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This paper motivates the use of Information Extraction (IE) for gathering data on
protein interactions, describes the customisation of an existing IE system, SRI's
Highlight, for this task and presents the results of an experimenton unseenMedline
abstracts which show that customisation to a new domain can be fast, reliable and
cost-e�ective.

1 Introduction

There is now a vast corpus of molecular biology literature available electron-

ically, e.g. the abstracts in Medline (PubMed). However, much of this data

is only stored in free text format which means that querying for speci�c in-

formation is not very e�cient. Using keywords to narrow the search often

produces far more candidates than can be properly read (or processed). While

some abstracts are converted to a form of database record, the information in

them may not be represented in a structured way, and the increasing volume of

data means that large numbers of abstracts are not processed at all. Research

on protein-protein interactions in particular has generated large volumes of

information that are not accessible in a computer-readable form, e.g. 2;6;7.

The availability of protein-protein interactions in a structured form should

avoid duplication of research e�orts: not only because interactions of interest

can be located easily if the work has already been performed, but also because

it will be possible to search more accurately for information about results

on the same protein in other species. It should then be feasible to build a

database which can be used to discover regularities and connections which

do not emerge by looking only at isolated pieces of information. Species-

speci�c knowledge bases, such as EcoCyc 5 which represent the genome and

metabolism of model organisms, have not incorporated data on all known
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protein-protein interactions, partly because of the di�culty of obtaining this

information. Recently, however, there has been growing interest in the use of

automatic extraction and analysis of protein-protein interactions, e.g. 2;3;8.

2 What is Information Extraction?

Information Extraction (IE) is an application of natural language processing

that takes a piece of free text and produces a structured representation (a

template consisting of slots to be �lled) of the points of interest in it. This

representation can then be easily transformed to a database record, a row in

a table, or some other convenient notation. The input text is syntactically

and semantically analysed to locate the entities of interest and the properties

ascribed to them which are then extracted and used to �ll in the template

slots.

Information Extraction is not Information Retrieval (IR), in which key

words are used to select relevant documents from some corpus (or the Inter-

net, e.g. Altavista a), but could easily post-process IR output. Successful

applications of IE can be found in several large industries, as well as in some

military and intelligence areas. Information extraction systems take over a task

that would otherwise have to be performed by hand: for example, analysing

incoming news feeds for a certain type of incident and creating summaries.

Although the accuracy of these systems may not rival that of a human expert,

they are able to process larger quantities of text very quickly and economi-

cally and provide data for other processes such as data mining and statistical

analysis.

3 Highlight

Highlight is a general-purpose IE engine developed at SRI Cambridge for use

in commercial applications. It incorporates several of the techniques used by

SRI Menlo Park's Fastus 4, a leading performer in the MUC evaluations b of

information extraction. The summary in Table 1 was extracted automatically

from free text by processing a series of newswire articles looking for gas or oil

company projects (e.g. wells, pipelines etc.), and the companies involved. The

templates are sorted via countries and locations so that the user can easily �nd

out about competitor activities in a particular area. By viewing the summary

in a browser it is possible to click on the Source entries which hyperlink to

ahttp://www.altavista.com/
bhttp://www.muc.saic.com/
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Country Location Project

Type

Partners Source

Arctic western

Canadian

Arctic

the pipeline Shell Canada

Ltd.; Gulf Canada Re-

sources Ltd.; Esso Re-

sources Canada Ltd.

1753

USA o�shore

Louisiana

the well Diamond Shamrock

O�shore Partners

2312

USA south

Texas

17 oil and

gas �elds

Texaco Inc. 1399

(wsj 1753.txt) A Canadian government agency conditionally approved proposed
exports to the U.S. of natural gas from big, untapped �elds in the Mackenzie
River delta area of the western Canadian Arctic. Three companies, Esso Re-
sources Canada Ltd., Shell Canada Ltd. and Gulf Canada Resources Ltd.,
applied to the Canadian National Energy Board to export 9.2 trillion cubic
feet of Mackenzie delta natural gas over 20 years starting in 1996. To be eco-
nomically feasible, the pipeline requires almost a doubling of natural gas export
prices.

Table 1: An example

the corresponding section of the original text. The �rst entry in the summary

comes from the article below the table.

Highlight carries out processing in several di�erent stages. First, an input

text is tokenised (i.e. broken into separate words and sentences). Each word

is then `tagged' (using Hidden Markov Models) with an appropriate part of

speech such as `noun' or `verb'. Next, sequences of words are grouped into

phrases of various types by cascaded �nite state machines. Then phrases refer-

ring to the entities or events of interest are recognised using pattern matching

and statistical methods. Groups of coreferring phrases are identi�ed and linked.

Finally, templates and schemata are instantiated so as to contain the desired

components of information to be extracted.

