MORE ZEROS OF THE DERIVATIVES OF THE RIEMANN ZETA FUNCTION ON
THE LEFT HALF PLANE

RICKY FARR AND SEBASTIAN PAULI

ABSTRACT. We present the zeros of the derivatives, (:<k)(0' + 4t), of the Riemann zeta function for k£ < 28
with —10 < 0 < % and —10 < ¢ < 10. Our computations show an interesting behavior of the zeros of ¢(¥),
namely they seem to lie on curves which are extensions of certain chains of zeros of ¢(¥) that were observed
on the right half plane.

1. INTRODUCTION

Let s € C. We denote the real part of s by ¢ and the imaginary part of s by ¢. For ¢ > 1 the Riemann
zeta function ¢ can be written as

1) ()=
n=1 n
By analytic continuation, ¢ may be extended to the whole complex plane, with the exception of the simple
pole s = 1. This analytic continuation is characterized by the functional equation
(2) (1 — s) = 20(s)C(s)(2)~° cos %

It follows directly from the functional equation (2) that ¢(—2j) = 0 for all j € N. These zeros are called
the real or trivial zeros of (. By the Riemann hypothesis, the remaining (non-trivial) zeros of ¢ are of the
form % + it.

In this paper we numerically investigate the distribution of zeros of the derivatives ¢(*) of ¢ on the left
half plane. The results of our computations, that considerably expands the list of previously published zeros
[11, 15], can be found in Table 1 and Table 2. For the rectangular region —10 < o < 3 and |¢| < 10, Table 1
contains the number of zeros of ¢(¥)| its real zeros, and its zeros with 0 < o < % Table 2 contains non-real
zeros with o < 0 in that region. We find that some of the conjectured chains of zeros of the derivatives
on the right half plane [9, 3] (see Figure 1) appear to continue to the left half plane which is illustrated in
Figure 3.

We first recall results about the distribution of the zeros of ((*) on the right half plane (Section 2) and
the left half plane (Section 3). Section 4 contains a description of the methods we used to evaluate ¢ k) It
is followed by a discussion of the methods that we used to find the zeros of (*) in Section 5.

2. ZEROS ON THE RIGHT HALF PLANE

Assuming the Riemann Hypothesis, the non-real zeros of  are all on the critical line o = %, while the
non-real zeros of (%) appear to be distributed mostly to the right of the critical line with some outliers

located to its left.

Zeros with 0 < 0 < % Speiser related the Riemann Hypothesis to the distribution of zeros of the first
derivative.

Theorem 1 (Speiser [10]). The Riemann Hypothesis is equivalent to ('(s) having no zeros in 0 < o < 3.

A simpler and more instructive proof of this result was given by Levinson and Montgomery [8]. They also
proved, assuming the Riemann Hypothesis, that ¢ (k)(s) has at most a finite number of non-real zeros with
o< %, for k > 2.



# of zeros of ¢(F) (o 4 it) zeros of (%) (o + it)
k -10<o <0 -10<o<0 0<o<1/2
[t] <10 |[0<t<10| t=0 t=0 [t| < 10
0 4 0 4 -2 -4 -6 -8
1 3 0 3 -2.7173  -4.9368 -7.0746
2 5 1 3 -3.5958 -6.0290 -8.2786
3 5 2 3 -4.7157 -7.2920 -9.6047
4 6 2 2 -6.1265 -8.7016
5 5 2 1 -7.7119 0.2876 £ 4.69441
6 7 2 3 -4.3284 -6.6083 -9.3445
7 8 3 2 -5.6191 -8.4425
8 7 3 1 -7.5186 0.4183 £5.4753%
9 9 3 3 -4.7059 -6.5553 -9.3794
10 10 4 2 -5.7309 -8.5500
11 9 4 1 -7.7120 0.4106 £ 6.15021¢
12 11 4 3 -5.1849 -6.8533 -9.6751
13 12 5 2 -6.1124 -8.9100
14 11 5 1 -8.1400 0.3447 £ 6.76361
15 12 5 2 -5.6697 -7.3600
16 14 6 2 -6.6469 -9.4393
17 13 6 1 -8.7229 0.2494 £ 7.33441
18 14 6 2 -6.1556 -8.0019
19 15 7 1 -7.3040
20 15 7 1 -9.4151 0.1378 £ 7.8732
21 16 7 2 -6.6561 -8.7394
22 17 8 1 -8.0675
23 16 8 0 0.0163 £ 8.38614
24 18 8 2 -7.1929 -9.5491 0.4681 £ 8.76451
25 19 9 1 -8.9089
26 20 9 2 -7.3618 -8.2504
27 19 9 1 -7.8131 0.3116 £ 9.2444
28 21 10 1 -9.8049
29 22 10 2 -7.7492  -9.1919
30 21 10 1 -8.6103 0.1516 £ 9.70831
31 22 11 0
32 23 11 1 -8.2087

TABLE 1. The number of zeros of ((*) (o + it) with k < 32 in —10 < o < 0, |t| < 10, the
number of complex conjugate pairs of non-real zeros, and the number of real zeros in this
region. Furthermore, the real zeros in this region and the zeros in the strip 0 < o < %,
[t| < 10 are given. The zeros are rounded to 4 decimal digits.

