AN INTRODUCTION TO FULLY AUGMENTED LINKS

JESSICA S. PURCELL

ABSTRACT. In this article we summarize information on the class of fully augmented links.
These links are geometrically explicit, and therefore provide a large class of examples of
hyperbolic links for which geometric information can be computed.

1. INTRODUCTION

The purpose of this paper is primarily expository, to introduce students and researchers
in 3-manifolds, hyperbolic geometry, knot theory, and related fields to a class of hyperbolic
links which is geometrically explicit, but seems to be underutilized.

The class which we study is that of fully augmented links. These are obtained from
diagrams of links in S® as follows. Let K be a link with diagram D(K). Regard D(K)
as a 4—valent graph in the plane. A string of bigon regions of the complement of this
graph arranged end to end is called a twist region, as is a vertex adjacent to no bigons.
We assume throughout that the diagram is alternating in a twist region, else it can be
replaced by a diagram with fewer crossings in an obvious way. To form a fully augmented
link, we encircle each twist region with a single unknotted component, called a crossing
circle. The complement of the result is homeomorphic to the link obtained by removing
all full-twists, i.e. pairs of crossings, from each twist region. See Figure 1. A diagram of
the fully augmented link therefore contains a finite number of crossing circle components,
each perpendicular to the projection plane and encircling exactly two strands of the link.
The other link components are embedded on the projection plane, except possibly for a
finite number of single crossings adjacent to crossing circles. These single crossings we call
half-twists.

The original link complement can be obtained from the fully augmented link by perform-
ing (p,1) Dehn filling on the crossing circles, for an appropriate choice of p. This process
appears, for example, in Rolfsen’s book [15].

Geometric properties of augmented links seem to have been studied first by Adams [2].
Rather than adding a crossing circle to each twist region, or augmenting, Adams considered
diagrams where some collection of twist regions are augmented. He showed that if the
original link has a nonsplit prime alternating diagram, and is not a (2, ¢) torus link, then
any augmentation is a hyperbolic link.

These ideas were used by Lackenby to show that families of alternating knots admit no
exceptional Dehn fillings [8], and to determine information on the volumes of alternating
knots [9]. In an appendix to [9], I. Agol and D. Thurston investigated the geometry of
fully augmented links, using a decomposition of the link complement into ideal polyhedra
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F1GURE 1. Left to right: A link diagram. The augmented link diagram. A
diagram of the corresponding fully augmented link.

to improve Lackenby’s upper bound on volume. As far as I am aware, this appendix is the
first place the polyhedral decomposition appeared in print.

We describe Agol and Thurston’s decomposition of fully augmented links into totally
geodesic, right angled ideal polyhedra below. Manipulating these polyhedra allows us to
determine geometric information on the links, including bounds on volume, cusp shape and
cusp area. These have been used to bound exceptional surgeries on knots [7], volumes of
knots [6], and cusp shapes [13]. Moreover, the polyhedral decomposition enabled Chesebro,
DeBlois, and Wilton to show that fully augmented links satisfy the virtually fibered conjec-
ture [3]. Restricting to an even more geometrically explicit subset of fully augmented links,
R. Van der Veen was able to show that such links satisfy a version of the volume conjecture
[18]. Thus the geometric properties of these links allow us to prove several interesting facts
about the links and their Dehn fillings.

In this paper, we present many of the above geometric results. Most of the results here
are not new, with the possible exception of Proposition 3.8, which does not seem to appear
elsewhere in the literature. Those results that have appeared before, however, seem to be
scattered throughout many different papers. We present them together in this article to
give a (more) complete picture of the geometric properties of these links.

While I have made every attempt to refer to the appropriate papers where these results
have appeared or have been applied, I may have missed some references that should belong
in this expository paper. I apologize for any such omission.

1.1. Acknowledgements. This paper was written following the workshops on hyperbolic
geometry, quantum topology, and number theory held at Columbia University in June 2009.
We thank the organizers for arranging the workshops, as well as the NSF for its support of
the workshops through an FRG grant. In addition, work on this paper was partially funded
by NSF grant DMS-0704359.

2. POLYHEDRAL DECOMPOSITION AND CIRCLE PACKINGS

Given a fully augmented link, there is an associated polyhedral decomposition of the link
complement into two isometric, totally geodesic, ideal hyperbolic polyhedra, described in
Agol and Thurston’s appendix to Lackenby’s paper [9]. These polyhedra correspond to a
circle packing of S2, which in turn corresponds to a triangulation of S2. All this information
can be read off a diagram of a fully augmented link. We review it in this section.

