Opportunities and Challenges for Chemical Engineers

Mark J. McCready
Professor and Department Chair
Chemical and Biomolecular Engineering

Outline

- · Some of our alums and their careers
- (Needed) contributions of chemical engineers to society
 - What the future might hold?
- · Career planning for your daughter or son

Some alums

 I have chosen a few alums from different time periods to give a sampling of what chemical engineers from Notre Dame do when they leave.

Shawn O'Grady ChEg '86

- Currently: VP Consumer Food Sales, General Mills
 - Air Products for 2 years
 - Harvard MBA, 1990
 - Chose General Mills over ICI, DuPont, Air Products and Monsanto
 - Several awards from General
 Mills, manages 250 people with
 \$2Bil in revenue

Melanie Sanchez-Jones ChEg '89

- Currently: Manager, Global Employee Benefits, Air Products and Chemicals
 - 18 years at Air Products
 with jobs: Product
 manager, University
 relations, New product
 commercialization, Product
 marketing
 - MBA Lehigh, 1998

Joseph McCarthy, ChEg '93

- Associate Professor and William Kepler Whiteford Faculty Fellow, Department of Chemical and Petroleum Engineering
 - Research interests: transport phenomena in particulate and/or discrete systems.

Brian Fitzpatrick ChEg '97

- · Currently Professor at Vanderbilt Law School
 - Harvard Law School (graduated #1)
 - Clerk for Anthony Scalia
 - Private Law firm in Washington
 - Special Counsel for Supreme Court nominations for a US senator
 - Areas of Expertise
 - Civil procedure, appellate litigation, federal courts, the Supreme Court, constitutional law

Jennifer Ehren ChEg '99

 Currently a graduate student at Stanford in Chemical Engineering

- ND Valedictorian
 - Not always a ChEg!
- ACE program 2 years
- Merck for 2 years
- Last stages of PhD program
 - Oral therapeutic for Celiac Sprue disease

Andrew Downard ChEg,'03 MBA '04

- Currently graduate student at Caltech
 - Not based on long term plan
- Business partner with three of us -- helped with a small startup company for a couple of years
 - Other faculty realized the value of an "Andy"

Sarah Keefer ChEg '04

- Currently in medical school at St. Louis University
 - One year at Accenture
 - Varsity athlete (rowing)
 - Missed the first semester for chemical engineers to study in Spain


Eric Sauer ChEg '05

- Currently a graduate student at Wisconsin
 - One of few students to pass all of the qualifying exams at UW on the first attempt.
 - Graduate school was not original plan -spurred by doing research

Pamela Jefson ChEg '06

- Global Operations Leadership Development (G.O.L.D)
 Program, Johnson & Johnson
 - Manufacturing engineering with Ortho Clinical Diagnostics (OCD), Rochester, NY
 - Had been a quality engineer in a manufacturing facility in Juarez, Mexico -- Ethicon Endo-Surgery

Challenge/Opportunity

 As a chemical engineer, what can you do to make the world better?

Big impact areas

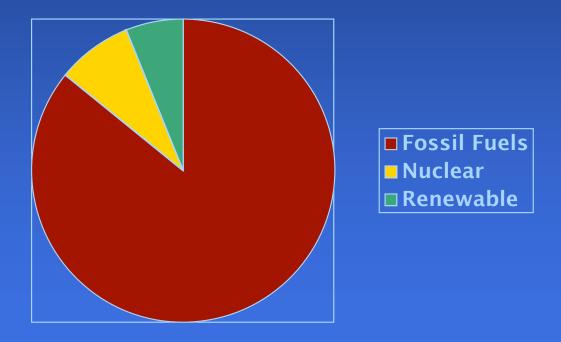
- · Energy
- Healthcare
- Jobs/Economy

Humanity's Top Ten Problems for next 50 years

- 1. ENERGY
- 2. WATER
- 3. FOOD
- 4. ENVIRONMENT
- 5. POVERTY
- 6. TERRORISM & WAR
- 7. DISEASE
- 8. EDUCATION
- 9. DEMOCRACY
- 10. POPULATION

6.5 8-10

2003


2050

Billion People Billion People

Slide from:R. E. Smalley Rice University

Energy!!

· Where it comes from now!!

