(y2)

[ ∑
x2∈X2

K∗2 (x2|y2)Φ
(
f(y1, x2)

)
− Φ

( ∑
x2∈X2

K∗2 (x2|y2)f(y1, x2)
)]
,

(3.48)

where in the last step we have used the definitions (3.46) and (3.47) of g1 and g2. Now consider a
random tuple (X1, X2, U, V ), such that

1. U −→ X1 −→ X2 −→ V is a Markov chain;

2. PX1X2 = µ = µ1 ⊗ µ2;

3. PU |X1
= K1;

4. PV |X2
= K2.

Using these definitions in (3.48) gives

EntΦ

[
f(X1, X2)

]
− EntΦ

[
K∗f(Y1, Y2)

]
≥ p

∑
PX2 (x2)E

[
EntΦ

[
f(X1, x2)

∣∣U]]+ p̄
∑

PX1 (x1)E
[
EntΦ

[
f(x1, X2)

∣∣V ]]
≥ p(1− η1)

∑
x2∈X2

PX2 (x2) EntΦ

(
f(X1, x2)

)
+ p̄(1− η2)

∑
x1∈X1

PX1 (x1) EntΦ

[
f(x1, X2)

]
≥ min

(
p(1− η1), p̄(1− η2)

){
E
[
EntΦ

[
f(X1, X2)

∣∣X2

]]
+ E

[
EntΦ

[
f(X1, X2)

∣∣X1

]] }
(3.49)

≥ min
(
p(1− η1), p̄(1− η2)

)
EntΦ

[
f(X1, X2)

]
, (3.50)

where (3.49) is by the independence of X1 and X2, while (3.50) is by the assumed subadditivity of
EntΦ[·]. Since f was arbitrary, we see that the inequality (3.45) indeed holds.
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Example 3.6. Let X1 = . . . = Xn = {0, 1}, µ1 = . . . = µn = Bern(1/2), and K1 = . . . = Kn =
BSC(ε). Take p to be the uniform distribution on {1, . . . , n}. Then K acts as follows: Given an
n-bit input string xn = (x1, . . . , xn), we pick one of the bits uniformly at random and flip it with
probability ε; the remaining bits stay the same. Then

η
(
Bern(1/2)⊗n,K

)
≤ 1− 1− (1− 2ε)2

n
= 1− 4εε̄

n
.

In particular, when ε = 1/2, we get the upper bound of 1− 1/n.
We can also consider flipping bits in blocks: Let B = {Bm}km=1 be a disjoint partition of the set

{1, . . . , n} into k blocks. We pick a block uniformly at random, and then independently flip each
bit in that block with probability ε. Denoting the resulting channel by KB, we have

η
(
Bern(1/2)⊗n,KB

)
≤ 1− 4εε̄

k
. (3.51)

To prove this, let µ(m) =
⊗

i∈Bm µi andK(m) =
⊗

i∈Bm Ki. Then µ = µ1⊗. . .⊗µn = µ(1)⊗. . .⊗µ(k),
and by Theorem 3.10 we have

η
(
Bern(1/2)⊗n,KB

)
≤ 1− 1

k
min

1≤m≤k

(
1− η

(
µ(m),K(m)

))
. (3.52)

Since each µ(m) is a product measure and each K(m) is a tensor product of BSCs, Theorem 3.9
gives

η
(
µ(m),K(m)

)
= max

i∈Bm
η (µi,Ki) = η (Bern(1/2),BSC(ε)) = (1− 2ε)2.

Substituting this into (3.52), we get (3.51). For k = 1, KB ≡ BSC(ε)⊗n, which has η = (1 − 2ε)2

by Theorem 3.9. The bound of Eq. (3.51) is then achieved with equality.

3.7 Comparison of SDPI constants

The following theorem shows that an upper bound on an SDPI constant for one source-channel pair
can be converted into an upper bound for another such pair via a change-of-measure argument:

Theorem 3.11. Let (µ,K), (µ̄, K̄) ∈ P∗(X) ×M (Y|X) be two admissible pairs. Then, for any
Φ ∈ F that satisfies the homogeneity condition (3.5),

ηΦ(µ,K) ≤ 1− a

A

(
1− ηΦ(µ̄, K̄)

)
, (3.53)

where

A , max
(x,y)∈X×Y

µ̄⊗ K̄(x, y)

µ⊗K(x, y)
and a , min

x∈X

µ̄(x)

µ(x)
.

Remark 3.9. It is easy to see that 0 < a ≤ A. Indeed, the first inequality holds since µ, µ̄ ∈P∗(X).
For the second, by definition of a and A, for every x ∈ X we have

aµ(x) ≤ µ̄(x) =
∑
y∈Y

µ̄⊗ K̄(x, y) ≤ A
∑
y∈Y

µ⊗K(x, y) = Aµ(x).
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Proof. Consider random pairs (X,Y ) and (X̄, Ȳ ) with respective probability laws µ⊗K and µ̄⊗K̄.
Using Eq. (3.6) and the law of total entropy Eq. (2.5),

ηΦ(µ,K) = sup

{
EntΦ [E[f(X)|Y ]]

EntΦ [f(X)]
: f ∈ F 0

∗ (X) f 6= const

}
(3.54)

= sup

{
EntΦ[f(X)]− E

[
EntΦ

[
f(X)

∣∣Y ]]
EntΦ[f(X)]

: f ∈ F 0
∗ (X), f 6= const

}

= 1− inf

{
E
[
EntΦ

[
f(X)

∣∣Y ]]
EntΦ[f(X)]

: f ∈ F 0
∗ (X), f 6= const

}
. (3.55)

Using Lemma A.4 in Appendix A, we can write

E
[
EntΦ

[
f(X)

∣∣Y ]] = inf
ξ∈F0

∗ (Y)
E
[
Φ(f(X))− Φ(ξ(Y ))− (f(X)− ξ(Y ))Φ′(ξ(Y ))

]
= inf

ξ∈F0
∗ (Y)

E
[

d(µ⊗K)

d(µ̄⊗ K̄)
(X̄, Ȳ )

(
Φ(f(X̄))− Φ(ξ(Ȳ ))− (f(X̄)− ξ(Ȳ ))Φ′(ξ(Ȳ ))

)]
≥ 1

A
inf

ξ∈F0
∗ (Y)

E
[
Φ(f(X̄))− Φ(ξ(Ȳ ))− (f(X̄)− ξ(Ȳ ))Φ′(ξ(Ȳ ))

]
=

1

A
E
[
EntΦ

[
f(X̄)

∣∣Ȳ ]] ,
where the inequality follows from the definition of A and from the convexity of Φ. An analogous
argument gives the inequality

EntΦ

[
f(X)

]
≤ 1

a
EntΦ

[
f(X̄)

]
.

Using these estimates in (3.55), we get

ηΦ(µ,K) ≤ 1− a

A
inf

{
E
[
EntΦ

[
f(X̄)

∣∣Ȳ ]]
EntΦ[f(X̄)]

: f ∈ F 0
∗ (X), f 6= const

}
= 1− a

A

(
1− ηΦ(µ̄, K̄)

)
.

Corollary 3.2. If two channels K, K̄ ∈M (Y|X) are such that K̄(y|x) ≤ AK(y|x) for all (x, y) ∈
X× Y, then

ηΦ(µ,K) ≤ 1− 1

A

(
1− ηΦ(µ, K̄)

)
for any Φ ∈ F satisfying (3.5) and any µ ∈P∗(X).

3.8 Extremal functions

In this section, we will characterize the extremal functions f ∈ F 0
∗ (X) that attain the infimum in

(3.3). In particular, we will prove that, for any sufficiently smooth Φ, these functions are solutions
of the variational equation

E
[
Φ′
(
E[f(X̄)|Y ]

) ∣∣∣X]− Φ′(1) = η
(
Φ′ (f(X))− Φ′(1)

)
, (3.56)
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with η = ηΦ(µ,K) under the constraint f ∈ F 0
∗ (X) and E[f(X)] = 1. Here, the random triple

(X, X̄, Y ) is such that X → Y → X̄ is a Markov chain, and both (X,Y ) and (X̄, Y ) have law
µ⊗K. Written more compactly, (3.56) takes the form

K(Φ′ ◦K∗f)− Φ′(1) = η
(
Φ′ ◦ f − Φ′(1)

)
. (3.57)

Theorem 3.12. Suppose Φ ∈ F has the following properties:

(a) It is three times differentiable with Φ′′(1) > 0.

(b) The Φ-entropy functional is homogeneous in the sense of Definition 3.2.

(c) There exists a constant c > 0, such that

EntΦ[U ] = cE
[
U
(
Φ′(U)− Φ′(1)

)]
(3.58)

for any nonnegative-valued random variable U with EU = 1.

Then either ηΦ(µ,K) = S2(µ,K), or there exists a nonconstant function f ∈ F 0
∗ (X), such that

(3.57) holds with η = ηΦ(µ,K). Moreover, ηΦ(µ,K) is the smallest constant η > 0, for which
(3.57) has a solution among nonconstant functions in F 0

∗ (X).

Remark 3.10. The functions Φ(u) = u log u and Φ(u) = up−1
p−1 , 1 < p ≤ 2, satisfy the condition

(3.58) (details are provided in the examples after the proof). On the other hand, the function Φ(u) =
− log u cannot satisfy (3.58) for any choice of c, since EntΦ[U ] = −E logU , while E[U(Φ′(U) −
Φ′(1))] = EU − 1 = 0 for any nonnegative-valued U with EU = 1. �

Remark 3.11. We emphasize that the variational equation (3.57) may have multiple solutions,
not all of which are actually extremal. In general, it is not easy to obtain explicit closed-form
expressions for the extremal solutions of (3.57). �

Proof. Suppose that ηΦ(µ,K) > S2(µ,K), for otherwise there is nothing to prove. We seek to
minimize the functional

W (f) ,
EntΦ[f(X)]− EntΦ[K∗f(Y )]

EntΦ[f(X)]
=

E [EntΦ[f(X)|Y ]]

EntΦ[f(X)]

over all f ∈ F 0
∗ (X). By homogeneity, W (cf) = W (f) for all c > 0, so without loss of generality we

can restrict the minimization to f ∈M ,
{
f ∈ F 0

∗ (X) : E[f(X)] = 1
}

. For ε > 0, define the set

Mε ,
{
f ∈ F 0

∗ (X) : E[f(X)] = 1 and ‖f − 1‖∞ < ε
}
,

so M =M∞. From the Taylor expansion

Φ(1 + u) = Φ(1) + Φ′(1)u+
Φ′′(1)

2
u2 +O

(
u3
)
,

we have, for every f ∈Mε,

EntΦ[f(X)] =
Φ′′(1)

2
Var[f(X)] +O(ε3)
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and

E [EntΦ[f(X)|Y ]] =
Φ′′(1)

2
(Var[f(X)]−Var[E[f(X)|Y ]]) +O

(
ε3
)
.

Therefore,

inf
f∈Mε

W (f) = inf
f∈Mε

Var[f(X)]−Var[E[f(X)|Y |]] +O(ε3)

Var[f(X)] +O(ε3)
,

which implies that, for any δ ∈ (0, 1) there exists some ε0 = ε0(δ), such that

inf
f∈Mε0

W (f) ≥ inf
g∈M

Var[g(X)]−Var[E[g(X)]|Y |]
Var[g(X)]

+ δ

= 1− S2(µ,K) + δ

> 1− ηΦ(µ,K) + δ.

On the other hand, since inff∈MW (f) = 1− ηΦ(µ,K), any f that minimizes W , if it exists, must
lie in M\Mε0 , i.e., it must be nonconstant. It remains to show the existence of such a minimizing
f . Since any f ∈ M satisfies ‖f‖∞ ≤ 1/µ∗, where µ∗ is the smallest (positive) mass of µ, the
set M\Mε0 is a closed and bounded subset of a finite-dimensional linear space, hence compact.
The denominator of W (f) is positive for all f ∈ M\Mε0 , so W is a continuous functional on the
compact set M\Mε0 and thus attains its infimum on some nonconstant f ∈M.

