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FINITE EULER PRODUCTS

AND THE RIEMANN HYPOTHESIS

S. M. GONEK

Abstract. We investigate the approximation of the Riemann zeta-function by
short truncations of its Euler product in the critical strip. We then construct
a parameterized family of non-analytic functions that approximate the zeta-
function to the right of the critical line. With the possible exception of finitely
many zeros off the critical line, each function in the family satisfies a Riemann
Hypothesis. Moreover, when the parameter is not too large, the functions in
the family have about the same number of zeros as the zeta-function, their
zeros are all simple, and the zeros “repel”. The structure of these functions
makes the reason for the simplicity and repulsion of their zeros apparent.
Computer calculations suggest that the zeros of functions in the family are
remarkably close to those of the zeta-function, even for small values of the
parameter. We show that if the Riemann Hypothesis holds for the Riemann
zeta-function, then the zeros of these functions indeed converge to those of the
zeta-function as the parameter increases and that, between consecutive zeros
of the zeta-function, the functions tend to twice the zeta-function. Finally, we
discuss analogues of the model for other L-functions and the insight they give
into the distribution of zeros of linear combinations of L-functions.
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2158 S. M. GONEK

1. Introduction

Why should the Riemann Hypothesis be true? If all the zeros of the zeta-function
are simple, then why? Why do the zeros seem to repel each other? We know that
an eventual proof of the Riemann Hypothesis must use, at least implicitly, both
the zeta-function’s Euler product and functional equation. For there are functions
with similar functional equations but no Euler product and functions with an Euler
product but no functional equation, for which the Riemann Hypothesis is false. But
why are these two ingredients essential? This paper began as an attempt to gain
insight into these questions.

Section 2 begins with a brief discussion of the approximation of ζ(s) by trun-
cations of its Dirichlet series. In Section 3 we turn to the approximation of ζ(s)
by truncations of its Euler product. We show that if the Riemann Hypothesis is
true, then short products approximate the zeta-function well in a region containing
most of the right-half of the critical strip. Conversely, a good approximation by
products in this region implies the zeta-function has at most finitely many zeros
there. Section 4 is a slight departure from the main direction of the paper, but
we include it in order to deduce some immediate consequences of the results of
Section 3. In Section 5 we construct a parameterized family, {ζX(s)}, of functions
related to the zeta-function with the same type of approximation property as the
finite Euler products. That is, if the Riemann Hypothesis is true, then ζX(s) is a
good approximation of ζ(s) in a certain region in the right-half of the critical strip
and, if ζX(s) approximates ζ(s) well in this region, then ζ(s) can have at most
finitely many zeros there. In Section 6 we show that, with the possible exception
of a few zeros near the real axis, a Riemann Hypothesis holds for each ζX(s). In
Sections 7 and 8 we prove that on the Riemann Hypothesis, if the parameter X is
not too large, then ζX(s) has about the same number of zeros as ζ(s) and that its
zeros are all simple (again with the possible exception of a few low lying ones). We
also show unconditionally that when the parameter is much larger, ζX(s) still has
asymptotically the same number of zeros as ζ(s) and that 100% of these (in the
density sense) are simple. In the next section we study relationships between the
two functions on the critical line. Assuming the Riemannn Hypothesis, we show
that the zeros of ζX(s) converge to the zeros of ζ(s) as X → ∞ and that between
the zeros of the zeta-function ζX( 12 + it) → 2ζ( 12 + it). In Section 10 we examine
the structural source of the simplicity and repulsion of the zeros of ζX(s) and dis-
cuss whether this sheds any light on the analogous properties of the zeros of ζ(s).
In the last section we illustrate how our results generalize to other L-functions by
defining functions LX(s, χ) corresponding to the Dirichlet L-function L(s, χ). We
then study the distribution of zeros of linear combinations of LX(s, χ). This sug-
gests a heuristic different from the usual one (of carrier waves) for understanding
why linear combinations of the standard L-functions should have 100% of their ze-
ros on the critical line. The Appendix provides some useful approximations of the
zeta-function by Dirichlet polynomials.

The functions ζX(s) are simpler than the Riemann zeta-function yet they capture
some of its most important structural features. It is therefore reasonable to regard
them as “models” of the zeta-function. The modeling is best when X is large, say
a power of t, but so far, with the exception of Theorem 9.1, our results are most
satisfactory only for smaller X ranges.

We began by raising several deep questions. Although we do not offer definitive
answers, we hope our investigation will be seen as suggestive. For example, a
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possible interpretation of our results as they touch on the question of why both the
Euler product and functional equation are necessary for the truth of the Riemann
Hypothesis is this: the Euler product prevents the zeta-function from having zeros
off the line, while the functional equation puts them on it.

2. The approximation of ζ(s) by finite Dirichlet series

Throughout we write s = σ + it and τ = |t| + 2; ε denotes an arbitrarily small
positive number which may not be the same at each occurrence.

The Riemann zeta-function is analytic in the entire complex plane, except for
a simple pole at s = 1, and in the half-plane σ > 1 it is given by the absolutely
convergent series

ζ(s) =
∞∑

n=1

n−s.

Estimating the tail of the series trivially, we obtain the approximation

(2.1) ζ(s) =
X∑

n=1

n−s + O
(X1−σ

σ − 1

)

for σ > 1 and X ≥ 1. A crude form of the approximate functional equation (see
Titchmarsh [25]) extends this into the critical strip:

(2.2) ζ(s) =

X∑
n=1

n−s +
X1−s

s− 1
+O(X−σ).

This holds uniformly for σ ≥ σ0 > 0, provided that X ≥ C τ/2π, where C is any
constant greater than 1. The second term on the right-hand side reflects the simple
pole of ζ(s) at s = 1 and, if we stay away from it, it can be ignored. For instance,
setting X = t and assuming t ≥ 1, we find that

(2.3) ζ(s) =
∑
n≤t

n−s +O(t−σ)

uniformly for σ ≥ σ0 > 0. Thus, truncations of the Dirichlet series defining ζ(s)
approximate it well, even in the critical strip.

Now suppose that the Lindelöf Hypothesis is true. That is,

ζ( 12 + it) � τ ε.

Then the length of the series in (2.2) and (2.3) may be reduced considerably, as the
following modification of Theorem 13.3 of Titchmarsh [25] shows (see the Appendix
for a proof).

Theorem 2.1. Let σ be bounded, |σ| ≥ 1
2 , and |s− 1| > 1

10 . Also let 1 ≤ X ≤ t2.
A necessary and sufficient condition for the truth of the Lindelöf Hypothesis is that

ζ(s) =
∑
n≤X

n−s +O(X
1
2−στ ε).

It follows from this that if the Lindelöf Hypothesis is true and we stay away from
the pole of the zeta-function at s = 1, then ζ(s) is well-approximable by arbitrarily
short truncations of its Dirichlet series in the half plane σ > 1

2 . As we have seen,
this is unconditionally true in the half plane σ > 1.
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On the other hand, short sums cannot approximate ζ(s) well in the strip 0 <
σ ≤ 1/2. Suppose that such a sum and ζ(s) were within ε of each other, where
ε > 0 is small. Then we would have

(2.4)

∫ 2T

T

∣∣∣∣ζ(s)− ∑
n≤X

n−s

∣∣∣∣
2

dt ≤ ε2T.

However, if 0 < σ ≤ 1
2 is fixed and X < T 1−ε, then∫ 2T

T

∣∣∣∣ ∑
n≤X

n−s

∣∣∣∣
2

dt ∼
{
T
(
X1−σ−1

1−σ

)
if σ < 1

2 ,

T logX if σ = 1
2

and ∫ 2T

T

|ζ(σ + it)|2 dt ∼
{
C(σ)T 2−2σ if σ < 1

2 ,

T log T if σ = 1
2 .

Comparing these when σ < 1
2 and again when σ = 1

2 , we obtain a contradiction to
(2.4). This argument is unconditional and shows that one cannot do better than
(2.3) even if the Lindelöf or Riemann Hypothesis is true.

To summarize, ζ(s) is well-approximable unconditionally by arbitrarily short
truncations of its Dirichlet series in the region σ > 1, |s− 1| > 1

10 . On the Lindelöf

Hypothesis this remains true even in the right-half of the critical strip, 1
2 < σ ≤ 1.

However, on and to the left of the critical line, the length of the truncation must
be ≈ t. The situation is the same if we assume the Riemann Hypothesis instead of
the Lindelöf Hypothesis, since the former implies the latter.

3. The approximation of ζ(s) by finite Euler products

The zeta-function also has the Euler product representation

ζ(s) =
∏
p

(1− p−s)−1

in the half-plane σ > 1, where the product is over all prime numbers. This converges
absolutely, and it is straightforward to show (take logarithms) that

(3.1) ζ(s) =
∏
p≤X

(
1− p−s

)−1
(
1 +O

( X1−σ

(σ − 1) logX

))
,

for σ > 1. Here we implicitly use the fact that ζ(s) does not vanish in σ > 1. As
is often the case, it is more natural from an analytic point of view to work with
weighted approximations, so we will use expressions of the type

exp

(∑
n

Λ(n)v(n)

ns log n

)
,

where Λ(n) is von Mangoldt’s function and the weights v(n) will be specified later.
We next ask whether it is possible to extend (3.1) or a weighted form of it into

the critical strip in the same way that (2.2) extended (2.1). The following recent
result of Gonek, Hughes, and Keating [10] suggests an answer.

Theorem 3.1. Let s = σ+it with σ ≥ 0 and |t| ≥ 2, let X ≥ 2 be a real parameter,
and let K be any fixed positive integer. Let f(x) be a non-negative C∞ function
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of mass 1 supported on [0, 1] and set u(x) = Xf(X log x
e + 1)/x (so that u(x) is

supported on [e1−1/X , e]). Set

U(z) =

∫ ∞

0

u(x)E1(z log x) dx,

where E1(z) is the exponential integral
∫∞
z

e−w/w dw. Then

(3.2) ζ(s) = PX(s)ZX(s)

(
1 +O

(
XK+2

(|s| logX)K

)
+ O(X−σ logX)

)
,

where

PX(s) = exp

( ∑
n≤X

Λ(n)

ns log n

)
,

Λ(n) is von Mangoldt’s function, and

ZX(s) = exp

(
−
∑
ρn

U
(
(s− ρn) logX

))
.

The constants implied by the O-terms depend only on f and K.

Thus, if X < |t|1−3/(K+2), for example, then ζ(s) factors in the region σ ≥ 0,
|t| ≥ 2 as

(3.3) ζ(s) = exp

( ∑
n≤X

Λ(n)

ns log n

)
ZX(s)

(
1 + o(1)

)
,

where ZX(s) is a product over the zeros of ζ(s). Now one can show that, in the
right-half of the critical strip, ZX(s) is close to 1 as long as s is not too near a
zero of ζ(s). Hence, if the Riemann Hypothesis is true and s is not too close to the
critical line, ZX(s) will be close to 1. (The closer σ is to 1

2 , the larger one needs to
take X.) Thus, under the Riemann Hypothesis, an analogue of (3.1) does hold in
the right-half of the critical strip.

To prove these assertions it is convenient to work with an alternative form of
(3.2), and we derive this next.