To create the polyhedral decomposition, first note that a fully augmented link contains
many geodesic surfaces.
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Lemma 2.1. Let L be a hyperbolic fully augmented link, with no half-twists. The follow-
ing surfaces are embedded totally geodesic surfaces in the hyperbolic structure on the link
complement.

e Fach twice—punctured disk bounded by a crossing circle, punctured by two link com-
ponents lying on the projection plane.
e FEach component of the projection plane.

Proof. Any essential 2-punctured disk embedded in a hyperbolic 3—manifold is totally ge-
odesic [1]. We argue that any 2-punctured disk E bounded by a crossing circle must be
essential. For suppose there is a compressing disk D with 9D C E. Since 0D is an essential
closed curve on F, it must encircle one or two punctures of E. If only one puncture, then
the union of D and the disk in S® bounded by 9D (with subset E) forms a sphere in S% met
by the link exactly once. This is impossible. Thus 9D must bound a 2-punctured disk £’
on E. Then EX\E'UD’ is a boundary compressing disk for the crossing circle, contradicting
the fact that L is hyperbolic.

Similarly, a boundary compressing disk D for F will have boundary consisting of two arcs,
one of which is an essential arc « on F with endpoints on the same component of OF. For
each boundary component of F, there is exactly one possibility for a with endpoints on that
boundary component, up to isotopy. In each case, o will separate E into two components,
at least one containing exactly one puncture. Let A C E be the annulus with one boundary
component on a puncture of F, and the other boundary component consisting of two arcs:
one arc «, and the other an arc on another boundary component of . Now attach D to
A along o. Because D is disjoint from FE, this gives an embedded annulus in S3\ L. The
annulus cannot be essential, since L is hyperbolic. Compressing along a compression disk
or boundary compression disk for the annulus again would give a boundary compressing
disk for S3\ L. Thus the annulus must be boundary parallel. Since one component of 9A is
a meridian, the other must be as well, and the boundary of D must be isotopic to a closed
curve embedded on E encircling both punctures. As before, this is a contradiction.

As for the projection plane, notice that reflection through the projection plane preserves
the link complement, fixing the plane pointwise. It is a consequence of Mostow—Prasad
rigidity that such a surface must be totally geodesic. O

To create the polyhedral decomposition of the link complement S3\.L, we cut along
totally geodesic surfaces.

Proposition 2.2 (Polyhedral decomposition of S3\L). Let L be a hyperbolic fully aug-
mented link. There is a decomposition of S>\L into two identical totally geodesic polyhedra.
In addition, these polyhedra have the following properties.

e Fuaces of the polyhedra can be checkerboard colored, with shaded faces all triangles
corresponding to 2—punctured disks, and white faces corresponding to components of
the projection plane.

e [deal vertices are all 4—valent.

e The dihedral angle at each edge is w/2.
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FIGURE 2. Left to right: Steps 1, 2, and 3.

Proof. First, assume those components of L that are not crossing circles lie flat on the
projection plane, i.e. that there are no half-twists. Create the polyhedra by the following
procedure, illustrated in Figure 2:

Step 1. Cut S3\ L along the projection plane, slicing it into two identical pieces, one above
and one below the projection plane. Note this slices each of the 2—punctured disks bounded
by a crossing circle in half.

Step 2. For each of the two pieces resulting from Step 1, slice up the middle of the halves
of 2—punctured disks, opening half disks out as in Figure 2.

Step 3. Collapse each component of the link to a single ideal vertex.

This decomposes S3~\ L into two identical polyhedra.

The edges of the polyhedra come from the intersections of the 2—punctured disks with
the projection plane. We shade the faces coming from 2-punctured disks and leave the
components of the projection plane white. Note that each edge bounds one shaded face
and one white face. Hence the polyhedra can be checkerboard colored. Moreover, note that
each shaded face meets exactly three edges, hence all are triangles.

Ideal vertices correspond to components of the link after cutting, slicing, and flattening
(steps 1 and 2 above). Each component coming from a link component embedded in the
projection plane will meet exactly four edges: two for each of the 2—punctured disks in
which that link component terminates. Each component coming from a crossing circle will
also meet exactly four edges: two for each of the two triangles corresponding to the half
of the 2—punctured disk it bounds in each polyhedron. So ideal vertices are 4—valent, as
claimed.