Now, let f be such a minimizing function. We use a variational argument following Bobkov and
Tetali [26, Sec. 6]. Given an arbitrary g ∈ F (X), the perturbed function f + εg is nonnegative for
all sufficiently small ε > 0. Consequently, by definition of ηΦ,

(1− ηΦ) EntΦ [f(X) + εg(X)] ≤ E [EntΦ[f(X) + εg(X)|Y ]] . (3.59)

Applying the Taylor expansion

EntΦ[U + εV ] = E[Φ(U + εV )]− Φ(EU + εEV )

= EntΦ[U ] + εE
[(

Φ′(U)− Φ′(EU)
)
V
]

+O(ε2)

to U = f(X), V = g(X) first for X ∼ µ and then for X ∼ K∗(·|y), y ∈ Y, and then using the fact
that (1− ηΦ) EntΦ[f(X)] = E [EntΦ[f(X)|Y ]] by the extremality of f , we have

(1− ηΦ) EntΦ[f(X) + εg(X)]− E [EntΦ[f(X) + εg(X)|Y ]]

= εE
[
(1− ηΦ)

(
Φ′(f(X))− Φ′(1)

)
g(X)− E

[(
Φ′(f(X))− Φ′(E[f(X)|Y ])

)
g(X)|Y

]]
+ o(ε)

= εE
[
Φ′(E[f(X)|Y ])E[g(X)|Y ]− ηΦ

(
Φ′(f(X))− Φ′(1)

)
g(X)

]
+ o(ε)

= εE
[(

E[Φ′(E[f(X̄)|Y ])|X]− ηΦΦ′(f(X)− (1− ηΦ)Φ′(1)
)
g(X)

)]
+ o(ε), (3.60)

where in the last line X̄ is an independent and identically distributed copy of X given Y , and we
have used the fact that E[ξ(Y )E[γ(X)|Y ]] = E[E[ξ(Y )|X]γ(X)] for any pair γ ∈ F (X), ξ ∈ F (Y).
Now, by (3.59), the leftmost quantity in (3.60) is nonpositive, whereas the rightmost quantity will
be nonpositive for all sufficiently small ε > 0 if and only if

E
[(
E[Φ′(E[f(X̄)|Y ])|X]− ηΦ

(
Φ′(f(X))− (1− ηΦ)Φ′(1)

)
g(X)

)]
= 0.
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Since g is arbitrary and µ ∈ P∗(X), the minimizing function f ∈ F 0
∗ (X) with E[f(X)] = 1 must

satisfy

E[Φ′(E[f(X̄)|Y ])|X]− Φ′(1) = ηΦ

(
Φ′(f(X))− Φ′(1)

)
,

which is precisely (3.57).
It remains to show minimality. To that end, let η̃ > 0 be another constant such that there

exists some function f̃ ∈ F 0
∗ (X) with E[f̃(X)] = 1 satisfying

E
[
Φ′
(
E[f̃(X̄)|Y ]

)∣∣X]− Φ′(1) = η̃
(
Φ′
(
f̃(X)

)
− Φ′(1)

)
(3.61)

Multiplying both sides of (3.61) by f̃(X), taking expectations, and using (3.58), we get

EntΦ[E[f̃(X)|Y ]] = η̃EntΦ[f̃(X)].

By definition of ηΦ(µ,K), we must have η̃ ≤ ηΦ(µ,K).

The proof of the theorem shows that if ηΦ(µ,K) > S2(µ,K), then Eq. (3.57) admits a nontrivial
(i.e., nonconstant) solution. The contrapositive of this statement gives:

Corollary 3.3. If the infimum in (3.3) is not achieved, i.e., if the SDPI (3.1) is strict unless
f ≡ 1, then ηΦ(µ,K) = S2(µ,K).

Remark 3.12. Equivalently, ηΦ(µ,K) = S2(µ,K) if for an arbitrary γ > 0 the only solution to
Eq. (3.57) among f ∈ F 0

∗ (X) with E[f(X)] = 1 is the trivial solution f ≡ 1. �

Here are a couple of specific examples:

• For Φ(u) = u log u, we have Φ′(u) = log u + 1, and Φ satisfies the conditions (a)–(c) of
Theorem 3.12. In particular, Eq. (3.58) holds with c = 1. The variational equation (3.57)
becomes

K(logK∗f) = η log f, η = η(µ,K).

• For Φ(u) = up−1
p−1 , 1 < p ≤ 2, we have Φ′(u) = pup−1

p−1 , and Φ satisfies the conditions (a)–(c).
In this case, (3.58) holds with c = p. The variational equation takes the form

K
(
(K∗f)p−1

)
= ηpf

p−1 + 1− ηp, ηp = ηΦp(µ,K).

4 Connections with Φ-Sobolev inequalities

4.1 General framework

Strong data processing inequalities for a pair (µ,K) can be interpreted in terms of the effect of the
adjoint channel K∗ on the Φ-entropies of suitably normalized nonnegative functions of the input,
see Proposition 3.1. In this section, we show that there is a close relationship between SDPIs and
another class of functional inequalities — the so-called Φ-Sobolev inequalities [23,31] that relate the
Φ-entropy EntΦ[f(X)] of an arbitrary function of the input X ∼ µ to some measure of correlation
between f(X) and the output Y ∼ µK.
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We will measure correlation in the following way. For any triple (U, V, Z) of jointly distributed
random variables, where U, V are real-valued, we define

E(U, V |Z) , E
[(
U − E[U |Z]

)(
V − E[V |Z]

)]
. (4.1)

This quantity has an estimation-theoretic interpretation: since e(U |Z) , U − E[U |Z] is the error
of a minimum mean-square error (MMSE) estimator of U given Z, and E[e(U |Z)] = 0, E(U, V |Z)
is the covariance of e(U |Z) and e(V |Z):

E(U, V |Z) = Cov [e(U |Z), e(V |Z)] .

In particular,

E(U,U |Z) = E
[(
U − E[U |Z]

)2] ≡ MMSE(U |Z),

the MMSE achievable in estimating U from Z. We pause to record a few key properties of E (see
Appendix B for the proof):

Proposition 4.1. The functional E defined in (4.1) has the following properties:

1. Symmetry – E(U, V |Y ) = E(V,U |Y ).

2. Linearity – E(aU + bU ′, V |Y ) = a E(U, V |Y ) + b E(U ′, V |Y ) for any constants a, b ∈ R.

3. Degeneracy – If U is constant a.s., then E(U, V |Y ) = 0.

4. Representation in terms of an exchangeable pair – Let (X,Y ) ∈ X×Y be a random pair with
PX = µ ∈ P(X) and PY |X = K ∈ M (Y|X), where (µ,K) is an admissible pair. Then for
any two functions f, g ∈ F (X),

E(f(X), g(X)|Y ) =
1

2
E
[(
f(X)− f(X ′)

)(
g(X)− g(X ′)

)]
(4.2)

= E
[(
f(X)− f(X ′)

)
+

(
g(X)− g(X ′)

)]
, (4.3)

where (u)+ , u ∨ 0, and (X,X ′) is a pair of X-valued random variables with PX = µ and
PX′|X = K∗K.

Remark 4.1. The terminology in Item 4 merits some discussion. It is not hard to show (and,
in fact, we do show it in the proof of the proposition) that the joint distribution PXX′ has the
following symmetry property:

PXX′(x, x
′) = PXX′(x

′, x), ∀x, x′ ∈ X. (4.4)

In other words, the random variables X and X ′ form an exchangeable pair. �

Generalizing the definition due to Chafäı [23], we now introduce Φ-Sobolev inequalities:

Definition 4.1. Consider an admissible pair (µ,K) and a random pair (X,Y ) with probability
distribution µ⊗K. Fix a function Φ ∈ F . We say that (µ,K) satisfies a Φ-Sobolev inequality with
constant α ≥ 0 if there exists some function Ψ : R+ → R, such that the inequality

EntΦ[f(X)] ≤ α E
(
f(X),Ψ ◦ f(X)

∣∣Y ) (4.5)

holds for all f ∈ F 0
∗ (X).
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Now we are ready to state our main result that relates SDPIs to Φ-Sobolev inequalities:

Theorem 4.1. Suppose that Φ ∈ F is such that Φ(0) < ∞, the function Ψ defined in (3.14) is
concave, and the corresponding Φ-entropy is homogeneous. Then ηΦ(µ,K) ≤ c implies that the pair
(µ,K) satisfies the Φ-Sobolev inequality of the form (4.5) with constant α = (1− c)−1.

Proof. For any u > 0 we can write Φ(u) = uΨ(u)+Φ(0). Thus, for any real-valued random variable
U which is a.s. strictly positive and a jointly distributed random variable Y , we have

EntΦ[U |Y ] = E[UΨ(U)|Y ]− E[U |Y ]Ψ(E[U |Y ])

≤ E[UΨ(U)|Y ]− E[U |Y ]E[Ψ(U)|Y ], (4.6)

where the second line is by the concavity of Ψ. Now let U = f(X) for some f ∈ F∗(X). Using
(4.6) and Proposition 3.1, we get

EntΦ

[
f(X)

]
≤ 1

1− c
E [f(X)Ψ(f(X))− E[f(X)|Y ]E[Ψ(f(X)|Y ]]

=
1

1− c
E(f(X),Ψ ◦ f(X)|Y ),

where the second line follows from the easily verified identity E(U, V |Z) = E[UV −E[U |Z]E[V |Z]] =
E[U(V − E[V |Z])].

Theorem 4.1 provides a route to Φ-Sobolev inequalities via SDPIs — any good upper bound
on ηΦ(µ,K) would automatically translate into a bound on the constant in the corresponding
Φ-Sobolev inequality. Such functional inequalities are a powerful tool in applied probability (for
example, in the context of quantifying the convergence of Markov chains to equilibrium); in the
next section, we will illustrate this on the particular case of Poincaré inequalities (corresponding
to Φ(u) = u2 − 1 and log-Sobolev inequalities (corresponding to Φ(u) = u log u).

It is often useful to estimate the Φ-entropy of a composite function F ◦ f (we will see examples
of this later on). The following result contains Theorem 5 of [40] as a special case:

Theorem 4.2. Suppose that the assumptions of Theorem 4.1 hold, and that the function Ψ is
differentiable. Let F : R→ R+ be a convex, differentiable, nondecreasing function, such that Ψ ◦F
is convex. Then, for any f ∈ F (X),

EntΦ[F ◦ f(X)] ≤ 1

1− c
E
[
F ′2
(
f(X)

)
Ψ′
(
F ◦ f(X)

) (
f(X)− f(X ′)

)2
+

]
,

where (X,X ′) is an exchangeable pair of random variables with PX = µ and PX′|X = K∗K, and
Ψ′ denotes the right derivative of Ψ. Similarly, if F is nonincreasing, then

EntΦ[F ◦ f(X)] ≤ 1

1− c
E
[
F ′2
(
f(X)

)
Ψ′
(
F ◦ f(X)

) (
f(X ′)− f(X)

)2
+

]
,

Proof. We only consider the case when F is nondecreasing, since the other case is handled similarly.
Suppose that u > v. Then, by monotonicity and convexity of F ,

0 ≤ F (u)− F (v) ≤ F ′(u)(u− v).
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Moreover, because f is convex, the function Ψ defined in (3.14) is nondecreasing. Using this
together with the assumed convexity of Ψ ◦ F , we have

0 ≤ Ψ(F (u))−Ψ(F (v)) ≤ Ψ′(F (u))F ′(u)(u− v).

Thus, when u > v,

(F (u)− F (v)) (Ψ(F (u))−Ψ(F (v))) ≤ F ′2(u)Ψ′(F (u))(u− v)2. (4.7)

Therefore, using Theorem 4.1, we can write

EntΦ[F ◦ f(X)] ≤ 1

1− c
E(F ◦ f(X),Ψ ◦ F ◦ f(X)|Y )

=
1

1− c
E
[ (
F (f(X))− F (f(X ′))

)
+
·
(
Ψ
(
F (f(X))

)
−Ψ

(
F (f(X ′))

)) ]
≤ 1

1− c
E
[
F ′2
(
f(X)

)
Ψ′
(
F (f(X))

) (
f(X)− f(X ′)

)2
+

]
,

where the second step is by (4.3), while the last step is by (4.7).

4.2 Logarithmic Sobolev and Poincaré inequalities

We now particularize the above general results to two specific types of functional inequalities:

• logarithmic Sobolev inequalities, with Φ(u) = u log u;

• Poincaré inequalities, with Φ(u) = u2 − 1.

These inequalities are well-known in functional analysis and probability theory (see, e.g., [8,24–27]).
We will first introduce our definitions of these inequalities following the ideas laid down in the
preceding section, and then show how these definitions are related to the “standard” ones.

We start with Poincaré inequalities:

Definition 4.2. We say that an admissible pair (µ,K) ∈ P(X) ×M (Y|X) satisfies a Poincaré
inequality with constant α ≥ 0 if

Var
[
f(X)

]
≤ α E

(
f(X), f(X)

∣∣Y )
for all f ∈ F 0

∗ (X), where (X,Y ) is a random pair with probability law µ⊗K. The Poincaré constant
of (µ,K) is given by

λ(µ,K) , inf
f∈F0

∗ (X)

E
(
f(X), f(X)

∣∣Y )
Var

[
f(X)

] ,

where we adopt the convention that 0
0 = +∞.

According to the above definition, α∗ = 1
λ(µ,K) is the smallest value of α for which the pair

(µ,K) will satisfy a Poincaré inequality. Moreover, we have the following:
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Proposition 4.2. For any admissible pair (µ,K),

λ(µ,K) = 1− S2(µ,K).

That is, (µ,K) satisfies a Poincaré inequality with constant α if and only if ηχ2(µ,K) ≤ 1− 1/α.