Write

(3.4) PX(s) = exp

( ∑
n≤X2

ΛX(n)

ns log n

)
,

where

ΛX(n) =

⎧⎪⎨
⎪⎩
Λ(n) if n ≤ X,

Λ(n)
(
2− logn

logX

)
if X < n ≤ X2,

0 if n > X2.

Also, let

(3.5) E2(z) =

∫ ∞

z

e−w

w2
dw (z 	= 0)

denote the second exponential integral, and set

F2(z) = 2E2(2z)− E2(z).
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Finally, define

(3.6) ZX(s) = exp

(∑
ρ

F2 ((s− ρ) logX)− F2 ((s− 1) logX)

)
,

where the sum is over all the non-trivial zeros, ρ = β + iγ, of the zeta-function.
Our modified version of (3.2) is

Theorem 3.2. Let σ ≥ 0 and X ≥ 2. With PX(s) and ZX(s) as above we have

(3.7) ζ(s) = PX(s)ZX(s)

(
1 +O

(
X−σ−2

τ2 log2 X

))
.

Proof. We begin with the explicit formula (see Titchmarsh [25], Theorem 14.20)

ζ
′

ζ
(s) = −

∑
n≤X2

ΛX(n)

ns
+

X2(1−s) −X(1−s)

(1− s)2 logX
+
∑
ρ

Xρ−s −X2(ρ−s)

(s− ρ)2 logX

+
1

logX

∞∑
q=1

X−(2q+s) −X−2(2q+s)

(s+ 2q)2
.

The last term on the right is easily seen to be � X−σ−2/τ2 logX, so we have

ζ
′

ζ
(s)=−

∑
n≤X2

ΛX(n)

ns
+
X2(1−s) −X(1−s)

(1− s)2 logX
+
∑
ρ

Xρ−s −X2(ρ−s)

(s− ρ)2 logX
+ O

(
X−σ−2

τ2 logX

)
.

(3.8)

Next we integrate (3.8) from ∞ to s0 = σ0+ it, where σ0+ it is not a zero of the
zeta-function. We use the convention that if t is the ordinate of a zero ρ = β + iγ
and 0 ≤ σ0 < β, then

(3.9) log ζ(σ0 + iγ) = lim
ε→0+

log ζ
(
σ0 + i(γ + ε)

)
.

The O-term contributes

� X−σ0−2

τ2 log2 X
.

We also see that∫ σ0+it

∞

Xρ−s −X2(ρ−s)

(s− ρ)2
ds = logX F2

(
(s0 − ρ) logX

)
.

Here we use the convention analogous to (3.9) if t is the ordinate of a zero. It
follows that

log ζ(s0) =
∑

n≤X2

ΛX(n)

ns0 log n
+
∑
ρ

F2

(
(s0 − ρ) logX

)
− F2

(
(s0 − 1) logX

)

+O

(
X−σ0−2

τ2 log2 X

)
.(3.10)

Replacing σ0 by σ and s0 by s and exponentiating both sides, we obtain the stated
result when s is not equal to a zero ρ. If it is, we may interpret the factor in (3.6)
corresponding to ρ as limε→0+ exp

(
F2 (iε logX)

)
. From the well-known formula

E2(z) = 1/z + log z + e2(z), where | arg z| < π and e2(z) is analytic in z, it follows
that

(3.11) F2(z) = log 4z + f2(z) (| arg z| < π),
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where f2(z) is also analytic. Therefore limε→0+ exp
(
F2 (iε logX)

)
= 0 . Since this

agrees with the left-hand side of (3.7), the formula is valid in this case as well. �

Before stating our next result we require some notation and a lemma. As usual
we write S(t) = (1/π) arg ζ( 12 + it) with the convention that if t is the ordinate of
a zero, S(t) = limε→0+ S(t+ ε). For t ≥ 0 we let Φ(t) denote a positive increasing
differentiable function such that

|S(t)| ≤ Φ(t) and |ζ( 12 + it)| � exp(Φ(t)),

and such that for t sufficiently large we have

(3.12) Φ
′
(t)/Φ(t) � 1

t log t
.

We call such a function admissible. Any function of the type (log τ )α(log log 3τ )β

with α positive satisfies (3.12). Furthermore, it is easy to show that if Φ satisfies
(3.12), then

(3.13) Φ(ta) � Φ(t),

where the implied constant depends at most on a. It is known that Φ(t) = 1
6 log τ

is admissible and, on the Lindelöf Hypothesis, that ε log τ is for any ε > 0. If the
Riemannn Hypothesis is true, then Φ(t) = 1

2 log τ/ log log 2τ is admissible. (The

constant 1
2 is a recent result due to Goldston and Gonek [8].) Balasubramaian and

Ramachandra [5] (see also Titchmarsh [25], pp. 208-209 and p. 384) have shown that

if Φ is admissible, Φ(t) = Ω
(√

log τ/ log log 2τ
)
, and this is unconditional. Farmer,

Gonek and Hughes [7] have conjectured that Φ(t) =
√
( 12 + ε) log τ log log 2τ is

admissible, but Φ(t) =
√
( 12 − ε) log τ log log 2τ is not.

For the remainder of this paper Φ will always denote an admissible function.
We can now state our lemma.

Lemma 3.3. Assume the Riemann Hypothesis. Suppose that Φ(t) is admissible
and that σ > 1

2 is bounded. Then we have

(3.14)
∑
γ

σ − 1
2

(σ − 1
2 )

2 + (t− γ)2
� log τ +

Φ(t)

σ − 1
2

.

Moreover, if Δ > 0, then

(3.15)
∑

|γ−t|>Δ

1

(t− γ)2
� 1

Δ

(
log τ +

Φ(τ )

Δ

)
.

Remark. In fact one can show that the first sum equals 1
2 log τ +O

(
Φ(τ )/(σ − 1

2 )
)
,

but we do not require this.

Proof. For the sake of convenience we write σ − 1
2 = a. Recall that N(t), the

number of zeros of ζ(s) with ordinates in [0, t], is

N(t) =
t

2π
log

t

2π
− t

2π
+

7

8
+ S(t) +O

(1
τ

)
.

Therefore

N(t+ a)−N(t− a) =
a

π
log

t

2π
+O(Φ(τ )).(3.16)
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The left-hand side of (3.14) is

�
∑

0≤k≤1/a

( ∑
ka≤|γ−t|≤(k+1)a

a

a2 + (t− γ)2

)
+

∑
|γ−t|>1

a

a2 + (t− γ)2
.

Using (3.16), we see that the second sum is � a log τ , and that for each k the sum
in parentheses is

�
(
a log τ +Φ(τ )

) a

a2 + (ka)2
� 1

1 + k2

(
log τ +

Φ(τ )

a

)
.

Summing these estimates, we obtain (3.14).
The proof of (3.15) is similar. �

Our approximation of the zeta-function by finite Euler products will follow al-
most immediately from

Theorem 3.4. Assume the Riemann Hypothesis. Let σ ≥ 1
2+

1
logX and |s−1| ≥ 1

10 .

Then for any X ≥ 2 we have

(3.17) ζ(s) = PX(s)eRX(s),

where

(3.18) RX(s) � X
1
2−σ

(
Φ(τ ) +

log τ

logX

)
+

X

τ2 log2 X
.

Moreover, throughout the region σ ≥ 1
2 , |s− 1| ≥ 1

10 , and

(3.19) arg ζ(σ + it) = −
∑

n≤X2

ΛX(n) sin(t logn)

nσ log n
+O(RX(s)).

Proof. We estimate

(3.20) ZX(s) = exp

(∑
ρ

F2

(
(s− ρ) logX

)
− F2

(
(s− 1) logX

))

in (3.6).
Integrating (3.5) by parts, we see that for |z| ≥ 1,

(3.21) E2(z) =
e−z

z2
(1 +O(|z|−1)),

and therefore that

(3.22) F2(z) � emax(−Re z,−Re 2z)/|z|2.
Since σ ≥ 1

2 + 1
logX and the zeros are of the form ρ = 1

2 + iγ, they all satisfy

|s− ρ| logX ≥ 1. Thus, by (3.22) and Lemma 3.3, the sum in (3.20) is

(3.23) � 1

log2 X

∑
|s−ρ| logX≥1

X
1
2−σ

(σ − 1
2 )

2 + (t− γ)2
� X

1
2−σ

(
Φ(τ ) +

log τ

logX

)
.

Also by (3.22),

(3.24) F2

(
(s− 1) logX

)
� Xmax(1−σ, 2(1−σ))

τ2 log2 X
.

The first assertion of the theorem follows from this and (3.7).
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The second assertion follows immediately from (3.17) if σ ≥ 1
2 + 1

logX , so we

need only consider the case 1
2 ≤ σ < 1

2 + 1
logX . The terms in the sum of (3.20) for

which |s− ρ| logX ≥ 1 contribute the same amount as before. However, now there
may also be a finite number of terms for which |s − ρ| logX ≤ 1. Using (3.11) to
estimate these, we find that if s is not a zero, they contribute∑

|s−ρ| logX≤1

(
log(4(s− ρ) logX) +O(1)

)
.

Since | arg(s− ρ) logX| ≤ π/2, the imaginary part of this is

�
∑

|t−γ|≤1/ logX

1 � log τ

logX
+Φ(t),

by (3.16). This is big-O of the bound in (3.23) because 1
2 ≤ σ < 1

2 + 1
logX . Thus,

we obtain (3.19) provided that t is not the ordinate of a zero. If it is, the result
follows from our convention that arg ζ(σ + it) = limε→0+ arg ζ

(
σ + i(t + ε)

)
. This

completes the proof of the theorem. �

We can now deduce an approximation of ζ(s) by Euler products.

Theorem 3.5. Assume the Riemann Hypothesis. Let |s−1|≥ 1
10 and exp(log τ/Φ(t))

≤ X ≤ τ2. Then if 1
2 + C log Φ(t)

logX ≤ σ ≤ 1 with C > 1, we have

(3.25) ζ(s) = PX(s)(1 +O(Φ(t)1−C)).

If 2 ≤ X < exp(log τ/Φ(t)) and 1
2 + C log log 2τ

logX ≤ σ ≤ 1 with C > 1, then

ζ(s) = PX(s)(1 +O((log τ )1−C)).

Proof. We estimate RX(s) in (3.17). First assume that exp
(
log τ/Φ(t)

)
≤ X ≤ τ2

and 1
2 + C log Φ(t)

logX ≤ σ ≤ 1 . Then log τ/ logX ≤ Φ(t) and

RX(s) �X
1
2−σΦ(t) +

X2( 1
2−σ)

log2 X

�Φ(t)1−C +Φ(t)−2C

�Φ(t)1−C .

It follows that exp
(
RX(s)

)
= 1 + O

(
Φ(t)1−C

)
, so we have (3.25). The second

assertion follows similarly, except that this time Φ(t) < log τ/ logX. �

Thus, on the Riemann Hypothesis, short Euler products approximate ζ(s) as
long as we are not too close to the critical line.

We can combine the two assertions of Theorem 3.5 and prove a partial converse
as well.

