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Abstract

We describe recent developments and enhancements of the LFR-toolbox for Matlab for building LFT-based uncertainty mode
LFT-based gain scheduling. A major development is the new LFT-object definition supporting a large class of uncertainty des
continuous- and discrete-time uncertain models, regular and singular parametric expressions, more general uncertainty blocks
time-varying, etc.). By associating names to uncertainty blocks the reusability of generated LFT-representations and the user frie
manipulation of LFR-descriptions have been highly increased. Significant enhancements of the computational efficiency and of
accuracy have been achieved by employing efficient and numerically robust Fortran implementations of order reduction tools
function interfaces. The new enhancements in conjunction with improved symbolical preprocessing lead generally to a faster gen
LFT-representations with significantly lower orders.
 2005 Elsevier SAS. All rights reserved.

Zusammenfassung

Dieser Aufsatz beschreibt aktuelle Entwicklungen und Erweiterungen der Matlab LFR-Toolbox zur Realisierung LFT-basierter U
heitsmodelle und den Entwurf LFT-basierter Gain-Scheduling-Regler. Eine entscheidende Verbesserung der Toolbox wurde durc
führung eines neuen LFT-Objektes erreicht. Damit wird eine große Klasse von Unsicherheitsbeschreibungen unterstützt: zeitkont
und zeitdiskrete Modelle, reguläre und singuläre parametrische Modelle, nichtlineare sowie zeitvariante Modelle. Jeder Modellun
wird ein eindeutiger Name zugewiesen und somit die Wiederverwendbarkeit der LFT-Modelle und die Benutzerfreundlichkeit der
verbessert. Erhebliche Steigerungen der Rechengeschwindigkeit sowie der numerischen Genauigkeit, wurden durch die Anbindu
ter und numerisch robuster Fortran Implementierungen von Ordungsreduktionsroutinen erreicht. All diese Verbesserungen, in Verb
verbesserten symbolischen Vorverarbeitungswerkzeugen, ermöglichen eine effiziente Erzeugung von LFT-Modellen mit niedriger
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In modelling uncertainties in linear systems thelin-
ear fractional transformation (LFT) plays an importan
role. LFT-based representations of model uncertainties

Fig. 1) are frequently used in modern robust control meth-
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Fig. 1. LFT-representation.

ods like the structured singular value (also calledµ) [20].
LFT-representations are also used for modelling, anal
and controller synthesis for multi-dimensional [3] or inte
connected systems [6] (see also [5] presenting a toolbo
multi-dimensional systems). The applicability of LFT-bas
methods for control problems in the aerospace field has
shown for example in [14], where controllers for syste
with large parameter variations (e.g., altitude and mass o
aircraft) and parametric uncertainties (e.g., center of gra
aerodynamic coefficients) were successfully designed.

The LFT-representation in Fig. 1 is described by the s
tem equations

z = Aw + Bu,

y = Cw + Du,

w = ∆z,

(1)

where the feedback matrix∆ has usually a block diagona
structure. For a partitioned matrix

M =
[

A B

C D

]
∈ R(p1+p2)×(m1+m2)

and∆ ∈ Rm1×p1, theupper LFT corresponding to Fig. 1 i
defined as

Fu(M,∆) = D + C∆(I − A∆)−1B, (2)

which represents the input/output mapping betweenu andy.
The order of this LFT-representation ism1, the row dimen-
sion of them1 × p1 block-diagonal matrix∆.

The LFR (Linear Fractional Representation) Toolbox
a Matlab toolbox for the realization of LFT-representatio
for uncertain system models. With this toolbox, LFT-rep
sentations can be directly obtained from symbolic exp
sions or via object oriented manipulation of LFT-obje
(addition, multiplication, inversion, column/row concaten
tion) [16].

The version 1 of the LFR-toolbox has been implemen
by the third author [11] and supports structured (param
ric) or unstructured uncertainties of real or complex ty
The generation of low order LFT-realizations is suppor
in various ways. Special functions for symbolic preproce
ing techniques as Mortons method [15] for affine unc
tainty representations and the tree decomposition [4]

polynomial matrices are provided. Furthermore numerical
multidimensional order reduction and approximation me
ods [7,16] for LFT-representations are available. These a
rithms rely on standard minimal realization tools available
the Control Toolbox of Matlab.

