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Abstract

We describe recent developments and enhancements of the LFR-toolbox for Matlab for building LFT-based uncertainty models and for
LFT-based gain scheduling. A major development is the new LFT-object definition supporting a large class of uncertainty descriptions:
continuous- and discrete-time uncertain models, regular and singular parametric expressions, more general uncertainty blocks (nonlinear
time-varying, etc.). By associating names to uncertainty blocks the reusability of generated LFT-representations and the user friendliness of
manipulation of LFR-descriptions have been highly increased. Significant enhancements of the computational efficiency and of numerical
accuracy have been achieved by employing efficient and numerically robust Fortran implementations of order reduction tools via mex-
function interfaces. The new enhancements in conjunction with improved symbolical preprocessing lead generally to a faster generation of
LFT-representations with significantly lower orders.

0 2005 Elsevier SAS. All rights reserved.

Zusammenfassung

Dieser Aufsatz beschreibt aktuelle Entwicklungen und Erweiterungen der Matlab LFR-Toolbox zur Realisierung LFT-basierter Unsicher-
heitsmodelle und den Entwurf LFT-basierter Gain-Scheduling-Regler. Eine entscheidende Verbesserung der Toolbox wurde durch die Ein-
fihrung eines neuen LFT-Objektes erreicht. Damit wird eine grofRe Klasse von Unsicherheitsbeschreibungen unterstiitzt: zeitkontinuierliche
und zeitdiskrete Modelle, regulare und singulére parametrische Modelle, nichtlineare sowie zeitvariante Modelle. Jeder Modellunsicherheit
wird ein eindeutiger Name zugewiesen und somit die Wiederverwendbarkeit der LFT-Modelle und die Benutzerfreundlichkeit der Toolbox
verbessert. Erhebliche Steigerungen der Rechengeschwindigkeit sowie der numerischen Genauigkeit, wurden durch die Anbindung effizien
ter und numerisch robuster Fortran Implementierungen von Ordungsreduktionsroutinen erreicht. All diese Verbesserungen, in Verbindung mit
verbesserten symbolischen Vorverarbeitungswerkzeugen, ermdglichen eine effiziente Erzeugung von LFT-Modellen mit niedriger Ordnung.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

X Zhis a“ic'ed‘_"’as prehsemsg at (?Dﬁ: %02353 28 3374t +40 (erss ™ modelling uncertainties in linear systems tfie-
vt author. Phone: +49 (0) (fax: +49 (008153 oo fractional transformation (LFT) plays an important
E-mail addresses: simon.hecker@dir.de (S. Hecker), role. LFT-based representations of model uncertainties (see

andras.varga@dlr.de (A. Varga), jean-francois.magni@cert.fr (J. Magni).  Fig. 1) are frequently used in modern robust control meth-
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multidimensional order reduction and approximation meth-
A ods [7,16] for LFT-representations are available. These algo-
rithms rely on standard minimal realization tools available in
the Control Toolbox of Matlab.

In this paper we present version 2 of the LFR-toolbox
representing recent developments and enhancements of ver-
sion 1, which are mainly focused to improve the capa-
Yy ~— C D — u bilities for low order LFT-modelling. With the definition
of a new LFT-object, supporting also constant blocks in
A [10] (equivalent behavioral LFT-representations are pre-
sented in [8]), we can realize arbitrary rational expressions
in LFT-form. In this way, we circumvent the problem, that
ods like the structured singular value (also called[20]. for the object oriented LFT-realization approach rational ex-
LFT-representations are also used for modelling, analysis pressjons like 1p had to be symbolically normalized before
and controller synthesis for multi-dimensional [3] or inter- realizing the LFT-representation. This improvement gener-
connected systems [6] (see also [5] presenting a toolbox for )1y |eads to LFT-representations of lower orders. Further-
multi-dimensional systems). The applicability of LFT-based more, the new LFT-object definition is more transparent,
methods for control problems in the aerospace field has been,ggr friendly and supports additional types of uncertainties
shown for example in [14], where controllers for systems 15 pe directly compatible to other Matlab toolboxes like the
with large parameter variations (e.qg., altitude and mass of an,-Analysis and Synthesis toolbox, the LMI toolbox and the
aircraft) and parametric uncertainties (e.g., center of gravity, Ropust Control toolbox. Significant enhancements of the
aerodynamic coefficients) were successfully designed. computational efficiency and of numerical accuracy have

