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1. Introduction

Throughout this paper, we use the following notations

R = (−∞,∞), R0 = [0,∞), and R+ = (0,∞). (1.1)

DEFINITION 1.1

A function f : I ⊆ R → R is said to be convex if

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y) (1.2)

holds for all x, y ∈ I and λ ∈ [0, 1].
DEFINITION 1.2 [5]

A function f : I ⊆ R → R0 is said to be quasi-convex if

f (λx + (1 − λ)y) ≤ sup{f (x), f (y)} (1.3)

holds for all x, y ∈ I and λ ∈ [0, 1].
If f : I ⊆ R → R is a convex function on [a, b] and a, b ∈ I with a < b, then

f

(
a + b

2

)
≤ 1

b − a

∫ b

a

f (x)dx ≤ f (a) + f (b)

2
. (1.4)
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The inequality (1.4) is the well known Hermite–Hadamard inequality and it has been
refined or generalized for convex, s-convex, and quasi-convex functions and other kinds
of functions by a number of mathematicians. Some of them can be reformulated as
follows.

Theorem 1.1 (Theorem 2.2 of [6]). Let f : I ◦ ⊆ R → R be a differentiable mapping
and a, b ∈ I ◦ with a < b. If |f ′(x)| is convex on [a, b], then

∣∣∣∣f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x)dx

∣∣∣∣ ≤ (b − a)(|f ′(a)| + |f ′(b)|)
8

. (1.5)

Theorem 1.2 (Theorems 1 and 2 of [13]). Let f : I ⊆ R → R be differentiable on I ◦
and a, b ∈ I with a < b. If |f ′(x)|q is convex on [a, b] for q ≥ 1, then

∣∣∣∣f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x)dx

∣∣∣∣ ≤ b − a

4

( |f ′(a)|q + |f ′(b)|q
2

)1/q

(1.6)

and

∣∣∣∣f
(

a + b

2

)
− 1

b − a

∫ b

a

f (x)dx

∣∣∣∣ ≤ b − a

4

( |f ′(a)|q + |f ′(b)|q
2

)1/q

.

(1.7)

Theorem 1.3 (Theorem 2.3 of [11]). Let f : I ⊆ R0 → R be a differentiable mapping
on I ◦ and a, b ∈ I with a < b. If the mapping |f ′(x)|p/(p−1) is convex on [a, b] for
p > 1, then

∣∣∣∣ 1

b − a

∫ b

a

f (x)dx − f

(
a + b

2

)∣∣∣∣ ≤ b − a

16

(
4

p + 1

)1/p

{[|f ′(a)|p/(p−1)

+3|f ′(b)|p/(p−1)]1−1/p + [3|f ′(a)|p/(p−1) + |f ′(b)|p/(p−1)]1−1/p}.
(1.8)

Theorem 1.4 (Theorems 1 and 2 of [9]). Assume that a, b ∈ R with a < b and that
f : [a, b] → R is a differentiable function on (a, b).

(1) If |f ′| is quasi-convex on [a, b], then

∣∣∣∣f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x)dx

∣∣∣∣ ≤ (b − a) sup{|f ′(a)|, |f ′(b)|}
4

. (1.9)

(2) If |f ′|p/(p−1) is quasi-convex on [a, b] for p > 1, then

∣∣∣∣f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x)dx

∣∣∣∣
≤ b − a

2(p + 1)1/p
sup{|f ′(a)|, |f ′(b)|}.

(1.10)
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Theorem 1.5 (Theorems 2.3 and 2.4 of [1]). Let f : I ◦ ⊆ R → R be a differentiable
mapping on I ◦ and a, b ∈ I ◦ with a < b.

(1) If |f ′|p is quasi-convex on [a, b] for p > 1, then

∣∣∣∣f (a) + f (b)

2
− 1

b − a

∫ b

a

f (x)dx

∣∣∣∣

≤ b − a

4(p + 1)1/p

(
sup

{
|f ′(a)|,

∣∣∣∣f ′
(

a + b

2

)∣∣∣∣
}

+ sup

{∣∣∣∣f ′
(

a + b

2

)∣∣∣∣, |f ′(b)|
})

. (1.11)

(2) If |f ′|q is quasi-convex on [a, b] for q ≥ 1, then

∣∣∣∣f (a) + f (b)

2
− 1

b − a

∫ b

a

f(x)dx

∣∣∣∣ ≤ b−a

8
sup

{
|f ′(a)|,

∣∣∣∣f ′
(

a + b

2

)∣∣∣∣
}

+ sup

{∣∣∣∣f ′
(

a + b

2

)∣∣∣∣, |f ′(b)|
}
. (1.12)

In recent years, some other kinds of Hermite–Hadamard type inequalities were gen-
erated, for example, [2–4, 10, 14–26]. For more systematic information, please refer to
monographs [7, 8, 12] and related references therein.