In this paper we present version 2 of the LFR-toolb
representing recent developments and enhancements o
sion 1, which are mainly focused to improve the ca
bilities for low order LFT-modelling. With the definition
of a new LFT-object, supporting also constant blocks
∆ [10] (equivalent behavioral LFT-representations are p
sented in [8]), we can realize arbitrary rational expressi
in LFT-form. In this way, we circumvent the problem, th
for the object oriented LFT-realization approach rational
pressions like 1/p had to be symbolically normalized befo
realizing the LFT-representation. This improvement gen
ally leads to LFT-representations of lower orders. Furth
more, the new LFT-object definition is more transpare
user friendly and supports additional types of uncertain
to be directly compatible to other Matlab toolboxes like
µ-Analysis and Synthesis toolbox, the LMI toolbox and t
Robust Control toolbox. Significant enhancements of
computational efficiency and of numerical accuracy h
been achieved by employing efficient and numerically
bust Fortran implementations of order reduction tools
mex-function interfaces. The new enhancements in conju
tion with improved symbolical preprocessing lead gener
to a faster generation of LFT-models with significantly low
orders. Version 2 includes also new LFT-based analysis
controller synthesis capabilities.

The organization of the paper is as follows. In Sectio
the new LFT-object definition, based on a generalized L
representation, is introduced and the object oriented man
lation based generation of LFT-models is described. The
malization of generalized LFT-representation and the co
sponding normalization function are presented in Sectio
The improved symbolic preprocessing and numerical p
processing (order reduction) capabilities of version 2 of
toolbox are presented in Sections 4 and 5, respectively. F
tions dedicated to analysis of LFT-representations are
sented in Section 6.1 In Section 7 we present two exampl
illustrating the capabilities of the toolbox to generate low
der LFT-representations.

2. Object oriented LFT-realization

The current version of the LFR-toolbox, version 2, rel
on a new LFT-object definition. The core functionlfr to
create an LFT-object is called inside almost all functions
the toolbox. An LFT-objectL can be created with the com
mand

L = lfr(A,B,C,D,blk);
1 See examples: http://www.cert.fr/dcsd/idco/perso/Magni/example2.html.
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where the first four input arguments specify the matri
A,B,C,D (see Fig. 1) and the fifth argumentblk describes
the block-diagonal structure of∆. The argumentblk is a
structure array with two fields,names anddesc, contain-
ing, respectively, the names associated to the diagonal b
of ∆ and the corresponding uncertainty type descript
The five input arguments can be recovered from the objeL
as the fieldsL.a, L.b, L.c, L.d, andL.blk, respectively.

As an example, the fieldsnames and desc of the
structure description argument of an LFT-object with∆ =
diag(p1I2,p2) can be specified as

blk.names = {’p1’,’p2’};
blk.desc = [ 2 1 % row-dimensions

% of blocks
2 1 % column-dimensions

% of blocks
1 1 % real(1) / complex(0)

% block types
1 1 % scalar(1) / full(0)

% block types
1 1 % linear(1) / nonlinear (0)

% block types
1 1 % time-inv.(1) /

% time-var.(0) block types
1 1 % min/max(1) / sector(2) /

% freq. dependent(>2) bounds
2 2 % min/max(2) / sector(1) /

% freq. dependent(>2) bounds
-1 -1 % minumum values of bounds
1 1 ] ; % maximum values of bounds

whereblk.names is a cell-array of two strings contain
ing the names’p1’ and’p2’ given to the two diagona
blocks of∆, and the values in each column of the real
rayblk.desc specifies the corresponding information d
scribing each diagonal block (see below).

