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The splitting of globules is an important phenomenon during the final stages of 
disintegration processes. Three basic types of deformation of globules and six types 
of flow patterns causing them are distinguished. 

The forces controlling deformation and breakup comprise two dimensionless 
groups: a Weber group Nwe and a viscosity group Nvl. Breakup occurs when 
Nw, exceeds a critical value (Nwe)crlt. Three cases are studied in greater detail: 
(a) Taylor’s experiments on the breakup of a drop in simple types of viscous flow, 
( 6 )  breakup of a drop in an air stream, (c) emulsification in a turbulent flow. 

It is shown that (Nwv , ) , , l t  depends on the type of deformation and on the flow 
pattern around !he globule. For case (a) ( N ~ . , ) ~ ~ t t  shows a minimum value -0.5 
at a certain value of NVI and seems to increase indefinitely with either decreasing 
or increasing ratio between the viscosities of the two phases. For case (b) (Nwe)@Pit 
varies between 15 and 00, depending on Nv, and on the way in which the relative 
air velocity varies wilh time, the lowest value refers to the true shock case and 
N,,+O. For case (c)  (Nw,),,~t, which determines the maximum drop size in the 
emulsion, amounts to -1, and the corresponding values of Nvl appear to be small. 
A formula is derived for the maximum drop size. 

Efficient dispersion with a view 
to obtaining large interfacial areas 
is of great importance for heat and 
mass transfer processes in gas- 
liquid systems (atomization, froth- 
formation) and liquid-liquid sys- 
tems (emulsification). 

Most of the ordinary diminution 
processes function by injection of 
one phase into the other o r  by in- 
ducement of turbulence in the con- 
tinuous phase. In  the case of in- 
jection the potential energy of the 
phase to be dispersed is converted 
into kinetic energy, and at the 
same time usually interaction takes 
place with another medium, which 
may be gaseous, liquid, or solid. 
This interaction generates forces 
in the phase to  be dispersed which 
may result in its breaking up. In 
the case of turbulence it is the 
kinetic energy of the turbulent mo- 
tion in the continuous phase that  
brings about t h e  breakup of the 
other phase. 

In general the disintegration pro- 
cess takes place in stages. When 
one fluid is just  squirted into an- 
other or when stirring processes 
have just  started, the fluid to  be 
dispersed is at first present in bulk. 
The deformation of this bulk of 
fluid and its initial breakup into 
chunks of fluid, which may break 
up further into smaller parts, has 
been much studied ( 8 , 6 , 4 ) .  There 

seems to  be a mechanism that is 
common to such disintegration of 
liquids, to emulsification, and to  
atomization, namely the penetra- 
tion of lamellae and ligaments of 
one fluid into the other. These liga- 
ments then break up into globules, 
which may further split up into 
smaller parts. 

When parts of a drop are sepa- 
rated o r  when a long ligament 
breaks up into dropleb, in most 
cases secondary small droplets are 
also formed. Moreover, the liga- 
ments at the moment of breakup 
will in general not all be equally 
thick. Hence during these disinte- 
gration processes drops of different 
sizes are  formed. As the sizes seem 
to depend on many uncontrollable 
conditions, a t  present it is practi- 
cally impossible to predict theoreti- 
cally the final size distribution of 
a dispersion. Of course this does 
not exclude the possibility of mak- 
ing predictions from empirical 
correlations. 

Concerning the various stages of 
disintegration processes, important 
contributions have already been 
made by theoretical and experi- 
mental studies of the instability of 
liquid films and cylindrical liquid 
ligaments and of the breakup of 
drops ( 6 , 1 5 ) .  These theories can be 
applied to some simple types of 
atomization, but for  the reasons 

stated above they still fail to de- 
scribe quantitatively “chaotic” dis- 
integration processes. More knowl- 
edge is required concerning the 
detailed mechanisms of breaking- 
up processes, as  for  instance the 
splitting up of small fluid lumps of 
the dispersed phase during the final 
stages of disintegration. For  this 
case an attempt is made in the 
present paper to systematize the 
various ways in which single glob- 
ules can break up. These considera- 
tions a re  applied to the breakup of 
globules in  a viscous flow, to drops 
exposed to an air  flow, and to 
emulsification in turbulent flow. In  
these few cases it appears possible 
to obtain an expression for the 
average value of the maximum 
globule size that  can withstand the 
forces of a known hydrodynamic 
flow field. 

BASIC TYPES OF GLOBULE 
DEFORMATION AND FLOW 
PATTERN 

Globules can split up owing to 
hydrodynamic forces in a number 
of different ways tha t  depend on 
the flow pattern around them. In 
general the following three basic 
types of deformation (illustrated 
in Figure 1) can be recognized. 