Energy

- Even though there is no end in sight for carbon-based fuels
 - And there are chemical engineers trying to make this process as efficient and clean as possible
- · this is inherently unSustainable
 - At some point, particularly with increased world-wide usage, we will run out*.
 - CO₂ levels in the atmosphere will continue to increase and there is certainly a possibility of deleterious climate change.

Renewable Energy Roles for chemical Engineers

- · Solar cells
 - New materials, designed on a molecular scale, to capture energy more efficiently,
 - New processes to make these at lower cost.
- Biomass
 - Enabling technologies are needed
 - Wood, "grasses" to liquid fuels
 - Breaking down Cellulose to fermentable sugars is a combined chemistry and mass transfer challenge
- Geothermal
 - Design affordable systems to efficiently transfer energy
- Wind Power
 - Better materials: lighter and stiffer

Short(er) term alternatives

- · Clean Coal technologies
 - High temperature gas separations
 - CO₂ sequestration
- · Oil shale
 - How to produce useful fuel efficiently
 - Still have the CO2 problem
- Nuclear energy
 - Materials, process operation, waste issues remain important
- · Increased efficiency
 - Energy growth is about 4% world wide
 - Great challenge for engineers: Gain >4% in efficiency worldwide!
 - · Find and demonstrate where greatest payback will be!

Big impact areas

- Energy
- · Healthcare
- Jobs

Health Care

- I am going to predict that health care costs will asymptote at something less than 20% of GDP (current value, 17%)
 - As this occurs, there will be great pressure to
 - Do the processes more efficiently
 - Medical tests:
 - » Microfluidics
 - Make the products more cheaply and reliable
 - Drug manufacturing --
 - » Get each batch exactly correct
 - Still will need to be new products but there will be more pricing pressure

New health care products

- Implantable insulin pump
 - · Process control is a key issue
- · Replacement human tissue
 - Liver, heart, currently being grown in laboratories
 - Growing tissue requires even more <u>Reaction Engineering</u> than most chemicals currently manufactured
- · New drug delivery strategies
 - Molecular targeting to specific sites in the body
 - · Mass transport issues determine if this will work
- · Feedback drug delivery for many treatments
 - Several "on line measurements" used to prevent side effects and adjust dosing for best benefit,

Salvage more drugs in the "pipeline"

- · You may heard of the expression
 - "Drug pipeline" as it refers to pharmaceutical compounds that are in various stages of clinical trials.
 - Most of the drugs that show some utility in laboratory settings and on test animals, don't make it through the pipeline
 - Often side effects or lack of efficacy are the reason
 - However it might work for some people, or it might for most people if dosage could be carefully controlled.
 - Chemical engineers, with their ability to quantitatively "decipher" data
 - Genomic, proteomic, metabolomic....