Each block in∆ is uniquely identified by its name, whic
makes the manipulation of LFT-objects flexible and tra
parent. For example, additional uncertainties can be e
added to an LFT-object and the already defined block na
can be modified (e.g., by using the functionset). The spe-
cial names’1/s’ and’1/z’ are reserved for the integra
tor blockI/s (continuous-time systems) and the delay blo
I/z (discrete-time systems), respectively. These blocks
be included in∆ to represent standard linear time-invaria
systems (continuous- or discrete-time) as LFT-objects.
thermore the special name’1’ is reserved for a constan
identity matrix block I in ∆. This block plays a majo
role in representing singular parametric expressions as L
representations. An internal LFT-object reordering (funct
reorderlfr) is performed after each LFT-object manip
lation where the constant block (if exists) is put on the fi
diagonal position of∆, the integrator/delay block (if exists
is put on the second diagonal position followed by all
uncertainty blocks in a lexicographic order.

For each name in the fieldnames there exists a cor
responding column in the fielddesc, which describes

the row/column dimensions and properties of this block.
The LFT-object supports real or complex diagonal (sca
blocks and real or complex full (rectangular) blocks. Th
blocks can have the properties linear/nonlinear and ti
invariant/time-varying (in the case of nonlinear uncertain
the property time-invariant means memoryless). Furt
more, the fielddesc includes bound information for eac
uncertainty block, which can be described by min/m
values, a sector bound (for nonlinear uncertainties) or a S
frequency dependent bound.

When using onlystandard LFT-representations (i.e.,
without a constant block in∆) it is generally not possi
ble to represent arbitrary rational expressions in LFT-fo
For example, to construct LFT-realizations for expressi
containingsingular factors or terms like 1/p, a symbolic
normalization of the respective parameters usually ha
be performed before determining the LFT-representat
However, since symbolic normalization tends generally
increase the order of the generated LFT-representa
(see [4,12] for examples), it is highly desirable to av
any preliminary normalization when building LFT-represe
tations. One way for that is to employ alternative LFT-rep
sentations, as for example, thedescriptor LFT-representation
proposed in [10]. Besides its ability to represent ar
trary rational expressions in LFT-forms, this repres
tation allows to represent even generalized systems
scribed by algebraic-differential equations (so-called
scriptor systems) as LFT-based realizations. In version
the LFR-toolbox we support a so-calledgeneralized LFT-
representation which uses a constant identity matrix as t
first diagonal block of∆. This simple extension of th
standard LFT-representation allows to represent arbitrar
tional parametric expressions as LFT-representations, a
descriptor systems can not be directly represented using
a constant block (a transformation to a special coordin
form is necessary). A major advantage of this represe
tion is that the constant block in∆ can be considered a
an additional dimension in a multidimensional system r
resentation [3] and all standard multidimensional LFT m
nipulation techniques (e.g., the order reduction method
[7,16]) can be applied to the generalized LFT-representa
without any modification.

The flexibility offered by using the generalized LF
representation can be easily illustrated when perform
LFT-manipulations involving system inversions (e.g., us
functions likemrdivide, rf2lfr andlf2lfr). As an
example, consider the LFT realization of a compound p
metric matrix

[
N(∆)D(∆)

] = Fu

([
A BN BD

C DN DD

]
,∆

)
,

whereD(∆) is p × p and invertible. The functionlf2lfr
calculates an LFT-representation(Mlf ,∆lf ) such that
D−1(∆)N(∆) = Fu(Mlf ,∆lf )
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with ∆lf = diag(Ip,∆) and

Mlf =
 DD + Ip C DN

BD A BN

−Ip 0 0

 .

By employing a constant block of orderp, we can thus avoid
the explicit inversion ofDD , and more importantly, we ca
represent the result even in the case when this matrix is
invertible.

To realize an LFT-representation for a rational param
ric matrix, the toolbox supports the object oriented LF
realization procedure, which was suggested in [16] and
tended in [10] for descriptor-type LFT-representations. T
method is based on elementary LFT-manipulations like a
tion/subtraction, multiplication, inversion, row/column co
catenation. Furthermore conversions to LFT-objects of L
objects from the Control Toolbox, PCK-system repres
tations from theµ-Synthesis Toolbox as well as consta
matrices, are automatically performed via the core func
lfr.

3. Normalization

To obtain finally a standard LFT-representation (wi
out constant block in∆) ready to be used in robust contr
applications (e.g.µ-Analysis/Synthesis) a normalization
parameters must usually be performed. The main ad
tage of using the generalized LFT-representation is tha
normalization can be performed as the last step in the L
modelling. Thus there is no need for a preliminary symbo
normalization, which generally tends to increase the orde
the resulting LFT-representation.