The usual measures of success in IE are recall and precision. The former

is the percentage of possible templates that are found while the latter is the

percentage of extracted templates that are correct. For example, if we know

that there are 100 references to gas projects in some corpus and our system

�nds 60 of which 45 are correct, i.e. 15 were found in error|perhaps not gas

projects at all|then the precision is 45=60 = 75% and recall is 45=100 = 45%.

Pacific Symposium on Biocomputing 5:538-549 (2000) 



It is usually possible to sacri�ce higher precision for better recall and vice

versa, e.g. for an application involving extraction of information concerning

competitors the system is tuned to provide good recall i.e. not to miss required

information, but not so good precision i.e. there may be inappropriate records

produced which can be pruned out by hand if necessary.

4 Customising Highlight for biological literature

Similar to the gas example above, the project described here aimed to ex-

tract occurrences of protein interactions from Medline abstracts, producing a

database of protein pairs characterized by a type of interaction. This was done

by customising the existing Highlight system tuned to produce high precision

(accuracy) but lower recall (coverage), a suitable strategy because there is such

a large volume of material to be analysed that if an interaction is missed in

one abstract the likelihood is that it will be found elsewhere. Customising an

existing system, rather than constructing a bespoke program, can potentially

reduce development time and costs by, for example, re-use of tried-and-tested

components.

The main e�ort in customising a system like Highlight is in (a) adapting

the natural language (NL) component so as to be able to correctly recognise

the relevant entities and events, (b) developing a set of templates or outlines

of the kinds of information that is of interest, and (c) developing the patterns

that will decide how to slot the items and events into the templates. We discuss

(a) in Section 4.1 and (b,c) in Section 4.2.

4.1 Adapting Highlight's NL components

Adaptation of the natural language processing components requires a corpus

of texts representative of those that will be encountered in the �eld. On the

basis of initial processing of these texts, we will generally need to add new

vocabulary, e.g. acronyms, abbreviations, or technical terms characteristic

of the domain and syntactic constructs not already covered in the general

purpose analysis engine. Also, methods for `reference resolution' have to be

re�ned. These locate alternative references (e.g. by pronouns or phrases like

`the protein') to the same entity and link them together.

Although the system guesses unknown words fairly reliably, we added extra

vocabulary such asmutagenesis, osteocalcin and retinoid and also took account

of the lexical peculiarities that occur in protein names including symbols such

as ' \ - () in proteins like eIF-4a, EPIY', FTZF2/HK and GLYS(A) along
with numbers and so on which would not normally appear in proper names.
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Similarly, given that this version of the Highlight tagger was trained on �-

nancial newspaper reports, we had to correct tagging errors for words such

as associates which was tagged as a noun (Smith's associates) but which we

would prefer to tag as a verb (Brf associates with TFIIB).

Customising Highlight for a new domain is made easier by the design of

the system which separates domain-speci�c information from a central core of

linguistic processing which is general enough to be applicable in most domains.

4.2 Finding protein interactions

After customising the linguistic element, we turned to the templates: outline

summaries of the information in the text that is of interest. For the information

extraction technology to work e�ectively there must be su�cient detail in the

input texts for the contents of the templates to be recognised explicitly. A set

of rules (essentially pattern matching rules with a statistical component) for

assigning the entities and events recognised by the natural language component

to slots in the templates was written and tested.

We �rst analysed around 200 abstracts by hand to �nd commonways of de-

scribing interactions. We examined approximately 30 di�erent verbs (including

activate, inhibit, modulate, suppress, isolate, promote, characterise . . . ) and

decided to concentrate on interact (with), associate (with) and bind (to) since
these three, of those which occur frequently, all appear in relations directly

between proteins rather than between a protein and some process. For exam-

ple: TR-beta inhibits the assembly of a functional transcription preinitiation
complex does not give us a relation between two proteins in the way that the
interaction between Tat and TFIIB does.

Several patterns for each verb have been implemented. They are generally

written at the syntax rather than lexical level which allows us to collapse

multiple related patterns into a single pattern. Patterns act as �lters on the

tagged and parsed text, i.e. if a continous segment of the text matches the

input (the top line of the pattern) and the conditions hold, then the text is

rewritten as shown on the bottom line of the pattern. The pattern in Table

2 looks for a noun phrase followed by a verb and particle then another noun

phrase. If it is found and the verb and particle are of interest (e.g. interact
with) then a unique identi�er is generated and a template indexed by the

identi�er containing the required information (the two noun phrases and the

relation) is created and stored. A tag (tvbio) which causes later processing

to make a hyperlink to the relation from the summary tables is added to the

output.