Finally, note that reflection in the white faces preserves the link complement. Hence
shaded faces must be orthogonal to the white faces, and hence the dihedral angle at each
edge is exactly 7/2.

To obtain S3\.L from the polyhedra, reverse the slicing procedure. First glue pairs of
shaded triangles across a vertex corresponding to a crossing circle, then glue corresponding
white faces in the two polyhedra.

Finally, if L has half-twists, we modify the procedure slightly. Remove all half-twists
from the diagram, then repeat Steps 1, 2, and 3 above to obtain two checkerboard colored
polyhedra, with properties as claimed in the statement of the lemma. To obtain S\ L from
these polyhedra, change the gluing at each half-twist. Rather than glue shaded triangles
across their common vertex on a single polyhedron, glue each triangle of one polyhedron to
the opposite triangle of the other. See Figure 3. The result is homeomorphic to S~ L. [
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F1GURE 3. Left: Gluing shaded triangles in same polyhedron across their
common vertex gives a crossing circle with no half-twist. Left: Gluing each
shaded triangle in one polyhedron to opposite triangle in other polyhedron
inserts a half—twist.

Notice that the polyhedra of the polyhedral decomposition of Proposition 2.2 agree for
fully augmented links with or without half-twists. Only the gluing of the polyhedra changes
when half-twists are present.

By a circle packing, we mean a finite collection of Euclidean circles in R? or S? which meet
only in points of tangency. The nerve of a circle packing is the graph obtained by taking
one vertex for each circle, and an edge between two vertices for which the corresponding
circles are tangent.

Lemma 2.3. Let L be a hyperbolic fully augmented link. Then the polyhedral decomposition
of S3\.L corresponds a circle packing on S? whose nerve is a triangulation of S*. Moreover,
the nerve satisfies the following two properties.

e Fach edge of the nerve has distinct endpoints.
e No two vertices are joined by more than one edge.

Proof. The circle packing of the lemma is given by considering the hyperbolic structure on
the polyhedra of Proposition 2.2. Each white face is totally geodesic. Hence it extends to
the boundary at infinity, S% of H?® to give a Euclidean circle on S%. Since none of the
white faces overlap, but meet only at ideal vertices, the corresponding circles will meet only
in points of tangency corresponding to associated ideal vertices.

The fact that the nerve of the circle packing is a triangulation follows from the fact that
the shaded faces of the polyhedra are all triangles. White faces meet at ideal vertices, so
corresponding to each ideal vertex is an edge of the nerve. Two triangular shaded faces also
meet at each ideal vertex. These group ideal vertices into triples. Corresponding edges of
the nerve form a triangle. See Figure 4.

Finally, notice that since the circles of our circle packing are geometric circles on S2,
a circle cannot be tangent to itself, so each edge has distinct endpoints. Moreover, if two
circles are tangent, then they may only be tangent in a single point. So no two vertices are
joined by more than one edge. O

The circle packing of Lemma 2.3 is obtained by extending white faces to the boundary at
infinity of H®. Notice that the dual circle packing is given by extending shaded faces to the
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FIGURE 4. An example of a circle packing and its nerve.
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FIGURE 5. Each red edge (shown here dashed) is replaced by a crossing circle.

boundary at infinity of H?. To obtain each polyhedron, take the intersection of appropriate
half spaces in H? with boundary the hemispheres corresponding to these circles.
There is a converse to Lemma 2.3.

Lemma 2.4. Let v be a triangulation of S? such that each edge has distinct ends and no
two vertices are joined by more than one edge. Choose a collection of edges of v and paint
them red, such that each triangle of v meets exactly one red edge. Then associated to this
painted graph is a hyperbolic fully augmented link, the nerve of which is ~y.

Proof. By a corollary of Andreev’s theorem noted by W. Thurston [16, Chapter 13], asso-
ciated to v is a circle packing, unique up to Mobius transformation, whose nerve is isotopic
to 7. The circles in the circle packing extend to give hemispheres in H3. Circles dual to our
circle packing also extend to give hemispheres in H>. The intersection of half-spaces in H?
bounded by all these hemispheres, lying between the hemispheres gives an ideal polyhedron
in H3.