Proof. The function Φ(u) = u2 − 1 satisfies the conditions of Theorem 4.1 with Ψ(u) = u, and
EntΦ[U ] = Var[U ]. Therefore, if ηχ2(µ,K) ≤ c, then for any f ∈ F 0

∗ (X) we have

Var
[
f(X)

]
≤ 1

1− c
E
(
f(X),Ψ ◦ f(X)

∣∣Y )
=

1

1− c
E
(
f(X), f(X)

∣∣Y ),
which implies that the pair (µ,K) satisfies Poincaré with constant α = 1

1−c . Therefore,

λ(µ,K) ≥ sup
{

1− c : ηχ2(µ,K) ≤ c
}

= 1− ηχ2(µ,K)

= 1− S2(µ,K),

where the last step is by Theorem 3.2.
Conversely, suppose that (µ,K) satisfies Poincaré with constant α. A simple computation shows

E
(
f(X), f(X)

∣∣Y ) = Var
[
f(X)

]
−Var

[
K∗f(Y )

]
.

Therefore,

Var
[
K∗f(Y )

]
≤
(

1− 1

α

)
Var

[
f(X)

]
for any f ∈ F 0

∗ (X). This, in turn, implies that

S2(µ,K) = sup
f∈F0

∗ (X)

Var
[
K∗f(Y )

]
Var

[
f(X)

]
≤ inf

{
1− 1

α
:

1

α
≤ λ(µ,K)

}
= 1− λ(µ,K).

Now let us consider log-Sobolev inequalities:

Definition 4.3. We say that an admissible pair (µ,K) ∈P(X)×M (Y|X) satisfies a logarithmic
Sobolev inequality with constant α ≥ 0 if

Ent
[
f(X)

]
≤ α E

(
f(X), log f(X)

∣∣Y )
for all f ∈ F∗(X), where (X,Y ) is a random pair with probability law µ ⊗ K. The log-Sobolev
constant of (µ,K) is given by

ρ1(µ,K) , inf
f∈F∗(X)

E
(
f(X), log f(X)

∣∣Y )
Ent

[
f(X)

] , (4.8)

again with the convention that 0
0 = +∞.

41



The following is an extension of Prop. 5.1 in [10] to the case X 6= Y, and with explicit constants:

Proposition 4.3. For any admissible pair (µ,K),

1− η(µ,K) ≤ ρ1(µ,K) ≤ 1− (1− log 2) log 2

2
η(µ,K) ≤ 1− 1

10
η(µ,K). (4.9)

That is, if η(µ,K) ≤ c, then (µ,K) satisfies a log-Sobolev inequality with constant α = 1
1−c .

Conversely, if (µ,K) satisfies log-Sobolev with constant α, then

η(µ,K) ≤ 2

(1− log 2) log 2

(
1− 1

α

)
≤ 10

(
1− 1

α

)
.

Proof. The first inequality in (4.9) follows from Theorem 4.1 with Φ(u) = u log u and Ψ(u) = log u.
To prove the second inequality, we borrow (and slightly streamline) an ingenious idea from [10].
Let us fix an arbitrary f ∈ F∗(X). Then

E
[
Ent

[
f(X)

∣∣Y ]] =
∑
y∈Y

µK(y)
∑
x∈X

K∗(x|y)f(x) log
f(x)

K∗f(y)

=
∑
y∈Y

µK(y) Ent
[
f(X)

∣∣Y = y
]
. (4.10)

By [10, Lm. 5.2], the entropy Ent[U ] of any nonnegative real-valued random variable U with
E[U logU ] <∞ admits the integral representation

Ent[U ] =
1

2

∫ ∞
0

e−tE
[(
U − Ū

)
log

e−tU + 1− e−t

e−tŪ + 1− e−t

]
dt, (4.11)

where Ū is an independent copy of U . Applying (4.11) to each term in (4.10), we obtain

Ent[f(X)|Y = y] =
1

2

∑
x,x̄∈X

K∗(x|y)K∗(x̄|y)

[∫ ∞
0

(ft(x)− ft(x̄)) (log ft(x)− log ft(x̄)) dt

]
,

where ft(x) , e−tf(x) + 1− e−t. Averaging this w.r.t. Y ∼ µK gives

E
[
Ent

[
f(X)

∣∣Y ]]
=

1

2

∑
y∈Y

∑
x,x̄∈X

µK(y)K∗(x|y)K∗(x̄|y)

[∫ ∞
0

(ft(x)− ft(x̄)) (log ft(x)− log ft(x̄)) dt

]

=
1

2

∑
x,x̄∈X

µ(x)
∑
y∈Y

K(y|x)K∗(x̄|y)

[∫ ∞
0

(ft(x)− ft(x̄)) (log ft(x)− log ft(x̄)) dt

]
=

1

2

∫ ∞
0

E
[(
ft(X)− ft(X ′)

) (
log ft(X)− log ft(X

′)
)]

dt

=

∫ ∞
0
E
(
ft(X), log ft(X)

∣∣Y )dt, (4.12)

where (X,X ′) is an exchangeable pair with joint law PXX′ = µ ⊗ K∗K, and in the last step we
have used Eq. (4.2). From (4.12) and the definition of the log-Sobolev constant, it follows that

E
[
Ent

[
f(X)

∣∣Y ]] ≥ ρ1(µ,K)

∫ ∞
0

Ent [ft(X)] dt. (4.13)
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Now consider the function ξ(u) , (u + 1) log(u + 1) − u, u ≥ −1. This function is nonnegative,
nonincreasing on [−1, 0], nondecreasing on R+, and

inf
u≥−1

ξ(u/2)

ξ(u)
=

1− log 2

2
.

By monotonicity, ξ(cu) ≥ ξ(u/2) ≥ 1−log 2
2 ξ(u) for all u ≥ −1 and for any 1/2 ≤ c ≤ 1. Therefore,∫ ∞

0
Ent [ft(X)] dt =

∫ ∞
0

E [ft(X) log ft(X)− ft(X) + 1] dt

=

∫ ∞
0

E [ξ (ft(X)− 1)] dt

=

∫ ∞
0

E
[
ξ
(
e−t (f(X)− 1)

)]
dt

≥
∫ log 2

0
E
[
ξ
(
e−t (f(X)− 1)

)]
dt

≥ 1− log 2

2

∫ log 2

0
E [ξ (f(X)− 1)] dt

=
(1− log 2) log 2

2
Ent

[
f(X)

]
. (4.14)

Using (4.14) in (4.12), we obtain

E
[
Ent

[
f(X)

∣∣Y ]] ≥ (1− log 2) log 2

2
ρ1(µ,K) Ent

[
f(X)

]
.

Since f was arbitrary, this implies the second inequality in (4.9).

Now let us see how these results are related to the standard formulation of log-Sobolev in-
equalities in a discrete setting (see, e.g., [25–27]). Given a finite set X, we fix an admissible pair
(µ,M) ∈P(X)×M (X|X), such that the Markov kernel M is reversible w.r.t. µ:

µ(x)M(x′|x) = µ(x′)M(x|x′), ∀x, x′ ∈ X (4.15)

(nonreversible kernels can be handled as well, but we will not need this generalization here). From
(4.15), it follows that M leaves µ invariant: µM = µ. Define the Dirichlet form Eµ,M : F (X) ×
F (X)→ R by

Eµ,M (f, g) ,
1

2

∑
x,x′∈X

(
f(x)− f(x′)

) (
g(x)− g(x′)

)
µ(x)M(x′|x)

≡ 1

2
E
[(
f(X)− f(X ′)

) (
g(X)− g(X ′)

)]
, (4.16)

where (X,X ′) ∈ X × X is a random pair with probability law µ ⊗M . Our “overloading” of the
notation E(·, ·) [compare with Eq. (4.1)] is not accidental. To see this, we first need a definition:

Definition 4.4. Fix some alphabet Y and a channel K ∈ M (Y|X). We say that the pair (µ,M)
factors through K if M = K∗µ ◦K, i.e., if

M(x′|x) =
∑
y∈Y

K∗µ(x′|y)K(y|x), ∀(x, x′) ∈ X× X.
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In other words, (µ,M) factors through K if we can generate a copy of (X,X ′) according to the
following two-stage procedure, starting with a draw X ∼ µ:

1. Pass X through the channel K to get Y .

2. Pass Y through the adjoint channel K∗µ to get X ′.

This is nothing but the well-known two-stage (or two-component) Gibbs sampler [28, 30].

Proposition 4.4. The random variables X and X ′ form an exchangeable pair. Moreover, if (µ,M)
factors through some channel K ∈M (Y|X), then

Eµ,M (f, g) = E
(
f(X), g(X)

∣∣Y ) , ∀f, g ∈ F (X) (4.17)

where (X,Y ) ∈ X× Y is a random pair with law µ⊗K.

Proof. Exchangeability of (X,X ′) follows from the reversibility condition (4.15). The identity (4.17)
is a consequence of (4.16) and Prop. 4.1, Part 4).

With these definitions out of the way, we can introduce the hierarchy of log-Sobolev inequalities
following Mossel et al. [27]:

Definition 4.5. The pair (µ,M) satisfies log-Sobolev inequality of order p ∈ R+\{0, 1} with
constant c, or LSIp(c), if

Ent [fp(X)] ≤ cp2

4(p− 1)
Eµ,M

(
fp−1, f

)
, ∀f ∈ F 0

∗ (X);

LSI1(c) if

Ent [f(X)] ≤ c

4
Eµ,M (f, log f), ∀f ∈ F∗(X);

and LSI0(c) if

Var[log f(X)] ≤ − c
2
Eµ,M (f, 1/f), ∀f ∈ F∗(X).

Another important functional inequality relates the variance to the Dirichlet form Eµ,M :

Definition 4.6. (µ,M) satisfies a Poincaré inequality with constant c ≥ 0, or PI(c), if

Var[f(X)] ≤ c Eµ,M (f, f), ∀f ∈ F 0
∗ (X).

We are interested in the tightest constants in log-Sobolev inequalities for p ∈ [0, 2]. With that in
mind, we define

ρ̃p(µ,M) ,
p2

4(p− 1)
inf

f∈F∗(X)

Eµ,M (fp−1, f)

Ent[fp(X)]

for p 6∈ {0, 1}, with the convention 0
0 = ∞. The constants ρ̃0, ρ̃1 are defined analogously. The

Poincaré constant is

λ̃(µ,M) , inf
f∈F (X)

Eµ,M (f, f)

Var[f(X)]
.
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Mossel et al. [27] proved that the function p 7→ ρ̃p(µ,M) is nonincreasing:

ρ̃0(µ,M) ≥ ρ̃p(µ,M) ≥ ρ̃q(µ,M), 0 ≤ p ≤ q ≤ 2 (4.18)

and moreover ρ̃0(µ,M) = 1
2 λ̃(µ,M). Log-Sobolev and Poincaré inequalities arise naturally in the

study of the continuous-time random walk on X with infinitesimal generator L = M − I. This is
a pure-jump Markov process with state space X that jumps from state x to another state x′ with
probability M(x′|x), and the times between successive jumps are i.i.d. Exp(1) random variables.
Let {Xt}t≥0 denote this process with X0 ∼ µ, where Xt ∼ µ for all t by stationarity. For each
t ≥ 0, define the mapping Pt : F (X)→ F (X) by

Ptf(x) , E[f(Xt)|X0 = x].

Then one can prove the following (see, e.g., [46, Prop. 1.7]):

1. Var[Ptf(X0)] ≤ e−t/c Var[f(X0)] for all f ∈ F (X) and all t ≥ 0 if and only if the pair (µ,M)
satisfies PI(c).

2. Ent[Ptf(X0)] ≤ e−t/c Ent[f(X0)] for all f ∈ F 0
∗ (X) and all t ≥ 0 if and only if the pair (µ,M)

satisfies LSI1(4c).

In other words, the Poincare inequality and the log-Sobolev inequality for p = 1 completely char-
acterize the exponential rate of decay of variance and entropy, respectively, along the trajectory of
{Xt} with X0 ∼ µ. In particular, if for each t ≥ 0 we consider the channel Mt ∈ M (X|X) with
transition probabilities Mt(x

′|x) = P (Xt = x′|X0 = x), then

ηχ2(µ,Mt) ≤ e−λ̃(µ,M)t and η(µ,Mt) ≤ e−4ρ̃1(µ,M)t.

The main utility of the log-Sobolev inequality for p = 2 is that the Dirichlet form Eµ,M (f, f) is
much easier to deal with than Eµ,M (f, log f); by monotonicity property of the log-Sobolev constants
[cf. (4.18)], we end up with the handy estimate

η(µ,Mt) ≤ e−4ρ̃2(µ,M)t.