Let Fu(M,∆) be an LFT-representation with∆ having
the structure

∆ = diag(Inc , Ind
/λ, δ1Ir1, . . . , δkIrk , ∆̂ ), (3)

where Inc denotes annc × nc identity matrix, Ind
/λ is a

nd × nd integrator block in continuous-time case (λ = s)
or a delay block for discrete-time systems (λ = z), δj Irj ,
j = 1, . . . , k, arek real parametric uncertainty blocks, a
∆̂ is a block-diagonal̂n1 × n̂2 matrix, which consists of al
uncertainty blocks that are not real parametric. By norm
ization each uncertain real parameterδi ∈ [δi,min, δi,max] is
replaced byδi,n + δi,slδi , with δi,n := (δi,min + δi,max)/2 and
δi,sl := (δi,max − δi,min)/2 such that|δi | � 1, for i = 1, . . . , k.
Thus, the normalization amounts to replace∆ by ∆n +∆sl∆

in Fu(M,∆), where

∆n = diag(Inc ,0nd×nd
, δ1,nIr1, . . . , δk,nIrk ,0n̂1×n̂2), (4)

∆sl = diag(0nc×nc , Ind×nd
, δ1,slIr1, . . . , δk,slIrk , In̂1), (5)

∆ = diag(0nc×nc , Ind
/λ, δ1Ir1, . . . , δkIrk , ∆̂ ), (6)
where 0n×m denotes then × m null matrix.
The following result shows that by normalization the co
stant block of a generalized LFT-representation can be e
inated.

Lemma 3.1. Consider Fu(M,∆) with

M =
[

A B

C D

]
and ∆ as given in (3). If ∆n, ∆sl, ∆ have the forms as in (4),
(5) and (6) respectively and if (I − A∆n) is invertible, then

Fu(M,∆) = Fu(M,∆) = Fu(M̃, ∆̃),

where

M =
[

A B

C D

]
=

 A11 A12 B1

A21 A22 B2

C1 C2 D


with

A = (I − A∆n)
−1A∆sl,

B = (I − A∆n)
−1B,

C = C(∆n(I − A∆n)
−1A + I )∆sl,

D = C∆n(I − A∆n)
−1B + D,

and

M̃ =
[

A22 B2

C2 D

]
,

∆̃ = diag(Ind
/λ, δ1Ir1, . . . , δkIrk , ∆̂ ).

Proof. The calculation ofM is straightforward and due t
the particular structure of∆sl the submatricesA11, A21 and
C1 of M are null. �

To perform normalization, the LFR-toolbox offers th
functionnormalizelfr, that allows to perform the nor
malization for a single parameter or for a selected se
parameters.

4. Symbolic preprocessing

The role of symbolic preprocessing of multivariate
tional matrices is to convert individual elements, en
rows/columns or even the whole symbolic matrix to s
cial decomposed forms which allow to immediately obtai
low order LFT-representation. Symbolic preprocessing
ented towards generating low order LFT-representations
been considered previously [4,15,18]. For the realizatio
a single multivariate rational function the Horner evaluat
scheme and the “optimal operation count” based evalua
schemes have been employed in [18] as basis to gen
lower order LFT-representations. Alternatively, conversi
to partial fraction form or continuous fraction form ma

be very efficient to obtain low order LFT-representations.
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One of the most promising new techniques is thevariable
splitting (VS) based factorization technique which allows
express any scalar polynomial as an inner product of
vectors, each of them containing a disjoint set of para
ters as indeterminates. The factors can be then efficie
realized using matrix oriented preprocessing (see next p
graph) to obtain low order realizations.

An efficient technique applicable to multivariate po
nomial matrices is thetree-decomposition (TD) based ap-
proach proposed in [4]. This approach can be also emplo
to rational matrices represented in polynomial fractio
forms. The LFR-toolbox includes an enhanced impleme
tion of the TD technique, called ETD, which directly appli
to rational matrices where the elements are multivariate L
rent polynomials of the indeterminates. Additionally, fu
ther enhancements were obtained by integration of Mort
method [15] in the ETD algorithm and by extending the
factorization to rows or columns of matrices.