Theorem 3.6. Assume the Riemann Hypothesis. Let 2 ≤ X ≤ t2, |s − 1| ≥ 1
10 ,

and 1
2 + C log log 2τ

logX ≤ σ ≤ 1 with C > 1. Then

(3.26) ζ(s) = PX(s)
(
1 +O

(
log(1−C)/2 t

))
.

Conversely, if (3.26) holds for 2 ≤ X ≤ t2 in the region stated, then ζ(s) has at

most a finite number of zeros to the right of σ = 1
2 + C log log 2τ

logX .
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Remark. The condition σ ≥ 1
2 +

C log log 2τ
logX implies a lower bound for X that grows

with t, namely,

X ≥ (log τ )C/(σ− 1
2 ).

The converse follows from the observation that if (3.26) holds, then there is a
constant B > 0 such that∣∣ζ(s)PX(s)−1 − 1

∣∣ ≤ B log(1−C)/2 τ.

If ζ(β + iγ) = 0 with β > 1
2 + C log log(2|γ|+2)

logX , this forces γ ≤ exp(B2/(C−1)), and

the result follows.

As in the case of approximations by short sums, one can also ask whether short
products approximate ζ(s) well when 0 < σ ≤ 1

2 . For sums we saw that the answer
is no unless they are of length at least t. For products the answer is no, no matter
how long they are. A quick way to see this is by counting zeros of ζ(s) and of PX(s)
in a rectangle containing the segment [ 12 ,

1
2 + iT ]. The former has ∼ (T/2π) logT

zeros, the latter none. This would be impossible if ζ(s) = PX(s)(1 + o(1)) in the
rectangle.

One can also argue as follows when σ is strictly less than 1
2 . (A modification of

the argument works for σ = 1
2 , too.) Suppose that ζ(s) = PX(s)

(
1 + o(1)

)
in the

strip 0 < σ ≤ 1
2 . Then log |ζ(s)| = log |PX(s)|+ o(1), and we have

(3.27)

∫ T

0

(log |ζ(σ + it)|)2dt ∼
∫ T

0

(log |PX(σ + it)|)2dt

for σ fixed and T → ∞. By the functional equation for the zeta-function,

log |ζ(σ + it)| = ( 12 − σ) log
τ

2π
+ log |ζ(1− σ − it)|+ o(1).

Now the mean-square of the three terms on the right-hand side are∼
(
1
2−σ

)2
T log2 T,

∼ c0T , and o(T ), respectively. Thus,

(3.28)

∫ T

0

(log |ζ(σ + it)|)2dt ∼ ( 12 − σ)2T log2 T.

On the other hand, by the mean value theorem for Dirichlet polynomials, if X =
o(T

1
2 ), the right-hand side of (3.27) is∫ T

0

(log |PX(σ + it)|)2dt ∼
∫ T

0

( ∑
n≤X2

ΛX(n) cos(t logn)

nσ log n

)2

dt

∼ T

2

∑
n≤X2

Λ2
X(n)

n2σ log2 n

∼ c T
X2−4σ

logX
,

where c is a positive constant. Comparing this with (3.28), we see that (3.27)
cannot hold if 0 ≤ σ < 1

2 and X is larger than a certain power of log T . Note also
that for infinitely many t tending to infinity, PX(s) can be quite large, namely

(3.29) |PX(σ + it)| 
 exp
(
X1−2σ/

√
logX

)
.

In this section we have seen that short truncations of its Euler product approxi-
mate ζ(s) well in the region σ > 1, |s− 1| > 1

10 . We also showed that this remains
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true in the right-half of the critical strip if the Riemann Hypothesis is true and if
we are not too near the critical line (and use a weighted Euler product). However,
to the left of the critical line the Euler product is not a good approximation of ζ(s),
regardless of how long it is.

4. Products, sums, and moments

Our purpose in this section is to deduce two consequences of the results of the
previous section. First we require a result whose proof is given in the Appendix.

Theorem 4.1. Assume the Riemann Hypothesis. Let σ ≥ 1
2 be bounded, |s− 1| >

1
10 , and 2 ≤ X ≤ t2. Then there is a positive constant C1 such that

(4.1) ζ(s) =
∑
n≤X

n−s + O(X
1
2−σeC1Φ(t)).

If 1
2 + 2C1

Φ(t)
logX ≤ σ ≤ 1, the error term in Theorem 4.1 is O(e−C1Φ(t)). For the

same σ-range, the approximation of ζ(s) given by Theorem 3.4 is

(4.2) ζ(s) = PX(s)
(
1 +O(e−(2−ε)C1Φ(t))

)
,

where ε is arbitrarily small. Thus, equating respective sides of (4.1) and (4.2) and
solving for PX(s), we see that

PX(s) =

( ∑
n≤X

1

ns
+O(e−2C1Φ(t)g)

)(
1 +O(e−(2−ε)C1Φ(t))

)
.

By the corollary to Theorem 4.1 (see the Appendix), the sum here is � eC1Φ(t), so
we obtain

PX(s) =
∑
n≤X

1

ns
+O(e−(1−ε)C1Φ(t)).

We have now proved

Theorem 4.2. Assume the Riemann Hypothesis. Let σ ≥ 1
2 be bounded, |s− 1| >

1
10 , and 2 ≤ X ≤ t2. There is a positive constant C1 such that if 1

2+
2C1Φ(t)
logX ≤ σ ≤ 1,

then ∑
n≤X

1

ns
= PX(s) +O(e−C2Φ(t)),

for any positive constant C2 less than C1.

Our second observation is that one can use these appoximations to calculate
the moments of a very long Euler product. Suppose one wished to compute the
moments ∫ T

0

|PX(σ + it)|2k dt

when 1
2 < σ < 1. The standard method would be to write PX(s)k as a Dirichlet

series and use a mean value theorem for such polynomials to compute the mean
modulus squared. But this only works well when the product does not have many
factors. For example, for a slightly different Euler product, Gonek, Hughes and
Keating [10] have proved the following.
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Theorem. Let 1/2 < c < 1, ε > 0, and let k be any positive real number. Suppose
that X and T → ∞ and X = O((log T )1/(1−c+ε)). Then we have∫ 2T

T

∣∣∣∣ exp
( ∑

n≤X

Λ(n)

nσ+it log n

)∣∣∣∣
2k

dt ∼ ak(σ)Tζ(2σ)
k2

e−k2E1((2σ−1) logX),

where

ak(σ) =
∏
p

((
1− 1

p2σ

)k2 ∞∑
m=0

dk(p
m)2

p2mσ

)

uniformly for c ≤ σ ≤ 1. Here dk(n) is the kth divisor function and E1(z) =∫∞
z

e−w

w dw is the first exponential integral.

Note that here the number of factors in the Euler product is not even log2 T . On
the other hand, if we assume the Riemann Hypothesis, that 1

2 +
C log log 2T

logX ≤ σ < 1

with C > 1, and that 2 ≤ X ≤ T 2, then by Theorem 3.5

ζ(s) = PX(s)(1 + o(1)).

Hence, ∫ 2T

T

|PX(σ + it)|2k dt ∼
∫ 2T

T

|ζ(σ + it)|2k dt.

Now, it is a consequence of the Lindelöf Hypothesis (Titchmarsh [25], Theorem
13.2), and so also of the Riemann Hypothesis, that when 1

2 < σ < 1 is fixed,∫ 2T

T

|ζ(σ + it)|2k dt ∼ T
∞∑

n=1

d2k(n)

n2σ

for any fixed positive integer k. Thus, for such σ and k we have∫ 2T

T

|PX(σ + it)|2k dt ∼ T

∞∑
n=1

d2k(n)

n2σ
.

This gives an estimation of the moments of an extremely long Euler product deep
into the critical strip.

5. A function related to the zeta-function

In Section 2 we showed that short truncations of its Dirichlet series approximate
ζ(s) in σ > 1 and that, if the Lindelöf Hypothesis is true, this also holds in σ > 1

2 .

The approximation cannot be good in the strip 0 < σ ≤ 1
2 unless the length of

the sum is of order at least t; and this is so even if we assume the Lindelöf or
Riemann Hypothesis. In Section 3 we showed that the situation is similar, up to
a point, when we approximate ζ(s) by the weighted Euler product PX(s): short
products approximate ζ(s) well in the half-plane σ > 1 unconditionally, and in the
strip 1

2 < σ ≤ 1 on the Riemann Hypothesis. However, the approximation cannot

be close in 0 < σ < 1
2 no matter how many factors there are, for PX(s) gets much

larger than ζ(s) in this strip (see (3.29)). We now re-examine the approximation
of ζ(s) by sums when σ is close to 1

2 . If we assume the Riemann Hypothesis, then
by (4.1)

ζ(s) =
∑
n≤X

1

ns
+O(e−C1Φ(t))
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for 1
2 + 2C1Φ(t)

logX ≤ σ ≤ 1 and 2 ≤ X ≤ t2. This is good for X a small power of t

as long as σ is not too close to 1
2 , but we know X has to be of order t on σ = 1

2 .
This means the approximation is off by about

∑
X<n≤t n

−s. The Hardy-Littlewood

approximate functional equation [13] (or see Titchmarsh [25]) gives us another way
to express this. It says that

(5.1) ζ(s) =
∑
n≤X

1

ns
+ χ(s)

∑
n≤|t|/2πX

1

n1−s
+O(X−σ) +O(τ−

1
2X1−σ),

where 0 ≤ σ ≤ 1, |s− 1| ≥ 1
10 , and χ(s) is the factor in the functional equation

ζ(s) = χ(s)ζ(1− s).

From this we see that the amount by which the sum
∑

n≤X n−s is off from ζ(s) is
about

χ(s)
∑

n≤|t|/2πX

1

n1−s
.

If we let X =
√
|t|/2π and note that |χ( 12 + it)| = 1, we find that on the critical

line ζ(s) is essentially composed of two pieces of equal size:

ζ( 12 + it) =
∑
n≤X

1

n
1
2+it

+ χ( 12 + it)
∑
n≤X

1

n
1
2−it

+O(τ−
1
4 ).

In the case of Euler products, Theorem 3.5 suggests that PX(s) approximates
ζ(s) well even closer to the critical line than a sum of length X does. PX(s) is a

good approximation when σ ≥ 1
2 +

C log log 2τ
logX , while the sum is only close (as far as

we know) when σ ≥ 1
2 + 2C1Φ(t)

logX . In light of this and (5.1) it is tempting to guess

that

(5.2) ζ(s) ≈ PX(s) + χ(s)PX(1− s),

for some unspecified X. However, this is not a good guess. We have seen that
PX(1− s) gets as large as exp (Xσ− 1

2 / logX) when σ > 1
2 , whereas

∑
n≤X ns−1 is

no larger than Xσ− 1
2 eC1Φ(t) by the Corollary in the Appendix.

The difficulty here is crossing the line σ = 1
2 , where there is a qualitative change

in the behavior of the zeta-function. A way around this is to use the fact that the
functional equation tells us the zeta-function everywhere once we know it in σ ≥ 1

2 .
If we restrict our attention to this half-plane, a reasonable alternative to (5.2) is

ζX(s) = PX(s) + χ(s)PX(s).

Note that on the critical line, ζX(s) and the right-hand side of (5.2) are identical.

Also, since χ(s) � t
1
2−σ for σ > 1

2 (see (6.1) below), we have

ζX(s) = PX(s)(1 +O(t
1
2−σ)).