The LFT-representation in Fig. 1 is described by the sys- peen achieved by employing efficient and numerically ro-
tem equations bust Fortran implementations of order reduction tools via
2= Aw + Bu, r.nex-fu.nc'Fion interfaces. The new enhancgments in conjunc-
y=Cw+ Du, @ tion with improved symbolical preprocessing lead generally

to a faster generation of LFT-models with significantly lower

orders. Version 2 includes also new LFT-based analysis and
where the feedback matria has usually a block diagonal  controller synthesis capabilities.

Fig. 1. LFT-representation.

w=Ag,

structure. For a partitioned matrix The organization of the paper is as follows. In Section 2
A|B the new LFT-object definition, based on a generalized LFT-

M = | = | ¢ R(P1t+P2)x(m1tm2) representation, is introduced and the object oriented manipu-
[ ¢ | D } lation based generation of LFT-models is described. The nor-

malization of generalized LFT-representation and the corre-
sponding normalization function are presented in Section 3.
The improved symbolic preprocessing and numerical post-
Fu(M,A)=D+CA(I — AA) !B, (2) processing (order reduction) capabilities of version 2 of the
toolbox are presented in Sections 4 and 5, respectively. Func-
tions dedicated to analysis of LFT-representations are pre-
sented in Section 6In Section 7 we present two examples
illustrating the capabilities of the toolbox to generate low or-
der LFT-representations.

and A € R™1*P1 theupper LFT corresponding to Fig. 1 is
defined as

which represents the input/output mapping betweandy.
The order of this LFT-representationsis, the row dimen-
sion of themj x pj block-diagonal matrixA.
The LFR (Linear Fractional Representation) Toolbox is
a Matlab toolbox for the realization of LFT-representations
for uncertain system models. With this toolbox, LFT-repre-
sentations can be directly obtained from symbolic expres-
sions or via object oriented manipulation of LFT-objects
(addition, multiplication, inversion, column/row concatena-
tion) [16]. The current version of the LFR-toolbox, version 2, relies
The version 1 of the LFR-toolbox has been implemented ©n & new LFT-object definition. The core functibfir to
by the third author [11] and supports structured (paramet- create an LFT-object is called inside almost all functions of
ric) or unstructured uncertainties of real or complex type. the toolbox. An LFT-object. can be created with the com-
The generation of low order LFT-realizations is supported mand
in various ways. Special functions for symbolic preprocess- , _ .
ing techniques as Mortons method [15] for affine uncer- L = 1Tr(A B CGDblk);
tainty representations and the tree decomposition [4] for
polynomial matrices are provided. Furthermore numerical 1 See examples: http://www.cert.fr/dcsd/idco/perso/Magni/example2.html.

2. Object oriented L FT-realization
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where the first four input arguments specify the matrices The LFT-object supports real or complex diagonal (scalar)
A, B, C, D (see Fig. 1) and the fifth argumebit k describes blocks and real or complex full (rectangular) blocks. These
the block-diagonal structure af. The argumenbl k is a blocks can have the properties linear/nonlinear and time-
structure array with two fields)anes anddesc, contain- invariant/time-varying (in the case of nonlinear uncertainties
ing, respectively, the names associated to the diagonal blockshe property time-invariant means memoryless). Further-
of A and the corresponding uncertainty type description. more, the fielddesc includes bound information for each
The five input arguments can be recovered from the object uncertainty block, which can be described by min/max-
asthefields. a,L. b,L. c,L. d,andL. bl k, respectively.  values, a sector bound (for nonlinear uncertainties) or a SISO
As an example, the fieldeanes and desc of the frequency dependent bound.

structure description argument of an LFT-object with= When using onlystandard LFT-representations (i.e.,

diag(p112, p2) can be specified as

without a constant block im) it is generally not possi-
ble to represent arbitrary rational expressions in LFT-form.