We also added a method of ranking templates in order to give some mea-
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%% A interacts with/binds to/associates with B

[NP1/tag(np,Id1), VG/tag(vg,headed_vg,Word), PP/in, %% input pattern is

NP2/tag(np,N2,Id2)]: %% NP1, V, Particle, NP2.

verb_particle_pair(Word,PP,VbPart), %% desired verb-particle?

make_new_id(Id), %% new Id if input matches.

make_template(NP1/tag(np,Id1),NP2/tag(np,Id2),VbPart,Id)

%% make template and store

==> %% indexed by Id.

[NP1/tag(np,Id1),

[VG/tag(vg,headed_vg,Word), PP/in]/tvbio(Id), %% output pattern with

NP2/tag(np,Id2)]. %% indexed tag.

Table 2: A pattern

sure of the con�dence we have that the template is correct, i.e. is a desired

relation between two proteins rather than an unwanted relation between two

non-proteins. Several factors might form part of this score:

� The context in which the relation is found. This would include verbs

such as prove, show, suggest : : :, phrases such as It is probable that . . . ,
X suppresses interaction of Y and Z and so on. A further option is to

add a note of the \modality" of the relations in another column. This

might include negation, possibility and so on.

� The con�dence we have that the NP arguments are proteins. By scoring

highly those relations with lexical protein name arguments we can prefer

relations which we are sure of as opposed to de�nite descriptions or pro-

nouns which stand a chance of being unresolved or incorrectly resolved.

� The number of times a relation occurs. This measure might provide a

way of measuring, across a whole corpus, the reliability of any given

relation.

For simplicity's sake, we have rated according to the second criterion and, in

fact, we merely check that the NP arguments are proper names. In our task, it

turns out that if we have already found an interaction and the items involved

are proper names then there is a good chance that they are proteins. Our

scoring strategy is given in Table 3. The scoring allows us to �lter the templates

so that we only return those with the greatest chance of being correct, i.e. to

keep precision high.
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NP Score

proper name 50

compound noun, containing proper name 50

compound noun, not containing proper name 30

de�nite description, linked to proper name 25

de�nite description, unlinked 15

all other 0

Table 3: NP scores

5 Results

We tested the system by analysing 2565 unseen abstracts extracted from Med-

line with the keywords molecular, interaction and protein for year 1998 (560k

words). This resulted in 2359 templates of which 782 scored 100% and 454

scored 80% which means that around 1 in 2 texts have a relation that we are

interested in.

We estimate recall and precision values for the whole corpus of abstracts

by taking three samples of 30 abstracts each and analysing them by hand.

The amount of time and e�ort required to analyse a substantial sample (e.g.

10%) was prohibitive but by taking 3 samples of around 1% and comparing the

results, we get a good indication of the overall population recall and precision.

There is no intersection between the samples, but otherwise the abstracts that

make up each set were chosen at random.

Further, we present 4 di�erent measures of precision and recall:

ALL across all interact, associate, bind relations regardless of score (including

relations that we would like to be able to get even though we don't

currently try to get them because we have no patterns for them yet).

There are 72 such relations in sample 1.

PAT across only those relations which we have written patterns for regardless

of score. There are 41 such relations in sample 1.

TOP1 The PAT relations which score 100%, i.e. are between two proteins di-

rectly (as opposed to by reference resolution). There are 16 such relations

in sample 1.

TOP2 The PAT relations which score 100%, i.e. are between two proteins

directly (as opposed to by reference resolution), or 80%, i.e. between a

protein and a compound noun which is probably a protein but doesn't

conform to our criteria. There are 27 such relations in sample 1.
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Sample1 Sample2 Sample3

Set Recall Prec. Recall Prec. Recall Prec.

ALL 30 65 24 72 33 72

PAT 54 65 50 72 50 72

TOP1 63 77 56 71 53 80

TOP2 63 81 38 60 54 81

Table 4: Recall and Precision (percentages) for our samples

Set Recall Prec.

ALL 29 69

PAT 51 69

TOP1 58 77

TOP2 55 77

Table 5: Overall results

When calculating precision in the results in Table 4 c we imposed a strict

criteria that a template is incorrect if any element is incorrect. This includes

incorrect reference resolution for NPs. However, when an NP was unresolved,

e.g. the protein, then this was counted as correct. Some example output is

given in Tables 6, 7.

Using standard hypothesis tests at the 95% level we are able to say that

there is no signi�cant di�erence between the precision and recall values across

the 3 samples which gives us con�dence that they reliably predict the actual

precision and recall values of the whole test set. We can calculate the overall

results in Table 5 by combining the results for each of the three samples, e.g. set

TOP1 recall is calculated by the following sum (10+8+5)=(16+15+9) = 58%,

i.e. a grand total of recall across all three samples.