In this paper, we will introduce a new concept ‘geometrically quasi-convex function’
and establish some integral inequalities of Hermite–Hadamard type for functions whose
derivatives are of geometric quasi-convexity.

2. Definition and lemmas

In this section, we introduce the notion ‘geometrically quasi-convex function’ and
establish an integral identity.

DEFINITION 2.1

A function f : I ⊆ R0 → R0 is said to be geometrically quasi-convex on I if

f (xλy1−λ) ≤ sup{f (x), f (y)} (2.1)

holds for all x, y ∈ I and λ ∈ [0, 1].
Remark 1. If f (x) is decreasing and geometrically quasi-convex on I ⊆ R+, then it
is quasi-convex on I . If f (x) is increasing and quasi-convex on I ⊆ R+, then it is
geometrically quasi-convex on I .
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Lemma 2.1. Let f : I ⊆ R+ → R be a differentiable function on I ◦ and a, b ∈ I ◦ with
a < b. If f ′ ∈ L([a, b]), then

(ln b)f (b) − (ln a)f (a)

ln b − ln a
− 1

ln b − ln a

∫ b

a

f (x)

x
dx

=
∫ 1

0
a1−t bt ln(a1−t bt )f ′(a1−t bt )dt. (2.2)

Proof. Letting x = a1−t bt for t ∈ [0, 1] and integrating by parts give

(ln b − ln a)

∫ 1

0
a1−t bt ln(a1−t bt )f ′(a1−t bt )dt

=
∫ 1

0
ln(a1−t bt )f ′(a1−t bt )d(a1−t bt )

=
∫ b

a

(ln x)f ′(x)dx

= (ln x)f (x)|x=b
x=a −

∫ b

a

f (x)

x
dx

= (ln b)f (b) − (ln a)f (a) −
∫ b

a

f (x)

x
dx.

Lemma 2.1 is proved. �

Lemma 2.2. For b > a > 0, we have

M(a, b)=
∫ 1

0
| ln(a1−t bt )|dt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ln a + ln b

2
, a ≥ 1,

(ln a)2 + (ln b)2

ln b − ln a
, a < 1 < b,

− ln a + ln b

2
, b ≤ 1 (2.3)

and

N(a,b)=
∫ 1

0
a1−t bt |ln(a1−t bt )|=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b ln b−a ln a−(b−a)

ln b − ln a
, a≥1,

b ln b+a ln a+2−b−a

ln b − ln a
, a<1<b,

b−a−(b ln b−a ln a)

ln b−ln a
, b≤1. (2.4)

Proof. This follows from a straightforward computation of definite integrals. �

3. Some Hermite–Hadamard type inequalities

In this section, we will establish some integral inequalities of Hermite–Hadamard type
for functions whose derivatives are of geometric quasi-convexity.



Inequalities of Hermite–Hadamard type 337

Theorem 3.1. Let f : I ⊆ R+ → R be differentiable on I ◦ and f ′ ∈ L([a, b]) for
a, b ∈ I ◦ with a < b. If |f ′(x)| is geometrically quasi-convex on [a, b], then

∣∣∣∣ (ln b)f (b) − (ln a)f (a)

ln b − ln a
− 1

ln b − ln a

∫ b

a

f (x)

x
dx

∣∣∣∣
≤ N(a, b) sup{|f ′(a)|, |f ′(b)|}, (3.1)

where N(a, b) is defined by (2.4).

Proof. From Lemma 2.1, it follows that

∣∣∣∣ (ln b)f (b) − (ln a)f (a)

ln b − ln a
− 1

ln b − ln a

∫ b

a

f (x)

x
dx

∣∣∣∣
≤

∫ 1

0
a1−t bt | ln(a1−t bt )||f ′(a1−t bt )|dt. (3.2)

Using the geometric quasi-convexity of |f ′(x)| on [a, b] yields

|f ′(a1−t bt )| ≤ sup{|f ′(a)|, |f ′(b)|}, 0 ≤ t ≤ 1.