blk.names = {’pl’,"p2'}; _ _ For example, to construct LFT-realizations for expressions
blk.desc = [ 2 1 % r ow- di mensi ons taini . lar fact t lik boli
% of bl ocks containingsingular factors or terms like Ap, a symbolic
21 % col um- di mensi ons normalization of the respective parameters usually has to
% of bl ocks be performed before determining the LFT-representation.
11 Zf’;lea' (kl) /" conpl ex(0) However, since symbolic normalization tends generally to
oblock types increase the order of the generated LFT-representations
11 % scalar(1) / full(0) h . . )
% bl ock types (see [4,_12_] for examp!es)_, it is hlghly d_eswable to avoid
11 % linear(1) / nonlinear (0) any preliminary normalization when building LFT-represen-
% bl ock types tations. One way for that is to employ alternative LFT-repre-
0, I - . . .
11 votime-inv. (1) / sentations, as for example, thescriptor LFT-representation
% tinme-var.(0) block types di 10]. Besid . bili bi
11 % min/ max(1) /| sector(2) / proposed in [10]. esi es'lts ability to represent arbi-
% freq. dependent(>2) bounds trary rational expressions in LFT-forms, this represen-
22 % m n/ max(2) / sector(1l) / tation allows to represent even generalized systems de-
- f;’f_req- dePelnde”t(:zL bosnds scribed by algebraic-differential equations (so-called de-
- - © M nunmum val ues o ounas . . . .
111 : %naxinm val ues of bounds scriptor systems) as LFT-based realizations. In version 2 of

the LFR-toolbox we support a so-callggneralized LFT-
representation which uses a constant identity matrix as the
first diagonal block ofA. This simple extension of the
standard LFT-representation allows to represent arbitrary ra-
tional parametric expressions as LFT-representations, albeit
scribing each diagonal block (see below). descriptor systems can not be directly represented using just
Each block inA is uniquely identified by its name, which & constant block (a transf_ormatlon to a spec_lal coordinate
makes the manipulation of LFT-objects flexible and trans- form is necessary). A major advantage of this representa-
parent. For example, additional uncertainties can be easily!ion is that the constant block i can be considered as
added to an LFT-object and the already defined block namesan additional dimension in a multidimensional system rep-
can be modified (e.g., by using the functiset ). The spe- resentation [3] and all standard multidimensional LFT ma-
cial names 1/ s’ and’ 1/ z' are reserved for the integra- nipulation techniques (e.g., the order reduction methods of
tor block /s (continuous-time systems) and the delay block [7,16]) can be applied to the generalized LFT-representation
1/z (discrete-time systems), respectively. These blocks canWithout any modification.
be included inA to represent standard linear time-invariant ~ The flexibility offered by using the generalized LFT-
systems (continuous- or discrete-time) as LFT-objects. Fur- representation can be easily illustrated when performing
thermore the special namel’ is reserved for a constant LFT-manipulations involving system inversions (e.g., using
identity matrix blockI in A. This block plays a major  functions likenr di vi de, rf 2l fr andl f2l fr). As an
role in representing singular parametric expressions as LFT-example, consider the LFT realization of a compound para-
representations. An internal LFT-object reordering (function metric matrix
reorderl fr)is performed after each LFT-object manipu- Al Be B
lation where the constant block (if exists) is put on the first [N(A)D(A)] "y ([ | N bp } ’ )

wherebl k. nanes is a cell-array of two strings contain-
ing the names p1l' and’ p2’ given to the two diagonal
blocks of A, and the values in each column of the real ar-
raybl k. desc specifies the corresponding information de-

diagonal position ofA, the integrator/delay block (if exists) C|DN Dp
is put on the second diagonal position followed by all the
uncertainty blocks in a lexicographic order.

For each name in the fieldanes there exists a cor-
responding column in the fieldlesc, which describes
the row/column dimensions and properties of this block. D YAYN(A) = F, (M, Arp)

whereD(A) is p x p and invertible. The functiohf 21 fr
calculates an LFT-representatioM|s, Ajs) such that
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with As = diag(/,, A) and The following result shows that by normalization the con-
stant block of a generalized LFT-representation can be elim-
Dp +1, C|Dy inated.
le = BD A BN
-1, 0|0 Lemma 3.1. Consider F,, (M, A) with
By employing a constant block of ordgr we can thus avoid A|B
the explicit inversion ofDp, and more importantly, we can - C|—D

represent the result even in the case when this matrix is not _

invertible. and A asgivenin (3). If A,, Ag, A havetheformsasin (4),
To realize an LFT-representation for a rational paramet- (5) and (6) respectively and if (1 — AA,,) isinvertible, then

ric r_natrix, the toolbox su_pports the object (_)riented LFT- Fu(M, A) = F,(M. &) = F,, (3, A).