All these methods for decomposition of multivariate
tional functions and matrices are supported by the func
sym2lfr of the toolbox. To increase the efficiency of t
symbolic preprocessing, many of the core functions are
rectly implemented in Maple and called via the Extend
Symbolic Toolbox of Matlab.

5. Enhanced order reduction

LFT-representations generated using an object orie
approach tend to be of considerable size (e.g., several
dreds) even for relatively simple practical applications (
Example 1). The high computational efforts resulted du
these large orders often prevent the applicability of av
able standard software tools for robust control design (e
convex optimization based approaches). Fortunately, t
LFT-representations are almost always non-minimal,
therefore using appropriate numerical tools to performex-
act order reduction of LFT-representations can allevi
the situation by producing models of lower order wh
allow the applicability of robust control methods likeµ-
Synthesis/Analysis.

Efficient and numerically reliable tools for order r
duction of LFT-representations are of primary importan
to ease the usability of such models. To achieve e
ciency of computation, numerical robustness and a h
accuracy of results, the toolbox relies on Fortran ba
robust implementations of algorithms for basic compu
tions related to order reduction. A language like Fort
allows to easily exploit all structural features of a comp
tational problems with low additional computational effo
and minimum memory usage. Fortran routines can be
ily executed within the user friendly environment Matl
via external functions, the so calledmex-functions. Sev-
eralmex-functions based on powerful Fortran routines fro

the LAPACK-based [1] public domain control library SLI-
-

-

-

COT [2] form the order reduction computational kernel
the LFR-toolbox.

The LFR-toolbox provides several order reduction to
for exact or approximative reduction of order. Theexact 1-d
order reduction technique [16] can be performed using
functionminlfr1 which is based on the efficient (O(n3)

complexity) SLICOT-basedmex-function ssminr for the
calculation of minimal realizations. Note that a pure Matla
based implementation using the Matlab Control Toolb
function minreal would have a O(n4) worst-case com
plexity.

The approximative 1-d order reduction [18] can be pe
formed usingredlfr1, which is based on the collection o
model reduction tools available in SLICOT [17], coveri
the balanced truncation, singular perturbation approxi
tion and Hankel-norm approximation approaches. All th
methods are implemented in a singlemex-functionsysred
which is called byredlfr1 to reduce 1-d (discrete-time
systems. With an appropriate scaling of theA matrix of the
LFT-representation (see Fig. 1), this function can be also
ployed to performexact order reduction.

The functionminlfr can be used for n-d order redu
tion [7]. In version 2 of the LFR-toolbox this function ha
been completely reimplemented to improve efficiency. T
calculation of the n-d controllability/observability stairca
forms relies on the O(n3) complexity SLICOT-basedmex-
function sscof to compute controllability/observabilit
staircase forms using orthogonal transformations. Note
a pure Matlab-based implementation using the Matlab C
trol Toolbox functionctrbf would have a O(n4) worst-
case complexity.

The SLICOT-basedmex-function balsys is systemat-
ically called in all order reduction functions to perform
system scaling of the LFT-representations as a prelimin
operation within the order reduction routines. As the LF
representations resulting from the object oriented realiza
approach [16] can have matrices with a wide range of
ues this operation is essential before computing numeric
sensitive controllability staircase forms.

The order reduction functions can be applied manu
at any stage of the LFT-realization or can be executed a
matically after each object oriented LFT-manipulation (e
multiplication, addition, etc.). To set global options (e.
to perform or not automatic order reduction), the funct
lfropt can be used. This function basically defines a
of global variables to control the order reduction and to
the associated tolerances.

6. Analysis of systems in LFT-form

The main applications of LFT-representations are in p
forming stability and performance robustness assessmen
ing theµ-analysis. Two complementary tools,wp_rad and
ns_rad, are available to check the well-posedness of L

representations by computing the so-calledwell-posedness
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andnon-singularity radii, respectively. Both functions rel
on computing the structured singular value of certain ma
ces.