We may construct the complement of a hyperbolic fully augmented link by gluing together
faces of this polyhedron and an identical copy of this polyhedron. In particular, red edges
of v will correspond to crossing circles. First glue together triangular shaded faces across
each of these vertices in each polyhedron. Then glue corresponding white faces across the
two polyhedra.

We need to ensure this actually is homeomorphic to the complement of a fully augmented
link. To see the diagram of the fully augmented link, let I' be the graph dual to ~. It is a
trivalent graph on S? with one of every three edges colored red. Replace each red edge by
a crossing circle, as in Figure 5. Then one easily checks that the circle packing associated
with this augmented link agrees with that given by Lemma 2.3. (Il

Figure 5 gives us a combinatorial way of associating a triangulation of S? with the diagram
of a fully augmented link without stepping through the polyhedral decomposition. Namely,
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FIGURE 6. Left: A prime diagram. Right: A twist reduced diagram.

given any augmented link, replace crossing circles (and any half-twists) with red edges,
connecting the strands entering into the crossing circle into a trivalent vertex before and
after the crossing circle, as in the figure. This gives a trivalent planar graph on S2. Its dual
graph, a triangulation of S2, is the nerve of the circle packing of Lemma 2.3.

A choice of red edge for each triangle above is a choice of dimer for the graph . Thus
enumerating all (not necessarily distinct) fully augmented links with a given number of
crossing circles amounts to enumerating triangulations of S? with a fixed number of trian-
gles, along with a choice of dimer for each triangulation. Additionally, there is the choice
at each red edge as to whether to insert a half-twist or not.

The hyperbolicity of a fully augmented link L obtained by augmenting the diagram of
a link K is known to be related to the diagram of K, as well. Recall that a diagram is
prime if whenever a simple closed curve on the projection plane intersects the diagram
in exactly two points, the curve bounds a portion of the projection plane containing no
crossings. A diagram is twist reduced if whenever a simple closed curve on the projection
plane intersects the diagram in four points, adjacent to two crossings, the curve bounds a
region of the projection plane containing a (possibly empty) twist region. See Figure 6.

The following theorem follows easily from work of Adams [2].

Theorem 2.5. A fully augmented link is hyperbolic if and only if the associated knot or
link diagram is nonsplittable, prime, twist reduced, with at least two twist regions. O

The more difficult direction can also be shown using Andreev’s theorem, which was done
in [13, Theorem 6.1]. As for the other direction, if the diagram is not prime or not twist
reduced the corresponding fully augmented link will contain an obvious incompressible
annulus. One twist region (or fewer) gives a Seifert fibered augmented link. We omit the
full details here.

3. GEOMETRIC PROPERTIES OF FULLY AUGMENTED LINKS

3.1. Cusp shape. Restriction of the hyperbolic metric on the complement of a fully agu-
mented link to a horospherical torus about each link component gives a Euclidean structure
on the torus [17]. For more general hyperbolic manifolds, it is often difficult to determine
the Euclidean structure about a cusp. For fully augmented links, however, the cusp shape
can be read off of the circle packing of Lemma 2.3 and the gluing of the polyhedra.

Lemma 3.1. Any cusp of a fully augmented link is tiled by rectangles, each determined by a
circle packing corresponding to a vertex of the ideal polyhedra of Proposition 2.2. Moreover,
the circle packing for any such vertex always consists of two parallel white lines, both tangent
to a pair of white circles as in Figure 7, with all additional circles interior to these four.



8 J. PURCELL
B SROI¢ goo]
O X

FI1GURE 7. Result of taking any ideal vertex to infinity is a rectangle.

Proof. Any cusp of a fully augmented link will correspond to a collection of ideal vertices
in the polyhedral decomposition. Proposition 2.2 implies that ideal vertices are rectangles:
each ideal vertex is 4-valent and dihedral angles are 7/2. To obtain the circle packing,
consider points of tangency of circles in the circle packing of Lemma 2.3. Select one of these
points of tangency, call it p. The circle packing lies on the boundary at infinity of H?, i.e.
on the Riemann sphere S2, = CU{oo}. Therefore there exists a M&bius transformation, an
isometry of H?, taking the point p of tangency of the two circles to the point oo in C U {oo}.