realization procedure, which was suggested in [16] and ex-

tended in [10] for descriptor-type LFT-representations. This Where

method is based on elementary LFT-manipulations like addi- _ A11 A1l By

tion/subtraction, multiplication, inversion, row/column con- M= AlB — | An1 Ax|B>

catenation. Furthermore conversions to LFT-objects of LTI- 6|E W
1 C2

objects from the Control Toolbox, PCK-system represen-
tations from theu-Synthesis Toolbox as well as constant with
matrices, are automatically performed via the core function

I fr. I—AA) TAAg,

(

(I —AA) 1B,

C(An(I — AA) A+ 1) Ag,
=CA,(I —AA,) B + D,

3. Normalization

Ol QI = >
Il

To obtain finally a standard LFT-representation (with- and
out constant block im) ready to be used in robust control |:322|§2}
applications (e.gu-Analysis/Synthesis) a normalization of M =|————/{,
parameters must usually be performed. The main advan- C2 | D
tage of using the generalized LFT-representation is that theA = diag(1,,, /A, 811,1, ...,SkI,k, Z).
normalization can be performed as the last step in the LFT-
modelling. Thus there is no need for a preliminary symbolic Proof. The calculation of¥/ is straightforward and due to
normalization, which generally tends to increase the order of the particular structure ohg the submatriced 11, A21 and

the resulting LFT-representation. Ciof Marenull. O
Let 7,(M, A) be an LFT-representation with having
the structure To perform normalization, the LFR-toolbox offers the
) - functionnor mal i zel f r, that allows to perform the nor-
A=diagly,, Ing/7. 811ry, - . Skl A), ®) malization for a single parameter or for a selected set of
parameters.

where I, denotes am,. x n. identity matrix, ,,,/A is a
ng X ng integrator block in continuous-time cask £ s)

or a delay block for discrete-time systents= z), 3;/,;,
j=1,...,k, arek real parametric uncertainty blocks, and
Ais a block-diagonafi; x n matrix, which consists of all
uncertainty blocks that are not real parametric. By normal-
ization each uncertain real paramesgie [§; min, 8i.max] IS
replaced bys; , + 8;.¢8;, With 8; ,, := (8 min + 8;.max)/2 and
8i.s i= (8;. max — 8i.min)/2 such thats;| < 1,fori =1,... k.
Thus, the normalization amounts to replatey A, + Ag A

in 7,(M, A), where

4. Symbolic preprocessing

The role of symbolic preprocessing of multivariate ra-
tional matrices is to convert individual elements, entire
rows/columns or even the whole symbolic matrix to spe-
cial decomposed forms which allow to immediately obtain a
low order LFT-representation. Symbolic preprocessing ori-
ented towards generating low order LFT-representations has
been considered previously [4,15,18]. For the realization of

; a single multivariate rational function the Horner evaluation
A, =diagl,,, 0 81 lrys ooy Sk, Opyxciin)s 4 . ) !
S & Ongseng» 1ndry kandres Oagci) @) scheme and the “optimal operation count” based evaluation
Ay =diagOn, xncs Ingscngs 81,8115 - -+ Sk sl s Iiy)s  (5) schemes have been employed in [18] as basis to generate
A = diagOu, xn,. Ing /2 8111, - -2 ks, A), (6) lower order LFT-representations. Alternatively, conversions

to partial fraction form or continuous fraction form may
where @, denotes the x m null matrix. be very efficient to obtain low order LFT-representations.
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One of the most promising new techniques is t¥agable COT [2] form the order reduction computational kernel of
splitting (VS) based factorization technique which allows to the LFR-toolbox.
express any scalar polynomial as an inner product of two  The LFR-toolbox provides several order reduction tools
vectors, each of them containing a disjoint set of parame- for exact or approximative reduction of order. Téxact 1-d
ters as indeterminates. The factors can be then efficientlyorder reduction technique [16] can be performed using the
realized using matrix oriented preprocessing (see next parafunctionmi nl f r 1 which is based on the efficient (&)
graph) to obtain low order realizations. complexity) SLICOT-basednex-function ssmi nr for the