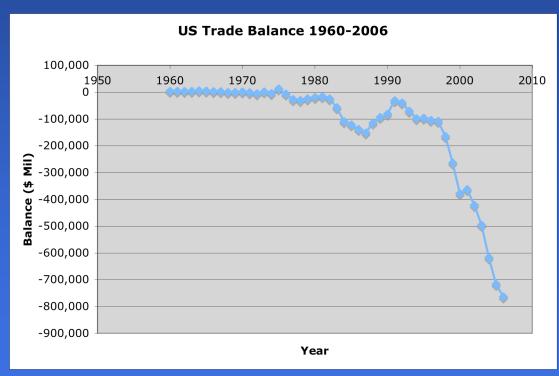
Big impact areas

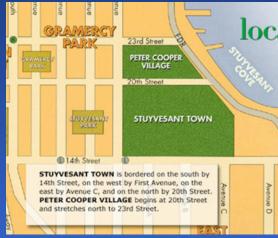
- Energy
- Healthcare
- · Jobs

Jobs

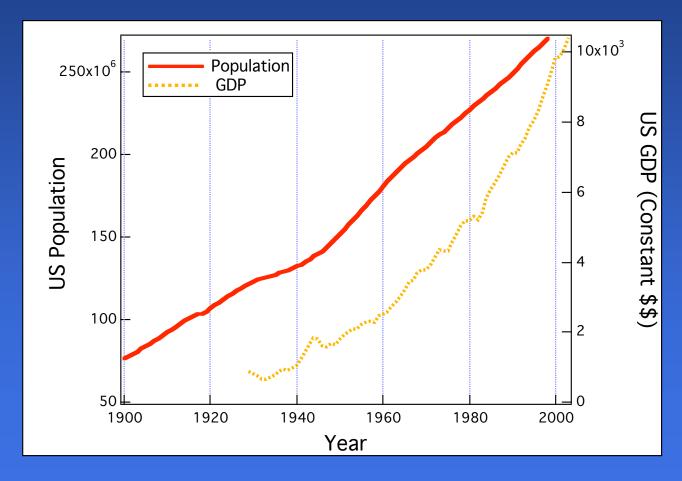
- Not the issue of a first job for our graduates,
 - Which for the first time has dropped in <u>value</u>
- But here I am looking at the Country
- Reality, is that any new job will have to produce value, now judged in the world economy, that exceeds the cost of the person by some reasonable percent.

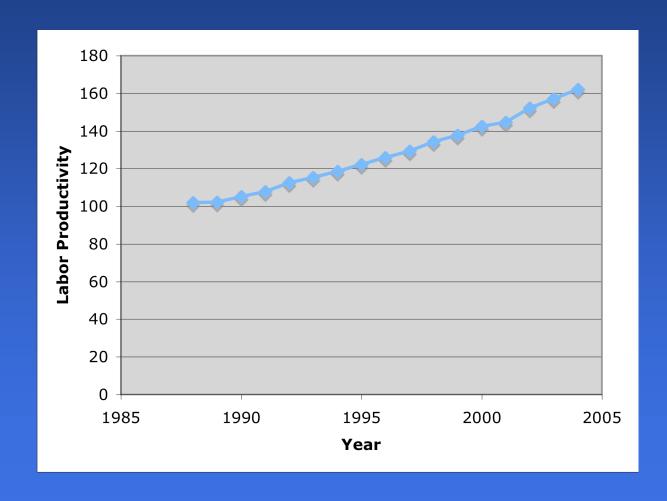
A summer pastime where will some of these kids work?




What will these boys do? (II)

US Trade deficit


- · US trade deficit is about \$710 Billion/year
 - It is ~5% of the GDP
 - What should the "divisor" be?



\$5.4 Billion Real Estate Deal

Since 1960 GDP is up 5 times Population is up only up 1.5 times

Productivity

Productivity: Engineers are the key!

- Technology drives productivity
 - Workers can contribute value-added that exceeds what you like to pay them.
- Engineers create new ideas for products and services
 - This needs to be encouraged.
- Of course, any cost-saving improvements in processes and products are a positive contribution to productivity

Careers/ your child's future

- Anything ever done by chemical engineers is still open
 - If a position with an industrial concern is desired, then at least one internship would be really helpful.
 - Should be looking really hard right now
 - If she/he has an interest in graduate school, doing undergraduate research is very important,
 - Apply by November 2008
 - Law school
 - Take LSAT soon, apply next year
 - Med School
 - Should have pre-planned this but it still could be done.
 - MCAT this spring, apply in summer 2008
 - Service activities (e.g., ACE)
 - Various application deadlines -- next academic year

Random sampling of recent grads

- Accenture (IT / business consulting)
- · Bayer, Merck, Lilly (pharmaceuticals)
- Procter and Gamble (brand mgmt)
- UOP (process engineering)
- TRW (satellite systems)
- Merrill Lynch (investment banking)
- · GE (aircraft engines division)
- · Loyola (law school)
- Air Products (Career Development Program)
- I.U (medical school)
- · Military (medical service corp, flight school)
- MIT, Stanford, UCSB, Minnesota (graduate school in chemical engineering)
- Eli Lilly (pharmaceuticals)
- BP, Marathon (Oil industry)

Summary

- · Our graduates follow many different career paths
 - I gave some examples
 - these paths often change
- Impact of engineers on society
 - Energy,
 - Problems waiting to be defined and solved across the board
 - Healthcare
 - Only a little impact from chemical engineers has already been felt
 - More is coming!
 - Jobs
 - Task and responsibility of engineers to create jobs and make people more efficient
 - It probably really is time for your son or daughter to get serious about the future
- · Ultimate challenge
 - Change view of society on key issues
 - Political careers