For a well-posed LFT-representation of the form (2)
invertibility of I − A∆ is tacitly assumed for all admissib
values of parameters. Thewell-posedness radius is the max-
imum allowable size of the parameter variations for wh
the LFT-representation can be evaluated (i.e.,I − A∆ can
be inverted). For example, LFT-scheduled controller ga
can be safely implemented, provided for all values betw
−1 and+1 of the normalized scheduling parametersI −A∆

is invertible. This means that the well-posedness radius m
be generally larger than one. Thenon-singularity radius is a
complementary tool related to invertibility of the LFT-mod
itself. ProvidedD in (2) is non-singular, thenon-singularity
radius is in fact thewell-posedness radius related to the in-
vertibility of I − (A − BD−1C)∆.

More elementary analysis tools of LFT models ba
on parameter gridding are also available. The main fu
tion is lfrview based on the standard Matlab functi
ltiview. This function can be used for drawing famili
of pole/zero plots or frequency/time domain responses.

7. Examples

7.1. Example 1: order reduction

To illustrate the effect of preliminary normalization a
the enhancements of order reduction tool, we generate
LFT-representation for the most complicated terma29 of
the parametric state dynamics matrixA(δ) of the extended
parametric RCAM [19]. This transport aircraft model, o
of the most complicated parametric models documente
the literature, contains four uncertain parameters: the m
m, two components of the position of the center of grav
Xcg andZcg and the trimmed air speedVA. The expression

of a29 can be put into the forma29 = 0.061601 ã29
CwVA

where

Cw = mg/((1/2)ρV 2
AS) and

ã29 = 1.6726XcgC
2
wZcg − 0.17230X2

cgCw

− 3.9324XcgCwZcg − 0.28903X2
cgC

2
wZcg

− 0.070972X2
cgZcg + 0.29652X2

cgCwZcg

+ 4.9667XcgCw − 2.7036XcgC
2
w

+ 0.58292C2
w − 0.25564X2

cg − 1.3439Cw

+ 100.13Xcg − 14.251Zcg − 1.9116C2
wZcg

+ 1.1243XcgZcg + 24.656CwZcg

+ 0.45703X2
cgC

2
w − 46.850.

The uncertain parameters can be normalized as follows

m = 125000+ 25000δm,
Xcg = 0.23+ 0.08δXcg,
t

Table 1
Order reduction results for RCAM elementa29

Reduction Time [s] {r1, r2, r3, r4} n∆

1-d (M) 9.61 {5,2,9,28} 44
1-d (MEX) 0.1 {5,2,4,7} 18
n-d (M) 0.54 {5,2,3,7} 17
n-d (MEX) 0.13 {5,2,3,7} 17

Zcg = 0.105+ 0.105δZcg,

VA = 80+ 10δVA,

whereδm, δXcg, δZcg, δVA are, respectively, the normalize
uncertain parameters.

By performing first the normalization of parameters a
then generating an LFT-representation ofa29, the resulting
block structure for

∆ = diag(δmIr1, δXcgIr2, δZcgIr3, δVAIr4)

has{r1, r2, r3, r4} = {31,54,27,81}. The total ordern∆ of ∆
is n∆ = 193. Note, that the expression ofa29 is “singular” in
parametersm andVA, and therefore normalization is oblig
tory for generation techniques relying only on standard L
models. When using the generalized LFT-representation
cluding a constant block in∆), we can avoid the preliminar
normalization. The generated LFT-model fora29 has the un-
certainty block dimensions{r1, r2, r3, r4} = {19,18,9,69}
leading to a total order ofn∆ = 85. This illustrates clearly
that a preliminary normalization has often the effect to
crease substantially (more then twice in this example)
order of the generated LFT-representations.

To illustrate the enhancements of order reduction capa
ities of the toolbox, we performed on the 193th order mo
1-d and n-d order reductions, using purem-function based
implementations (M) andmex-function based implementa
tions (MEX) of the order reduction tools. In Table 1 we gi
the computational times resulted on a PC with a 1.2 G
AMD ATHLON processor running Matlab 6.5 under Win
dows NT.