An efficient technique applicable to multivariate poly- calculation of minimal realizations. Note that a pure Matlab-
nomial matrices is théree-decomposition (TD) based ap-  based implementation using the Matlab Control Toolbox
proach proposed in [4]. This approach can be also employedfunction ni nr eal would have a @*) worst-case com-
to rational matrices represented in polynomial fractional plexity.
forms. The LFR-toolbox includes an enhanced implementa- ~ The approximative 1-d order reduction [18] can be per-
tion of the TD technique, called ETD, which directly applies formed using ed| f r 1, which is based on the collection of
to rational matrices where the elements are multivariate Lau- model reduction tools available in SLICOT [17], covering
rent polynomials of the indeterminates. Additionally, fur- the balanced truncation, singular perturbation approxima-
ther enhancements were obtained by integration of Morton’s tion and Hankel-norm approximation approaches. All these
method [15] in the ETD algorithm and by extending the VS methods are implemented in a singtex-functionsysr ed
factorization to rows or columns of matrices. which is called byr edl f r 1 to reduce 1-d (discrete-time)

All these methods for decomposition of multivariate ra- Systems. With an appropriate scaling of thematrix of the
tional functions and matrices are supported by the function LFT-representation (see Fig. 1), this function can be also em-
syl fr of the toolbox. To increase the efficiency of the Ployed to performexact order reduction.
symbolic preprocessing, many of the core functions are di-  The functionmi nl fr can be used for n-d order reduc-

Symbolic Toolbox of Matlab. been completely reimplemented to improve efficiency. The

calculation of the n-d controllability/observability staircase
forms relies on the @3) complexity SLICOT-basethex-
function sscof to compute controllability/observability
staircase forms using orthogonal transformations. Note that
_ ) ) ) a pure Matlab-based implementation using the Matlab Con-
LFT-representations generated using an object orientedi;o| Toolbox functionct r bf would have a @%) worst-
approach tend to be of considerable size (e.g., several hunygge complexity.
dreds) even for relatively simple practical applications (see  The SLICOT-basednex-function bal sys is systemat-
Example 1). The high computational efforts resulted due to jca|ly called in all order reduction functions to perform a
these large orders often prevent the applicability of avail- system scaling of the LFT-representations as a preliminary
able standard software tools for robust control design (e.g., operation within the order reduction routines. As the LFT-
convex optimization based approaches). Fortunately, theseepresentations resulting from the object oriented realization
LFT—representationS are almost alWﬁyS non'minimal, and approach [16] can have matrices with a wide range of val-
therefore using appropriate numerical tools to perf@m  yes this operation is essential before computing numerically
act order reduction of LFT-representations can alleviate gensitive controllability staircase forms.
the situation by producing models of lower order which  The order reduction functions can be applied manually
allow the applicability of robust control methods lilke- at any stage of the LFT-realization or can be executed auto-
Synthesis/Analysis. matically after each object oriented LFT-manipulation (e.g.,
Efficient and numerically reliable tools for order re- multiplication, addition, etc.). To set global options (e.g.,
duction of LFT-representations are of primary importance to perform or not automatic order reduction), the function
to ease the usability of such models. To achieve effi- | fr opt can be used. This function basically defines a set
ciency of computation, numerical robustness and a high of global variables to control the order reduction and to set
accuracy of results, the toolbox relies on Fortran based the associated tolerances.
robust implementations of algorithms for basic computa-
tions related to order reduction. A language like Fortran
allows to easily exploit all structural features of a compu- 6. Analysisof systemsin LFT-form
tational problems with low additional computational effort
and minimum memory usage. Fortran routines can be eas- The main applications of LFT-representations are in per-
ily executed within the user friendly environment Matlab forming stability and performance robustness assessment us-
via external functions, the so calledex-functions. Sev- ing the u-analysis. Two complementary tooisy_r ad and
eralmex-functions based on powerful Fortran routines from ns_r ad, are available to check the well-posedness of LFT-
the LAPACK-based [1] public domain control library SLI- representations by computing the so-caledll-posedness