From this inequality and Lemma 2.2, it follows that

∫ 1

0
a1−t bt | ln(a1−t bt )||f ′(a1−t bt )|dt

≤ sup{|f ′(a)|, |f ′(b)|}
∫ 1

0
a1−t bt | ln(a1−t bt )|dt

= N(a, b) sup{|f ′(a)|, |f ′(b)|}. (3.3)

Substituting (3.3) into inequality (3.2) and simplifying establishes the inequality (3.1).
Theorem 3.1 is thus proved. �

COROLLARY 3.2

Let b > a > 0 and r ∈ R and let

I (a, b) =
⎧⎨
⎩

1

e

(
bb

aa

)1/(b−a)

, a �= b,

a, a = b,

(3.4)

L(a, b) =
⎧⎨
⎩

b − a

ln b − ln a
, a �= b,

a, a = b,
(3.5)

and

Lr(a, b) =

⎧⎪⎪⎨
⎪⎪⎩

[
br+1 − ar+1

(r + 1)(b − a)

]1/r

, r �= −1, 0,

L(a, b), r = −1,

I (a, b), r = 0

(3.6)
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denote respectively the exponential, logarithmic, and generalized logarithmic means of
two positive numbers a and b.

(1) If a ≥ 1 and r > 0, then

ln I (ar+1, br+1) ≤ (r + 1)br

[Lr(a, b)]r ln I (a, b). (3.7)

(2) If b ≤ 1 and r < −1, then

ln I (ar+1, br+1) ≤ − |r + 1|ar

[Lr(a, b)]r ln I (a, b). (3.8)

Proof. Set f (x) = xr+1 for x ∈ R+ and r ∈ R with r �= −1. If y > x > 0,

|f ′(xty1−t )| = |r + 1|(xty1−t )r ≤
{ |r + 1|yr , r ≥ 0,

|r + 1|xr , r < 0.

This shows that the function |f ′(x)| = |r +1|xr is geometrically quasi-convex on R+ for
r ∈ R with r �= −1. On the other hand,

br+1 ln b − ar+1 ln a = 1

r + 1
ln

[
(br+1)b

r+1

(ar+1)a
r+1

]

= br+1 − ar+1

r + 1
[ln I (ar+1, br+1) + 1]

and ∫ b

a

f (x)

x
dx =

∫ b

a

xrdx = br+1 − ar+1

r + 1
.

Substituting these scalars into Theorem 3.1 yields the required results. �

Theorem 3.3. Let f : I ⊆ R+ → R be differentiable on I ◦ and f ′ ∈ L([a, b]) for
a, b ∈ I ◦ with a < b. If |f ′(x)|q is geometrically quasi-convex on [a, b] for q > 1,
then ∣∣∣∣ (ln b)f (b) − (ln a)f (a)

ln b − ln a
− 1

ln b − ln a

∫ b

a

f (x)

x
dx

∣∣∣∣ ≤ [M(a, b)]1/q

×
[
q − 1

q
N(aq/(q−1), bq/(q−1))

]1−1/q

sup{|f ′(a)|, |f ′(b)|},
(3.9)

where M(u, v) and N(u, v) are defined by (2.3) and (2.4).

Proof. By Lemma 2.1, Hölder’s inequality, and the geometric quasi-convexity of |f ′(x)|q
on [a, b], we have∣∣∣∣ (ln b)f (b) − (ln a)f (a)

ln b − ln a
− 1

ln b − ln a

∫ b

a

f (x)

x
dx

∣∣∣∣
≤

∫ 1

0
a1−t bt | ln(a1−t bt )||f ′(a1−t bt )|dt
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≤
[∫ 1

0
aq(1−t)/(q−1)bqt/(q−1)| ln(a1−t bt )|dt

]1−1/q

×
[∫ 1

0
| ln(a1−t bt )||f ′(a1−t bt )|qdt

]1/q

≤
[∫ 1

0
aq(1−t)/(q−1)bqt/(q−1)| ln(a1−t bt )|dt

]1−1/q

×
[∫ 1

0
| ln(a1−t bt )|dt

]1/q

sup{|f ′(a)|, |f ′(b)|},

where using Lemma 2.2 shows
∫ 1

0
aq(1−t)/(q−1)bqt/(q−1)| ln(a1−t bt )|dt= (q − 1)2

q2
N(aq/(q−1), bq/(q−1))

and ∫ 1

0
| ln(a1−t bt )|dt = M(a, b).