Combining this observation with Theorem 3.6, we obtain

Theorem 5.1. Assume the Riemann Hypothesis. Let 2 ≤ X ≤ t2, |s − 1| ≥ 1
10 ,

and 1
2 + C log log 2τ

logX ≤ σ ≤ 1 with C > 1. Then

(5.3) ζ(s) = ζX(s)
(
1 +O

(
log(1−C)/2 τ

))
.

Conversely, if (5.3) holds for 2 ≤ X ≤ t2 in the region stated, then ζ(s) has at

most a finite number of zeros to the right of σ = 1
2 + C log log 2τ

logX .
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Thus, even though ζX(s) is not analytic, it approximates ζ(s) well to the right
of the critical line. It resembles the zeta-function closely in other ways too, as we
shall see.

6. The Riemann Hypothesis for ζX(s)

For a closer study of ζX(s) we require several properties of the chi-function

χ(s) = πs− 1
2
Γ( 12 − 1

2s)

Γ( 12s)
,

which appears in the functional equation of the zeta-function. Chi has simple poles
at s = 1, 3, 5, . . . from the Γ-factor in the numerator. If we stay away from these,

(6.1) χ(s) =
( τ

2π

) 1
2−σ−it

eit+
1
4 iπ

{
1 + O

(1
τ

)}
in any half-strip −k < σ < k, t ≥ 0, by Stirling’s approximation. When t < 0, χ(s)
is given by the conjugate of this. We note for later use that the O-term is infinitely
differentiable.

Clearly |χ( 12 + it)| = 1 for all t. The converse is also almost true.

Lemma 6.1. There is a positive absolute constant C0 such that if |χ(σ + it)| = 1
with 0 ≤ σ ≤ 1 and |t| ≥ C0, then σ = 1

2 .

Remark. One can show that the minimal such C0 is less than 6.3.

Proof. Taking the logarithmic derivative of (6.1) by means of Cauchy’s integral
formula, we find that

Re
χ

′

χ
(s) = − log

τ

2π
+O

(1
τ

)
.

Since |χ( 12 + it)| = 1, we see that if σ1 > 1
2 , then

log |χ(σ1 + it)| =
∫ σ1

1
2

Re
χ

′

χ
(s) dσ

=
(1
2
− σ1

)
log

τ

2π
+O

(σ1 − 1
2

τ

)
.

This is negative for all t sufficiently large (independent of σ1), so the result follows.
The proof is similar for σ1 < 1

2 . �

From now on C0 will denote the constant in Lemma 6.1.
We now prove

Theorem 6.2 (The Riemann Hypothesis for ζX(s)). Let ρX = βX + iγX denote
any zero of ζX(s) with 0 ≤ βX ≤ 1 and γX ≥ C0, the constant in Lemma 6.1. Then
βX = 1

2 .

Proof. Since ζX(s) = PX(s) + χ(s)PX(s) and PX(s) never vanishes, the zeros of
ζX(s) can only occur at points where |PX(s)| = |χ(s)PX(s)|, that is, where|χ(s)| =
1. The result now follows from Lemma 6.1. �
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7. The number of zeros of ζX(s)

In this section we estimate the number of zeros of ζX(s) up to height t on
the critical line, showing among other things that it has at least as many zeros
(essentially) as ζ(s) does, namely

(7.1) N(t) =
t

2π
log

t

2π
− t

2π
+

7

8
+ S(t) +O

(1
τ

)
.

An exact expression for N(t) is

(7.2) N(t) = − 1

2π
argχ( 12 + it) + S(t) + 1,

and we shall use this later. Here the argument of χ is determined by starting with
the value 0 at s = 2 and letting it vary continuously, first along the segment from
2 to 2 + it and then horizontally from 2 + it to 1

2 + it.
To investigate the zeros of ζX(s) we write

(7.3) ζX(s) = PX(s)

(
1 + χ(s)

PX(s)

PX(s)

)
.

Since PX(s) is never zero, ζX(s) vanishes if and only if χ(s)PX(s)/PX(s) = −1.
Now |PX(s)/PX(s)| = 1, so this is equivalent to |χ(s)|=1 and arg (χ(s)PX(s)/PX(s))
≡ π (mod 2π). By Lemma 6.1, if |χ(s)| = 1 in the half-strip 0 ≤ σ ≤ 1, t ≥ C0,
then σ = 1

2 . Conversely, we know that |χ( 12 + it)| = 1 for all t. Thus, ζX(s) = 0

in 0 ≤ σ ≤ 1, t ≥ C0 if and only if arg
(
χ( 12 + it)PX( 12 − it)/PX( 12 + it)

)
≡ π

(mod 2π). Defining

(7.4) FX(t) = − argχ( 12 + it) + 2 argPX( 12 + it),

we see that when t ≥ C0, ζX( 12 + it) = 0 if and only if

FX(t) ≡ π(mod 2π).

This will be the basis for much of our further work.
Before turning to our first estimate, we point out that, as with argχ( 12 + it),

argPX( 12 + it) is defined by continuous variation along the segments [2, 2 + it] and

[2 + it, 1
2 + it], starting with the value 0 at s = 2. Also note from (7.4) that FX(t)

is infinitely differentiable for t > 0.
We now prove

Theorem 7.1. Let NX(t) denote the number of zeros ρ = 1
2 + iγX of ζX(s) with

0 ≤ γX ≤ t. Then

NX(t) ≥ t

2π
log

t

2π
− t

2π
− 1

π

∑
n≤X2

ΛX(n) sin(t logn)

n
1
2 log n

+OX(1).

Proof. There are at most finitely many zeros (the number may depend on X) with
ordinates between 0 and C0 (the constant in Lemma 6.1). We may therefore assume
that t ≥ C0. Now, by (6.1)

argχ( 12 + it) = −t log
t

2π
+ t+

1

4
π +O

(1
τ

)
,

and by (3.4)

argPX( 12 + it) = Im
∑

n≤X2

ΛX(n)

n
1
2+it log n

= −
∑

n≤X2

ΛX(n) sin(t logn)

n
1
2 log n

.
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Thus, we may express FX(t) in (7.4) as

(7.5) FX(t) = t log
t

2π
− t− 1

4
π − 2

∑
n≤X2

ΛX(n) sin(t logn)

n
1
2 log n

+O
(1
τ

)
.

Recall that ζX( 12 + it) = 0 when t ≥ C0 if and only if FX(t) ≡ π(mod 2π). Since
FX(t) is continuous, this happens at least

t

2π
log

t

2π
− t

2π
− 1

π

∑
n≤X2

ΛX(n) sin(t logn)

n
1
2 log n

+OX(1)

times as on [C0, t]. This gives the result. �

The sum over prime powers in (7.5) obviously plays an important role in pro-
ducing zeros of ζX(s). This sum is just − argPX( 12 + it), but it will be convenient
to give it a simpler name. Thus, from now on we write

fX(t) = − argPX( 12 + it) =
∑

n≤X2

ΛX(n) sin(t log n)

n
1
2 log n

.

As is well known (see Selberg [24] or Titchmarsh [25]), −(1/π)fX(t) is a good
approximation in mean-square to S(t) = (1/π) arg ζ( 12 + it) if X is a small power
of t and if the Riemann Hypothesis holds. A closer analogue of S(t) in our context
is

SX(t) =
1

π
arg ζX( 12 + it).

From (7.3) we see that

SX(t) =− 1

π

∑
n≤X2

ΛX(n) sin(t logn)

n
1
2 log n

− 1

π
arg

(
1 + χ( 12 + it)

PX( 12 − it)

PX( 12 + it)

)

=− 1

π
fX(t)− 1

π
arg

(
1 + e−iFX(t)

)
.

The second term on the right, which contains the jump discontinuities of SX(t) as t
passes through zeros of ζX( 12 + it), has modulus ≤ 1

2 . (Note that our convention is

that the argument is π/2 when 1+e−iFX(t) vanishes.) Thus, SX(t) and −(1/π)fX(t)
differ by at most O(1).

The next theorem shows that when X is not too small, fX(t) and SX(t) have
the same bound as S(t), namely Φ(t).

Theorem 7.2. Assume the Riemann Hypothesis and that 2 ≤ X ≤ t2. Then

fX(t) =
∑

n≤X2

ΛX(n) sin(t log n)

n
1
2 log n

� Φ(t) +
log τ

logX
.

In particular, fX(t) � Φ(t) when exp(log τ/Φ(t)) ≤ X ≤ t2. The same bounds
hold for SX(t).

Proof. Since SX(t) + (1/π)fX(t) � 1, it suffices to prove the result for fX(t). By
(3.18) and (3.19) we have

S(t) = − 1

π

∑
n≤X2

ΛX(n) sin(t logn)

n
1
2 log n

+O
(
Φ(t)

)
+O

( log τ

logX

)
.

Since S(t) � Φ(t), the result follows. �
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From Theorem 7.2 and Theorem 7.1 we immediately obtain

Theorem 7.3. Assume the Riemann Hypothesis is true. Then for 2 ≤ X ≤ t2,

(7.6) NX(t) ≥ t

2π
log

t

2π
− t

2π
+O(log τ ).

Moreover, if exp(c log τ/Φ(t)) ≤ X ≤ t2, where c is any positive constant, then

NX(t) ≥ t

2π
log

t

2π
− t

2π
+O(Φ(t)).

To obtain an upper bound for NX(t) of the same order we require the following
theorem.

Theorem 7.4. Assume the Riemann Hypothesis and that 2 ≤ X ≤ t2. Then

f
′

X(t) =
∑

n≤X2

ΛX(n) cos(t logn)

n
1
2

� Φ(τ ) logX +
log τ

logX
.

Proof. Taking the real part of (3.8) with σ = 1
2 , we obtain

Re
ζ

′

ζ
( 12 + it) =

∑
γ

cos
(
(γ − t) logX

)
− cos

(
2(γ − t) logX

)
(γ − t)2 logX

−
∑

n≤X2

ΛX(n) cos(t log n)√
n

+O
( 1

logX

)
.

(7.7)

Similarly, from

ζ
′

ζ
(s) =

∑
ρ

(
1

s− ρ
+

1

ρ

)
− 1

2
log

τ

2π
+O(1)

we see that

Re
ζ

′

ζ
(s) = −1

2
log

τ

2π
+ O(1).

We substitute this into the left-hand side of (7.7) and rearrange the equation to see
that∑
n≤X2

ΛX(n) cos(t logn)√
n

= 1
2 log

τ

2π
+
∑
γ

cos
(
(γ − t) logX

)
− cos

(
2(γ − t) logX

)
(γ − t)2 logX

+O(1).

In the sum over zeros, the terms with |t− γ| ≥ 1 contribute � log τ/ logX. Thus,
writing C(v) = cos(v logX)− cos(2v logX), we have

(7.8)
∑

n≤X2

ΛX(n) cos(t log n)√
n

=
1

2
log

τ

2π
+

1

logX

∑
|γ−t|≤1

C(γ − t)

(γ − t)2
+O

( log τ

logX

)
.