Thus, it is important to obtain tight upper and lower bounds on the Poincaré and the log-Sobolev
constants of the pair (µ,M). We now show that such bounds can be given in terms of the SDPI
constant η(µ,K) of any channel K that the pair (µ,M) factors through; conversely, we can obtain
bounds on η(µ,K) in terms of log-Sobolev and Poincaré constants of the pair (µ,K∗µ ◦K). We start
with the Poincaré constant, in which case we have the following exact characterization:

Theorem 4.3. The functional K 7→ S2(µ,K) is constant on the collection

M (µ,M) , {K : (µ,M) factors through K} ,

and its value there is equal to 1− λ̃(µ,M). Equivalently, if K ∈M (µ,M), then

ηχ2(µ,K) = 1− λ̃(µ,M).
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Proof. We need to show the following: if (µ,M) factors through K, then

Eµ,M (f, f) = Var [f(X)]−Var
[
K∗µf(Y )

]
, (4.19)

where (X,Y ) ∈ X× Y is a random pair with law µ⊗K. Assuming this is true, we then have

λ̃(µ,M) = inf
f∈F (X)

Eµ,M (f, f)

Var[f(X)]

= inf
f∈F (X)

Var [f(X)]−Var
[
K∗µf(Y )

]
Var [f(X)]

= 1− ηχ2(µ,K)

= 1− S2(µ,K).

Noting that λ̃(µ,M) is independent of the choice of K, we obtain the statement of the theorem.
It remains to prove (4.19). Fixing K, we have

Var [f(X)]−Var
[
K∗µf(Y )

]
= E[f2(X)]− E

[
(E[f(X)|Y ])2

]
,

where

E
[
(E[f(X)|Y ])2

]
=
∑
x,x′∈X

∑
y∈Y

µK(y)K∗µ(x|y)K∗µ(x′|y)f(x)f(x′)

=
∑
x,x′∈X

∑
y∈Y

µ(x)K(y|x)K∗µ(x′|y)f(x)f(x′)

=
∑
x,x′∈X

µ(x)M(x′|x)f(x)f(x′)

= E[f(X)f(X ′)].

Therefore,

Eµ,M (f, f) =
1

2
E
[(
f(X)− f(X ′)

)2]
= E[f2(X)]− E[f(X)f(X ′)]

= E[f2(X)]− E
[
(E[f(X)|Y ])2

]
= Var [f(X)]−Var

[
K∗µf(Y )

]
.

Example 4.1 (Doubly symmetric binary source). Consider the case X = {0, 1}, µ = Bern(1/2),
M = BSC(ε) with ε ≤ 1/2. The resulting exchangeable pair (X,X ′) is the doubly symmetric binary
source (DSBS) with parameter ε [3]. It is a matter of simple computation to show that the pair
(µ,M) factors through K = BSC(δ(ε)) with

δ(ε) =
1 +
√

1− 2ε

2
. (4.20)
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We know that

S2 (Bern(1/2),BSC(δ(ε))) = (1− 2δ(ε))2 = 1− 2ε,

which therefore gives

λ̃ (Bern(1/2),BSC(ε)) = 2ε.

For any f ∈ F (X), we can compute the Dirichlet form

Eµ,M (f, f) =
1

2
[µ(0)M(1|0) + µ(1)M(0|1)]

(
f(0)− f(1)

)2
=
ε

2

(
f(0)− f(1)

)2
,

which gives us the Poincaré inequality

Var[f(X)] ≤ 1

4

(
f(0)− f(1)

)2
(see, e.g., [26, Ex. 3.9]). Note that this inequality is independent of the crossover probability ε.

Next, we consider the case of the log-Sobolev constant ρ̃1(µ,M), for which we can only give
upper and lower bounds:

Theorem 4.4. The functional K 7→ ρ1(µ,K) is constant on the collection of all channels K such
that M = K∗µ ◦K, where it takes the value 4ρ̃1(µ,M). Moreover, if (µ,M) factors through K, the
log-Sobolev constant ρ̃1(µ,M) satisfies

1− η(µ,K) ≤ 4ρ̃1(µ,M) ≤ 1− (1− log 2) log 2

2
η(µ,K). (4.21)

Proof. Choose any channel K, such that M = K∗µ ◦K. Then, with (X,Y ) ∼ µ⊗K,

1− η(µ,K) ≤ ρ1(µ,K) (4.22)

= inf
f∈F∗(X)

E
(
f(X), log f(X)

∣∣Y )
Ent [f(X)]

(4.23)

= inf
f∈F∗(X)

Eµ,M (f, log f)

Ent[f(X)]
(4.24)

= 4ρ̃1(µ,M), (4.25)

where (4.22) is by Proposition 4.3; (4.23) is by (4.8); (4.24) is by Proposition 4.4; (4.25) is by
definition of ρ̃1(µ,M).

This proves the first inequality in (4.9). The second inequality follows from the upper bound on
ρ1(µ,K) in Proposition 4.3, as well as from the just established fact that ρ1(µ,K) = 4ρ̃1(µ,M).

Example 4.2 (Doubly symmetric binary source, continued). Consider again the case of the DSBS
with parameter ε ≤ 1/2. From the previous example, we know that (µ,M) factors through K =
BSC(δ(ε)) with crossover probability δ(ε) given by (4.20). For this channel, we have

η
(
Bern(1/2),BSC(δ(ε))

)
= 1− 2ε.

47



Applying this and Theorem 4.4, we get the following upper and lower bounds on the log-Sobolev
constant ρ̃1:

ε

2
≤ ρ̃1

(
Bern(1/2),BSC(ε)

)
≤ 1

4

[
1− (1− log 2) log 2

2
(1− 2ε)

]
.

Unfortunately, neither of the bounds is tight, since the log-Sobolev constant in this case is known
exactly: ρ̃1

(
Bern(1/2),BSC(ε)

)
= ε [26, Ex. 3.9]. A sharp bound can be obtained from the mono-

tonicity property (4.18) of the log-Sobolev constants:

ρ̃1

(
Bern(1/2),BSC(ε)

)
≤ ρ̃0

(
Bern(1/2),BSC(ε)

)
=

1

2
λ̃
(
Bern(1/2),BSC(ε)

)
= ε.

Finally, we consider the log-Sobolev constant ρ̃2(µ,M):

Theorem 4.5. For any channel K ∈M (Y|X) such that M = K∗µ ◦K,

η(µ,K) ≤ 1− ρ̃2(µ,M). (4.26)

Proof. We use the following delicate convexity bound for the function Φ(u) = u log u [8]:

Φ(u) ≥ Φ(v) + (1 + log v)(u− v) +
(√
u−
√
v
)2
, ∀u, v ≥ 0. (4.27)

Let (X,Y ) be a random pair with law µ⊗K. Fix any function f ∈ F 0
∗ (X) with E[f(X)] = 1 and

use the bound (4.27) to get

Φ
(
f(x)

)
≥ Φ

(
K∗µf(y)

)
+
(

1 + logK∗µf(y)
)(
f(x)−K∗µf(y)

)
+
(√

f(x)−
√
K∗µf(y)

)2

(4.28)

Taking conditional expectation E[·|Y ] of both sides of (4.28), we obtain

E
[
Φ
(
f(X)

)∣∣∣Y ] ≥ Φ (E[f(X)|Y ]) + E
[ (√

f(X)−
√
E[f(X)|Y ]

)2 ∣∣∣Y ]
≥ Φ (E[f(X)|Y ]) + E

[ (√
f(X)− E

[√
f(X)

∣∣∣Y ])2 ∣∣∣Y ],
where we have used the fact that

E
[
(U − E[U |Y ])2

∣∣Y ] = inf
f∈F (Y)

E
[

(U − f(Y ))2
∣∣Y ].

for any real-valued random variable U jointly distributed with Y . Next we take the expectation
w.r.t. Y to get

Ent[f(X)] ≥ Ent
[
E[f(X)|Y ]

]
+ E

(√
f(X),

√
f(X)

∣∣∣Y )
= Ent [E[f(X)|Y ]] + Eµ,M

(√
f,
√
f
)

where we have used the fact that Ent[U ] = E[Φ(U)] for all nonnegative random variables U with
EU = 1, as well as Proposition 4.4. Using this and the definition of ρ̃2(µ,M), we get

Ent
[
E[f(X)|Y ]

]
≤ (1− ρ̃2(µ,M)) Ent [f(X)] .

Since f was arbitrary, we get the bound (4.26).
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4.3 The gap between SDPI and Φ-Sobolev

As evident from the proof of Theorem 4.1, we need to invoke Jensen’s inequality in order to pass
from a Φ-entropy SDPI to a Φ-Sobolev inequality. This observation prompts us to investigate the
gap between these two inequalities:

Theorem 4.6. If Φ satisfies the conditions of Theorem 4.1, then for any f ∈ F 0
∗ (X)

E(f(X),Ψ ◦ f(X)|Y ) = E [EntΦ[f(X)|Y ]] + E [f(X) Ent−Ψ[f(X)|Y ]] (4.29)

Therefore, if ηΦ(PX , PY |X) ≤ c for some 0 ≤ c < 1, and if the function u 7→ −Ψ(u) is strictly
convex at u = 1, then the Φ-Sobolev inequality

EntΦ[f(X)] ≤ 1

1− c
E(f(X),Ψ ◦ f(X)|Y ) (4.30)

is strict for any nonconstant f . If Ψ is affine, then E(f(X),Ψ ◦ f(X)|Y ) = E [EntΦ[f(X)|Y ]], and
in that case ηΦ(PX , PY |X) ≤ c is equivalent to (4.30).

Remark 4.2. When Ψ is affine, Φ is of the form Φ(u) = au2 + bu + c for some a ≥ 0, b, c ∈ R.
Thus, the SDPI for χ2-divergence is equivalent to the corresponding Φ-Sobolev inequality (which
in this case is precisely the Poincaré inequality). �

Proof. By definition of E ,

E(f(X),Ψ ◦ f(X)|Y )

= E
[
f(X)Ψ(f(X))− E[f(X)|Y ]E[Ψ(f(X)|Y ]

]
= E[f(X)Ψ(f(X))]− E[E[f(X)|Y ]Ψ(E[f(X)|Y ])]

+ E[E[f(X)|Y ]Ψ(E[f(X)|Y ])]− E [E[f(X)|Y ]E[Ψ(f(X)|Y ]]

= E [EntΦ[f(X)|Y ]] + E
[
f(X)

{
E[−Ψ(f(X))|Y ]− (−Ψ(E[f(X)|Y ]))

}]
. (4.31)

Since −Ψ is convex, we recognize the quantity in the curly braces in (4.31) as the conditional
entropy Ent−Ψ[f(X)|Y ]. This proves (4.29).

From (4.29) we see that E(f(X),Ψ ◦ f(X)|Y ) = E [EntΦ[f(X)|Y ]] for a given nonconstant f ∈
F 0
∗ (X) if and only if Ent−Ψ[f(X)|Y ] = 0 a.s. If −Ψ is strictly convex at 1, then Ent−Ψ[U ] = 0 if and

only if U is a.s. constant; thus, in this case, the inequality (4.30) is strict for any nonconstant f . If Ψ
is affine, then Ent−Ψ[U ] = 0 for all U , so in that case E(f(X),Ψ◦f(X)|Y ) = E [EntΦ[f(X)|Y ]].

As a corollary, we obtain the following useful formula that expresses the covariance between
f(X) and Ψ ◦ f(X) in terms of entropies:

Corollary 4.1.

Cov[f(X),Ψ ◦ f(X)] = EntΦ[f(X)] + E [f(X)] Ent−Ψ[f(X)]. (4.32)

Proof. Consider any pair (X,Y ), where Y is independent of X. In that case, E(f(X), g(X)|Y ) =
Cov[f(X), g(X)] for any pair f, g ∈ F (X), whereas EntΦ[f(X)|Y ] = EntΦ[f(X)] for any Φ ∈ F .
The formula (4.32) follows from these observations.
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5 Some applications

5.1 Concentration inequalities

One of the main uses of logarithmic Sobolev inequalities is in the context of concentration inequal-
ities: Given a probability space (X, µ) and a function f ∈ F (X), the objective is to obtain tight
upper bounds on the deviation probabilities P[f(X) − Ef(X) ≥ t] for t ≥ 0, where X ∼ µ. A
general procedure that allows one to pass from a suitable log-Sobolev inequality to a Gaussian tail
bound of the form

P[f(X)− Ef(X) ≥ t] ≤ e−κt2 , t ≥ 0 (5.1)

for some κ > 0 and for all f in a suitable subset of F (X) is called the Herbst argument [31,57,58],
and can be summarized as follows (see, e.g., [58, Chap. 3]):

We start with a pair (A,Γ), where:

1. A ⊆ F (X) is a class of real-valued functions on X, such that af + b ∈ A for all f ∈ A and all
a ≥ 0, b ∈ R.

2. Γ : A → F 0
∗ (X) is an operator with the property that Γ(af + b) = aΓf for all f ∈ A and all

a ≥ 0, b ∈ R.

We then say that µ satisfies a modified log-Sobolev inequality with constant c > 0 on (A,Γ) if

Ent[ef(X)] ≤ c

2
E
[
ef(X) |Γf(X)|2

]
, ∀f ∈ A. (5.2)

Here is how we pass from (5.2) to a Gaussian tail bound of the form (5.1). Without loss of generality,
we may assume that E[f(X)] = 0. For any λ ≥ 0, λf ∈ A and Γ(λf) = λΓf . Therefore, replacing
f with λf in (5.2), we arrive at

Ent
[
eλf(X)

]
≤ cλ2

2
E
[
eλf(X) |Γf(X)|2

]
≤ c‖Γf‖2∞λ2

2
E
[
eλf(X)

]
, (5.3)

where ‖Γf‖∞ , supx∈X |Γf(x)|. If we define the tilted distribution dµ(λ) , eλfdµ/E[eλf(X)], then

D(λ) , D
(
µ(λ)

∥∥µ) =
Ent

[
eλf(X)

]
E
[
eλf(X)

] .
Therefore, from (5.3) we get

D(λ) ≤ c‖Γf‖2∞λ2

2
, ∀λ ≥ 0.

