Signatures, Fields, Paragraphs

Signatures
General
sig qualified-name ... {
field declarations

}

// or ...

sig qualified-name ... {
field declarations

H

signature facts

}
Givensig S { ... } { F },Fisinterpreted as if the
modelread sig S { ... } fact { all this :
S | F’ },where F" is like F but each name f'is expanded
to this.fif fnames a field of S. Write @f'to suppress the
expansion.
Top-level type signatures

sig gname { ... }

Subtype signatures
sig gname extends superclass { ... }
N.B. If 4 and B each extend C, then 4 and B are disjoint.

Subset signatures

sig gname in sup { ... }

sig gname in supl + sup2 + ... { ... }
N.B. Subset signatures are not necessarily pairwise disjoint,
and may have multiple parents.

Multiple signatures
sig gnamel, gname2, ... { ... }
=sig gnamel { ...} sig gname2 { ... }

Paragraphs

Facts
fact name { formulas }
// name is optional:
fact name { formulas }

Predicates, Run
Predicates are either true or false; they can take arguments.
pred name { formulas }
pred name [decl, decl2 ...]{ formulas }
Use run to request an instance satisfying the predicate:
run name
Optionally specify scope (defaults to 3):
run name for 2
run name for 2 but 1 sigl, 5 sig2
The function disj is predefined; true iff its arguments are
mutually disjoint.
Assertions, Check
assert name { formulas }
Unlike predicates, assertions don't bind arguments.
Use check to look for counter-examples:

check name for 2 but 1 sigl, 5 sig2
Functions
fun name [decl, ...] : el { e2 }

The body expression e2 is evaluated to produce the function
value; the bounding expression e/ describes the set from
which the result is drawn.

The function sum is predefined.

Declarations, Formulas, Expressions

Declarations
Fields of signatures, function arguments, predicate
arguments, comprehension variables, quantified variables all
use same declaration syntax:
Simple declaration

name : bounding-expression
Constrains values to be a subset of the value of the bounding
expression.
Multiple declaration

namel,

// or
disj namel, name2 : bounding-expression
In field declarations, disj can also be on the right:

name2 : bounding-expression

sig S {f : disj e}
Requires distinct S atoms to have distinct /' values; = all
a, b : 8 a != b implies no a.f & b.f=

all disj a, b :
Multiplicities
Default multiplicity is one:

namel : bounding-expression
// equivalent to:

S | disj [a.f, b.f]

namel : one bounding-expression
Other multiplicities:

name2 : lone expr // at most one

name3 : some expr // one or more

name4 : set expr // zero or more
Relations

Bounding expression may denote a relation:
r: el ->e2
Multiplicities in declaring relations:

r : el -> one e2 // total function

r : el -> lone e2 // partial function

r : el one -> one e2 // 1:1 (bijection)
Formulas

Formulas (aka constraints) are boolean expressions.
Primitive boolean operators include the comparison

operators:
setl in set2
setl = set2
scalar = value

Expression quantifiers make booleans out of relational
expressions.

some relation-name

no rl & r2 // etc.
Quantified expressions are formulas:

some var : bounding-expr | expr

all var : bounding-expr | expr
one var : bounding-expr | expr
lone var : bounding-expr | expr
no var : bounding-expr | expr

True iff expr is true for some, all, exactly one, at most one,
or no elements of the set denoted by bounding-expr
The logical operators (not, and, or, implies, iff) can
form compound booleans; most of them apply only to
boolean expressions.

boolean and boolean2

not boolean or boolean2

boolean implies boolean2 // etc.

Operators

Precedence

In precedence order.

a, b, ¢ are n-ary relations (n # 0), f'a functional relation, r,
rl, r2 are binary relations, s is a set (unary relation).

N.B. = is standard mathematical syntax, not Alloy syntax.
Unary operators: ~r (transpose / inverse), " r (positive
transitive closure), *r (reflexive transitive closure)

Dot join: a.b

Box join: b[a] (also for function application, £[t]). N.B.
dot binds tighter than box, so a.b[c] = (a.b)[c]
Restriction: s <: a (domain restriction), a :> s (range
restriction)

Arrow product: a -> b (Cartesian product)
Intersection: a & b (intersection*)

Override: r1 ++ r2 (relational override)

Cardinality: #a (how many members in a?**)

Union, difference: a + b (union*), a - b (difference*)
Expression quantifiers, multiplicities: no, some, lone,
one, set

Comparison negation: not, !
Comparison operators: in, =
Logical negation: not, !
Conjunction: and, &&
Implication: implies, else, =>

Bi-implication: iff, <=>

Disjunction: or, | |

Let, quantification operators: let, no, some, lone,
one, sum

* a and b must have matching arity

** Arithmetic overflow may occur.

, <, >, =, =<, =>

57

Associativity:

Implication associates right: p => g => r=p => (q
=> r)

else binds to the nearest possible implies:p => q =>
r else s=p => (q => r else s)

All other binary operators associate left: a.b.c =
(a.b).c

Conditional expressions
boolean implies
boolean implies

expression
exprl else expr2

Let expressions
let decl, decl2 ...
let decl, decl2 ...

| expression
{ formulas }

Relational expressions

Constants: none (the empty set), univ (the universal set),
iden (the identity function).

Compound expressions: 7/ op r2 where op is a relational
operator (=>, ., [1, ~, & *, <z, :>, ++).

Integer expressions

Arithmetic operators (plus, minus, mul, div, rem)
apply only to integer expressions. They name ternary
relations, so x + 1 can be written as any of: plus[x][1],
plus[x,1],x.plus[1l],orl.(x.plus).

Miscellaneous

Module structure

// module declaration
module qualified/name

// imports
open other module
open qual/name[Param] as Alias

// paragraphs (any order)

sig name ...

fact name { formulas }

pred name { formulas }

assert name { formulas }

fun name [Param] : bounding-expr {
body-expression

}

run pred-name for scope

check assertion for scope

Lexical structure

Characters: any ASCII character except \
Alloy is case-sensitive

Tokenization: any whitespace or punctuation separates
tokens, except that => >= =< -> <: > ++ || //
—— /* */ are single tokens (so: != can be written ! =)
Comments: from // to end of line; from —- to end of line;
/* to next */ (no nesting).

Identifiers (names): letters, numerals, underscore, quote
marks (no hyphens)

Qualified names (qnames): sequence of slash-separated
names, optionally beginning with this (e.g. xyz,
this/a/b/c,util/ordering)

Numeric constant: [1-9][0-9]*

Reserved words: abstract all and as assert
but check disj else exactly extends fact
for fun iden iff implies in Int let lone
module no none not one open or pred run
set sig some sum univ

Namespaces: | module names and aliases; 2 signatures,
fields, paragraphs (facts, predicates, assertions, functions),
bound variables; 3 command names. Names in different
namespaces do not conflict; variables are lexically scoped
(inner bindings shadow outer). Otherwise, no two things can
share a name.

$ 8 ?

Alloy 4 quick reference summary by C. M. Sperberg-
McQueen, Black Mesa Technologies LLC. ©2013 CC-BY-
S4 2.0.