Theorem 2 (Yildirim [15]). The Riemann Hypothesis implies that ("' and ("' have no zeros in the strip
0<o<+.
20%>3

The Riemann Hypothesis also implies that ¢(*) for k > 0 has only finitely many zeros in 0 < o < 18]

Our computations show that higher derivatives have zeros in this strip, see Table 1. Because of the
distribution of the zeros of (%) in Figure 2, we expect that the zeros listed in the table are the only zeros of
C(k) for k < 32.

Zeros with o > % The real parts of the zeros of (¥) can be effectively bounded from above by absolute
constants. For ¢’ and ¢ Skorokhdov [9] gives the bounds:

o +it) £0 for o> 2.93938,
("(c+it) #0 for o > 4.02853.

For k > 3 such general upper bounds were given by Spira [11] and later improved by Verma and Kaur [14]:

(W (o 4it) 40 for o> qk+2,
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FIGURE 1. The zeros of (¥)(o +it) for 50 < o < 70, 0 < t < 26, where k denotes a zero
¢®). The conjectured chains of zeros are labeled by M and j (compare Theorem 3).

where ¢o is given by the formula

log M
log(M+1)

M
log ( i +1)
Spira [11] computed zeros of the first and second derivative of ((s) for 0 < ¢ < 100 and noticed that they
occur in pairs. Skorokhodov [9] went further in his computation and noticed that the zeros of derivatives

of ¢ seem to form chains, that is for each zero z(*) of ((*) there seems to be a corresponding zero z(**1) of
¢+ Indeed, for sufficiently large k the existence of these chains is a direct consequence of the following

theorem.

log (
qm =

Theorem 3 (Binder, Pauli, Saidak [3]). Let M > 2 be an integer and let u be a solution of 1 — eTll -
e% (1 + %) > 0, that is, w > 1.1879.... If k > UEMED) 4o for each j € Z the rectangular region R,

M —4qM+1
consisting of all s = o + it with

3)

and

(4)

gk — (M +1u<o<qguk+ (M+1)u

2n(j+1)
log(M + 1) — log(M)’

2my <t
log(M + 1) — log(M)




contains exactly one zero of (¥, This zero is simple.

So, given M > 2, j € Z and [ > u@M3) g0 the zero of ¢® in the region determined by (3) and (4) for

qM —4qM+1
k = I there is a corresponding zero of ¢!*+1) in the region determined by (3) and (4) for k = [ + 1. Figure 1
illustrates the phenomenon of the chains of zeros of derivatives of (. The zeros shown in the chains labeled
M =2j=0and M = 2,5 =1 are in the rectangular regions from Theorem 3 and the zeros in the chain
labeled M = 3,7 = 1 are in the regions for M = 3 and j = 1 starting at the 77th derivative. The other
chains are labeled by the parameters M and j of the regions into which higher derivatives in the chains
eventually fall farther to the right.

3. ZEROS ON THE LEFT HALF PLANE

It follows immediately from the functional equation (2) that ((s) = 0 for s = —2n where n € N. The
zeros of the first derivative are exactly the zeros postulated by the theorem of Rolle.

Theorem 4 (Levinson and Montgomery [8]). For n > 2 there is exactly one zero of (' in the interval
(—2n, —2n + 2) and there are no other zeros of ¢’ with o < 0.

Unlike on the right half plane, on the left there is no general (left) bound for the non-real zeros of ¢(*).
Spira showed:

Theorem 5 (Spira [12]). For k > 0 there is an ay, so that (%) has only real zeros for o < ay, and exactly
one real zero in each open interval (—1 —2n,1 — 2n) for 1 — 2n < .

The location of a zero of the second derivative on the left half plane shows up in [11]. For both (" (s) and
¢"'(s) Yildirim [15] proved the existence of exactly one pair of conjugate non-trivial zeros with ¢ < 0 and
gave their location.