It can be seen a significant reduction of computatio
times for both the 1-d reduction (almost 100 times fast
and the n-d reduction (more than four times faster). Note
that for this example, the 1-d reduction performed using
mex-file based implementation led to a much smaller or
than the purem-file based implementation.

7.2. Example 2: symbolic preprocessing

To illustrate the effectiveness of symbolic preprocess
in obtaining low order LFT-realizations we applied the va
able splitting technique in combination with the extend
tree decompositions to thea29 element in Example 1. Th
resulting realization has order 11 and we conjecture that
LFT-representation is of minimal order. Compared to
least order 17 (see Example 1) obtained with numerica
der reduction, one can clearly see the strengths of emplo

symbolic preprocessing tools.
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Table 2
Orders of LFT-representations for the extended RCAM example

Symbolic Order Order
preprocessing (numerically reduce

None 400 262
Single element 260 158
TD 156 97
VS+ETD 71 65

The power of symbolic preprocessing can be best s
from Table 2, containing the resulting orders of the LF
representations of the complete extended parametric RC
[19]. For the parametric state-space system defined
quadruple of matrices(A(δ),B(δ),C(δ),D(δ)), we com-
puted several LFT-representations of the parametric sy
matrix

S(δ) =
[

A(δ) B(δ)

C(δ) D(δ)

]
by applying different symbolic preprocessing techniques
lowed by numerical n-D order reductions [7]. The cor
sponding resulting orders are presented in the succe
columns of Table 2.

The main feature of RCAM is that all its paramet
system matrices have only rational elements which can
assimilated with multivariate Laurent polynomials (see e
menta29 in Example 1). Thus, this model perfectly fits to t
ETD algorithm. Without symbolic preprocessing, an or
of 262 can be achieved by using numerical order reduct
Using various symbolic techniques on single rational m
trix elements followed by application of numerical n-D ord
reduction, an LFT representation of order 158 has been c
puted in [18]. The TD algorithm for a polynomially facto
ized representation as proposed in [4] yields an LFT-mo
of order 156, which can be further reduced to order 97. W
the symbolic preprocessing tools (VS+ETD) available in the
LFR-toolbox, we obtained an LFT-representation of the
craft model with order 71 and we could exactly reduce
model to order 65, which is very close to the theoretical le
order bound of 56.

8. Conclusion

We presented the new developments and enhancem
available in version 2 of the LFR-toolbox. The introducti
of a generalized LFT-object allows to realize arbitrary ra
nal parametric matrices in LFT-form. Since no prelimina
normalization of parameters is necessary, the resulting L
representations have usually lower orders than those
tained when employing only standard LFT-representat
based approaches. A new LFT-object has been define
which each diagonal block in the uncertainty matrix∆ is
identified by a unique name. This improves significan
the flexibility and user-friendliness of the current vers

of toolbox. To ensure compatibility with other Matlab tool-
s

boxes (e.g.µ-Analysis/Synthesis) new uncertainty prop
ties (e.g., nonlinear, time-varying) have been included in
LFT-object definition. The calculation of reduced order LF
representations relies on efficient and numerically relia
algorithms for basic system order reductions (minimal re
ization, staircase controllability/observability forms, mod
reduction). These algorithms are implemented in the F
tran 77 library SLICOT [2] and accessed viamex-functions.
Version 2 of the LFR-toolbox offers improved symbolic pr
processing capabilities, which are very efficient for low
der LFT-realization. By means of the RCAM example
illustrated some of the main enhancements.

The presented new LFT-based realization and ana
capabilities available in version 2 of the LFR toolbox a
mainly intended to perform LFT-based robust control
sign (e.g., usingµ-synthesis). However, the available too
can be also employed to assess the robustness of contr
designed by any other method. An interesting domain
the design and assessment of gain scheduling contro
These controllers are traditionally designed as a ban
linear feedback compensators, whose gains are interpo
depending on the values of some measurable physical
meters. Recently proposed approaches addresses the d
problem of scheduled control laws either transforming
problem into a robust control design problem [9,13], or us
symbolic design approaches. An LFT-based eigenstruc
assignment approach has been proposed in [12]. The re
ing scheduled gains can be expressed easily in LFT-fo
and employed in robustness analysis.
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