On the other hand, if we define the logarithmic moment-generating function Λ(λ) , logE[eλf(X)],
then it is a matter of simple calculus to show that

D(λ) = λ2 d

dλ

(
Λ(λ)

λ

)
. (5.4)
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Combining (5.3) and (5.4), we get the differential inequality

d

dλ

(
Λ(λ)

λ

)
≤ c‖Γf‖2∞

2
,

which can be integrated to give Λ(λ) ≤ c‖Γf‖2∞λ2

2 . This shows that f is v-subgaussian with v =
c‖Γf‖2∞, and therefore it satisfies (5.1) with κ = 1/2v = 1/(2c‖Γf‖2∞) (cf. Section 3.4). Effectively,
‖Γf‖∞ is a measure of the “variability” of f .

We now show that we can use any reversible Markov kernel M on X that leaves µ invariant as
a yardstick for measuring the variability of functions in F (X), and that the constant c in the log-
Sobolev inequality (5.2) can be expressed in terms of the relative-entropy SDPI constants η(µ,K),
where K runs over all factorizations M = K∗µK. Following Houdré and Tetali [59], let us define

the `2 positive discrete gradient operator ∇+
2 : F (X)→ F 0

∗ (X) via

∇+
2 f(x) ,

(∑
x′∈X

M(x′|x)
(
f(x)− f(x′)

)2
+

)1/2

.

It is easy to see that the pair (A,Γ) = (F (X),∇+
2 ) satisfies the requirements 1 and 2 listed in the

preceding paragraph.

Theorem 5.1. Consider a pair (µ,M) ∈P∗(X)×M (Y|X), where M is reversible w.r.t. µ. Then
the following modified log-Sobolev inequality holds for all f ∈ F (X):

Ent
[
ef(X)

]
≤ c

2
E
[
ef(X)

∣∣∇+
2 f(X)

∣∣2] ,
where X ∼ µ, and

c = inf

{
2

1− η(µ,K)
: M = K∗µK

}
. (5.5)

Proof. Suppose that M factors through some channel K ∈M (Y|X). As before, let (X,X ′) be an
exchangeable pair with law µ ⊗ K∗K ≡ µ ⊗M . Applying Theorem 4.2 to Φ(u) = u log u and
F (u) = eu, we conclude that any f ∈ F (X) satisfies

Ent
[
ef(X)

]
≤ 1

1− η(µ,K)
E
[
ef(X)

(
f(X)− f(X ′)

)2
+

]
=

1

1− η(µ,K)

∑
x∈X

µ(x)ef(x)
∑
x′∈X

K∗K(x′|x)
(
f(x)− f(x′)

)2
+

=
1

1− η(µ,K)

∑
x∈X

µ(x)ef(x)
∑
x′∈X

M(x′|x)
(
f(x)− f(x′)

)2
+

=
1

1− η(µ,K)

∑
x∈X

µ(x)ef(x)
∣∣∇+

2 f(x)
∣∣2

=
1

1− η(µ,K)
E
[
ef(X)|∇+

2 f(X)|2
]
.

Optimizing over the choice of K, we see that (5.2) holds with c given by (5.5).
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5.2 Contraction of mutual information in a Markov chain

Consider a Markov chain U → X → Y , where the joint law PXY is fixed, while the alphabet U
of U and the conditional distribution PU |X are allowed to vary arbitrarily. By the data processing
inequality for the mutual information, I(U ;Y ) ≤ I(U ;X) for any choice of PU |X . The question is:

what is the maximum value of the ratio I(U ;Y )
I(U ;X) that can be achieved by any choice of PU |X? The

following claim was made by Erkip and Cover [60]:

sup
PU|X

I(U ;Y )

I(U ;X)
= S2(PX , PY |X), (5.6)

where S2 is the squared maximal correlation (see Section 3.2). However, Anantharam et al. in a
recent preprint [15] pointed out a flaw in the proof of (5.6), and showed instead that

sup
PU|X

I(U ;Y )

I(U ;X)
= η(PX , PY |X), (5.7)

where η is the relative-entropy SDPI constant. Moreover, they provided an explicit example of a
source-channel pair (PX , PY |X), for which the mutual-information ratio on the left-hand sides of
Eqs. (5.6) and (5.7) is strictly larger than S2(PX , PY |X).

We will now present a generalization of the result of Anantharam et al., and show, as a conse-
quence, that S2(PX , PY |X) can indeed be expressed as a supremum of the ratio of two information-
like quantities pertaining to the Markov chain U → X → Y with an arbitrary choice of PU |X . Fix
a function Φ ∈ F . Given a random pair (U, V ), we define the mutual Φ-information [9]6 as

IΦ(U ;V ) , DΦ

(
PUV

∥∥PU ⊗ PV )
=

∫
PU (du)

∫
PV (dv)Φ

(
dPV |U=u

dPV
(v)

)
=

∫
PU (du)DΦ

(
PV |U=u

∥∥PV ). (5.8)

If U and V are related via a Markov kernel K (i.e., PUV = PU ⊗K), we may also use the notation
IΦ(PU ,K) to indicate the fact that the Φ-information is a functional of the source distribution and
the kernel that generates the random output given the input.

Theorem 5.2. If Φ ∈ F is differentiable, and its derivative is uniformly bounded in some neigh-
borhood of 1, then

sup
PU|X

IΦ(U ;Y )

IΦ(U ;X)
= ηΦ(PX , PY |X).

Proof. Define a probability measure Q ∈P(U) by

Q(u) ,
PU (u)DΦ

(
PX|U=u

∥∥PX)∑
u∈U PU (u)DΦ

(
PX|U=u

∥∥PX) .
6Palomar and Verdú [61] define Φ-information between U and V as DΦ(PU ⊗ PV ‖PUV ). Their definition is

equivalent to Eq. (5.8) if we replace Φ with its Csiszár conjugate Φ?(u) , uΦ(1/u) [5].
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This measure is supported on the set Ũ , {u ∈ U : DΦ(PX|U=u‖PX) > 0}. From data processing,

we have the inclusion {u ∈ U : DΦ(PY |U=u‖PY ) > 0} ⊆ Ũ. Taking all of this into account, we can
write

IΦ(U ;Y )

IΦ(U ;X)
=

∑
u∈Ũ PU (u)DΦ

(
PY |U=u

∥∥PY )∑
u∈Ũ PU (u)DΦ

(
PX|U=u

∥∥PX)
=
∑
u∈Ũ

Q(u)
DΦ

(
PY |U=u

∥∥PY )
DΦ

(
PX|U=u

∥∥PX)
≤ max

u∈Ũ

DΦ

(
PY |U=u

∥∥PY )
DΦ

(
PX|U=u

∥∥PX)
= max

u∈Ũ

DΦ

(
PX|U=uPY |X

∥∥PXPY |X)
DΦ

(
PX|U=u

∥∥PX)
≤ ηΦ(PX , PY |X).

To prove the reverse inequality, we adopt the construction from [15]. Fix an arbitrary QX ∈P(X).

For any ε ∈ (0, 1) small enough so that ν , PX−εQX is a nonnegative measure, let P
(ε)
U = Bern(ε)

and define P
(ε)
X|U by

P
(ε)
X|U=0 = QX , P

(ε)
X|U=1 =

ν

ε̄
.

With these choices, P
(ε)
U P

(ε)
X|U = εP

(ε)
X|U=0 + ε̄P

(ε)
X|U=1 = εQX + PX − εPX = PX . For any η > 0,

define the function

Lη(ε) , IΦ

(
P

(ε)
U , PY |X ◦ P

(ε)
X|U

)
− ηIΦ

(
P

(ε)
U , P

(ε)
X|U

)
.

A simple calculation gives

IΦ

(
P

(ε)
U , PY |X ◦ P

(ε)
X|U

)
= εDΦ

(
P

(ε)
X|U=0PY |X

∥∥PY )+ ε̄DΦ

(
P

(ε)
X|U=1PY |X

∥∥PY )
= εDΦ

(
QXPY |X

∥∥PY )+ ε̄DΦ

(PX − εQX
ε̄

PY |X

∥∥∥PY )
= εDΦ

(
QXPY |X

∥∥PY )+ ε̄DΦ

(PY − εQXPY |X
ε̄

∥∥∥PY ),
where in the last line we have used the fact that any Markov kernel extends to a linear map on
signed measures. Similarly,

IΦ

(
P

(ε)
U , P

(ε)
X|U

)
= εDΦ

(
P

(ε)
X|U=0

∥∥PX)+ ε̄DΦ

(
P

(ε)
X|U=1

∥∥PX)
= εDΦ

(
QX
∥∥PX)+ ε̄DΦ

(PX − εQX
ε̄

∥∥∥PX).
Let f = dQX

dPX
and g(ε) = 1−εf

ε̄ . Then, by virtue of our choice of ε, g(ε) ∈ F 0
∗ (X), and E[g(ε)(X)] = 1.

With these definitions, we can rewrite the above expressions as

IΦ

(
P

(ε)
U , PY |X ◦ P

(ε)
X|U

)
= εEntΦ

[
P ∗Y |Xf(Y )

]
+ ε̄EntΦ

[
P ∗Y |Xg

(ε)(Y )
]
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and

IΦ

(
P

(ε)
U , P

(ε)
X|U

)
= εEntΦ [f(X)] + ε̄EntΦ

[
g(ε)(X)

]
.

Consequently,

d

dε
Lη(ε) = EntΦ

[
P ∗Y |Xf(Y )

]
− ηEntΦ [f(X)] +

d

dε

{
ε̄
(

EntΦ

[
P ∗Y |Xg

(ε)(Y )
]
− ηEntΦ

[
g(ε)(X)

])}
= EntΦ

[
P ∗Y |Xf(Y )

]
− ηEntΦ [f(X)] + ηEntΦ

[
g(ε)(X)

]
− EntΦ

[
P ∗Y |Xg

(ε)(Y )
]

+ ε̄
d

dε

{
EntΦ

[
P ∗Y |Xg

(ε)(Y )
]
− ηEntΦ

[
g(ε)(X)

]}
.

Now let us choose QX so that DΦ(QY ‖PY )
DΦ(QX‖PX) > ηΦ(PX , PY |X)− δ for some small δ > 0. Then, for any

η < ηΦ(PX , PY |X)− δ we have

d

dε
Lη(ε)

∣∣∣
ε=0

= EntΦ

[
P ∗Y |Xf(Y )

]
− ηEntΦ [f(X)] > 0,

where we have used Lemma A.5 in Appendix A, and where the strict inequality holds due to our
choice of η. Thus, the function ε 7→ Lη(ε) is strictly increasing in some neighborhood of 0. Since
Lη(0) = 0, there exists some value ε0 > 0, such that Lη(ε0) > 0, i.e.,

sup
PU|X

IΦ(U ;Y )

IΦ(U ;X)
≥
IΦ

(
P

(ε0)
U , PY |X ◦ P

(ε0)
X|U

)
IΦ

(
P

(ε0)
U , P

(ε0)
X|U

) > η.

Since this holds for all 0 < η < ηΦ(PX , PY |X) − δ, and δ > 0 was arbitrary, we conclude, upon
taking δ ↘ 0, that

sup
PU|X

IΦ(U ;Y )

IΦ(U ;X)
≥ ηΦ(PX , PY |X).

Since we already established the reverse inequality, the theorem is proved.

Thus, if Φ(u) = u log u, we recover the result of Anantharam et al. [15]; on the other hand,
choosing Φ(u) = (u− 1)2, we can express the squared maximal correlation S2(PX , PY |X) as

S2(PX , PY |X) = sup
PU|X

Iχ2(U ;Y )

Iχ2(U ;X)
,

where the χ2-information Iχ2(U ;V ) is the variance of the Radon–Nikodym derivative dPUV
d(PU⊗PV )

w.r.t. the product distribution PU ⊗ PV . We also have the following result:

Corollary 5.1. Let (X,Y ) be a random pair taking values in a finite product space X × Y, such
that PX ∈P∗(X) and PY ∈P∗(Y). Then for any Φ ∈ F satisfying the conditions of Theorem 5.2,

ηΦ(PX , PY |X)ηΦ(PY , PX|Y ) ≥ IΦ(X;X ′)

IΦ(X;X)
∨ IΦ(Y ;Y ′)

IΦ(Y ;Y )
, (5.9)
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where (X,X ′) is an exchangeable pair generated according to the Markov chain

X
PY |X−−−→ Y

PX|Y−−−→ X ′ (5.10)

and (Y, Y ′) is an exchangeable pair generated according to the Markov chain

Y
PX|Y−−−→ X

PY |X|−−−−→ Y ′.