Consider the effect of this Mobius transformation on the circle packing. The two circles
tangent at p will go to parallel lines through oco. Since the nerve of the circle packing is a
triangulation, on either side of p there is a closest circle tangent to both circles mapped to
parallel lines. Each of these two circles will be mapped to circles tangent to both parallel
lines, as in Figure 7. All other circles will be mapped under the Mobius transformation to
circles lying between these four. O

In Figure 8, we show several examples of fully augmented links and the associated “rect-
angular” circle packing, seen with an ideal vertex at infinity.

We remark that many additional beautiful examples of fully augmented links appear in
Chesebro, DeBlois, and Wilton [3, Section 7]. They show the examples of fully augmented
links together with a trivalent graph they call the crushtacean of the link. In our terminol-
ogy, this crushtacean is exactly the dual graph to the nerve of the circle packing associated
with fully the augmented link.

To obtain the shapes of the cusps of augmented links, we need to look at the tilings of
cusps by the rectangles of Proposition 2.2. This is done by walking through the gluing
of polyhedra, forming fundamental domains for the cusps, keeping track of curves corre-
sponding to meridians and longitudes. This is done very carefully in [7]. We reproduce the
argument here for crossing circles, and leave shapes of other cusps as an exercise for the
reader. The following is part of Lemma 2.3 of [7].

Proposition 3.2. Let C be a cusp corresponding to a crossing circle in a hyperbolic fully
augmented link. Then the following hold:

(1) A fundamental region for C consists of two rectangles coming from vertices of the
polyhedra of Proposition 2.2.

(2) A longitude of C is parallel to the curve given by a shaded face intersected with the
cusp boundary, and it intersects white faces twice. See Figure 9.

(3) In the case C corresponds to a crossing circle with no half-twist, a meridian is
parallel to the curve given by a white face intersected with the cusp boundary.
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Ficure 8. Examples of fully augmented links with 2, 3, and 4 crossing
circles, their associated trivalent graphs, and their circle packings. For the
third example, combinatorics of polyhedral decomposition are also shown.

(4) If C corresponds to a crossing circle with a half-twist, then a meridian connects the
corner of one of the rectangles of Figure 7 to the opposite corner.

Proof. The result is obtained by analyzing the gluing across the rectangles of Figure 7. A
rectangle corresponding to a crossing circle cusp is shown for an example on the left in
Figure 9. Note that there are exactly two such rectangles, one on one of the two polyhedra
in the decomposition, and one on the other. The reflection of S3~\ L in the white faces of the
polyhedra glues these two rectangles together along a side corresponding to the intersection
of a white face with the cusp. These are the only rectangles corresponding to this cusp, so
part (1) holds.

From the diagram of the fully augmented link, we see that a longitude of a crossing
circle is parallel to the shaded disk bounded by the crossing circle. In the polyhedral
decomposition, this shaded disk becomes shaded faces. The intersection of the shaded disk
with the boundary of the cusp therefore projects to the longitude. Since the two rectangles
of part (1) are glued along white faces, a longitude must run over both rectangles and
intersect white faces twice, for example as in the middle in Figure 9. This gives part (2).

When there are no half-twists, a meridian can be seen in the diagram of the fully aug-
mented link. It runs along the projection plane, which is one of the totally geodesic faces of
Lemma 2.1, and becomes a white face of the polyhedral decomposition. Thus the intersec-
tion of a white face with the cusp boundary projects to a meridian. Note its endpoints are
on shaded faces which glue to each other, hence it steps along just one rectangle of Figure
7, as shown for example in Figure 9. This gives part (3).
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F1GURE 9. Left: Ideal vertex corresponding to crossing circle. Middle: Fun-
damental region of associated cusp of S3\ L. Without half-twists, A is a
longitude, 1 a meridian. Right: Half-twists cause shearing.

Finally, if C' corresponds to a crossing circle with a half-twist, then a shaded triangle on
one polyhedron is glued to a shaded triangle opposite the vertex corresponding to C' on the
other polyhedron. We see this as a shear in the universal cover, as in the right in Figure 9.
The meridian travels a step along a white side, followed by a step along a shaded side (in
a direction corresponding to the direction of the half-twist). This gives part (4). O

3.2. Canonical polyhedral decomposition. In this section, we show that edges of the
polyhedra obtained in Proposition 2.2 are actually canonical, as defined by Epstein and
Penner [5]. That is, these edges are geometric duals to faces of a Ford domain. Recall
that when a 3-manifold has more than one cusp, as in the case of fully augmented link
complements, a Ford domain corresponds to a choice of horoball neighborhoods about
all cusps. We will see there is a choice of horoball neighborhoods with disjoint interiors
such that the horoball neighborhoods are tangent across every edge of the polyhedra of
Proposition 2.2. It follows that each edge is in the geometric dual of this Ford domain.