To estimate the sum on the last line, first note that

(7.9) C(v) =

{
3
2v

2 log2 X +O(|v|4 log4 X) if |v| ≤ 1/ logX,

O(1) if |v| > 1/ logX

and that

C ′(v) =

{
3v log2 X +O(|v|3 log4 X) if |v| ≤ 1/ logX,

O(logX) if |v| > 1/ logX.
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In particular, it follows that

(7.10)
d

dv

(C(v)

v2

)
=

v2C
′
(v)− 2vC(v)

v4
�

{
|v| log4 X if |v| ≤ 1/ logX,

v−2 logX if |v| > 1/ logX.

Now, by (7.1)

∑
|γ−t|≤1

C(γ − t)

(γ − t)2
=

∫
|u−t|≤1

C(u− t)

(u− t)2
dN(u)

=
1

2π

∫
|v|≤1

C(v)

v2
log

( t+ v

2π

)
dv +

∫
|v|≤1

C(v)

v2
dS(t+ v).

Using (7.10), we see that the integral with respect to dS is

S(t+ v)
C(v)

v2

∣∣∣∣
1

−1

−
∫
|v|≤1

S(t+ v)
(C(v)

v2

)′
dv

� Φ(τ ) + Φ(τ )

(∫
|v|≤1/ logX

|v| log4 X dv +

∫
1/ logX<|v|≤1

logX

v2
dv

)

� Φ(τ ) log2 X.

The other integral is

1

2π

∫
|v|≤1

(
log

t

2π
+O

(
|v|
t

))
C(v)

v2
dv.

The O-term contributes

� 1

τ

(
log2 X

∫
|v|≤1/ logX

|v| dv +
∫
1/ logX<|v|≤1

|v|−1 dv

)
� 1

τ
log logX

by (7.9). Thus, combining these results, we find that

(7.11)
∑

|γ−t|≤1

C(γ − t)

(γ − t)2
=

1

2π
log

t

2π

∫
|v|≤1

C(v)

v2
dv + O(Φ(τ ) log2 X).

To calculate the integral we write∫
|v|≤1

C(v)

v2
dv =

∫ ∞

−∞

C(v)

v2
dv −

∫
|v|>1

C(v)

v2
dv.

By (7.9) the second integral is O(1). By the calculus of residues and the definition
of C(v), the first equals∫ ∞

−∞

cos(v logX)− cos(2v logX)

v2
dv = Re

∫ ∞

−∞

eiv logX − e2iv logX

v2
dv

= Re 2πi

(
− 1

2 Resv=0
eiv logX − e2iv logX

v2

)
= −Re πi (−i logX) = −π logX.

Thus, ∫
|v|≤1

C(v)

v2
dv = −π logX +O(1).
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Using this in (7.11), we obtain∑
|γ−t|≤1

C(γ − t)

(γ − t)2
= −1

2
log

t

2π
logX + O(Φ(τ ) log2 X) + O(log τ ).

It therefore follows from (7.8) that∑
n≤X2

ΛX(n) cos(t logn)√
n

� Φ(τ ) logX +
log τ

logX
.

This completes the proof of the theorem. �

The zeros of ζX(σ + it) with t ≥ C0 arise as the solutions of

FX(t) ≡ π(mod 2π),

and their number in [C0, t] is at least (1/2π)FX(t) + OX(1) because this is the
minimum number of times the curve y = FX(t) crosses the horizontal lines y =
π, 3π, 5π, .... However, there could be “extra” solutions if FX(t) is not monotone
increasing. Now

(7.12) F
′

X(t) = log
t

2π
− 2

∑
n≤X2

ΛX(n) cos(t log n)

n
1
2

+O
(1
τ

)
.

By Theorem 7.4 there exists a positive constant C3, say, such that if X ≤
exp

(
C3 log τ/Φ(t)

)
and t is large enough, then

(7.13)
∑

n≤X2

ΛX(n) cos(t log n)

n
1
2

<
1

2
log

t

2π
.

This means F
′

X(t) is positive, so FX(t) ≡ π(mod 2π) has no extra solutions. We
have therefore proved

Theorem 7.5. Assume the Riemann Hypothesis. There is a constant C3 > 0 such
that if X < exp

(
C3 log t/Φ(t)

)
, then

(7.14) NX(t) =
t

2π
log

t

2π
− t

2π
− 1

π

∑
n≤X2

ΛX(n) sin(t logn)

n
1
2 log n

+OX(1).

Less precisely,

NX(t) =
t

2π
log

t

2π
− t

2π
+OX(Φ(τ )).

It would be useful to know whether (7.14) (perhaps with a larger O-term) also
holds when X is a small fixed power of t. If that is the case, classical results about
the statistics of the zeros of ζ(s) whose proofs depend on approximating S(t) by the
trigonometric polynomial −(1/π)fX(t) would hold for the zeros of ζX(s) as well.
What we can show for larger X is the following unconditional result.

Theorem 7.6. There exists a positive constant C4 such that if X ≤ tC4 , then

NX(t) � t log t.

Moreover, if X ≤ to(1), then

NX(t) =
(
1 + o(1)

) t

2π
log

t

2π
.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2176 S. M. GONEK

Proof. There are two ways that solutions to FX(t) ≡ π(mod 2π) may arise, and we
shall refer to the zeros of ζX(s) corresponding to these two ways as zeros of the
“first” and “second” kind.

The first way is by FX(t) increasing or decreasing from one odd multiple of π,
say (2k+1)π, to the next larger or smaller odd multiple of π, without first crossing
(2k + 1)π again. A moment’s reflection reveals that the total number of distinct
zeros in [C0, t] arising this way is big-O of the total variation of FX(t), namely,

1

2π

∫ t

C0

|F ′

X(u)| du.

By (7.12) and the triangle and Cauchy-Schwarz inequalities, this is

≤ 1

2π

∫ t

C0

∣∣∣∣ log u

2π
− 2

∑
n≤X2

ΛX(n) cos(u log n)√
n

∣∣∣∣ du+O(1)

≤ t

2π
log

t

2π
− t

2π
+

1

π
t1/2

(∫ t

C0

∣∣∣∣ ∑
n≤X2

ΛX(n) cos(u log n)√
n

∣∣∣∣
2

du

)1/2

.

By a standard mean value theorem for Dirichlet polynomials it is easy to show that
if X � t1/2, the integral is � t log2 X. Thus, writing NI(t) for the number of
distinct zeros that occur in this way, we have

NI(t) ≤
t

2π
log

t

2π
− t

2π
+O(t logX).

We will see how to take multiplicities into account below.
The second way solutions to FX(t) ≡ π(mod 2π) can occur is by FX(t) increasing

or decreasing from a solution (2k+1)π and returning to this value before reaching
the next larger or smaller odd multiple of π. Each time this happens, there must
be at least one point in between where F

′

X(t) vanishes. Thus, writing NII(t) for
the number of distinct zeros of ζX(s) arising this way, we see that NII(t) is at most

big-O of the number of times F
′

X(t) vanishes on [C0, t]. To estimate this number
we define functions

gX(s) = −χ
′

χ
(s)− 2

∑
n≤X2

ΛX(n)

ns

and

GX(s) =
1

2

(
gX(s) + gX(1− s)

)
.

By (7.4), F
′

X(t) = GX( 12 + it), so the zeros of F
′

X(t) on [C0, t] are the zeros of

GX(s) on [ 12 + iC0,
1
2 + it]. We bound this number by bounding the number of

zeros on each of the segments [ 12 + it, 1
2 + 2it], [ 12 + i t2 ,

1
2 + it], ..., and adding. The

number of zeros on any one of these is at most the number of zeros of GX(s) in
a disk containing the segment. By a familiar result from complex analysis, if D
is a closed disk of radius R centered at z0, f(z) is analytic on D with maximum
modulus M , and f(z0) 	= 0, then there is an absolute constant c such that f has
≤ c log(M/|f(z0)|) zeros in the disc of radius 2

3R centered at z0. To apply this to the

segment [12 + it, 1
2 +2it], say, we need a disc containing it, the maximum of |GX(s)|

on this disk, and a lower bound for |GX | at the center of the disk. We handle the
last problem first by selecting as center a point at which we know |GX(s)| cannot
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be too small. The upper bound for NII(t) will follow by repeating this process for
each of the segments and adding the resulting estimates.

To show that one can find a satisfactory center, fix a δ with 0 < δ < 1
2 and set

E(t) =
{
u ∈ [t, 2t] : ( 12 + δ) log

t

2π
≥ |f ′

X(u)| ≥ ( 12 − δ) log
t

2π

}
.

Then |F ′

X(u)| = |GX( 12 + iu)| ≤ 2δ log(t/2π) + O(1/t) for all u ∈ E(t). Now recall
that ∫ 2t

t

∣∣f ′

X(u)
∣∣2 du =

∫ 2t

t

∣∣∣∣ ∑
n≤X2

ΛX(n) cos(u logn)√
n

∣∣∣∣
2

du � t log2 X.

Thus, the measure of E(t) is

|E(t)| =
∫
E(t)

1 dt ≤
∫
E(t)

(
|f ′

X(u)|
( 12 − δ) log t

2π

)2

dt

� t log2 X

log2 t
.

It follows that there exists a constant C4 > 0 such that if X ≤ tC4 , then |E(t)| < 1
6 t.

Since the segment [12+i( 32−
1
12 )t,

1
2+i( 32+

1
12 )t] has greater length than the set E(t),

it contains a point 1
2 + it0 with t0 not in E(t) and therefore with |GX( 12 + it0)| >

2δ log(t/2π).
We now let D0(t) be the closed disc of radius t centered at 1

2 + it0, and let M
denote the maximum of |GX(s)| on D0(t). Clearly on D0(t) we have

GX(σ + it) � log t+
∑

n≤X2

ΛX(n)nt−1/2 � Xt+1/2.

Hence, by the theorem alluded to above, GX(s) has� log(Xt+1/2/δ log t) � t logX
zeros inside the smaller disc D0(

2
3 t) of radius

2
3 t, which covers [ 12+it, 1

2+2it]. Adding

estimates for the different intervals, we arrive at � t logX distinct zeros of F
′

X(t).
The same bound therefore holds for the number of distinct zeros of the second kind.

Combining the two ways the solutions of FX(t) ≡ π (mod 2π) or zeros of ζX(s)
arise, we find that for X ≤ tC4 there are

NI(t) +NII(t) ≤ (t/2π) log(t/2π)− (t/2π) +O(t logX)

distinct zeros.
Now, a zero 1

2 + iγX of ζX( 12 + it) has multiplicity m if and only if the first

m − 1 derivatives of ζX( 12 + it) with respect to t vanish at γX , but the mth does

not. It is easy to check that this is equivalent to FX(γX) ≡ π (mod 2π), F
′

X(γX) =

... = F
(m−1)
X (γX) = 0, and F

(m)
X (γX) 	= 0. Also note that our estimate for the

number of zeros of the analytic function GX(s) counts them according to their

multiplicities, and that F
′

X(t) = GX( 12 + it), F
(2)
X (t) = iG

(1)
X ( 12 + it), . . . , F

(m)
X (t) =

im−1G
(m−1)
X ( 12 + it).

Suppose then that 1
2 + iγX is a zero of ζX(s) of the first kind and multiplicity m.