Type  1. The globule is flattened, 
forming in the initial’ stages an 
oblate ellipsoid (lenticular deforma- 
tion). How deformation proceeds 
during the subsequent stages lead- 
ing to breakup seems to depend on 
the magnitude of the external 
forces causing the deformation. 
One possibility is that the drop 
deforms into a torus, which, after 
being more or less stretched, breaks 
into many small droplets. 

T y p e  2. Here the globule becomes 
more and more elongated, forming 
in  the initial stages a prolate ellip- 
soid, until ultimately a long cylin- 
drical thread ,is formed, which 
breaks up into droplets (cigar- 
shaped deformation). 
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TABLE l.-pOSSIBLE CONDITIONS FOR BREAKUP O F  A GLOBULE 

A .  Dynamic pressures B. Viscous stresses 
Flow pattern around the globule 

Type of 
deformation 

1. Lenticular . . ( a )  Parallel ( c )  Axisymm. ( e )  Rotat. ( a )  Parallel ( c )  Axisymm. ( e )  Rotat. 
hyperbol. h yperbol. 

2. Cigar-shaped ( b )  Plane ( d )  Couette ( b )  Plane ( d )  Couette 

3. Bulgy . . . . . . hyperbol. h yperbol. 
(f) Irregular 

Type 3. As the surface of the 
globule is deformed locally, bulges 
and protuberances occur, and thus 
parts of the globule become bodily 
separated (bulgy deformation). 

Of the various flow patterns that  
may cause a globule to deform in 
one of these basic ways, those con- 
sidered here are given in Figure 2. 
In addition an  irregular flow field 
f as occuring in turbulent flow is 

viscous stresses. The possible com- 
binations of flow patterns and 
types of deformation, or more pre- 
cisely the most important of the 
possible ways in which a globule 
can be broken up by hydrodynamic 
forces, a re  given in Table 1. 
Thus i t  is expected that  deforma- 
tion of type 1 will occur if the 
globule is subjected t o  the dynamic 
pressures or viscous stresses pro- 

Breakup will occur if there is a 
sufficient degree of. deformation, 
that  is, if the region of the flow 
pattern causing a specific def orma- 
tion is sufficiently large to contain 
the  deformed globule and if the 
flow pattern persists long enough. 

Various possibilities may be con- 
sidered somewhat more closely. 

Flow. Here the globule has a trans- 
Lenticular Deformation in Parallel 

, -4-, 

TYPE 1 
'iLENTICULAR" 

Fig. 1. 

a PARALLEL FLOW 

latory motion relative to the ambi- 
ent fluid. This motion will persist 
longer if the density of the globule 
is much greater than that  of the 
ambient fluid. An example of the  
dynamic case A l a  (see Table 1) is 
the bursting of a drop in an air 
flow. If the flow is viscous (case 
B l a )  , the tangential viscous forces 
on the interface cause a torodial 

TYPE 2 TYPE 3 internal circulation, shown the- 
"CIGAR-SHAPED" " BULGY " oretically by Hadamard(7) and ex- 

perimentally by Garner ( 5 ) ,  which 
produces at the interface normal 

\ 
/--. 

/ 

Basic types of globule deformation. 

D PLANE HYPERBOLIC FLOW C .  AXI-SYMMETRlC 
HYPEilBOUC FLOW 

d COUETTE FLOW < ROTATING FLOW 

Fig. 2. Flow patterns that can cause one of the 
basic types of globule deformation. 

considered. For  the rotating flow 
pattern e it is assumed that the 
fluid rotates bodily. It is further 
assumed that  the flow patterns con- 
sidered are large compared with 
the globule size but are  still local 
flow patterns in the entire flow field. 
Finally one may distinguish be- 
tween deformation by external 
dynamic pressures and that  by 

duced by the parallel flow a, the  
axisymmetric hyperbolic flow c, and 
the rotating flow e .  Type 2 deforma- 
tion (cigar-shaped deformation) 
can be caused by the plane hyper- 
bolic flow b and the Couette flow d, 
and type 3 (bulgy deformation) is 
brought about only by the dynamic 
pressures occurring in the irregu- 
lar  flow pattern f. 

forces t h a t  in conjunction with the 
external normal compofient of the  
viscous stresses tend to deform 
the globule. 