The proof of Theorem 3.3 is complete. �

Theorem 3.4. Let f : I ⊆ R+ → R be differentiable on I ◦ and f ′ ∈ L([a, b]) for
a, b ∈ I ◦ with a < b. If |f ′(x)|q is geometrically quasi-convex on [a, b] for q > 1 and
q > � > 0, then

∣∣∣∣ (ln b)f (b) − (ln a)f (a)

ln b − ln a
− 1

ln b − ln a

∫ b

a

f (x)

x
dx

∣∣∣∣
≤

(
q − 1

q − �

)1−1/q (
1

�

)1/q

[N(a�, b�)]1/q [N(a(q−�)/(q−1),

b(q−�)/(q−1))]1−1/q × sup{|f ′(a)|, |f ′(b)|}. (3.10)

where N(u, v) is defined by (2.4).

Proof. From Lemma 2.1, Hölder’s inequality, and the geometric quasi-convexity of
|f ′(x)|q on [a, b] and by Lemma 2.2 it follows that

∣∣∣∣ (ln b)f (b) − (ln a)f (a)

ln b − ln a
− 1

ln b − ln a

∫ b

a

f (x)

x
dx

∣∣∣∣
≤

∫ 1

0
a1−t bt | ln(a1−t bt )||f ′(a1−t bt )|dt

≤
[∫ 1

0
a(q−�)(1−t)/(q−1)b(q−�)/(q−1)t | ln(a1−t bt )|dt

]1−1/q

×
[∫ 1

0
a�(1−t)b�t | ln(a1−t bt )||f ′(a1−t bt )|qdt

]1/q
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≤
[∫ 1

0
a(q−�)(1−t)/(q−1)b(q−�)t/(q−1)| ln(a1−t bt )|dt

]1−1/q

×
[∫ 1

0
a�(1−t)b�t | ln(a1−t bt )|dt

]1/q

sup{|f ′(a)|, |f ′(b)|}

=
(

q − 1

q − �

)1−1/q (
1

�

)1/q

[N(a(q−�)/(q−1), b(q−�)/(q−1))]1−1/q

×[N(a�, b�)]1/q sup{|f ′(a)|, |f ′(b)|}.
The proof of Theorem 3.4 is complete. �

Theorem 3.5. Let f : [a, b] ⊆ R+ → R0 be a geometrically quasi-convex function on
[a, b] and f ∈ L([a, b]). Then

f ((ab)1/2) ≤ 1

ln b − ln a

∫ b

a

f (x)

x
dx ≤ sup{f (a), f (b)}. (3.11)

Proof. Since

(ab)1/2 = a(1−t)/2bt/2at/2b(1−t)/2

for 0 ≤ t ≤ 1, by the geometric quasi-convexity of f (x) on [a, b], we have

f ((ab)1/2) ≤ sup{f (a1−t bt ), f (atb1−t )} ≤ sup{f (a), f (b)}
and

∫ 1

0
f (a1−t bt )dt =

∫ 1

0
f (atb1−t )dt = 1

ln b − ln a

∫ b

a

f (x)

x
dx.

The proof of Theorem 3.5 is complete. �

Theorem 3.6. Let f, g : [a, b] ⊆ R+ → R0 be geometrically quasi-convex functions on
[a, b] and fg ∈ L([a, b]). Then

1

ln b−ln a

∫ b

a

f (x)

x
g(x)dx≤sup{f (a)g(a), f (a)g(b), f (b)g(a), f (b)g(b)}.

Proof. Letting x = a1−t bt for 0 ≤ t ≤ 1 and using the geometric quasi-convexity of
f (x) and g(x) on [a, b] yields

1

ln b − ln a

∫ b

a

f (x)

x
g(x)dx

=
∫ 1

0
f (a1−t bt )g(a1−t bt )dt ≤ sup{f (a), f (b)} sup{g(a), g(b)}.

The proof of Theorem 3.6 is complete. �
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