Then it is counted once in NI(t). Also, since the first m − 1 derivatives of FX(t)
vanish at γX , so does GX( 12 + it) and its first m− 2 derivatives. Thus, 1

2 + iγX is
counted another m− 1 times in NII(t), and therefore with the correct multiplicity
in NI(t) +NII(t).
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Next suppose that 1
2 + iγX is a zero of multiplicity m of the second kind. Then

it is counted at least once in NII(t) because F
′

X(t) = GX( 12 + it) vanishes at a

nearby point. Also, at γX itself we have F
′

X(γX) = · · · = Fm−1
X (γX) = 0, and

Fm
X (γX) 	= 0. This means that GX(s) and its first m − 2 derivatives are zero at

1
2 + iγX , so this point is counted m− 1 times by NII(t). Thus, zeros of the second
kind with multiplicity m are counted with weight at least m in NII(t).

We now see that

NX(t) ≤ t

2π
log

t

2π
− t

2π
+O(t logX).

Both assertions of the theorem now follow from this and the lower bound in
(7.6). �

8. The number of simple zeros of ζX(s)

We saw in the last section that a zero 1
2 + iγX of ζX(s) is simple if and only if

FX(γX) ≡ π (mod 2π) and F
′

X(γX) 	= 0. Let N
(1)
X (t) denote the number of such

zeros up to height t. From (7.12) and (7.13) we see that F
′

X(γX) > 0 if X is not
too large, and therefore that 1

2 + iγX is a simple zero of ζX(s). Combining this
with Theorem 7.5, we obtain

Theorem 8.1. Assume the Riemann Hypothesis. There exists a constant C3 > 0
such that if X < exp

(
C3 log t/Φ(t)

)
, then all the zeros of ζX( 12 + it) with t ≥ C0

are simple and

N
(1)
X (t) = NX(t) =

t

2π
log

t

2π
− t

2π
− 1

π

∑
n≤X2

ΛX(n) sin(t logn)

n1/2 log n
+ OX(1).

As in our results for NX(t), the condition on X is almost certainly too restrictive.
The following unconditional but less precise result is valid for larger X.

Theorem 8.2. Let ε > 0 and X ≤ exp
(
o(log1−ε t)

)
. Then as t → ∞, the number

of simple zeros up to height t is

N
(1)
X (t) = (1 + o(1))

t

2π
log

t

2π
.

Proof. Let N be the number of zeros of ζX( 12 + iu) in [t, 2t] and N∗ the number
of these that are multiple. By Theorem 7.6, there is a constant C4 such that if
X ≤ tC4 , then N � t log t. We may therefore split the N∗ multiple zeros into
K � log t sets S1,S2, ...,SK , in each of which the points are at least 1 apart. Let S
be one of these sets and let γ1, γ2, ..., γR be its points. Then these must all satisfy

0 = F
′

X(γr) = log
γr
2π

− 2
∑

n≤X2

ΛX(n) cos(γr log n)

n1/2
+O

( 1

γr

)
.

Writing ∑
n≤X2k

AX(n)

n1/2+iu
=

( ∑
n≤X2

ΛX(n)

n1/2+iu

)k

,

we have by a mean value theorem of Davenport (Montgomery [20]) that

R∑
r=1

∣∣∣∣ ∑
n≤X2

ΛX(n)

n1/2+iγr

∣∣∣∣
2k

�
(
t+X2k log

(
X2k

))
log

(
X2k

) ∑
n≤X2k

|AX(n)|2
n

.
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Figure 1. Graphs of 2|ζ( 12 + it)| (solid) and |ζX( 12 + it)| (dotted)
near t = 114 for X = 10 and X = 300, respectively.
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Figure 2. Graphs of 2|ζ( 12 + it)| (solid) and |ζX( 12 + it)| (dotted)
near t = 2000 for X = 10 and X = 300, respectively.

It is not difficult to show that the sum on the right is �2k log2k X so, if X ≤ t1/2k,
the right-hand side is �k t log2k+2X. (We also require X ≤ tC4 , so we assume

that k ≥ C4/2.) On the other hand, by (8) the left-hand side must be 
 R log2k t.

Therefore |S| = R �k t log2k+2X/ log2k t. There are K � log t sets Sk, so the

total possible number of multiple zeros is N∗ �k t(log2k+2X/ log2k−1 t). This is
ok(t log t) if X ≤ exp(o((log t)1−1/(k+1))). Taking k large enough so that 1/(k+1) <
ε, we obtain the result. �

9. The relative sizes of ζX(s) and ζ(s) and the relation

between their zeros

Although we have not proved that ζX(s) approximates ζ(s) pointwise when σ is
very close to 1

2 , the similarity between the formulae for NX(t) and N(t) suggests
there might be a close relationship between the two functions even on the critical
line. Indeed, comparing the graphs of |ζX( 12 + it)| and |ζ( 12 + it)| for a wide range
of X and t (see Figures 1 and 2), one is struck by two things:

i) the zeros of ζX( 12 + it) are quite close to those of ζ( 12 + it), even for relatively
small X, and

ii) as X increases, |ζX( 12 + it)| seems to approach 2|ζ( 12 + it)|.

An explanation for the second observation is that although ζX(s) approximates
ζ(s) to the right of the critical line, so does PX(s). Therefore ζX(s) = PX(s) +
χ(s)PX(s) might be a closer approximation to the function F(s) = ζ(s) +χ(s)ζ(s)
than to ζ(s). If this is the case, then on the critical line we have by the functional
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equation that

ζX( 12 + it) ≈ F( 12 + it) =ζ( 12 + it) + χ( 12 + it)ζ( 12 − it)

=ζ( 12 + it) + |χ( 12 + it)|2ζ( 12 + it)

=2 ζ( 12 + it).

To establish both observations rigorously we need to introduce a slightly modified
version of ζX(s). Let

P ∗
X(s) = PX(s) exp(−F2((s− 1) logX))

and define

ζ∗X(s) = P ∗
X(s) + χ(s)P ∗

X(s).

Note that by (3.24),

P ∗
X(s) = PX(s) exp

(
O

(
X2−2σ

τ2 log2 X

))

when σ ≥ 1
2 and |s−1| ≥ 1

10 . The difference between PX(s) and P ∗
X(s), and so also

ζX(s) and ζ∗X(s), is small when 2 ≤ X ≤ t2, as we have been assuming until now.
We need to take X much larger, though, in what follows. Similarly, we replace
FX(t) by

F ∗
X(t) =− argχ( 12 + it) + 2 argP ∗

X( 12 + it)

=− argχ( 12 + it) + 2
(
argPX( 12 + it)− ImF2

(
(− 1

2 + it) logX
))
.(9.1)

By (7.4) and (3.24)

F ∗
X(t) = FX(t) +O

( X

τ2 logX

)
,

so these two functions are also close when X ≤ t2. The zeros of ζ∗X( 12 + it) are
the solutions of F ∗

X(t) ≡ π (mod 2π), and we will show that i) and ii) above hold
provided we use ζ∗X( 12 + it) in place of ζX( 12 + it).

Assume the Riemann Hypothesis is true. Taking the argument of both sides of
(3.7) and recalling that S(t) = (1/π) arg ζ( 12 + it), we see that

πS(t) = argPX( 12 + it)− ImF2

(
(− 1

2 + it) logX
)
+
∑
γ

Im F2

(
i(t− γ) logX

)(9.2)

+O
( X− 3

2

τ2 logX

)
,

where γ runs through the ordinates of the zeros of ζ(s). We use this to replace the
quantity in parentheses in (9.1) and obtain

F ∗
X(t) = − argχ( 12 + it) + 2πS(t)− 2 Im

∑
γ

F2(i(t− γ) logX) +O
( X− 3

2

τ2 logX

)
.

Now, by (7.2)

− argχ( 12 + it) + 2πS(t) = 2πN(t)− 2π,

thus

(9.3)
1

2π
F ∗
X(t) = N(t)− 1− 1

π
Im

∑
γ

F2(i(t− γ) logX) +O
( X− 3

2

τ2 logX

)
.
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We use this first to show that the zeros of ζ∗X(s) cluster around the zeros of ζ(s)
as X → ∞. Let γ1 and γ2 denote ordinates of distinct consecutive zeros of ζ(s),
and let 0 < Δ ≤ 1

4 (γ1 − γ2). Also, let I = [γ1 +Δ, γ2 −Δ]. Then by (3.22) and
Lemma 3.3, if X ≥ exp(1/Δ) we have∑

γ

F2(i(t− γ) logX) � 1

log2 X

∑
|γ−t|>Δ

1

(t− γ)2
(9.4)

� 1

Δ log2 X

(
log τ +

Φ(τ )

Δ

)
uniformly for t ∈ I. It now follows from (9.3) that given any ε > 0, there exists an
X0 = X0(γ1,Δ, ε) such that if X ≥ X0, then

(9.5)
∥∥∥F ∗

X(t)

2π
−N(t)

∥∥∥ < ε,

uniformly for t ∈ I. Here ‖x‖ denotes distance from x to the nearest integer. Since
N(t) is an integer when t ∈ I, this means that if 0 < ε < 1

2 , then
1
2 + it is not a

zero of ζ∗X(s). Thus I is free from zeros of ζ∗X(s) when X is sufficiently large.
Now we show that ζ∗X( 12 + it) tends to 2ζ( 12 + it) on I. By (9) and (9.1) we may

write
ζ∗X( 12 + it) = P ∗

X( 12 + it)
(
1 + e−iF∗

X(t)
)
.

Also, by Theorem 3.2 and the definitions of P ∗
X and ZX , we have

ζ(s) = P ∗
X(s) exp

(∑
γ

F2

(
i(t− γ) logX

))(
1 +O

(
X− 5

2

τ2 log2 X

))
.

From the first of these and (9.5) we see that for X sufficiently large

ζ∗X( 12 + it) = P ∗
X( 12 + it) (2 +O(ε))

uniformly for t ∈ I. From the second and (9.4) we see that for X sufficiently large

ζ( 12 + it) = P ∗
X( 12 + it)

(
1 +O(ε)

)
on I. Thus, ζ∗X( 12 + it) → 2ζ( 12 + it) as X → ∞ uniformly for t ∈ I.

Combining our results we now have

Theorem 9.1. Assume the Riemann Hypothesis. Let γ and γ
′
denote ordinates of

distinct consecutive zeros of the Riemann zeta-function and let I denote a closed
subinterval of (γ, γ

′
). Then for all X sufficiently large, ζ∗X( 12 + it) has no zeros in

I. Moreover, ζ∗X( 12 + it) → 2ζ( 12 + it) as X → ∞ uniformly for t ∈ I.
E. Bombieri has pointed out to the author that (9.2) is closely related to an

explicit formula of Guinand ([11], [12]), namely,

πS(t) =− lim
X→∞

( ∑
n≤X

Λ(n) sin(t logn)

n1/2 log n
−
∫ X

1

sin(t log u)

u1/2 log u
du

)

− lim
X→∞

(
sin(t logX)

logX

( ∑
n≤X

Λ(n)

n1/2
− 2X1/2

))
+ arctan 2t

− 1

4
arctan(sinhπt)− 7

8
π +

1

2

(
arg Γ( 12 + it)− t log t+ t

)
.