Flow (Cases A l e  and B l e ) .  The 
globule is assumed to be in a re- 
gion where the ambient fluid ro- 
tates about an axis coinciding with 
that  of the globule. Also here it 
will in general be necessary to  
have an appreciable difference in 
density in order to make the centri- 
f ugal forces sufficiently great :o 
bring about breakup of t h e  globule. 

Cigar-shaped Deformation in Plane 
Hyperbolic Flow (Cases A2b and 
B 2 b ) .  The elongation occurs along 
that axis in the plane of the flow 
in which the direction of the vel- 
ocity is away from the origin. 

Flow. In the dynamic case A2d the  
pressure distribution on the globule 
causes initially an elongation along 
an  axis at 45" to the direction of 
flow. After this, pressure distribu- 
tion on the elongated globule will 
cause further eIongation and also 
a slight rotation, until the elon- 
gated globule has reached a posi- 
tion in  which only continued elonga- 
tion with eventual breakup can take 

Lenticular Deformation in Rotating 

Cigar-shaped Deformation in Couette 
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place. In the viscous case B2d the 
tangential forces at the interface 
cause internal circulation. The nor- 
mal components of the  viscous 
forces cause the globule to deform 
into an ellipsoid. The axes of the 
ellipsoid fall in the principal planes 
of the stress distribution of the 
shear flow (that is, the planes with 
no tangential stress). Also here, 
after sufficient elongation, breakup 
may occur. 

The third type of deformation 
takes place if local presure dif- 
ferences a t  the interface (flow pat- 
tern f )  cause initial bulges which, 
helped perhaps by a general paral- 
lel flow past the globule, may de- 
velop into protuberances, which 
may then possibly split up. 

We thus see that a preference 
for  a given type of deformation 
and breakup depends not only on 
the local flow pattern around the 
drop, but also on the physical 
properties of the two phases, name- 
ly their densities, viscosities, and 
interfacial tension. 

In  atomization the possibilities 
Ala  and A2d will be the ones most 
frequently encountered ; sometimes 
also A3f will be possible. 

In  the case of gas dispersion in 
liquids (froth - formation), more 
particularly if the liquid is in 
violent turbulent motion, the fol- 
lowing conditions will often occur: 
Ale,  AZb, AZd, Ale ,  and A3f .  

In  emulsification processes it is 
reasonable to expect the conditions 
B2b and BZd, with the odds on B2d, 
to occur in viscous flows; whereas 
in turbulent flows the conditions 
Ale,  A2b, AZd, and A3f may occur, 
with the odds perhaps on A2d. 

FORCES CONTROLLING THE 
SPLITTING U P  OF A GLOBULE 

An isolated globule will be con- 
sidered on the surface of which 
external forces act in such a way 
as t o  cause a deformation of the 
globule. c is this force per unit 
surface area; in general it will 
vary along the surface and will be 
a function of time. It may be a 
viscous stress or a dynamic pres- 
sure set up in the surrounding con- 
tinuous phase. 

Owing to the deformation of the 
globule, internal flows are  set up 
that cause viscous stresses as well 
as dynamic pressures. Furthermore 
the interfacial tension o will give 
rise to a surface force that  will in 
general counteract the deformation. 
If D is the diameter of the globule, 
the surface-tension force will be of 
the order of magnitude GID. In  the 
first instance the dynamic pressure 
will be of the same order of magni- 

tude as c, causing flow velocities of 
the order of magnitude ( C / P ~ ) ~ .  

Thus the viscous stresses are  of 
the order of magnitude 

9-45 
where pd and pa are  the viscosity 
and density of the globule. 

These three forces per unit area 

I- 

T, a/D,  and $- d$; 
control the deformation and break- 
up of the globule. The ratio be- 
twe'en each two of these forces is 
a dimensionless magnitude. Three 
dimensionless groups may be 
formed in this way, only two of 
which are  independent. 

For one of the dimensionless 
groups the combination N,, = zDI 
5,  a generalized Weber group, was 
chosen. The qualification "general- 
ized" was added because, strictly 
speaking, the Weber group usually 
refers to  p U 2 D l ~  where pUz is the 
dynamic pressure of a fluid flow. 

For the other dimensionless 
group either 

may be chosen, the latter being the 
Reynolds group. However, since the 
two groups contain the external 
force C, the ratio between these 
two groups was preferred. It con- 
tains only the properties of the  
globule 

Nvi = - Pa , a viscosity group. 
d L z  

This group is called a viscosity 
group because it  accounts for  the 
effect of the viscosity of the fluid 
in the globule. 

Of course the two groups Nwe 
and N ,  will immediately result 
from applying formal dimensional 
analysis and taking into account 
the magnitudes Z, D ,  5, pa, and pb. 