Theorem 6 (Levinson and Montgomery [8]). If ¢*®) has only a finite number of non-real zeros in o < 0
then C**t1) has the same property.

Hence, the absolute value of the non-real zeros of ¢(*) on the left half plane can be bounded. This can be
done by iteratively generalizing Yildirims methods for the second and third derivatives to higher derivatives.

Table 2 contains all the zeros of ((¥) (o + it) with —10 < o < 0, 0 < [t| < 10 for 2 < k < 29. The patterns
of the distribution of zeros in Figure 2 suggest that these are all the zeros for these derivatives on the left
half plane.

4. EVALUATING (*¥) ON THE LEFT HALF PLANE

Methods for evaluating ¢ and ¢*) include Euler-Maclaurin summation (see, for example [4]) or convergence
acceleration for alternating sums [2]. Implementations for the evaluation of ¢ can be found in various
computer algebra systems. The Python library mpmath [6] contains functions for evaluating derivatives of
Hurwitz zeta functions, and thus ¢(*), on the right half plane using Euler-Maclaurin summation.

We considered two different approaches for evaluating ¢*) in the left half plane. Because of speed and ease
of implementation we use Euler-Maclaurin summation rather than the derivatives of the functional equation
(see [1] for formulas for these). Using Euler-Maclaurin summation we obtain for o = R(s) > 1 that

o~ log(n) _ N~ log"(n) | g log*(n)
D) () = — =5 \Y =5 VY
(1) = Y B 5 08 )y 5 08
n=2 n=2 n=N
N—-1 k o k k v 25—1 k oo
lo lo 1log™(N By; d¥7" lo
_ gS(S) +/ g s(x)derg gN(S ) 3 22’j'd — g S(x) R
= on N x = (25)! dz x 2N
N-1 k S k k v 2j—1 k
log™(s) / log™ () 11og"(N) By; d*~' log"(x)
= dr + = — . R,
ns + N xs x+2 Ns Z(Qj)!dx%*1 xs I:N—i_ 2

j=1
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k # Zeros of ¢(¥) (g 4+ it) with —10 < 6 < 0 and 0 < [t| < 10

2 1 —0.3551 + 3.5908i

3 1 —2.1101 4 2.5842

4 2 —0.8375 4+ 3.8477i  —3.2403 + 1.6896i

5 2 —2.1841 4 3.07956  —4.2739 + 0.6624i

6 2 —1.2726 + 4.0742i  —3.1694 + 2.2894;

7 3 —0.4133 + 4.8453i —2.3934 + 3.4063i —3.8750 + 1.4918i

8 3 —1.6703 + 4.2784i —3.2523 +2.7170; —4.5682 + 0.8112;

9 3 —0.9672 + 4.9985i —2.6410 + 3.6749i —3.9459 + 2.0452i

10 4 || —0.2748 £ 5.6133i —2.0391 4+ 4.4684; —3.4229 4+ 3.0609i  —4.5121 + 1.33213

11 4 || —1.4413 +£5.1493i —2.9062 4+ 3.9132 —4.0769 & 2.4384i  —5.0310 4 0.76414

12 4 || —0.8452 4+ 5.7473i —2.3874 4 4.6486i —3.6307 + 3.3459i  —4.6218 + 1.8307i

13 5 —0.2500 + 6.2811i —1.8653 + 5.2971i —3.1788 +4.1283i  —4.2445 4 2.77404,
—5.1019 + 1.1817i

14 5 —1.3402 + 5.8783i —2.7202 + 4.8199i —3.8543 + 3.5969i  —4.7812 4 2.19964,
—5.5404 + 0.6780i

15 5 —0.8124 4+ 6.40567 —2.2551 & 5.4415; —3.4521 £4.3265¢  —4.4411 + 3.06144,
—5.2367 + 1.63834

16 6 —0.2827 + 6.8886i —1.7845 + 6.0069i —3.0400 + 4.9834i  —4.0887 + 3.82413,
—4.9528 +2.5231i  —5.6490 + 1.03114

17 6 —1.3092 4+ 6.5262; —2.6197 & 5.58217 —3.7242 +£4.5121i  —4.6486 + 3.31611,
—5.4130 + 1.9836i —6.0680 + 0.5743i

18 6 —0.8299 + 7.0068i —2.1924+6.1331i —3.3491 + 5.1402i  —4.3279 4 4.03243,
—5.1468 + 2.8068; —5.8098 + 1.46114

19 7 || —0.3475 £ 7.4543¢  —1.7592 4 6.6440i —2.9648 +5.7192  —3.9939 + 4.68714,
—4.8654 + 3.5483i —5.5889 + 2.2963i —6.1583 %+ 0.88585¢