There is no sum over zeros here because Guinand is taking a limit. Also, the Λ(n)
are unweighted. However, this is only a minor difference.
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It is remarkable that the zeros of ζ∗X(s) and ζX(s) are close to those of ζ(s) even
when X is small (cf. Figures 1 and 2) . Formula (9.3) offers a possible explanation
for this. Suppose that t = γ, the ordinate of a zero of ζ(s) with multiplicity m.
Then N(γ) is an integer, so by (9.3)

1

2π
F ∗
X(γ) ≡ − 1

π
Im

∑
γ′

F2(i(γ − γ
′
) logX) +O(γ−2) (mod 1).

Now, a more precise version of (3.11) is that if y is real,

ImF2(iy) = arg iy +
∞∑
k=0

ak y
2k+1,

where the ak are real and the argument is π/2 when y = 0 (the limit as y →
0+). This is an odd function (for y 	= 0). Furthermore, for larger y we have
ImF2(iy) = (sin y/y2)(1+O(1/|y|)) by (3.21). Thus, the m terms in the sum with

γ
′
= γ contribute m(π/2) and the terms with |γ−γ

′ | logX large are decreasing and
oscillating. They should therefore exhibit a lot of cancellation. There might also
be a great deal of cancellation among the small and intermediate range terms for
the following reason. Although it has never been proved, we expect the numbers
γ

′
logX to be uniformly distributed (mod 1) when T � X � TA with A arbitrarily

large and fixed. This and the fact that ImF2(iy) is odd suggest that all the terms
with γ′ 	= γ cancel and that (1/2π)F ∗

X(γ) will be close to m/2 (mod 1). Thus, if
m is odd (it is believed that m is always 1), it would not be surprising to find a
zero of ζ∗X( 12 + it) nearby.

While writing this paper, the author learned from a lecture by J. P. Keating that
he and E. B. Bogomolny had worked with a function similar to ζt/2π restricted to
the critical line as a heuristic tool to calculate the pair correlation function of the
zeros of ζ(s) (see, for example, Bogomolny and Keating [4] and Bogomolny [1]). In
fact, Professor Keating [18] had first considered such a function in the early 1990s
and observed that its zeros are quite close to those of the zeta-function. He and
his graduate student, Steve Banham, also heuristically investigated how close the
zeros of ζX( 12 + it) and ζ( 12 + it) are as a function of X.

10. Why zeros of ζX(s) are simple and repel

Theorem 8.1 shows that if the Riemann Hypothesis holds, then the zeros of
ζX( 12 + it) with t ≥ C0 are simple provided that X ≤ exp(C3 log t/Φ(t)) for some
constant C3 > 0. Futhermore Theorem 8.2 shows unconditionally that even for
X as large as exp(o(log1−ε t)), 100% of the zeros are simple. The structure of
ζX( 12 + it) suggests why. The zeros of ζX( 12 + it) for t ≥ C0 arise as the solutions
of the congruence FX(t) ≡ π (mod 2π). That is, they are the abscissas of the
points where the curve y = FX(t) crosses the equally spaced horizontal lines y =
(2k+1)π. If t were the abscissa of a multiple zero of ζX( 12 + it), it would also have

to be a solution of the equation F
′

X(t) = 0. We saw that this cannot happen for

X ≤ exp(C3 log t/Φ(t)) (because then F
′

X(t) > 0) and that it cannot happen often
if logX = o(log τ ). However, for larger X, say X ≤ t2, one might also expect it to
happen rarely on the grounds that the “events”

FX(t) = t log
t

2π
− t− 1

4
π − 2

∑
n≤X2

ΛX(n) sin(t log n)

n
1
2 log n

+O
(1
τ

)
≡ π(mod 2π)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE EULER PRODUCTS AND THE RIEMANN HYPOTHESIS 2183

110 112 114 116 118

-0.75

-0.5

-0.25

0.25

0.5

110 112 114 116 118

-0.75

-0.5

-0.25

0.25

0.5

Figure 3. Graphs of S(t) (solid) and (−1/π)fX(t) (dotted) near
t = 114 for X = 10 and X = 300, respectively.

and

F
′

X(t) = log
t

2π
− 2

∑
n≤X2

ΛX(n) cos(t log n)

n
1
2

+O
(1
τ

)
= 0

should be independent.
What about repulsion? By (7.12) and Theorem 7.4, F

′

X(t) � Φ(t) logX + log t
when 2 ≤ X ≤ t2. As in Section 7, we divide the zeros into two kinds. The first
kind comes about by y = FX(t) increasing or decreasing from y = (2k+1)π to the
next larger or smaller odd multiple of π without first re-crossing y = (2k+1)π. All
other zeros are zeros of the second kind. Suppose that γX andγ′

X are ordinates of
consecutive zeros of ζX( 12 + it) and that 1

2 + iγX is a zero of the first kind. Then

FX(γ
′

X)− FX(γX) = ±2π and we have

2π =|FX(γ
′

X)− FX(γX)| =
∣∣∣∣
∫ γ′

X

γX

F
′

X(u) du

∣∣∣∣
�(γ

′

X − γX) (log γX +Φ(γX) logX) .

Thus,

γ
′

X − γX 
 1

log γX +Φ(γX) logX
.

Recall that (log γX/ log log γX)1/2 � Φ(γX) � log γX . Thus, if X ≤ γ2
X , then

(10.1) γ
′

X − γX 
 1

loga γX

for some a ∈ [ 32 , 2].

Note that if X ≤ exp(C3 log t/Φ(t)) with C3 as in Theorem 8.1, then F
′

X(t) > 0
and all zeros are of the first kind. Furthermore, by the proof of Theorem 7.6, there
are (1 + o(1))(t/2π) log(t/2π) zeros of the first kind when logX = o(log τ ).

If 1
2 + iγX is a zero of the second kind, then FX(γ

′

X) − FX(γX) = 0 and the
argument above does not work. It may be, however, that most zeros are of the first
kind.

To see why, first observe that S(t) is a saw-tooth function because N(t) is a step-
function consisting of the increasing function (t/2π) log(t/2π)−(t/2π)+7/8+O(1/τ )

plus S(t). Now between consecutive ordinates γ, γ
′
of zeros of ζ( 12 + it), S(t)

decreases essentially linearly with slope −(1/2π) log(γ/2π). It then jumps at γ
′
by

an amount equal to the multiplicity of the zero 1
2 + iγ

′
. The heuristic argument

at the end of the last section suggesting that
∑

γ F2(i(t− γ) logX) is usually small
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Figure 4. Graphs of N(t) and (1/2π)FX(t) + 1 near t = 114 for
X = 10 and X = 300

away from ordinates of zeta zeros, when applied to (9.2) with X ≤ t2, implies that
between the ordinates of zeros

S(t) ≈ − 1

π
fX(t) = − 1

π

( ∑
n≤X2

ΛX(n) sin(t logn)√
n log n

)
.

It is not clear here how large X should be relative to t. However, graphs of fX(t)
indicate that they are close to the graph of S(t) when X is moderately large, there
are small oscillations along the downward slopes of S(t), and then a flatter, close
to vertical rise near the jumps of S(t) (Figure 3). For

FX(t)

2π
≈ t

2π
log

t

2π
− t

2π
− 1

8
− 1

π
fX(t),

which approximates N(t)− 1, this means that the oscillations tend to be along the
flat part of the “steps” and not at the rise (Figure 4). However, zeros of ζX( 12 + it)

correspond to solutions of FX(t)/2π ≡ 1
2 (mod 1), and these will be the abscissas

of points that are about halfway up the rise of FX(t). This suggests that zeros of
the second kind are unlikely.

Our arguments have assumed that X ≤ t2, but we should probably take X
even larger to model the zeta-function. In that case we would need to repeat the
arguments with F ∗

X(t). This introduces a term −ImF2

(
(− 1

2 + it) logX
)
, which

can be as large as X/t2 log2 X. Applied to the argument for gaps between zeros of
the first kind with ordinates around t, and assuming X = tb with b > 2, this leads
to

γ
′

X − γX 
 1

ΦX(γX) log γX + γb−3
X / log2 γX

in place of (10.1). This is again 
 1/ loga γX for some a ∈ [ 32 , 2] when 2 < b ≤ 3,
but it gives

γ
′

X − γX 
 1/γb−3
X

when b > 3. This may be compared with the repulsion between zeros of the zeta-
function predicted by extrapolating from Montgomery’s pair correlation conjecture,
namely

γ
′

X − γX 
 1/γ
1
3+ε

X .

It would have been nice if the exponent 1
3 had been forced on us by the above

argument.
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11. Other L-functions and sums of L-functions

The ideas above have obvious extensions to the more general setting of the
Selberg Class of L-functions [23] and similar classes of functions with Euler prod-
ucts and functional equations, such as that defined by Iwaniec and Kowalski [17].
Here we briefly indicate how this looks for Dirichlet L-functions. We then con-
sider the analogue of the problem of the distribution of zeros of linear combinations
of L-functions. This approach provides a new heuristic explanation for why such
combinations should have almost all their zeros on the critical line.

Let L(s, χ) denote the Dirichlet L-function with character χ modulo q and func-
tional equation

(11.1) L(s, χ) =
τ (χ)

ia
√
q
Ψ(s)L(1− s, χ),

where

(11.2) Ψ(s) =

(
π

q

)s− 1
2 Γ

(
1+a−s

2

)
Γ
(
a+s
2

) ,

τ (χ) is Gauss’ sum, and a = 0 or 1 according to whether χ(−1) = 1 or −1. When
q = 1, this is the functional equation for ζ(s) because τ (χ) = 1 and a = 0. Since
the factor preceding Ψ(s) has modulus 1, we may rewrite (11.1) as

eiαL(s, χ) = Ψ(s)e−iαL(1− s, χ) ,

where α = α(χ) ∈ R.
We now define the functions

LX(s, χ) = PX(s, χ) + e−2iαΨ(s)PX(s, χ),

where

PX(s, χ) = exp

( ∑
n≤X2

ΛX(n)χ(n)

ns log n

)
.

Observe that PX(s, χ) = PX(s, χ). Clearly theorems corresponding to those we
have proved for ζX(s) hold for LX(s, χ). In particular, one can show that all zeros
in 1

2 < σ ≤ 1 have an imaginary part ≤ C0. Further, if the Riemann Hypothesis

holds for L(s, χ), thenNX(t, χ), the number of zeros of LX( 12+iu, χ) with 0 ≤ u ≤ t,
satisfies

NX(t, χ) ≥ t

2π
log

qt

2π
− t

2π
+O(log τ )

when 2 ≤ X ≤ t2, and equality holds if X is much smaller. (We assume q is
fixed.) Also, unconditionally we have NX(t, χ) = (1 + o(1))(t/2π) log(qt/2π) pro-
vided logX = o(log τ ).

A number of authors ([2], [3], [14], [23]) have studied the location of zeros of
linear combinations of the type

L(s) =
J∑

j=1

bje
iαjL(s, χj),

for Dirichlet and other L-functions with the same functional equation, that is,
having the same factor Ψ(s). Here the bj ’s are real and non-zero and the inclusion
of the factors eiαj ensures that L(s) satisfies

L(s) = Ψ(s)L(1− s).
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Typically, L(s) has infinitely many zeros off the critical line but no Euler product.
Bombieri and Hejhal ([2],[3]) have shown, however, that if the Riemann Hypoth-
esis holds for each of the L-functions and their zeros satisfy a plausible spacing
hypothesis, then 100% of their zeros (in the sense of density) are on the line. In the
case of Dirichlet and certain other L-functions, Selberg (unpublished) has shown
unconditionally that such combinations have a positive proportion of their zeros on
the critical line.