The greater the value of Nwe, 
that  is, the greater the  external 
force z compared with the counter- 
acting interfacial-tension force alD, 
the greater the deformation. A t  a 
critical value ( Nwe)  orit, breakup 
occurs. 

Experiments have shown that  the 
mechanism of breakup is quite 
simple when Nwe is equal to  or 
slightly higher than (N,,) The 
more N,, exceeds i ts  critical value, 
the more complicated this mechan- 
ism becomes. For N,,> > ( Nwe)  cdt 

this mechanism is very complex, . 
and the disintegration process is 

more o r  less chaotic. This subject 
will be considered when the  burst- 
ing of a drop in an air stream is 
described. 

If the breakup of a globule is 
one of the final stages of a general 
disintegration process, then usually 
the NKe for  breakup does not 
greatly exceed the critical value, 
and so the mechanism of breakup 
remains the simple type. 

Since the deformation process 
can be described in terms of the 
two dimensionless groups, in gen- 
eral, (NTve) Orit will be a function of 
NTTt. For this relation the following 
form is chosen 

( N w ~ )  c i i t  = C [ l  + CP (Nvi)] (1) 

where the function 'p decreases to  
zero when N,,+o. In this form C 
is the value of Wecrzt for  vanishing 
viscosity effect of the globule liquid. 
In this relation C and cp are  still 
dependent on the external condi- 
tions, since the force z is deter- 
mined by the flow conditions In 
the continuous phase around the 
globule, which can also be described 
in terms of other dimensionless 
groups. The (Nwe)cr4t will be dif- 
ferent for  the three basic types of 
deformation and will also be de- 
pendent on the local flow pattern 
around the globule. 

If the flow pattern is the same 
throughout t h e  entire flow region, 
all globules larger than their criti- 
cal size will break up according to 
the same mechanism. For  all these 
globules the same value of 
(Nwe)cr i t  is valid. 

In more complicated flow fields 
where locally and temporarily dif- 
ferent flow patterns of varying 
flow velocities occur, as for in- 
stance when the continuous phase 
is in turbulent motion, the 
(Nw,)cTt t  will not be the same for  
all the globules present in the flow 
field. Some statistical mean value 
of (Nw,)crzt will then determine 
the average size of the largest 
globules that  can still withstand 
the breakup forces of the flow field. 
To arrive at this statistical mean 
value a higher weight must be as- 
signed to  those flow patterns and 
types of deformation which pro- 
duce a lower value of ( N W , ) , ~ { ~ .  

DEFORMATION OF GLOBULES 
I N  VISCOUS FLOW 

Fundamental work on the split- 
ting up of drops in viscous flow was 
done by Taylor (16) and Tomotika 
(28). Taylor developed a theory 
based upon a few obvious assump- 
tions, such as small deformations, 
no slip at the interface, and con- 
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tinuous shear stress across the in- 
terface. He considered two types 
of flow, namely the Couette flow 
(type d of Figure 2 )  and the plane 
hyperbolic flow (type b of Figure 
2) - 

Because of the shear flow of the 
continuous phase the originally 
spherical drop is deformed into a n  
ellipsoid (basic type 2 )  , the  cases 
B2b and B2d of Table 1. 

According to Taylor's theory the 
deformation of the globule is pre- 
dominantly determined by the gen- 
eralized Web,er group. 

P c  s D N,, = -7 
where S is the maximum velocity 
gradient in the flow field of the  
continuous phase. 

In two apparatuses which sirnu- 
late the Couette flow and the rJlane 
hyperbolic flow respectively, Taylor 
has studied the deformation of a 
single drop as a function of S; he  
determined the value of S at which 
the breakup of the drop occurs, 
that  is, (Nw,),,,. This has been 
done with liquids that  show the 
following ratios between the vis- 
cosities : 

0.0003,0.5 0.9, and 20. Pd 

P C  

-= 

Throughout the experiments the 
viscosity of the continuous phase 
was essentially the same, namely 
about 100 c.g.s. units. 

The few data of Taylor's experi- 
ments are given in Figure 3. They 
show that in all cases a drop bursts 
more easily in the plane hyperbolic 
flow than in the Couette flow. If 
C (iVwe) for hyperbolic flow] I 
[ (Nwe)mt  for Couette flow] is de- 
termined, the curves in Figure 3 
seem to indicate a maximum value 
of about 0.4 at & / p c - l .  For both 
types of flow a minimum value of 
(Nw,)cr6t of less than 1 is obtained 
at a value of p,,lpc>l (roughly at 
5 ) .  