20 7 || —1.3211 £ 7.1206: —2.5729 4 6.2569: —3.6489 4+ 5.2913¢  —4.5694 + 4.22684,
—5.3472 + 3.0608; —5.9945 + 1.7820i —6.6140 %+ 0.43943:

21 7 || —0.8787 £ 7.5677i —2.1744+6.7594i —3.2944 +5.8530i  —4.2605 + 4.85364,
—5.0870 + 3.7617i —5.7837 £ 2.5734i —6.3545 + 1.2934i

22 8 —0.4328 + 7.9887i —1.7703 + 7.2313i —2.9319 + 6.3785i  —3.9406 + 5.43713,
—4.8118 +4.4095i —5.5554 + 3.2943i —6.1750 + 2.0870i  —6.6413 & 0.75814

23 8 —1.3613+ 7.6765i —2.5625+ 6.8727i —3.6113 +5.9836i  —4.5240 + 5.01283,
—5.3115+3.9611i —5.9806 + 2.8250i —6.5366 + 1.5912i  —7.1892 & 0.1700:

24 8 —0.9481 + 8.0980i —2.1871 + 7.3395i —3.2737 + 6.4980i  —4.2254 + 5.57843,
—5.0539 + 4.5827i —5.7671 + 3.5097i —6.3712 +2.3553i  —6.8798 & 1.1259i

25 9 —0.5313 4 8.4984i —1.8064 + 7.7820i —2.9291 +6.9843;  —3.9174 4+ 6.11123,
—4.7841 + 5.1658i —5.5378 +4.1485i —6.1844 + 3.0574i  —6.7253 & 1.89064,
—7.1206 + 0.65044

26 9 —0.1113 £ 8.8798i —1.4211 +8.2028; —2.5782 + 7.4458;  —3.6013 & 6.61534,
—4.5038 + 5.7155i —5.2952 + 4.7478i —5.9817 +3.7117i  —6.5664 + 2.6042,
—7.0463 + 1.4126i

27 9 —1.0318 + 8.60417 —2.2218 + 7.8850i —3.2780 + 7.09417  —4.2144 + 6.23614,
—5.0410 + 5.3132i —5.7647 +4.3261i —6.3901 + 3.2731i  —6.9206 & 2.1489;,
—7.3814 + 0.9448;

28 10 || —0.6389 +8.9878; —1.8606 & 8.3044i —2.9484 & 7.5503¢  —3.9169 + 6.73084,
—4.7767 + 5.8489i —5.5353 £ 4.9061i —6.1978 +3.9018;  —6.7680 + 2.8338i,
—7.2490 + 1.7019;  —7.6182 =+ 0.5486i

29 10 || —0.2428 +£9.3554i —1.4951 £ 8.7056; —2.6132+7.9860i  —3.6122 + 7.2024,
—4.5034 + 6.3583i —5.2947 + 5.4558{ —5.9918 + 4.4954i  —6.5986 + 3.4759i,
—7.1165 + 2.3954i  —7.5353 + 1.2495;

30 10 || —1.1257 +£9.09056 —2.2729 4 8.4034i —3.3013 £ 7.6533i  —4.2222 + 6.8443i,
—5.0444 + 5.9789i —5.7739 + 5.0583i —6.4149 +4.0822i  —6.9700 + 3.04895,
—7.4393 + 1.9531i  —7.8300 + 0.7596i

31 11 || —0.7529 +9.4602; —1.9282 + 8.8039; —2.9846 + 8.08545  —3.9340 + 7.30914,
—4.7854 + 6.4781i —5.5454 + 5.5941i —6.2186 + 4.6575i  —6.8081 + 3.66734,
—7.3161 +2.6210i —7.7489 + 1.5152i —8.1557 + 0.41504

32 11 || —0.3770 £ 9.81615 —1.5795+ 9.18915 —2.6629 & 8.5003¢  —3.6395 + 7.75484,

TABLE 2. All zeros of ((*) (o 4 it) with k < 32 in
# contains the number of conjugate pairs of zeros

—4.5188 £ 6.95601
—7.1745 £ 3.25144

to 4 decimal digits.

—5.3075 £ 6.1058¢
—7.6387 £ 2.1955¢

5

—6.0109 £ 5.2053¢
—8.0192 £ 1.0955¢

—10 < 0 < 0,0 < |t| < 10. The column
. All zeros listed are simple and rounded

—6.6324 & 4.25424,
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FIGURE 2. The zeros of ((o +it) and its derivatives (%) (o +it) for k < 80 in —10 < o < 1,

0 < t < 10, where 0 denotes a zero of ¢ and k denotes a zero of ¢(¥)

simple.

where N € N>2, v € N2, and Ry, is the error term. Repeated integration by parts yields:

A

Thus,

The error term Ry, is given by

< log(2)

n=2

log k!

log™"(N)

k
s (:3—1NSlz -r)

|

log® () log"(

N o(s—=1)r

log™"(N)

1log®(N)

Xk: !