5. Enhanced order reduction
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and non-singularity radii, respectively. Both functions rely  Table 1
on computing the structured singular value of certain matri- Order reduction results for RCAM elementg

ces. Reduction Time [s] {r1,r2,r3, 14} nA

For a well-posed LFT-representation of the form (2) the 1.4 (v) 961 (5.2.,9, 28} 44
invertibility of I — A A is tacitly assumed for all admissible  1-d (MEX) 01 (5,2,4,7) 18
values of parameters. Thell-posedness radiusis the max- n-d (M) 0.54 {5237} 17

013 (5,2,3,7) 17

imum allowable size of the parameter variations for which "4 (MEX)

the LFT-representation can be evaluated (ifle; AA can

be inverted). For example, LFT-scheduled controller gains Zog=0.105+ 0.105 Zg,

can be safely implemented, provided for all values between Vi =80+ 105V

—1 and+1 of the normalized scheduling parameters A A A= A

is invertible. This means that the well-posedness radius mustwheresm, § Xy, 6 Zcg, V4 are, respectively, the normalized

be generally larger than one. Then-singularity radiusis a uncertain parameters.

complementary tool related to invertibility of the LFT-model By performing first the normalization of parameters and

itself. ProvidedD in (2) is non-singular, theon-singularity then generating an LFT-representation:e§, the resulting

radius is in fact thewell-posedness radius related to the in- block structure for

vertibility of I — (A — BD~1C)A. .

More elementary analysis tools of LFT models based A =diagdmlyy, $Xoglp, 8 Zcglrs, SValrs)

on parameter gridding are also available. The main func- has{ri, rp, r3, r4} = {31, 54, 27, 81}. The total orden 4 of A

tion is | f r vi ew based on the standard Matlab function isna = 193. Note, that the expressionad is “singular” in

I tiview This function can be used for drawing families parameters: andV,, and therefore normalization is obliga-

of pole/zero plots or frequency/time domain responses. tory for generation techniques relying only on standard LFT-
models. When using the generalized LFT-representation (in-
cluding a constant block id), we can avoid the preliminary

7. Examples normalization. The generated LFT-model {ap has the un-
certainty block dimensiongri, r2, r3, ra} = {19, 18,9, 69}
7.1. Example 1: order reduction leading to a total order of » = 85. This illustrates clearly

that a preliminary normalization has often the effect to in-

To illustrate the effect of preliminary normalization and crease substantially (more then twice in this example) the
the enhancements of order reduction tool, we generated arprder of the generated LFT-representations.
LFT-representation for the most complicated tespy of To illustrate the enhancements of order reduction capabil-
the parametric state dynamics matrixs) of the extended ities of the toolbox, we performed on the 193th order model
parametric RCAM [19]. This transport aircraft model, one 1-d and n-d order reductions, using pumefunction based
of the most complicated parametric models documented inimplementations (M) andnex-function based implementa-
the literature, contains four uncertain parameters: the masstions (MEX) of the order reduction tools. In Table 1 we give
m, two components of the position of the center of gravity the computational times resulted on a PC with a 1.2 GHz
Xcg and Zgg and the trimmed air speelds. The expression AMD ATHLON processor running Matlab 6.5 under Win-

of azg can be put into the formog = 006160% where do‘l"t’s NT'b anificant reduction of ational
Co g /(1/2)pV2S) and can be seen a significant reduction of computationa

times for both the 1-d reduction (almost 100 times faster!)

dog = 1.6726Xch5) Zeg— 0.17230,(§ng and the n-_d reduction (more than fou_r times faster). the also
> o that for this example, the 1-d reduction performed using the
—3.9324X¢gCy Zcg — 0.28903X ¢ C Zeg mex-file based implementation led to a much smaller order
- 0,0709725(39209 + 0-296525(§ngch than the puren-file based implementation.
+4.9667XogCy — 2.7036X ogC 7.2. Example 2: symbolic preprocessing

+0.58292°2 — 0.25564X5, — 1.343%C,,

5 To illustrate the effectiveness of symbolic preprocessing
+10013X g — 142517y — 1.9116C;, Zcy

in obtaining low order LFT-realizations we applied the vari-

+ 1.1243X ogZog + 24.656C, Zcg able splitting technique in combination with the extended
n 0'457035(39(;5 _ 46850 tree decompositions to thexg element in Example 1. The

resulting realization has order 11 and we conjecture that this
The uncertain parameters can be normalized as follows LFT-representation is of minimal order. Compared to the

least order 17 (see Example 1) obtained with numerical or-
m = 125000+ 2500@m, der reduction, one can clearly see the strengths of employing
Xog=0.234+0.085X g, symbolic preprocessing tools.