The idea leading to these results was first suggested by H. L. Montgomery and is
roughly as follows. Consider the case of two distinct Dirichlet L-functions L(s, χ1)
and L(s, χ2) to the same modulus q and having the same functional equation, and

let f1(t) = log |L(s, χ1)|/( 1π log log t)
1
2 and f2(t) = log |L(s, χ2)|/( 1π log log t)

1
2 . It is

known that f1(t) and f2(t) behave like independent normally distributed random
variables with mean 0 and standard deviation 1. Thus, asymptotically half of the
time on [T, 2T ] we should expect the first function to be much larger than the
second, and the other half of the time much smaller. It can also be shown that in
any interval I of length exp(

√
log log T )/ log T , one function dominates the other

except possibly on a subset of measure o(I). Suppose then that f1(t) dominates in
I. Then |b1eiα1L(s, χ1) + b2e

iα2L(s, χ2)| is essentially the size of |b1L(s, χ1)| and,
if the zeros of L(s, χ1) are well-spaced, the zeros of b1e

iα1L(s, χ1) + b2e
iα2L(s, χ2)

will be perturbations of the zeros of L(s, χ1). Thus, if all or almost all of the zeros
of each L-function is on the critical line, almost all the zeros of the sum should be
as well.

We now ask what happens if we replace each L-function in the linear combination
by the corresponding function LX(s, χj). Set

LX(s) =
J∑

j=1

bje
iαjLX(s, χj),

where the bj are in R−{0}, and let NX(t) denote the number of zeros of LX(s) on
σ = 1

2 up to height t. Using the definition of LX(s) we write this as

LX(s) =
J∑

j=1

bje
iαjPX(s, χj) + Ψ(s)

J∑
j=1

bjeiαjPX(s, χj)

=PX(s) + Ψ(s)PX(s).

Clearly LX(s) has zeros on σ = 1
2 if either

(1) PX( 12 + it) = 0
or

(2) FX(t) = argΨ( 12 + it)− 2 argPX( 12 + it) ≡ π (mod 2π).
For the moment let us pass over the first case and count the number of points at
which the second case happens but the first does not. By (11.2)

arg Ψ(s) = −t log
tq

2π
+ t− c0 +O

(1
τ

)
,

with c0 a real number. Thus, (2) happens at least

t

2π
log

tq

2π
− t

2π
− 2 argPX( 12 + it) +O(1)

times on [0, t]. Here we define argPX( 12 + it) by continuous variation from some

point σ0 > 1 on the real axis up to σ0 + it and then over to 1
2 + it, with our usual
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convention if PX vanishes at 1
2 + it. To bound argPX( 12 + it), the point σ0 requires

some consideration. For each j write

PX(s, χj) = exp

( ∑
n≤X2

ΛX(n)χj(n)

ns log n

)
=

∞∑
n=1

a(n)χj(n)

ns
.

Since 0 ≤ ΛX(n) ≤ Λ(n), we see that for σ > 1,

∞∑
n=1

a(n)

nσ
=exp

( ∑
n≤X2

ΛX(n)

nσ log n

)

≤ exp

( ∞∑
n=2

Λ(n)

nσ log n

)
= ζ(σ).

In particular, 0 ≤ a(n) ≤ 1 and a(1) = 1.
Next write

PX(s) =
J∑

j=1

bje
iαjPX(s, χj) =

∞∑
n=1

a(n)

ns

(
J∑

j=1

bje
iαjχj(n)

)
=

∞∑
n=1

a(n)B(n)

ns
,

say, and assume from now on that B(1) 	= 0. (If B(1) = 0, the following argument
would have to be modified slightly, and the number of zeros would change by O(t).)

Setting B =
∑J

j=1 |bj |, we have |B(n)| ≤ B for every n, and there exists a positive

constant c1 and a real number ω such that B(1) = c1e
iωB. It follows that for σ > 1,

Re (e−iωPX(s)) ≥ c1B −B
∞∑

n=2

1

nσ
≥ B

(
c1 −

∫ ∞

1

x−σ
)
= B

(
c1 −

1

σ − 1

)
.

This is positive if σ > 1 + 1/c1. Thus, if σ0 meets this condition,

Re (e−iωPX(σ0 + it)) > 0

for all t, and argPX(σ0 + it) varies by at most π on [σ0, σ0 + it]. It follows that
| argPX( 12 + it)| is less than or equal to the change in argument of PX(s) on the

segment [12 + it, σ0 + it] plus π. By a well-known lemma in Section 9.4 of Titch-

marsh [25], if |PX(σ
′
+ it

′
)| ≤ M(σ, t) for 1

2 ≤ σ ≤ σ
′
, 1 ≤ t

′ ≤ t, then this change

in argument is �ε log(M( 12 − ε, τ )/|Re e−iωPX(σ0)|) + 1 for any ε > 0. Now

|PX(s)| ≤ B
J∑

j=1

|PX(s, χj)|

and

PX(s, χj) � exp

( ∑
n≤X2

ΛX(n)

nσ log n

)
� exp

(
X2(1−σ)

logX

)
.

Thus,

argPX(
1

2
+ it) �ε

X1+2ε

logX
.

This is a very crude bound, but it suffices here. By (11), we now have

NX(t) ≥ t

2π
log

tq

2π
− t

2π
+Oε(X

1+2ε),

and the leading term is larger than the O-term if X < t1−2ε. To leading order this
is also the lower bound for the number of zeros of each LX(s, χ). With more work
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we could show unconditionally that when logX/ log τ = o(1), the number of zeros
arising from case (2) is in fact = (1 + o(1))(t/2π) log(t/2π).

An analysis of the contribution of zeros from case (1) is rather elaborate, and
we will not attempt it here. One expects relatively few zeros to arise in this way,
though, because it is unlikely that the curve z = PX( 12 + it) will pass through the
origin. As with our previous results, the difficulty we have is not in proving that
there are lots of zeros on the line, but that there are not too many, and, just as
before, we have only limited success with this.

The main point is that one can see immediately from the structure of LX(s, χ)
why one might expect 100% of the zeros of linear combinations of such functions to
lie on the critical line. It therefore suggests a reason this should be true for linear
combinations of actual L-functions, and this reason is different from the usual one.

12. Appendix

Theorem. A necessary and sufficient condition for the truth of the Lindelöf Hy-
pothesis is that for 1

2 ≤ σ ≤ 2, |s− 1| > 1
10 , and 2 ≤ X ≤ τ2,

(12.1) ζ(s) =
∑
n≤X

1

ns
+O(X

1
2−στ ε).

Moreover, if the Riemann Hypothesis is true, then there exists a positive constant
C1 such that for X and s as above,

(12.2) ζ(s) =
∑
n≤X

1

ns
+O(X

1
2−σeC1Φ(t)).

Here Φ(t) is an admissible function in the sense of Section 3. In particular, we
have

(12.3) ζ(s) � eC1Φ(t)

for 1
2 ≤ σ ≤ 2 and |s− 1| > 1

10 .

Proof. The proof of a statement similar to the first assertion may be found in
Titchmarsh [25] (Theorem 13.3). Moreover, the more difficult implication (Lindelöf
implies (12.1)) is proved by an easy modification of the proof of the second assertion,
which we turn to now.

We apply Perron’s formula (Lemma 3.19 of Titchmarsh [25]) to ζ(s) and obtain

(12.4)
∑
n≤X

1

ns
=

1

2πi

∫ c+iU

c−iU

ζ(s+ w)
Xw

w
dw +O

(
X

1
2 log 2X

U

)
+O(X−σ),

where X ≥ 2 and c = 1
2 + 1

logX . Letting b = 1
2 − σ − 1

log τ and R the positively

oriented rectangle with vertices b± iU and c± iU , we find that

(12.5)
1

2πi

∫
R
ζ(s+ w)

Xw

w
dw = ζ(s) +

X1−s

1− s
.

On the Riemann Hypothesis,

(12.6)

(∫ c−iU

b−iU

+

∫ b+iU

c+iU

)
ζ(s+ w)

Xw

w
dw � X

1
2 eΦ(U+τ)U−1.
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Here we have used the functional equation and the estimates |ζ( 12+
1

log τ +i(t+v))| �
eΦ(U+τ) and Xc � X

1
2 . Also by the Riemann Hypothesis,∫ b+iU

b−iU

ζ(s+ w)
Xw

w
dw � X

1
2−σeΦ(U+τ)

∫ U

0

(b2 + (v)2)−
1
2 dv

� X
1
2−σeΦ(U+τ) log(U/b)(12.7)

� X
1
2−σeΦ(U+τ) logU.

Combining (12.4) - (12.7), we obtain

ζ(s) =
∑
n≤X

1

ns
+

X1−s

s− 1
+O

(
X

1
2 eΦ(U+τ)

U

)
+O(X

1
2−σeΦ(U+τ) log τ ).

Since X ≤ τ2 the second term on the right is � X
1
2−σ(X

1
2 /τ ) � X

1
2−σ. The third

is � X
1
2 eΦ(U+τ)U−1 � X

1
2−σeΦ(U+τ) since U = τ +Xσ > Xσ. Thus, we find that

ζ(s) =
∑
n≤X

1

ns
+O(X

1
2−σeΦ(U+τ) log τ ).

Finally, by (3.13) and the fact that Φ is increasing, we have Φ(U+τ ) ≤ Φ(τ4+2τ ) ≤
Φ(2τ4) ≤ C1Φ(t). This establishes (12.2).

The bound in (12.3) follows immediately by taking X = 2 in (12.2). �

Now set

S(u) =
∑
n≤u

1

n
1
2+it

.

Since ζ( 12 + it) � eΦ(t), by (12.2) we see that

S(u) � eC1Φ(t)

for 1 ≤ u ≤ τ2. By Stieltjes integration, if σ < 1
2 ,

∑
n≤X

1

nσ+it
=

∫ X

1−
u

1
2−σ dS(u) = u

1
2−σS(u)

∣∣∣∣
X

1−
− ( 12 − σ)

∫ X

1

u− 1
2−σS(u) du

� X
1
2−σeC1Φ(t) + ( 12 − σ)eA1Φ(t)

∫ X

1

u− 1
2−σ du

� X
1
2−σeC1Φ(t).

We also have from (4.1) and (12.3) that when σ ≥ 1
2 ,∑

n≤X

1

nσ+it
� eC1Φ(t).

Combining our estimates, we obtain the

Corollary. Let 1 ≤ X ≤ τ2, |σ| ≤ 2, and |s− 1| > 1
10 . If the Riemann Hypothesis

is true we have ∑
n≤X

1

ns
� Xmax( 1

2−σ, 0) eC1Φ(t).
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Moreover, A necessary and sufficient condition for the truth of the Lindelöf Hy-
pothesis is that ∑

n≤X

1

ns
� Xmax( 1

2−σ, 0) τ ε.
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