Definition 3.3. Given any edge e of a hyperbolic ideal triangle T', define the midpoint of
e to be the point on e where a geodesic from the vertex of 1" opposite e meets e at a right
angle.

In the complement of a fully augmented link, shaded faces form triangles. Thus for every
edge of every shaded face, we may find a midpoint. Two shaded faces are glued to each
other by a reflection through a white face. Since angles are preserved under reflection, the
midpoint of an edge on one shaded face will agree with the midpoint of the same edge in an
adjacent shaded face. Thus each edge of the polyhedral decomposition of a fully augmented
link has a well-defined midpoint.

The following is Theorem 3.8 of [7].

Theorem 3.4. Let L be a fully augmented link. Then there exists a horoball expansion
about the cusps of S3~\L such that the midpoint of every edge is a point of tangency of
horospherical tori.

Proof. Let P be one of the (identical) ideal polyhedra in the decomposition of S3\ L. First,
lift P to H3 so that the (Euclidean) width of the rectangle of Figure 7 is exactly 1. That
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is, the two circles forming sides of the rectangle of Figure 7 have diameter 1. There are
exactly four edges meeting the ideal vertex at infinity. Note the midpoint of each of them
is at (Euclidean) height 1 in H®. Thus a horizontal plane of (Euclidean) height 1 in H? is
a horosphere meeting all the midpoints of edges through the vertex at infinity.

Suppose we cannot expand a horoball neighborhood about all cusps to the midpoints
of the edges. Expand cusps as much as possible, without expanding any cusp beyond the
midpoints of the adjacent edges. In the universal cover, we will see a tiling of H? by copies
of P which we may assume have Euclidean width 1. By assumption, we may apply an
isometry so that the horoball about infinity cannot be expanded to (Euclidean) height 1.
Thus there is a horoball H of diameter A > 1 tangent to the horoball about infinity, which
projects to some embedded cusp of S3\ L which has not been expanded beyond midpoints
of edges. Let z € C be the center of the horoball H of diameter h > 1.

First, notice that z cannot lie strictly between the two white vertical planes of the rectan-
gles of Lemma 3.1, as follows. If so, since the vertical white planes are (Euclidean) distance
1 apart, and H has (Euclidean) diameter h > 1, H must intersect at least one of the two
vertical white planes. Since a reflection in the white planes preserves the link complement,
the isometry given by reflection in the plane meeting H descends to an isometry of S3~\ L.
But under this isometry, H is taken to a horoball intersecting H. This contradicts the
fact that our horoball was embedded. Thus z must lie on one of the vertical white planes
forming top and bottom sides of the rectangle of Figure 7, and the reflection takes H to
itself.

Next, notice that z cannot lie at the endpoint of an edge of the polyhedral decomposition
running down from infinity, for if so, H contains the midpoint of this edge in its interior.
This is a contradiction: we assumed that H was not expanded beyond any midpoints.

Finally, we prove that z cannot lie in the interior of one of the vertical white faces, disjoint
from an edge through infinity. For if so, say z lies on the vertical white plane V, since z is
an ideal vertex of a copy of the polyhedron P, there exists a white plane in H? tangent to
V' at the point z, so that V' and this white plane are both boundary faces of P. The white
plane has boundary a circle C' on C. Consider the projection of C to V. That is, consider
the set of geodesics through points of C' meeting V' at right angles. The endpoints of these
arcs on V define a (Euclidean) circle C” of the same diameter as C, tangent to z. Since C
lies between two vertical planes, it has diameter less than 1. Thus C’ is contained in the
interior of H.

Now apply an isometry taking z to infinity, taking V to itself, and taking the plane with
boundary C' to a vertical plane of distance 1 from V. The circle C’ on the vertical plane
is taken to a horizontal line on V of height exactly 1, which must still lie in the interior of
the image of H. But this is impossible: we assume that H was not expanded beyond the
midpoints of the edges meeting it. This final contradiction finishes the proof. O

Corollary 3.5. The edges of the ideal polyhedra of Proposition 2.2 are canonical edges for
the link complement, in the sense of Epstein and Penner [5]. ]

Note that there may be additional canonical edges in the canonical polyhedral decompo-
sition.
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FI1GURE 10. Central subdivision.