Proof. Applying Theorem 5.2 to the Markov chain (5.10) gives

ηΦ(PY , PX|Y ) ≥ IΦ(X;X ′)

IΦ(X;Y )
.

On the other hand,

IΦ(X;Y ) =
∑
x∈X

PX(x)DΦ(PY |X=x‖PY )

=
∑
x∈X

PX(x)DΦ(δxPY |X‖PXPY |X)

≤ ηΦ(PX , PY |X)
∑
x∈X

PX(x)DΦ(δx‖PX)

= ηΦ(PX , PY |X)IΦ(X;X),

where δx denotes the Dirac measure located at x. Combining these estimates gives (5.9). Inter-
changing the roles of X and Y , we obtain an analogous bound involving IΦ(Y ;Y ′) and IΦ(Y ;Y ).

For example, if Φ(u) = u log u, the bound (5.9) becomes

η(PX , PY |X)η(PY , PX|Y ) ≥ I(X;X ′)

H(X)
∨ I(Y ;Y ′)

H(Y )
,

where H(X) is the usual Shannon entropy of X. If Φ(u) = (u− 1)2, then we have

S2(PX , PY |X)S2(PY , PX|Y ) ≥
Iχ2(X;X ′)

|X| − 1
∨
Iχ2(Y ;Y ′)

|Y| − 1
.

Corollary 5.1 may be useful for obtaining lower bounds on the mixing time of Gibbs samplers. It
also shows that the modified log-Sobolev constant c defined in (5.5) is bounded from below as

c ≥ 2H(X)H(X|X ′),

where (X,X ′) is an exchangeable pair with PX = µ and PX′X = M .

5.3 Fastest mixing Markov chain on a graph

Let G = (V,E) be a connected undirected graph with vertex set V and edge set E ⊆ V×V. Since G
is undirected, (x, x′) ∈ E⇒ (x′, x) ∈ E. We assume that each vertex has a self-loop, i.e., (x, x) ∈ E
for all x ∈ V. Consider a (discrete-time) Markov chain {Xt}t=0,1,... with states in V, whose one-step
transition probability matrix K has the following properties:
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1. It is symmetric, i.e., K(x′|x) = K(x|x′) for all x, x′ ∈ V.

2. It respects the graph structure, i.e., K(x′|x) 6= 0 only if (x, x′) ∈ E.

Let µ be the uniform distribution on V. The first property of K implies that it is reversible with
respect to µ, so that µ = µK. Let ν be the distribution of the initial state X0, and let νt denote
the distribution of Xt, the state at time t, so that νt = νKt. If the Markov chain is irreducible and
aperiodic (which will be the case if K(x|x) > 0 for all x ∈ V), then νt will converge to µ. There are
multiple ways of quantifying the rate of convergence; we introduce the following definition:

Definition 5.1. Given a convex function Φ ∈ F , the Φ-mixing time of K is the function τΦ(K, ·) :
R+ → N, defined by

τΦ(K, ε) , min

{
t ∈ N : sup

ν∈P(V)
DΦ

(
νKt‖µ) ≤ ε

}

Unsurprisingly, the mixing time is controlled by the SDPI constant ηΦ(µ,K):

Proposition 5.1. Suppose Φ(0) <∞, and let n = |V|. Then

τΦ(K, ε) ≤
log
(
D∗Φ,n/ε

)
log
(
1/ηΦ(µ,K)

) , (5.11)

where D∗Φ,n , Φ(n)
n +

(
1− 1

n

)
Φ(0).

Proof. For any t ≥ 0 and any ν ∈P(V),

DΦ(νKt‖µ) = DΦ(νKt‖µKt) ≤
(
ηt(µ,K)

)t
DΦ(ν‖µ).

where we have used the fact that µ is K-invariant. Since Φ-divergences are convex, and since a
convex function on a compact convex set attains its maximum on an extreme point, we have

DΦ(ν‖µ) ≤ max
x∈V

DΦ(δx‖µ),

where δx is the Dirac measure located at x. Moreover, for any x ∈ V,

DΦ(δx‖µ) =
1

n

∑
x′∈V

Φ

(
δx(x′)

1/n

)
=

Φ(n)

n
+

(
1− 1

n

)
Φ(0)

≡ D∗Φ,n.

Since ν was arbitrary, we have

sup
ν∈P(V)

DΦ(νKt‖µ) ≤ D∗Φ,n
(
ηt(µ,K)

)t
.

Solving for the smallest t that would make the right-hand side smaller than ε, we obtain (5.11).
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It is customary to fix some value of ε (for discrete-time chains, a common choice is 1/2), and to
speak about the scaling of the mixing times in terms of the parameters of the graph and the Markov
chain. For example, if Φ(u) = 1

2 |u − 1|, then the chain with one-step transition kernel K mixes

in O
(

1
log ϑ(K)−1

)
steps (TV), where ϑ(K) is the Dobrushin coefficient of K; for Φ(u) = (u − 1)2,

the chain mixes in O
(

logn
log[S2(µ,K)]−1

)
steps (χ2), where S2(µ,K) is the maximal correlation; and

for Φ(u) = u log u, the chain mixes in O
(

log logn
log η(µ,K)−1

)
steps (relative entropy). Thus, if ηΦ(µ,K)

is small, the corresponding Markov chain will mix faster in the sense that it will take fewer steps
for the Φ-divergence between the current state distribution and the uniform distribution on V to
fall below a given value. This motivates the following

Fastest mixing Markov chain (FMMC) problem: Let M (G) ⊂M (V|V) be the
set of all Markov kernels K ∈M (V|V) satisfying the conditions listed in the beginning
of this section. For a fixed convex function Φ ∈ F ,

minimize ηΦ(µ,K)

subject to K ∈M (G)

Proposition 5.2. For any Φ ∈ F , the FMMC problem is a convex program.

Proof. The constraint set M (G) is convex. To see this, consider any two K1,K2 ∈M(G), and let
K = λK1 + λ̄K2 for some λ ∈ (0, 1). Since both K1 and K2 are symmetric, for any pair x, x′ ∈ X
we have

K(x′|x) = λK1(x′|x) + λ̄K2(x′|x) = λK1(x|x′) + λ̄K2(x|x′) = K(x|x′).

Similarly, suppose that (x, x′) 6∈ E. Then K1(x′|x) = K2(x′|x) = 0, so K(x′|x) = 0 as well. Thus,
K ∈M(G). The objective function K 7→ ηΦ(µ,K) is likewise convex, by Proposition 3.3.

For Φ(u) = (u−1)2, the FMMC problem was studied by Boyd et al. [62], who showed that it can be
equivalently represented by a semidefinite program (SDP), for which efficient solvers are available.
For a general Φ, there is not much one can say without exploiting specific properties of that Φ
or any symmetries of the graph G; however, we can provide bounds on the values of the FMMC
problems for different choices of Φ. With that in mind, let η∗Φ(G) denote the minimum value of the
FMMC objective a given choice of Φ and G:

η∗Φ(G) , inf
K∈M (G)

ηΦ(µ,K).

Then we observe the following:

• η∗Φ(G) ≤ infK∈M (G) ϑ(K) for any Φ ∈ F . This follows from the fact that ηΦ(µ,K) ≤ ηΦ(K) ≤
ϑ(K), by Theorem 3.1.

• If Φ is three times differentiable and Φ′′(1) > 0, then η∗Φ(G) ≥ η∗χ2(G). This follows from the

fact that, for such Φ, ηΦ(µ,K) ≥ ηχ2(µ,K) [cf. Theorem 3.3]. The quantity η∗χ2(G) and the

corresponding convex program were studied extensively by Boyd et al. [62].
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The above definition of mixing time can be generalized to any other invariant distribution µ on V:
Let Mµ(G) ⊂M (V|V) be the set of all Markov kernels K, such that:

1. µ(x)K(x′|x) = µ(x′)K(x|x′) for all x, x′ ∈ V.

2. K(x′|x) 6= 0 only if (x, x′) ∈ E.

Then the same definition of the mixing time applies, and we have the bound

τΦ(K, ε) ≤
log
(
D∗Φ,µ/ε

)
log
(
1/ηΦ(µ,K)

) ,
where

D∗Φ,µ , max
x∈V

{
µ(x)Φ

(
1

µ(x)

)
+
(
1− µ(x)

)
Φ(0)

}
.

We can then consider the appropriate modification of the FMMC problem, and the same arguments
as before can be used to show that it is given by a convex program.

5.4 Mixing times of Swendsen-Wang and heat-bath dynamics

Let G = (V,E) be an undirected graph without self-loops. In this case, we can identify the edge
set of G with a subset of

(V
2

)
, the set of all two-element subsets of V. If two vertices u, v ∈ V

are connected by an edge, we will write u ↔ v. Fix an integer q ≥ 2, and consider the set
X = Xq = {1, . . . , q}V of tuples x = (xv : v ∈ V) with coordinates in {1, . . . , q}. The elements of
X are called q-colorings of G, and we say that x ∈ X is a proper q-coloring if xu 6= xv whenever
u↔ v.

The problem of computing the number PG(q) of proper q-colorings of an arbitrary G (or even
deciding whether it is nonzero) is intractable, although it is known that PG(q) is polynomial in q.
A related problem of drawing a q-coloring of G uniformly at random (assuming PG(q) > 0) is also
intractable [63]. However, it turns out that the problem of computing (or approximating) PG(q) is
closely related to the problem of sampling from the so-called q-state Potts model, described by the
Gibbs distribution

Pβ,q(x) ,
1

Z(β, q)
exp

(
β
∑
u,v∈V
u↔v

1{xu = xv}

)
, (5.12)

where the parameter β ≥ 0 is called the inverse temperature, and Z(β, q) is the normalization
constant known as the partition function. In particular, PG(q) = limβ→∞ Z(β, q). Direct sampling
from Pβ,q is also intractable, so one resorts to Markov Chain Monte Carlo (MCMC) methods:
Pick a Markov kernel K ∈ M (X|X) that leaves the Gibbs distribution (5.12) invariant, pick an
arbitrary initial configuration x0 ∈ X, and for each t = 0, 1, . . . generate a random configuration
Xt+1 according to K(·|Xt). With a good choice of K, the distribution of Xt will rapidly converge to
Pβ,q. Two popular choices of K are the heat-bath (or Glauber) dynamics and the Swendsen-Wang
dynamics [64, 65]. They are defined as follows:
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Heat-bath dynamics. At each time step t, given the current configuration xt = (xv,t)v∈V, we
pick a vertex v ∈ V uniformly at random, assign it a new random color Xv,t+1 ∈ {1, . . . , q} according

to the conditional distribution Pβ,q(Xv,t|X\vt = x
\v
t ), and set X

\v
t+1 = x

\v
t . Here, x

\v
t = (xu,t)u∈V\{v}

is the time-t configuration of all the vertices except v. Thus, the transition probabilities of the
heat-bath Markov chain are given by the Markov kernel

KHB
β,q (x′|x) =

1

|V|
∑
v∈V

Pβ,q(x′v|x\v)1{(x′)\v = x\v}. (5.13)

Swendsen-Wang dynamics. This construction is based on a coupling of the q-Potts model
and the so-called random-cluster (or Fortuin-Kasteleyn) model on G. The latter is defined as
follows [65]. Let Y = 2E = {A : A ⊆ E} and fix a parameter p ∈ (0, 1). Then the random-cluster
model is described by the following probability measure on Y:

Qp,q(A) ,
1

Z̃(p, q)

(
p

p̄

)|A|
qC(A), ∀A ∈ Y (5.14)

where Z̃(·, ·) is the partition function, p̄ = 1− p, and C(A) is the number of connected components
of the induced graph (V,A). It can be shown that

Z̃(p, q) = Z (log(1/p̄), q) ,

where Z(·, ·) is the partition function for the q-Potts model. Now let p = 1− e−β, and consider the
following probability measure on the Cartesian product X× Y:

M(x,A) =
1

Z̃(p, q)

(
p

p̄

)|A|
1{A ⊂ E(x)} (5.15)

=
1

Z(β, q)

(
eβ − 1

)|A|
1{A ⊂ E(x)}. (5.16)

where E(x) , {{u, v} ∈ E : xu = xv} is the set of edges on which x violates the proper q-coloring
constraint. It can be shown that M is a coupling of Pβ,q and Qp,q with p = 1− e−β, i.e., if (X,Y )
is a random pair with law M, then PX = Pβ,q and PY = Q1−e−β ,q.

With these definitions at hand, we can describe the Swendsen-Wang algorithm:

• Start with an arbitrary initial configuration x0 ∈ X

• For each t = 0, 1, 2, . . .

– Draw a random set At ∈ Y according to the conditional distribution M(Y = ·|X = xt).

– Draw Xt+1 from the conditional distribution M(X = ·|Y = At).