S Hecker et al. / Aerospace Science and Technology 9 (2005) 173-180 179

Table 2 boxes (e.gu-Analysis/Synthesis) new uncertainty proper-
Orders of LFT-representations for the extended RCAM example ties (e.g., nonlinear, time-varying) have been included in the
Symbolic Order Order LFT-object definition. The calculation of reduced order LFT-
preprocessing (numerically reduced)  representations relies on efficient and numerically reliable
None 400 262 algorithms for basic system order reductions (minimal real-
?igg'e element 1;‘650 9%58 ization, staircase controllability/observability forms, model
VSLETD 7 65 reduction). These algorithms are implemented in the For-

tran 77 library SLICOT [2] and accessed vix-functions.

Version 2 of the LFR-toolbox offers improved symbolic pre-
The power of symbolic preprocessing can be best seenprocessing capabilities, which are very efficient for low or-

from Table 2, containing the resulting orders of the LFT- der LFT-realization. By means of the RCAM example we

representations of the complete extended parametric RCAMillustrated some of the main enhancements.

[19]. For the parametric state-space system defined by The presented new LFT-based realization and analysis

guadruple of matricesA(3), B(8), C(8), D(8)), we com- capabilities available in version 2 of the LFR toolbox are
puted several LFT-representations of the parametric systemmainly intended to perform LFT-based robust control de-
matrix sign (e.g., usingt-synthesis). However, the available tools

can be also employed to assess the robustness of controllers

A(8) B(S) ) . . L
S() = designed by any other method. An interesting domain is

C(8) D(3) . ) .

_ _ _ _ _ the design and assessment of gain scheduling controllers.
by applying different symbolic preprocessing techniques fol- These controllers are traditionally designed as a bank of
lowed by numerical n-D order reductions [7]. The corre- |inear feedback compensators, whose gains are interpolated
sponding resulting orders are presented in the successivejepending on the values of some measurable physical para-
columns of Table 2. _ . ~ meters. Recently proposed approaches addresses the design

The main feature of RCAM is that all its parametric problem of scheduled control laws either transforming the
system matrices have only rational elements which can beproblem into a robust control design problem [9,13], or using
a.SSImllat.ed with multivariate La.urent pOlyn0m|aIS .(See ele- Symbo"c design approaches_ An LFT-based eigenstructure
mentazg in Example 1). Thus, this model perfectly fits to the  assignment approach has been proposed in [12]. The result-

ETD algorithm. Without symbolic preprocessing, an order jng scheduled gains can be expressed easily in LFT-forms
of 262 can be achieved by using numerical order reduction. and employed in robustness analysis.

Using various symbolic technigues on single rational ma-

trix elements followed by application of numerical n-D order

reduction, an LFT representation of order 158 has been com-peferences

puted in [18]. The TD algorithm for a polynomially factor-

ized representation as proposed in [4] yields an LFT-model (1] g, anderson, z. Bai, J. Bishop, J. Demmel, J. Du Croz, A. Greenbaum,
of order 156, which can be further reduced to order 97. With S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK
the symbolic preprocessing tools (W& TD) available in the User's Guide, second ed., SIAM, Philadelphia, 1995.
LFR-toolbox, we obtained an LFT-representation of the air- [2] P- Benner, V. Mehrmann, V. Sima, S. Van Huffel, A. Varga, SLICOT —
craft model with order 71 and we could exactly reduce this A Subroutine Library in Systems Control Theory, in: B.N. Datta (Ed.),

L. . Applied and Computational Control, Signals and Circuits, Birkhduser,
model to order 65, which is very close to the theoretical least  gisel 1908

order bound of 56. [3] N.K. Bose, Applied Multidimensional Systems Theory, Van Nostrand
Reinhold, 1982.