[n the case of the Couette flow 
Taylor observed the remarkable 
faet  that  a t  palpc = 20 there was 
no breakup of the drop; the drop 
was only slightly deformed and 
showed a slow rotation in the di- 
rection of flow. Such a rotation, 
however, cannot occur in the plane 
hyperbolic flow; indeed, in that  
flow breakup did ultimately occur. 

In neither type of flow was there 
any breakup a t  all during the ex- 
periments at the viscodity ratio 
pd/pc = 0.0003, even a t  the highest 
rates of riow applied. This result 
can be explained by the results of 
Tomotika's theoretical investiga- 
tions ( 1 7 ) .  He considered the sta- 
bility o i  an  infinitely long cylindri- 
cal column 01 a viscous llquld sur- 
rounded by another viscous liquid 
when subjected to disturbances of 
rotational symmetry. He found 
thiit the optimum wave length Copt ,  
a t  which the rate of increase of 
the uisturbance is a t  its maximum, 
increases to infinity if the viscosity 
ratio p d / p c  becomes either infinite 
or zero. 'Ihis means that the chance 
of the breakup of a drop cieformed 
into a cylindrical thread is very 
slight at those extreme viscosity 
ratios. 

The values of <optlDe, where D, 
is the diameter of the  cylindrical 
thread, a re  also given in Figure 3. 
Apparently a minimum value of 
C o p ,  occurs at pd / [" ,=0 .28 ,  that  is, 
a t  pd /pG<l .  Hence, for the same 
diameter of the column the smallest 
drops caused by the breakup of the 
column a r e  obtained at this vis- 
cosity ratio. 

If the energy necessary to de- 
form the drop is neglected, the 
power input must be equal to the 
dissipation in the flow of the con- 
tinuous phase. This dissipation per 
unit mass a is equal to pcS21pc for  
the Couette flow, and to 4 pcSz/p, 
for the plane hyperbolic flow. 

From Figure 3 i t  may be con- 
cluded that  t h e  energy input re- 
quired to break a given drop 

reaches its minimum a t  p d / p c > 1 .  
But in view of the results obtained 
by Tornotika(l7,18) it is possible 
tha t  smaller drops a re  formed at a 
p d l p c < l .  One can estimate from 
Figure 3 that  the energy input re- 
quired for  breaking the same drop 
is smaller for the hyperbolic flow 
than for  the Couette flow. 

Although it would be very de- 
sirable to have more data available 
from experiments such as those 
carried out by Taylor, yet it is 
possible to draw conclusions, albeit 
with some reserve, from his few 
experimental results : 

1. It will be very difficult to dis- 
perse fluids that show a high vis- 
cosity ratio. This becomes obvious if 
one considers the extreme eases: dis- 
persion of gas bubbles in viscous 
liquid flow, and dispersion (atomiza- 
tion) of liquid drops in viscous gas 
flow. This explains why in practice 
dispersion by pure viscous flow is 
restricted to emulsification processes. 

2. For a given energy input per 
unit time and mass of the continuous 
phase, the drop that can resist the 
shear flow without breaking will be 
smaller if the liquid with the greater 
viscosity is the dispersed phase ( p d /  

3. A dispersion in which pd/pc<l  
can contain a larger fraction of small 
drops than one in which pa/yc>l,  
although for the same energy input 
the largest drops may be larger; tha t  
is, the dispersion may be less uni- 
form. 

If relation (1) is applied to the 
results given in Figure 3, the  as- 
sumption that at least C must be 
a function of pd/j*c, becoming in- 
finite for  pd/pc-+O and probably also 
for  pd/po+ 00, is obvious. The func- 
tion cp may also increase indefinitely 
with increasing Nvi. If (Nwe)Crpt 
is plotted against Nv%, the mini- 
mum value for  (Nw,),,it is ob- 
tained at rather high values of 
NV6, namely 100 and more. From 
the relation between ( Nwe)  crlt and 
p a l P C  one may conclude tha t  the 
minimum value of (Nwe)GrZt  will 
occur at lower values of NVi as the 
viscosity of the continuous phase 
decreases. 

BREAKUP OF A DROP IN AN 
AIR STREAM 

Investigation into the bursting 
of drops in an air  stream has a 
long history, dating to before 1904, 
when Lenard published his experi- 
ments (14). Shortly after World 
War I Hochschwender made simi- 
lar experiments (Il), and in recent 
years drop deformation and break- 
up have been studied both experi- 
mentally and theoretically(2,9,1O, 
12,19,20) in various countries. 