In words, given xt, we draw At by deleting each edge of E(xt) independently with probability
p = 1− e−β; given At, we draw Xt+1 by assigning a random color independently to each connected
component of (V,At) and coloring all vertices in the same component with the same color. Thus, the
Swendsen-Wang dynamics is a two-stage Gibbs sampler that generates a trajectory {(Xt, Yt)}t≥0

according to

. . . −→ Xt

MY |X−−−−−−−→ Yt
MX|Y−−−−−−−→ Xt+1 −→ . . .
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The discrete-time process {Xt}t≥0 is a Markov chain with one-step transition kernel

KSW
β,q (x′|x) = MX|Y ◦MY |X(x′|x)

=
∑
A∈Y

MX|Y (x′|A)MY |X(A|x).

By construction, the Markov kernel KSW
β,q is reversible w.r.t. the Gibbs measure Pβ,q.

With each of these two algorithms, the hope is that the corresponding Markov chain mixes
rapidly, i.e., the distribution of the state Xt converges quickly to Pβ,q as t → ∞. Just as in the
previous section, for a given divergence-generating function Φ ∈ F , the rate at which DΦ

(
PXt

∥∥Pβ,q)
converges to zero is controlled by the SDPI constant ηΦ

(
Pβ,q,K•β,q

)
, where • is either HB or SW.

The heat-bath algorithm is widely used because it is easy to implement. On the other hand,
the popularity of the Swendsen-Wang algorithm is due to the fact that, empirically, it tends to
mix rapidly for a wide variety of graphs and small values of q (however, see [66] for examples of
slow mixing of Swendsen-Wang). In a recent paper, Ullrich [67] showed that the spectral gap of
Swendsen-Wang is lower-bounded by a constant multiple of the spectral gap of the heat-bath kernel,
where the constant depends on the number of colors q, the inverse temperature β, and the maximum
degree ∆ of G. Now, the spectral gap can be related to the SDPI constant for the χ2-divergence (see
Remark 3.4), so Ullrich’s result can immediately be converted into a statement about the χ2 SDPI
constants of Swendsen-Wang and heat-bath kernels. The theorem below sharpens and extends the
bound of Ullrich to other Φ-divergences; just like in [67], the theorem allows us to convert any
available upper bound for the heat-bath kernel into an upper bound for the Swendsen-Wang kernel
(or, conversely, any lower bound for Swendsen-Wang into a lower bound for heat-bath).

Theorem 5.3. For any Φ ∈ F that satisfies the generalized homogeneity condition (3.5),

ηΦ

(
Pβ,q,KSW

β,q

)
≤ q2∆+1e4β∆ − 1

q2∆+1e4β∆ −
[
ηΦ

(
Pβ,q,KHB

β,q

)]2 , (5.17)

where ∆ = maxv∈V degG(v) is the maximum degree of G.

Remark 5.1. In the notation of this paper, the main result of [67] can be written as

√
ηχ2

(
Pβ,q,KSW

β,q

)
≤

2q4∆+2e8β∆ − 1 +

√
ηχ2

(
Pβ,q,KHB

β,q

)
2q4∆+2e8β∆

. (5.18)

Particularizing our bound (5.17) to the case Φ(u) = (u− 1)2, we see that it is tighter than (5.18).
A plot of the two bounds as a function of the χ2 SDPI constant of the heat-bath dynamics is shown
in Figure 5.4 for q = 2, ∆ = 3, and β = 0.001. (Admittedly, both bounds are fairly crude even for
small values of q and ∆, due to the presence of O(q∆) terms.) �

Proof. We borrow a clever trick of Ullrich [67] and compare the Swendsen-Wang kernel KSW
β,q to

K = KHB
β,q ◦KSW

β,q ◦KHB
β,q . Since the Gibbs distribution Pβ,q is invariant under both the SW and the
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Figure 3: Upper bounds of Ullrich and Theorem 5.3 as a function of the χ2 SDPI constant of the
heat-bath dynamics, for q = 2, ∆ = 3, β = 0.001.

HB kernels, it is also the invariant distribution of K. Moreover, for any ν 6= Pβ,q, we have

DΦ

(
νK
∥∥Pβ,q) = DΦ

(
νK
∥∥Pβ,qK)

= DΦ

(
ν
(
KHB
β,q ◦KSW

β,q ◦KHB
β,q

)∥∥∥Pβ,q(KHB
β,q ◦KSW

β,q ◦KHB
β,q

))
≤
[
ηΦ

(
Pβ,q,KHB

β,q

)]2
ηΦ(Pβ,q,KSW

β,q )DΦ(ν‖Pβ,q),

where we have repeatedly exploited the invariance of Pβ,q w.r.t. the SW and the HB kernels. Since
ν was arbitrary, we conclude that

ηΦ(Pβ,q,K) ≤
[
ηΦ

(
Pβ,q,KHB

β,q

)]2
ηΦ(Pβ,q,KSW

β,q ). (5.19)

On the other hand, Ullrich also proved that

max
x,x′∈X

K(x′|x)

KSW
β,q (x′|x)

≤ q2∆+1e4β∆. (5.20)

From Eq. (5.20) and Corollary 3.2, we get the estimate

ηΦ(Pβ,q,KSW
β,q ) ≤ 1− 1

q2∆+1e4β∆
(1− ηΦ(Pβ,q,K)) . (5.21)

Finally, using (5.19) in (5.21) and rearranging, we obtain (5.17).
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5.5 Reconstruction in graphical models

The Potts model described in the preceding section is an example of a probabilistic graphical model
(or a pairwise Markov random field) [68]. Any such model is specified by a pair (G,U), where
G = (V,E) is an undirected graph and U = {Ue}e∈E is a collection of symmetric edge potentials
Ue : Ω×Ω→ R+. Here, Ω is a finite set often referred to as state or spin space. The configuration
space of the graphical model is the set X = ΩV of all tuples x = (xv)v∈V, where each xv takes values
in Ω. Once G and U are fixed, we consider the following probability measure on X:

PG,U(x) =
1

Z(G,U)

∏
{u,v}∈E

U{u,v}(xu, xv),

where Z is the normalization constant. For example, the q-state Potts model on G [cf. Eq. (5.12)]
is of this form with Ω = {1, . . . , q} and Uuv(xu, xv) = exp (β1{xu = xv}).

The reconstruction problem (see, e.g., [69, 70]) for the graphical model (G,U) can be stated
informally as follows: Given two disjoint sets of vertices A and B, how much can we infer about
the configuration XA , (Xv)v∈A on A by observing XB? For a precise definition, let dG denote the
graph distance on G, i.e., dG(u, v) is the number of edges on the shortest path between u and v.

Definition 5.2. Given a function Φ ∈ F , we say that the probabilistic graphical model (G,U) is
not Φ-reconstructible if for any set of vertices A there exist some constants CA, cA > 0, such that

IΦ(XA;XB) ≤ CAe
−cAdG(A,B)

for all sets B disjoint from A, where dG(A,B) , minu∈A,v∈B dG(u, v). Here, the Φ-information is
computed w.r.t. the marginal distribution of (XA, XB) induced by PG,U.

Alternatively, we may examine correlations between functions of XA and XB:

Definition 5.3. The graphical model (G,U) has exponential decay of correlations if for any A ⊂ V
there exist positive constants CA, cA, such that, for any set of vertices B disjoint from A and for
any two functions f ∈ F (XA) and g ∈ F (XB),

Cov [f(XA), g(XB)] ≤ CAe
−cAdG(A,B)

√
Var[f(XA)] Var[g(XB)].

We can now establish the following result:

Theorem 5.4. Suppose that Φ ∈ F is twice differentiable and strictly convex, its second deriva-
tive is nonincreasing, and the function Ψ defined in (3.14) is concave. Then (G,U) is not Φ-
reconstructible if and only if it has exponential decay of correlations.

Proof. We first show that exponential decay of correlations is equivalent to (G,U) not being χ2-
reconstructible. With a slight abuse of notation, we will denote by PA the marginal distribution of
XA, etc. By definition of maximal correlation, (G,U) has exponential decay of correlation if and
only if for any A ⊂ V there exist some CA, cA > 0, such that

S2(PA, PB|A) ≤ CAe
−cAdG(A,B) (5.22)
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for all sets of vertices B with B∩A = ∅. Now let X̃A denote the support of PA. Using the definition
of χ2-information and Theorem 3.2, we can write

Iχ2(XA;XB) =
∑
xA∈X̃A

PA(xA)χ2
(
PXB|XA=xA

∥∥PB

)
=
∑
xA∈X̃A

PA(xA)χ2
(
δxAPB|A

∥∥PAPB|A
)

≤ S2(PA, PB|A)
∑
xA

PA(xA)χ2
(
δxA
∥∥PA

)
= S2(PA, PB|A)Iχ2(XA;XA)

= S2(PA, PB|A) (|XA| − 1) .

From this and from (5.22), we see that exponential decay of correlations implies that (G,U) is not
χ2-reconstructible. The converse statement follows from the inequality S2(PA, PB|A) ≤ Iχ2(XA;XB)
[18, Prop. 12].

To complete the proof, let (X̄A, X̄B) be a random pair with probability law PA ⊗ PB. Then

IΦ(XA;XB) = EntΦ

[
f(X̄A, X̄B)

]
,

where we have defined

f(xA, xB) ,
PA|B(xA|xB)

PA(xA)
.

In particular, Iχ2(XA;XB) = Var
[
f(X̄A, X̄B)

]
. Therefore, applying Lemmas A.2 and A.3 in Ap-

pendix A and using the fact that ‖f(X̄A, X̄B)‖∞ ≤ 1/pA∗ , where pA∗ , min
xA∈X̃A

PA(xA) is the minimum

nonzero probability of any configuration in A, we get

Φ′′(1/pA∗ )

2
Iχ2(XA;XB) ≤ IΦ(XA;XB) ≤ Ψ′(1)Iχ2(XA;XB).

Since Φ is strictly convex, Φ′′ is everywhere positive. This inequality shows that the graphical
model (G,U) is not Φ-reconstructible if and only if it is not χ2-reconstructible, which in turn is
equivalent to exponential decay of correlations.

A related notion of correlation decay has to do with the diminishing influence of “far away”
spins. A key property of Gibbs measures is the following conditional independence relation: for
any A ⊂ V, the outer boundary of A, denoted by ∂A, is the set of all v ∈ Ac, such that {u, v} ∈ E
for some u ∈ A. Then under PG,U,

XA −→ X∂A −→ XAc

is a Markov chain. That is, the configuration of spins in a given set A of vertices is conditionally
independent of all other spins given the configuration of the neighbors of A. The following definition
formalizes the notion that the influence of the spins in the boundary of A on the spins in any subset
of A should decay with the distance from that subset to the boundary:
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Definition 5.4. The graphical model (G,U) has the spatial mixing property if there exist positive
constants C, c, such that, for any two sets of vertices B ⊂ A ⊂ V and for any two boundary
configurations x∂A, x̄∂A, ∥∥∥∥PB|∂A(·|x∂A)

PB|∂A(·|x̄∂A)
− 1

∥∥∥∥
∞
≤ C|A|e−cdG(B,∂A). (5.23)

Remark 5.2. This mixing condition is slightly stronger than the condition proposed by Weitz [55],
which is in turn stronger (but more generally applicable) than the complete analyticity condition
of Dobrushin and Shlosman [71]. The latter is only applicable to the case when the underlying
graph G is the square lattice Zd. �

If (G,U) has spatial mixing, then one would expect the relative-entropy SDPI constant of the
channel PB|∂A at P∂A to decay exponentially with the distance dG(B, ∂A). This is indeed the case:

Theorem 5.5. Suppose that (G,U) has the spatial mixing property. Then

η(P∂A, PB|∂A) ≤ 2C2|A|2

p∗B
e−2cdG(B,∂A). (5.24)

Proof. Using (3.42), we can upper-bound η(P∂A, PB|∂A) as follows:

η(P∂A, PB|∂A) ≤ 1

2

∑
xB

1

PB(xB)
max
x∂A,x

′
∂A

∣∣PB|∂A(xB|x∂A)− PB|∂A(xB|x′∂A)
∣∣2 .

If we now pick an arbitrary boundary configuration x̄∂A, then we can write

η(P∂A, PB|∂A) ≤ 2
∑
xB

1

PB(xB)
max
x∂A

∣∣PB|∂A(xB|x∂A)− PB|∂A(xB|x̄∂A)
∣∣2

≤ 2
∑
xB

PB|∂A(xB|x̄∂A)

PB(xB)
max
x∂A

∣∣∣∣PB|∂A(xB|x∂A)

PB|∂A(xB|x̄∂A)
− 1

∣∣∣∣2 .
Using (5.23), we get (5.24).