[4] J.C. Cockburn, B.G. Morton, Linear fractional representation of un-
certain systems, Automatica 33 (7) (1997) 1263-1271.

[5] R. D’Andrea, Software for modeling, analysis, and control design for

multidimensional systems, in: Proc. of the IEEE International Sympo-
We presented the new developments and enhancements  sjum on Computer-Aided Control System Design, 1999, pp. 24—27.

available in version 2 of the LFR-toolbox. The introduction [6] R. D'Andrea, G.E. Dullerud, Distributed control design for spatially
of a generalized LFT-object allows to realize arbitrary ratio- interconnected systems, IEEE Trans. Automatic Control 48 (9) (2003).
nal parametric matrices in LFT-form. Since no preliminary 71 R- D'Andrea, S. Khatri, Kaiman decomposition of linear fractional

. . . . transformation representations, in: Proc. of the American Control Con-
normalization of parameters is necessary, the resulting LFT- ference, Albulquerque, NM, 1997, pp. 3557—3561.
representations have usually lower orders than those ob- [g] R. D'Andrea, F. Paganini, Interconnection of uncertain behavioral sys-
tained when employing only standard LFT-representations tems for robust control, in: Proc. of the 32nd Conference on Decision
based approaches. A new LFT-object has been defined, in _ and Control, San Antonio, TX, 1993, pp. 3642-3647.
which each diagonal block in the uncertainty matrixis [9] C. Dall, Y. Le Gorrec, G. Ferreres, J.F. Magni, Design of a robust self-
. g . . L scheduled missile autopilot by multi-model eigenstructure assignment,
Idemlfle_d . l?y a unique n?'me'_ This Improves S|gn|f|cantly Control Engineering and Practice (Special Issue on Defense) (2001).
the flexibility and user-friendliness of the current version [10] s. Hecker, A. Varga, Generalized LFT-based representation of para-

of toolbox. To ensure compatibility with other Matlab tool- metric uncertain models, European J. Control 4 (2004).

8. Conclusion



180 S Hecker et al. / Aerospace Science and Technology 9 (2005) 173-180

[11] J.F. Magni, Presentation of the Linear Fractional Representation Tool- [17] A. Varga, Model reduction software in the SLICOT library, in: B.N.

box (LFRT), in: Proc. CACSD’2002 Symp., Glasgow, Scotland, 2002. Datta (Ed.), Applied and Computational Control, Signals and Circuits,
[12] J.F. Magni, Linear Fractional Representations with a Toolbox: mod- in: The Kluwer International Series in Engineering and Computer Sci-
elling order reduction, gain scheduling, Version 1.1, Department of ence, vol. 629, Kluwer Academic, Boston, 2001, pp. 239-282.
Systems Control and Flight Dynamics, ONERA-CERT, Toulouse, [18] A. Varga, G. Looye, Symbolic numerical software tools for LFT-based
France, January 2004. low order uncertainty modeling, in: Proc. CACSD’99 Symp., Kohala
[13] J.F. Magni, Multimodel eigenstructure assignment in flight-control de- Coast, Hawaii, 1999.
sign, Aerospace Science and Technology 3 (3) (1999) 141-151. [19] A. Varga, G. Looye, D. Moormann, G. Griibel, Automated generation
[14] J.F. Magni, S. Bennani, J. Terlouw, Robust Flight Control — A De- of LFT-based parametric uncertainty descriptions from generic aircraft
sign Challenge, Lecture Notes in Control and Information Sciences, models, Mathematical Computer Modelling of Dynamical Systems 4
vol. 224, Springer, Berlin, 1997. (1998) 249-274.
[15] B. Morton, New applications of mu to real.parameter variation prob- [20] K. zhou, J.C. Doyle, K. Glover, Robust Optimal Control, Prentice
lems, in: Proc. Conference on Decision and Control, Fort Lauderdale, Hall, Englewood Cliffs, NJ, 1996.

FL, 1985, pp. 233-238.

[16] J. Terlouw, P. Lambrechts, S. Bennani, M. Steinbuch, Parametric un-
certainty modeling using LFTs, in: Proc. American Control Confer-
ence, 1993, pp. 267-272.