If a drop exposed more or less 
suddenly to a parallel air flow (flow 

P c > l ) .  

Page 292 A.1.Ch.E. Journal September, 1955 



pattern a of Figure 2) is con- 
sidered for  not too small drops 
and for a relative air  velocity suffi- 
ciently great to bring about break- 
up of the drop, the Reynolds num- 
ber fo r  the flow around the drop 
will in general be sufficiently great 
for the external dynamic pressure 
forces to  overshadow the external 
viscous forces. The external forces 
can then be expressed in terms of 
pcUo2, where po is the density of 
the continuous phase and U ,  the 
maximum value of the air  velocity 
relative t o  the drop. In this case 
the Weber group has its original 
notion : 

Hinze (9,lO) has shown theoreti- 
cally that (iVwe) cdt depends not 
only on N ,  but also on the way in 
which the relative velocity varies 
with time. Two cases have been 
studied by the various investiga- 
tors, namely that of the t rue shock 
exposure and that  of the falling 
drop. (Nwe)or$t turns out to  be 
much smaller for the first case. 

For N ,  = 0 and true shock ex- 
posure ( N w e )  Orit N 13, whereas for  
a falling drop ( N w e )  crit N 22 (10) .  
( N w e )  c,.jt increases with increasing 
Nvi. Figure 4 shows results of 
laboratory experiments studying 
this effect of the viscosity of the 
drop on its breakup. Figure 4 also 
shows theoretical curves fo r  the 
case of true shock exposure. These 
two theoretical curves refer to  the 
cases of slight viscosity effect and 
great viscosity effect respectively. 
For great viscosity effects, which 
occur when Nvi>0.5, the rate of 
deformation is so low that the 
relative air  velocity decreases sub- 
stantially during the process of de- 
formation and breakup, and so con- 
sequently do the breakup forces. 
Theoretical considerations show 
(see Figure 4) that  ( N w e )  crLt+ 00 

for indefinitely increasing NVL. The 
experimental results seem to indi- 
cate that already at NVj>2 break- 
up will cease. 

All investigators of the mechan- 
ism of breakup observed that dur- 
ing the breakup process the drop 
passes in succession through the 
stages of extreme flattening, for- 
mation of a torus with attached 
hollow-bag-shaped film of increas- 
ing size, bursting of the film, and 
breakup of the torus. Experiments 
a t  Delft showed that this mechan- 
ism still remains even for large 
effects of the drop viscosity. 

Lane(12) was the first to draw 
attention t o  the fact that at 

:L 
YPdOD 

10 

04 

SLIGHT VISCOSITY EFFECT 

= THAT FOR GREAT VISCOSITY 

0 01 
1 12 14 16 18 2 2.2 2 4  2.b 2.8 3 

N T r i t  

(Nwc)cnt torNv,=o 

Fig. 4. Effect of N ,  on ( N W J d t  in the case of a drop 
suddenly exposed t o  an air stream. 

uistance rum Pipette 

Fig. 5. Short-flash photographs showing the breakup of a drop at 
increasing values of NTVe. Gas oil; D = 3.9 mm.; (N, , .e)crLt  e 13. 
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Nwe> > (Nwe)  D ~ P i t  the mechanism of 
breakup is different from the one 
just described. Figure 5 shows a 
series of short-flash photographs 
taken during the Delft experiments 
of drops launched in a horizontal 
air  flow. With increasing Nwe the 
nature of breakup changes in the  
direction of a more chaotic disin- 
tegration process. One may notice 
that the shape of the bulk of the 
drop during the initial stages of 
deformation is different for the two 
mechanisms. In  the case of the first 
mechanism, that is at low Nwe, 
the drop during deformation has 
the convex part directed down- 
stream, whereas in that of the sec- 
ond mechanism, a t  large Nwe, the 
the convex part is directed up- 
stream. The nonuniform pressure 
distribution along i t  causes an ac- 
celeration of the drop. The accelera- 
tion forces acting on the fluid 
particles of the drop produce a 
deformation in addition to  that  
caused along the drop by the pres- 
sure distribution, which is assumed 
t o  be steady. The first kind of de- 
formation mentioned above is more 
comformable to the pressure distri- 
bution along the drop alone, where- 
as the second kind is more com- 
formable to what might be expected 
of the acceleration effects alone. 
Moreover for Nw,> > ( N w e )  a 
kind of stripping off of the drop 
surface takes place owing to waves 
and ripples generated there. 