6 Summary of contributions and concluding remarks

In this paper, we have attempted to give a systematic and unified presentation of strong data
processing inequalities (SDPIs) for discrete channels. As a reminder, given a convex function
Φ : R+ → R, we say that a channel K ∈M (Y|X) satisfies an SDPI with constant c ∈ [0, 1) at input
distribution µ if

DΦ(νK‖µK) ≤ cDΦ(ν‖µ) (6.1)

for all ν 6= µ. We denote the best constant in the above inequality by ηΦ(µ,K), and letηΦ(K) ,
supµ ηΦ(µ,K). For the reader’s convenience, we summarize the key novel contributions:

• For all sufficiently smooth Φ, ηΦ(µ,K) is lower-bounded by the squared maximal correlation
S2(µ,K), which is also the SDPI constant of K at µ for the χ2-divergence (Theorem 3.3).
This refines the inequality η(µ,K) ≥ S2(µ,K) due to Ahlswede and Gács [1], as well as the
inequality ηΦ(K) ≥ S2(K) ≡ supµ S

2(µ,K) due to Cohen et al. [6].
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• For all operator convex Φ (see Section 3.3 for definitions and examples), we have proved the
upper bound

ηΦ(µ,K) ≤ max

(
S2(µ,K), sup

0<λ<1
ηLCλ(µ,K)

)
(Theorem 3.6), where LCλ(·‖·) denotes the Le Cam divergence with parameter λ (see Sec-
tion 2). This refines the inequality ηΦ(K) ≤ S2(K) for all operator convex Φ, due to Choi et
al. [7], and reduces to it upon taking the supremum of both sides w.r.t. µ.

• For Φ(u) = u log u (which gives the usual relative entropy), the SDPI constant ηΦ(µ,K) can
be upper-bounded in terms of the subgaussian constant σ2(y) of the posterior likelihood ra-

tio a(X, y) = K∗(X|y)
µ(X) for each y ∈ Y, where X ∼ µ. Smaller value of σ2(y) indicates that

a(X, y) ≈ 1 with high probability, which means that the observation Y = y is nearly unin-
formative about the input X. Theorem 3.7 gives the inequaity η(µ,K) ≤ 2E[σ2(Y )], which
can be weakened to the bound of Theorem 3.8 using information-transportation inequalities.

• Under mild regularity conditions on Φ, the SDPI constants tensorize: given a product distri-
bution µ1 ⊗ . . .⊗ µn and a product channel K1 ⊗ . . .⊗Kn,

ηΦ(µ1 ⊗ . . .⊗ µn,K1 ⊗ . . .⊗Kn) = max
1≤i≤n

ηΦ(µi,Ki)

(Theorem 3.9). This extends previous tensorization results for Φ(u) = (u − 1)2 due to Wit-
senhausen [2] and for Φ(u) = u log u due to Anantharam et al. [15]. Theorem 3.10 gives a
tensorization inequality for mixtures of local channels, i.e., when an input block of length n is
transformed to an output block of length n by drawing a coordinate index I at random from
{1, . . . , n} and then passing the Ith symbol through the channel KI .

• Section 4 is dedicated to an exposition of the deep links between SDPIs and Φ-Sobolev
inequalities [23], which provide a powerful tool for nonasymptotic quantitative analysis of
convergence to equilibrium in Markov processes and other random dynamical systems. For
the specific case of Φ(u) = u log u, we have obtained a number of inequalities relating the
optimal constants in log-Sobolev inequalities for a reversible Markov chain M with invariant
distribution µ to relative-entropy SDPI constants η(µ,K) for any channel K with the property
that M = K∗µ◦K, where K∗µ is the adjoint, or backward, channel associated to the pair (µ,K)
[see Eq. (1.2) for the definition].

• Section 5 presents several applications of the results of preceding sections to information
theory, discrete probability, and statistical physics. In particular, we discuss a connection
between the strong data processing property and the concentration-of-measure phenomenon;
generalize a recent result of Anantharam et al. [15] on the strong contraction of mutual
information in discrete Markov chains7 to a more general notion of Φ-information; relate
the problem of computing SDPI constants (which is a convex program) to the problem of
finding the fastest mixing Markov chain on a graph; sharpen a recent result of Ullrich [67]
on the mixing time of two popular MCMC schemes for a certain class of graphical models;
and outline an SDPI-based characterization of the decay of correlations in discrete graphical
models.

7See [21] for an extension of this result to abstract alphabets.
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After the original breakthrough work of Ahlswede and Gács [1], strong data processing inequali-
ties have received a great deal of attention, with a recent surge of research activity motivated by
problems in information theory. Recent work by Polyanskiy and Wu [18] has uncovered certain lim-
itations of SDPIs. For example, in the setting of continuous alphabets and additive-noise channels,
they have shown that it is possible for a channel K to have ηΦ(K) = 1 and still satisfy a weaker
“nonlinear” strong data processing inequality of the form

DΦ(νK‖µK) ≤ FΦ

(
DΦ(ν‖µ)

)
for some increasing function FΦ : R+ → R+ with FΦ(0) = 0, such that FΦ(u) < u for all sufficiently
small u 6= 0. Nevertheless, SDPIs still remain a versatile tool for many problems of current
theoretical and practical interest.
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A Miscellaneous lemmas

Lemma A.1. Let (µ,K) ∈ P∗(X) ×M (Y|X) be an admissible pair, and consider any other ν ∈
P(X). If f = dν/dµ, then

K∗f =
d(νK)

d(µK)
,

where K∗ = K∗µ ∈M (Y|X) is the backward channel induced by the pair (µ,K), cf. Eqs. (1.1), (1.2).

Proof. A direct calculation:

K∗f(y) =
∑
x∈X

K∗(x|y)f(x)

=
∑
x∈X

K(y|x)µ(x)

µK(y)

ν(x)

µ(x)

=
1

µK(y)

∑
x∈X

ν(x)K(y|x)

=
νK(y)

µK(y)

=
d(νK)(y)

d(µK)

for any y ∈ Y.
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Lemma A.2. Suppose Φ ∈ F is differentiable, and the function Ψ(u) = Φ(u)−Φ(0)
u is concave. Then

for any nonnegative random variable U with EU = 1,

EntΦ[U ] ≤ Ψ
(
1 + Var[U ]

)
−Ψ(1) ≤ Ψ′(1) Var[U ]. (A.1)

Proof. We can assume that Var[U ] <∞, because otherwise there is nothing to prove. Let P denote
the law of U . Since U is nonnegative and has unit mean, Q(du) , uP (du) is a probability measure.
Therefore,

EntΦ[U ] = EP [Φ(U)]− Φ(1)

= EQ[Ψ(U)]−Ψ(1)

≤ Ψ(EQU)−Ψ(1)

= Ψ(E[U2])−Ψ(1)

= Ψ
(
1 + Var[U ]

)
−Ψ(1),

where the third step is by Jensen’s inequality, and the remaining steps follow from definitions. This
proves the first inequality in (A.1). Now, since Ψ is concave, we have

Ψ
(
1 + Var[U ]

)
≤ Ψ(1) + Ψ′(1) Var[U ].

Using this, we obtain the second inequality.

Lemma A.3. Suppose Φ ∈ F is twice differentiable, and Φ′′ is nonincreasing. Then for any
nonnegative random variable U with EU = 1 and ‖U‖∞ <∞,

EntΦ[U ] ≥ Φ′′(‖U‖∞)

2
Var[U ]. (A.2)

Proof. By Taylor’s theorem, for any u ≥ 0 we have

Φ(u)− Φ(1) = Φ′(1)(u− 1) +
Φ′′(v)

2
(u− 1)2

for some v ∈ [u∧1, u∨1]. Since Φ′′ is nonincreasing, Φ′′(v) ≥ Φ′′(u∨1) ≥ Φ′′(‖U∨1‖∞) = Φ′′(‖U‖∞),
where the equality is a consequence of the assumption that EU = 1. Taking expectations w.r.t. U ,
we obtain (A.2).

Lemma A.4. Let U and Z be two jointly distributed random variables, where U is real-valued and
nonnegative, and Z takes values in an arbitrary set Z. Then, for any Φ ∈ F , the expectation of the
conditional Φ-entropy EntΦ[U |Z] admits the following variational representation:

E [EntΦ[U |Z]] = inf
ξ∈F0

∗ (Z)
E
[
Φ(U)− Φ(ξ(Z))− (U − ξ(Z))Φ′(ξ(Z))

]
,

where Φ′ denotes the right derivative of Φ (which exists due to convexity).

Proof. This lemma is a generalization of Lemma 14.4 in [31]. Fix an arbitrary ξ ∈ F 0
∗ (Z). Then,

by convexity of Φ, for any z ∈ Z we have

Φ(E[U |Z = z]) ≥ Φ(ξ(z)) + Φ′(ξ(z))(E[U |Z = z]− ξ(z)).
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From this, we get

EntΦ

[
U
∣∣Z = z

]
= E[Φ(U)|Z = z]− Φ(E[U |Z = z])

≤ E[Φ(U)|Z = z]− Φ(ξ(z))− Φ′(ξ(z))(E[U |Z = z]− ξ(z)).

Taking expectations of both sides w.r.t. Z, we see that

E [EntΦ[U |Z]] ≤ E
[
Φ(U)− Φ(ξ(Z))− (U − ξ(Z))Φ′(ξ(Z))

]
(A.3)

for any ξ ∈ F 0
∗ (Z). On the other hand, if we take ξ(z) = E[U |Z = z], then the bound in (A.3) is

achieved with equality.

Lemma A.5. Let Φ ∈ F be a differentiable function, such that Φ′(u) is uniformly bounded in some
neighborhood of u = 1. Then for any nonnegative real-valued random variable U with EU = 1 and
‖U‖∞ <∞, we have

d

dε
EntΦ

[
1− εU
ε̄

] ∣∣∣∣∣
ε=0

= 0. (A.4)

Proof. Since EU = 1, for all sufficiently small ε > 0 we have

EntΦ

[
1− εU
ε̄

]
= E

[
Φ

(
1− εU
ε̄

)]
.

By our assumptions on Φ, there exists a constant C > 0, such that∣∣∣∣ d

dε
Φ

(
1− εu
ε̄

)∣∣∣∣ =

∣∣∣∣1− uε̄2
Φ′
(

1− εu
ε̄

)∣∣∣∣ ≤ C|u− 1|

for all sufficiently small ε > 0. Therefore, by the dominated convergence theorem, we can inter-
change expectation and derivative to get

d

dε
EntΦ

[
1− εU
ε̄

] ∣∣∣∣∣
ε=0

= Φ′(1)E [(1− U)] = 0.
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B Proof of Proposition 4.1

Items 1)–3) are obvious. We prove 4). To that end, we first analyze the joint distribution of X and
X ′. First of all, for any x, x′ ∈ X, using the definition of K∗, we can write

PXX′(x, x
′) = µ(x)K∗K(x′|x)

= µ(x)
∑
y∈Y

K∗(x′|y)K(y|x)

= µ(x)
∑
y∈Y

K(y|x′)µ(x′)

µK(y)
K(y|x)

= µ(x′)
∑
y∈Y

K(y|x)µ(x)

µK(y)
K(y|x′)

= µ(x′)
∑
y∈Y

K∗(x|y)K(y|x)

= µ(x′)K∗K(x|x′)
= PXX′(x

′, x).

In other words, the distribution of PXX′ is exchangeable (or (X,X ′) is an exchangeable pair). This
implies, in particular, that the marginal distribution PX′ is the same as PX , i.e., µ. Moreover, for
any function f ∈ F (X) and any x ∈ X,

E[f(X ′)|X = x] =
∑
x′∈X

K∗K(x′|x)f(x′)

=
∑
x′∈X

∑
y∈Y

K∗(x′|y)K(y|x)f(x′)

=
∑
y∈Y

K(y|x)
∑
x′∈X

K∗(x′|y)f(x′)

=
∑
y∈Y

K(y|x)K∗f(y)

= KK∗f(x).

Using these facts, we can write

E
[(
f(X)− f(X ′)

) (
g(X)− g(X ′)

)]
= E [f(X)g(X)] + E[f(X ′)g(X ′)]−

(
E[f(X)g(X ′)]− E[f(X ′)g(X)]

)
= 2
{
E[f(X)g(X)]− E[f(X)g(X ′)]

}
,

where

E[f(X)g(X ′)] = E[f(X)E[g(X ′)|X]]

= E[f(X)KK∗g(X)]

= E[K∗f(X)K∗g(X)]

= E[E[f(X)|Y ]E[g(X)|Y ]]

= E[f(X)E[g(X)|Y ]].
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Accordingly, we have

E
[(
f(X)− f(X ′)

) (
g(X)− g(X ′)

)]
= 2
{
E [f(X) (g(X)− E[g(X)|Y ])]

}
= 2 E(f(X), g(X)|Y ),

where the second step follows from the identity E(U, V |Y ) = E[U(V −E[V |Y ])]. This proves (4.2).
To prove (4.3), write

E
[(
f(X)− f(X ′)

) (
g(X)− g(X ′)

)]
= E

[
1{f(X)>f(X′)}

(
f(X)− f(X ′)

) (
g(X)− g(X ′)

)]
+ E

[
1{f(X)<f(X′)}

(
f(X)− f(X ′)

) (
g(X)− g(X ′)

)]
= 2E

[
1{f(X)>f(X′)}

(
f(X)− f(X ′)

) (
g(X)− g(X ′)

)]
= 2E

[(
f(X)− f(X ′)

)
+

(
g(X)− g(X ′)

)]
,

where the second step is by exchangeability of X and X ′.
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