3.3. Volume bounds for fully augmented links. We discussed volumes of fully aug-
mented links in [6]. The following is Proposition 3.1 of that paper.

Proposition 3.6. Let L be a hyperbolic fully augmented link with ¢ crossing circles. Then
its volume is at least 2vg(c — 1), where vg = 3.66386 ... is the volume of a regular ideal
octahedron. Moreover, the volume is exactly 2vs(c— 1) if and only if S*\L decomposes into
regqular ideal octahedra.

Proof. By work of Adams [1], the volume of the complement of L agrees with that of the
augmented link with no half-twists, so we will assume L has no half-twists. Cut S>~ L
along the projection plane, dividing it into two isometric hyperbolic manifolds with totally
geodesic boundary, where the isometry is given by reflection in the projection plane.
Miyamoto showed that if N is a hyperbolic 3—-manifold with totally geodesic boundary,
then vol(N) > —uwgx (V) [10], with equality exactly when N decomposes into regular ideal
octahedra. In our case, each cut half of S3\ L is a ball with a tube removed for each crossing
circle, hence it is a genus ¢ handlebody, and has Euler characteristic 1 — ¢. The result now
follows. O

Definition 3.7. Given a triangle T, define the central subdivision of T to be the subdivision
obtained by inserting a vertex in the center of T', then adding three edges running from the
new vertex to one of the three vertices of T'. See Figure 10.

The following proposition gives all examples of fully augmented links for which the poly-
hedra of Proposition 2.2 decompose into regular ideal octahedra. Hence for these links, the
estimate of Proposition 3.6 is sharp.

Proposition 3.8. Let L be a fully augmented link with polyhedral decomposition into two
polyhedra isometric to P, and let N be the nerve associated with the circle packing of L.
Then P is obtained by gluing reqular ideal octahedra if and only if N is obtained by central
subdivision of the complete graph on four vertices. In this case, there are c—1 such octahedra,
where ¢ is the number of crossing circles in the diagram of L.

Proof. Suppose the polyhedral decomposition of L gives two polyhedra which are obtained
by gluing regular ideal octahedra. Apply a Mdobius transformation taking a vertex of one
of the polyhedra to infinity. This vertex is an ideal vertex of at least one of the regular
octahedra. Under the Mobius transformation, any octahedron with vertex taken to infinity
will give rise to a collection of circles of the circle packing of the form in Figure 11, on the
left.

If multiple octahedra share the vertex at infinity, then we claim they must be glued
together in a linear manner as shown on the right of Figure 11. This can be seen by
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Figure 11. Left: Top down view of a regular ideal octahedron. Right:
such octahedra sharing the ideal vertex at infinity must be glued in a linear
manner, as shown. (Dashed lines show location of dual circles, giving shaded

faces.)

FIGURE 12. Left: Nerve of circles of octahedron is complete graph on four
vertices. Right: For multiple octahedra glued at vertex at infinity, nerve is
central subdivision of graph on the left.

an inductive argument. Given a single octahedron, a second octahedron meeting at the
vertex at infinity will be attached to the first either along a white face or one of the two
shaded faces. If it is attached to a white face, then the two shaded faces on the ends
become quadrilaterals, contradicting Proposition 2.2. By induction, the n-th octahedron
must be attached along one of the shaded faces as well, else again we have a contradiction
to Proposition 2.2.

Consider the portion of the nerve of the circle packing corresponding to the circles of
octahedra sharing this vertex at infinity. If we have just one ideal octahedron, the nerve
is the complete graph on four vertices, as shown on the left of Figure 12. If there are
more octahedra, the result is a central subdivision of the complete graph on four vertices,
subdividing the triangle enclosing the point at infinity, as on the right of Figure 12.