By 1 log(a)

nS

(s—1) NS 1

) (s=1)"

(2 da?i=1 s

v
j=1

+ R2'U7
=N

1 < - 2v
Ra = 5o /N Bow () f@) () dz
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All zeros shown are



with f(z) = log;(””) as discussed in [4]. We use the non-central Stirling numbers of the first kind (see [5]),
to represent the derivatives of f. The non-central Stirling numbers of the first kind S(r,4,s) satisfy the
recurrence

S(1,0,8) = —s

S(1,1,8) =

S(r+1,0, s) (=s—1)S(r,0,s)

S(r+1,i,8) = (—=s —71)S(ryi,s) +S(r,i—1,s) for 1 <i <r
S(r+1,r+1,8)=S(r,r,s)

With these the derivatives of f can be written as

f(r) =z % TZS (r,1,8)( logk_i(x)

where (k); denotes the i-th falling factorial of k& [5]
We now bound the error term, Rs,. Observe that

©) Ra| = \(21), / " Ban() 1) (2)da

|BQv‘
(™) ~ (20)!

|f2)(2)|da
N

() = |§f}”!‘ / N x—s—%ism,i,s)(kmogkZ’(x) dx
(9) |B 20| Z / S(20,4,5) )Zloii;;ff”) da
(10) : 'fj”!‘ Z sl [ D
() <o Zis (20,1,5) ( | 1251%%)

The error term Ry, converges for o +2v > 1 and N € N>2 thus (5) can be used to evaluate ¢(*) for
o > 1—2v. Since we are evaluating ((*) on a bounded region with || < 10 the error can be bounded by
(11) on the entire region. We set v = 101, which yields o + 2v > 1 in the region and gives a good balance
of the values for v and N. To determine the value N should take, we evaluate the bound given above for
N =200, 300, ... until the error is as small as desired. For example, if s = —10+ 107, £ = 100, v = 101, and
N = 200 then |Ry,| < 1.769892 - 107190, If N = 1500 then |Ry,| < 1.245704 - 107253,

5. FINDING ZEROS

We found the zeros on the left half plane by following the chains of zeros of derivatives of ¢ from the right
half plane (see Figures 1 and 3). For given M > 2, j € Z, and sufficiently large k the center

27(j 4+ 0.5)
log(M + 1) — log(M)
of the rectangular region from Theorem 3 is a good approximation to the zero in this region which we
improved using Newtons method.

Now assume that we know a zero zj(\j) of ¢*®) and a zero zj(\zﬂ) of ¢(*+1) in the chain given by some M
and j. We used

s=quk+

5= o) = (s — o)

as a first approximation for the zero of ¢(*~1 in that chain, which again was improved with Newtons method.
7



35 2
31

29 22

26

20

17
15

16
14

30

28

25
23
21

22
20

17

12

22

10

22

18

22

23
21

10

-4 -2

FIGURE 3. Zeros of (®)(o + it). The zeros of ¢(¥) are at the center of the numbers k. The
first five chains of zeros that we followed from the right to the left half plane are labeled
M =2,...,M =6 (see Section 2).

We assured that we had found all zeros of ((*) with 0 < k < 61 in —10 < o < %, |¢| < 10 by counting the
zeros using contour integration. The only pole of ((¥) is at one and thus outside our region of interest. So
for any simple closed contour C in —10 < 0 < %, [t| < 10, by the argument principle, the number of zeros
of (%) inside C is

C(k-i—l)

1
=5 g (C(k) > (s)ds.

For 0 < k < 61 we counted the zeros of () by integrating along the border of the rectangular region
-10<o < %, |t| < 10. We also integrated along the sides of a square region with side length 10~6 centered
around each approximation z of the zeros to make sure that this region contained exactly one zero.

All computations and plotting were conducted with the computer algebra system Sage [13]. We evaluated
¢®) with our implementation of the method described in Section 4 which was verified, on the right half
plane, with the Hurwitz zeta function in mpmath [6] and our implementation of ¢ (%) based on convergence
acceleration for alternating series. For the integration we used the numerical integration function of Sage
which calls the GNU Scientific Library [7] using an adaptive Gauss-Kronrod rule.

n
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