Although the transition from 
the first mechanism to  the second 
with increasing N,, is more or  
less gradual, it appears possible to 
introduce a second critical Nwe 
pertaining to this transition. An 
analysis of the experimental re- 
sults concerning this second criti- 
cal N,, shows it  to be a quite com- 
plicated function of the dimension- 
less groups N,, N,, pertinent t o  
the flow around the drop, and pd/po. 

EMULSIFICATION IN TURBULENT 
FLOW 

The dispersion of one liquid into 
another as the result of keeping 
the latter in violent turbulent mo- 
tion is restricted here to the case 
of emulsification under noncoalesc- 
ing conditions, which can be real- 
ized, for instance, by taking low 
concentration of the dispersed 
phase so  that  the chance of coalesc- 
ing, in so  fa r  as i t  is determined 
by statistical mechanical conditions, 
is very slight. 

More or less unconsciously guid- 
ed by the mechanism observed by 
Taylor in viscous shear flow, in- 
vestigators have commonly believed 
hitherto that also in turbulent flow 

splitting up of drops is the result 
of viscous shearing action(4, IS). 
However, a first requisite for such 
breakup of drops is that  not only 
the undeformed drop, but also the 
elongated drop, must be small com- 
pared with the local regions of 
vis.cous flow. For not too small 
values of the Reynolds number the 
spatial dimensions of such local 
regions are  very small, compared 
at least with the largest drops 
observed in the emulsion. Hence 
i t  is more logical to assume that 
the dynamic pressure forces of the 
tui-bulent motions are the factor 
determining the size of the largest 
drops. These dynamic pressure 
forces are caused by changes in 
velocity over distances at the most 
equal to the diameter of the drop. 
In regard to the area just around 
the drop, the plane hyperbolic, the 
axisymmetric and Couette flow pat- 
terns are  the ones most likely to  
be responsible for breaking up the 
largest drops (compare the possi- 
bilities AZb, Alc ,  and A2d of 
Table 1 ) .  The kinetic energy of a 
turbulent fluctuation increases with 
increasing wave length. Thus veloc- 
ity differences due to fluctuations 
with a wave length equal to 2d 
will produce a higher dynamic 
pressure than those due to  fluctua- 
tions with a shorter wave length. 
If these fluctuations are assumed 
to be responsible for the breakup 
of drops, for (Nwe).,.4t in the rela- 
tion (1) may be placed 

- 
pCv2Dmdz 

( N W J  crit = -g-, 

where 3 is the average value 
across the whole flow field of the 
squares of velocity differences over 
a tclistance equal to D,,,. To relate 
this average kinetic energy to this 
distance, one considers the simplest 
case, namely an isotropic homo- 
geneous turbu1.ence. For this case 

of turbulence the main contribu- 
tion to the kinetic energy is made 
by the fluctuations in the region 
of wave lengths where the Kolmo- 
goroff energy distribution law is 
valid. In  this region the turbulence 
pattern is solely determined by the 
energy input E per unit mass and 
unit time. It can be shown that  fo r  
this region 

- 
tr2 = (71 (€0) 2/3 

where C,-2.0 according to  Batche- 
lor ( 1 ) .  

If for  the moment one assumes 
that N,,<<l, then one obtains 
from 1: 

or 

This simple result also follows di- 
rectly from dimensional reasoning 
once i t  has become evident that 
only the quantities pc, o, and E de- 
termine the size of the largest 
drops. 

If this result is to be applied to 
fields of nonisotropic turbulent 
flow, i t  must be assumed that the 
turbulence pattern is practically 
isotropic in the region of wave 
lengths comparable to the size of 
the largest drops. Indeed, many 
actual, nonisotropic, turbulent flows 
do show an energy spectrum the 
high-energy part of which can often 
be approximated by the Kolmogo- 
roff spectrum(I3). 

Furthermore, nonisotropic tur- 
bulent flows are not usually homo- 
geneous, and so the energy input 
and dissipation are not constant 
across the flow field; morebver 
there is no equilibrium between 
energy input and dissipation at  

Jq 
@C = 

Fig. 6. Maximum drop size as  a function of the energy input 
according to  experimental data by Clay. 
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each point. In this case, even if 
local isotropy is present, the  drop 
size as determined by (2) is still 
a function of the space coordinates. 

If in the emulsifying apparatus 
the flow field is not too inhomo- 
geneous, the powerful diffusive 
action of turbulence causes the 
average size of the largest drop in 
the whole field to correspond to  
the average energy input across 
this field. 