The above holds for any ideal vertex. When we move a different ideal vertex to infinity,
we apply a Mobius transformation. This will change the nerve by moving a new edge to
infinity. (In Figure 12 we pushed this edge off infinity slightly to obtain the curved edge
in that figure.) While the vertices and edges of the nerve may move around, each triangle
before the Md&bius transformation corresponds to a triangle after, with vertices and edges
the images of vertices and edges before. Thus the triangle containing infinity in the nerve
before the Mobius transformation, which we saw was subdivided by central subdivision
once for every octahedron meeting infinity, will be mapped to a triangle which has been
subdivided by central subdivision. Thus the entire nerve is obtained by central subdivision
of the complete graph on four vertices.

Now suppose the nerve of the fully augmented link L is obtained by successive central
subdivision of the nerve of the connected graph on four vertices. We induct on the number
of times we must subdivide to obtain the nerve of L. If 0 times, then the nerve of L is the
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FiGure 13. Left: Subdivide a triangle in the nerve. Middle: add a circle to
the corresponding circle packing. Right: Attach a polyhedron bounded by
the hemispheres of these circles, and their duals.

graph shown on the left of Figure 12, and the corresponding polyhedron is a single regular
ideal octahedron shown on the left of Figure 11.

Next suppose that we have subdivided n times, each time attaching a new regular ideal
octahedron to the previous polyhedron. At the (n + 1)-st subdivision, we add a vertex and
three edges to some triangle of the nerve, as on the left of Figure 13. This corresponds to
adding a circle to a triangle of the circle packing, as in the middle of Figure 13. In the
3—dimensional polyhedron, we attach a polyhedron with faces bounded by circles as shown
on the right of Figure 13. In particular, note that if we take any of the points of tangency
of circles to infinity in that Figure, we obtain exactly the circles on the left of Figure 11.
Thus this polyhedron is exactly a regular ideal octahedron.

Finally, we relate the number of octahedra to the number of crossing circles ¢. Suppose
the polyhedron of Proposition 2.2 is obtained by gluing n regular ideal octahedra. Then
the nerve is formed by central subdivision of the complete graph on four vertices. From
the proof above, the first octahedron corresponds to that complete graph on four vertices,
containing 6 edges, and then each successive subdivision, adding 3 edges, gives exactly one
more octahedron. Thus the number of edges F in the nerve is F = 3n + 3.

On the other hand, the nerve is a triangulation of S2. For each triangle, exactly one edge
is painted red, i.e. corresponds to an ideal vertex associated with a crossing circle. A single
red edge borders two triangles. Thus the total number of red edges is equal to half the total
number of triangles, T', in the nerve. Since each red edge corresponds to a distince crossing
circle, we have ¢ = T/2. Because the nerve is a triangulation of S?, 3T = 2E = 6n + 6.
Hence ¢ = n + 1, or there are exactly ¢ — 1 octahedra, as claimed. [l

4. RESTRICTING AND EXTENDING RESULTS

In this section, we study two examples of classes of links related to fully augmented links.
The first class is obtained by restricting to a subset of fully augmented links, obtaining a
class of links even more geometrically explicit. The second class is obtained by extending
to a class of links containing fully augmented links, losing some of the geometric structure
as we relax the definitions.

4.1. Octahedral fully augmented links. The geometry of fully augmented links is com-
pletely determined by a circle packing, which can be computed from a nerve, for example
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in simple cases by K. Stevenson’s program CirclePack [4]. However, for extremely compli-
cated nerves or families of nerves it may be more difficult to obtain circle packings. Also,
additional geometric estimates such as volume may be harder to obtain exactly.

To remedy this problem, we may restrict to a subclass of fully augmented links: those
whose polyhedra are a union of regular ideal octahedra. For these links, which we will
call octahedral augmented links, the volume is given exactly by Proposition 3.6. The circle
packing can be constructed by hand from the nerve (provided your pencil tip is sharp
enough). The rectangles of Lemma 3.1 are all squares, or strings of squares as in Figure 11.
The geometry is completely explicit. Indeed, among these links are many links for which
the volume conjecture is known, due to work of R. Van der Veen [18].

4.2. Generalized fully augmented links. We may generalize the class of fully augmented
links by relaxing conditions of their definition. In a generalized augmented link, we allow
crossing circles to encircle more than two strands per twist region. For these links, we lose
the triangulation and circle packing. Results on hyperbolicity and cusp shapes are not as
clean [12, 14]. However, there is still a reflection in the projection plane, giving a totally
geodesic surface when these links are hyperbolic. The existence of this surface and the
reflection allows us to obtain some information on volumes and geometry of these links.
These are explored in [11] and in [14].
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