5.1 Related work

Sekimizu et. al. 8 attempt to generate automatic database entries containing

relations extracted from Medline abstracts. The relations they are interested

in come from the verbs activate, bind, interact, regulate, encode, signal and

cFor PAT, TOP1 and TOP2 the reported recall values are based on the \true" number
of occurrences of relations of the type of PAT, TOP1 and TOP2 respectively, rather than on
the \true" number of all occurrences of potential relations. Thus a recall of 63% for TOP1
in sample 1 means that 63% of the potential 100% scoring relations (in the system as it
stands) were recalled.
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Entity Relation Entity Score

CUL1 interact SKP2 100

Nun interact RNAP 100

HSP105 associate HSC70 100

Table 6: Examples of accepted templates

Entity Relation Entity Score

KIV9 can interact LDL 100

PS bind beta2GPI and the binding of PS 100

others interact UbcH7 80

Table 7: Examples of rejected templates

function. This forms part of a larger project which includes automatic SGML

tagging of abstracts before IE is performed. Their approach is to parse, deter-

mine noun phrases, spot the commonly-occurring verbs and choose the most

likely subject and object from the candidate NPs in the surrounding text.

They use a corpus of 898k words extracted from Medline and report precision

results which range from 67.8% to 83.3% across the di�erent verbs.

Blaschke et. al. 1 attempt to do without NL technology such as parsing

and present a simple matching approach to extracting protein interactions

from Medline texts. The text is broken into clauses, those which contain two

proteins and an \action" verb are extracted and simple order information is

used to predict the relation, e.g. protein1 action protein2 makes protein1 the

subject, protein2 the object and action the relation. The verbs they investigate

include acetylate, activate, destabilise, inhibit, phosphorylate, suppress and

target. They simplify their task by assuming that all protein names are already

known and present no quantitative results.

5.2 Comments

Sekimizu et. al. only report precision results and these are broadly comparable

with those reported here. Their system uses standard linguistic processing but

otherwise has been speci�cally developed for this domain. Blaschke's approach

is simple and gives some interesting results, but without recall and precision

�gures it is di�cult to compare to any other approach. It is obvious, however,

that it will not be able to easily cope with, for example, parenthetical commas,

relative clauses and so on which distance a subject or object from a verb.

Also, it has a closed list of protein names which will inevitably lead to missed
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relations (i.e. false negatives.)

Of our results, the TOP1 and TOP2 are most interesting initially. They

show that we have a high precision on those relations which we are trying to

capture. The reason for this is that we deliberately tried to extract as many

templates as possible with as few patterns as possible and these patterns are

very reliable. The ALL results presented above show that there are ways in

which recall could be increased, these include patterns for sentences containing

relative clauses (e.g KyoT, which physically interacts with RBP-J ), appositives
(e.g. GCN4, an activator of HIS ) or plural objects (e.g. some kind of interac-
tion between these domains).

The main causes of loss of precision are incorrect reference resolution and

NP bracketing (where a compound NP is incorrectly tagged). The former is

factored out by only considering the TOP2 and TOP1 scores but the latter is

still a problem and accounts for almost all the loss of precision in the results

presented above. Other areas where there is scope for improvement include:

� add protein identi�cation: our current method of identifying proteins is

unsophisticated and we cannot simply use a large list of protein names

since it will become out of date as new names are invented. Fukuda et

al. 3 provide an algorithm for spotting proteins in text and initial tests

suggest this would improve the precision results for TOP2 (scores of 80

and 100) but not the more restrictive TOP1 (score of 100).

� extending and improving reference resolution: Reference resolution, e.g.

�nding a referent for the pronoun, It, in It interacts with eIF-4A, un-
derperformed due to the fact that we have not yet developed a speci�c

domain ontology.

The utility of the output might be improved by including further information,

such as:

� distinguishing negative vs. positive examples: GFR alpha-3, which did

not bind GDNF directly

� determining level of interaction: chimpanzee Lp (a) exhibits poor lysine-
speci�c interaction with �brin

� including conditions: FREAC-2 was shown to interact in vitro with
TBP and TFIIB

� determining degree of con�dence: we show that the eukaryotic initiation
factor (eIF-5A) associates with the TGase
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As next steps, we might link templates to the appropriate SwissProt entries,

use pro�ling, statistical or visualisation tools on the output or incorporate

information from other, structured, resources as well as free text.

The total amount of time spent on this project, including familiarisation

with the existing Highlight system and testing was three person-months.

6 Summary

We have shown that we can take a general IE system and customise it to

a biological domain in a relatively short time. Much of the customisation

work involved coping with the idiosyncrasies of protein names (e.g. eIF-4a,
FTZF2/HK ). Surprisingly little vocabulary needed to be added due to accurate

word guessing and the shallow nature of the syntactic processing. The resulting

system provides a cost-e�ective way of populating a database of protein-protein

interactions.
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