With these assumptions formula 
(2) has been applied to  the results 
obtained by Clay(.?) with his model 
arrangement consisting of two 
coaxial cylinders, the inner one of 
which rotated. Clay determined 
drop-size distributions and from 
these calculated the value of D B 5 ;  
this is the value for which 95% 
by volume is contained in the drops 
with D<D95. If one takes D m a , e  
D,, andapplies the theory to  this 
D,,, one obtains for  (2) : 

D,,, ($)3’5e2’5= 0.725 

with a standard deviation of 0.315. 
Figure 6 shows that notwith- 

standing the wide scatter the data 
follow pretty well the relation (2) .  
In  this figure the relation is writ- 
ten : 

L 4 - 1  
P 2  PCU 

An appreciable scatter of test 
data is quite usual in phenomena 
with processes governed by statisti- 
cal laws, but the very large scat- 
ter  obtained here is most probably 
due to the rather crude way in 
which the drop-size distributions 
were obtained, which made the de- 
termination of Dg5 very inaccurate. 

It would be interesting to know 
how far  the relation (3) is ap- 
plicable to other emulsifying ap- 
paratus. If the flow field is not too 
inhomogeneous (for instance, if 
there is emulsification by turbu- 
lence in pipe flow) the relation 
might well be applied; but in stir- 
ring apparatus, with paddles and 
the like, the intensity of turbu- 
lence will vary appreciably, being 
highest close to the paddles. Al- 
though perhaps the maximum drop 
size may still follow roughly the 
-215 law of the energy input, i t  
is reasonable to  expect a much 
smaller value at least for  the 
numerical constant. 

From the relation (3) it is possi- 
ble ta calculate the value of 
(Nwe) tr i t .  This, of course, will be 
a statistical mean value. If one 
substitutes 3 = 2.0 (ED,,,) 8 in the 
expression ( N ~ ~ )  c,.it = p o 3  D,,,t 0, 

one obtains ( N m e )  crLt = Z.OQ,S~/~  
Dma55/3/a; thus with the empirical 
relation (3) : (Nm;)crlt = 2& 
(0.725)5/3 N 1.18. This value of 
roughly 1.2 is nearer to the value 
pertinent to the breakup of a drop 
in viscous shear flow, that  is, ac- 
cording to type 2,  than to that  
found for the breakup in a parallel 
air flow, that is, according to  type 
1. 

Calculation of the values of N ,  
pertinent to D,, showed that in all 
cases N ,  was smaller than 0.3 and 
in most cases even smaller than 0.1. 
Obviously the duration of the fluc- 
tuating turbulence forces that 
were responsible for the breakup of 
drops larger than D,,, was too 
short to allow of an appreciable 
viscosity effect. 

CONCLUDING REMARKS 
In  three cases of the breakup of 

drops, namely that in a viscous 
shear flow, that in an air flow, and 
that in a turbulent flow, i t  has 
been shown that  there may be 
various mechanisms of breakup in 
dispersion processes and that 
(Nwe).&t will then be different too. 
Apparently ( N w e )  Grit is appreciably 
smaller in breakup according to 
deformation type 2 than in breakup 
according to the other types of 
deformation, The difference in 
density between the dispersed and 
the continuous phase has an impor- 
tant effect on the  way in which 
breakup occurs. 

Thus if one wants to  apply values 
for (Nwe)crit obtained in one way 
to other dispersion processes, one 
has first to make sure that there 
is not a basic difference between 
the two dispersion processes; if 
there is, incorrect results might be 
obtained. This has too often not 
been realized. 
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NOTATION 
D = globule diameter, cm. 
D,,, = largest drop size, em. 
D9, = value of D for which 95% by 

volume is contained in the 
drops with D<Dg5 ,  em. 

D, = diameter of cylindrical thread, 
cm. 

S = maximum velocity gradient in 
external flow field, sec.-l 

F= average value of square of dif- 
ference in turbulence velocity, 
sq. em./ 

U = relative velocity with respect 
to globule, cm./sec. 

U, = maximum value of U ,  cm./sec. 
T = surface force per unit area, 

dyne/sq.cm. 
ts = interfacial tension, dyne/cm. 
p = absolute viscosity, g./ (em.) 

(sec.) 
Q = density, g . / ~ m . ~  

Copt  == optimum wave length (cm.) 
 energy input per unit mass 

and time, or dissipation per 
unit mass, sq.cm.Isec.3 - . -  

N ,  = viscosity group =pat\/pdeD 
Nme = Weber group = TD/v ,  or 

~ ~ U , 2 D l t s ,  or p,;;iDlts 
( N m e )  d t  = critical value of Nwe 

for breakup 

Subscripts 
c = continuous phase 
d = dispersed phase 

c.g.s. units are  used. 
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