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Abstract
We investigate the electronic transport through a single-level quantum-dot which is

capacitively coupled to a charge-qubit. By employing the method of nonequilibrium
Green's functions, we calculate the electric current through quantum dot at finite bias
voltages. The Green's functions and self-energies of the system are calculated
perturbatively and self-consistently to the second order of interaction between the
quantum-dot and the charge-qubit by employing the Majorana fermion representation
for isospin operators of the qubit. Our results show that in the particle-hole symmetric
situation, the electric current of the QD exhibits a unitary linear conductance at low bias
voltage and at the higher bias voltage it has a nonlinear dependence on the bias voltage.
Moreover, we find that at some appropriate parameter regimes, the current through the
QD as a function of gate voltage, at a fixed bias voltage shows bistability.
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Introduction

A spin-degenerate single-level quantum-dot(QD)
which is tunnel coupled to two metallic electrodes is the
simplest model for studying electronic transport through
nanostructures. The response of this model system to
the external fields depends on the internal properties of
the QD. In the realistic situations, such interactions like
electron-electron, electron-phonon or spin-orbit
interactions result in some novel static and dynamic
behaviours in the system which have been the subject of
many theoretical and experimental studies in the last
three decades [1–15]. The most supportive motivation
behind these efforts is the advancement in the
engineering and fabrication of nano-scale electronic
devices which could affect broad fields of interests like

nanoelectronics, spintronics, quantum computations,
bioelectronics and etc.

In this work, we study the electronic transport
properties of a QD in the proximity of a charge-qubit.
Most of the previous works considering a similar model,
have studied the decoherence of the charge-qubit or the
electric current through QD by assuming the energy-gap
of the charge-qubit and the coupling of the QD to the
charge-qubit, to be much smaller than the electron
transition rates between QD and electrodes [16–28]. In
this parameter regime, the QD operate as a sensor for
probing the state of the charge-qubit. However, in the
opposite parameter regime, the electronic transport
through the QD has not been much studied [29, 30]. In
this work we are studying this parameter regime using
the method of non-equilibrium Green’s functions and
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the Majorana fermion representation of iso-spin
operators to investigate the electric current through the
QD in the steady-state at finite bias voltages. To this
end, we calculate the interacting non-equilibrium
Green’s functions of QD and qubit self-consistently to
the second order of interaction between QD and qubit.
We then calculate the average occupation number of
electrons, density of states and averageelectric current
of the QD. We compare our results at the zero bias with
the results obtained using the method of numerical
renormalization group(NRG) [31].

The paper is organized as follows: In the next
section, the model Hamiltonian and the related non-
equilibrium Green’s functions of the system are
presented. In the results section, we present our
numerical results. Finally, in the last section, we give a
summary and conclusion of our work.

Materials and Methods

Our model system consists of a QD coupled to two
metallic electrodes while simultaneously interacts
capacitively with a charge qubit. The total Hamiltonian
of the system is

.QD qubit I  H H H H (1)

The term QDH is the Hamiltonian of the QD and

electrodes subsystem which is given by

 † † †
, , , , , ,

, ,
( ) . ,QD d k k k k

k
d d c c t c d H c          

  
       H (2)

where †  andd d  are the creation and annihilation

operators of an electron with spin ,   in the QD and

d is the applied gate voltage. Similarly, the operators
†
, , , , andk kc c    are the corresponding operators for an

electron creation and annihilation with energy k in the

left and right leads ( , )L R  . The leads are treated as

half-filled quasi-one-dimensional normal metals with

chemical potentials L and R . The coupling of the

QD with each lead, ,L Rt , is assumed to be energy and

spin independent.
The second term in Eq.(1) is the Hamiltonian of the

charge qubit which is modeled as a double quantum dot
which contains only one electron[32], and is described
by

0
3 12 2

,qubit


 


  H (3)

where 0 and
2

 are the energy difference and the

hybridization energy between the two dots of the qubit,

respectively, and  1 2 3, ,   are the usual Pauli

operators describing the two dimensional Hilbert space
of the qubit.

Finally, the last term in Eq.(1) describes the
capacitive interaction between QD and qubit which is
given by

3 ,dI n H where dn is the total electron

number operator of QD. In addition, we take explicitly
the mean-field back-action effects by adding and

subtracting the operator  3 3d dA n n    to

and from the total Hamiltonian which modifies the
interaction Hamiltonian to

3 3( )( ),I d dn n    H (4)

and the on-site energies of the QD and qubit to

3d d     and
0 0 2 dn    , respectively.

Before considering the nonequilibrium Green's
functions of the system, we express the iso-spin
operators of the qubit in terms of Majorana fermions, in
order to make it possible to derive the Green's functions
and self-energies using Wick's theorem. By defining
three Majorana fermion operators,  1 2 3, ,   , which

are satisfying the usual fermionic equal-time anti-
commutation relation †

,}{ ,a b a b   and †
a a  , the

Majorana fermion representation of the iso-spin
operators is then given by[33, 34]

,    for   , , 1,2,3,a abc b ci a b c    ò (5)

where abcò is the Levi-Civita antisymmetric tensor.

We will determine the interacting Green’s
functions[35] of the QD-qubit system by taking

QD qubitH H as the non-interacting part and
IH as the

perturbing Hamiltonians. Because our Hamiltonian does
not explicitly depend on time, the Green's functions are
functions of time differences and it is therefore more
preferable to express them in the frequency space by
Fourier transformation.

The non-interacting retarded (advanced) Green's
functions of the QD are defined by

      , †

0
, ( ) ,R Ag t t i t t d t d t        , where

0
 is

the expectation value with respect to the ground-state of

QD DQDH H at the zero temperature. In order to describe

the correct nonequilibrium dynamics of the system, we
need two other Green's functions, namely, the lesser and
the greater Green's functions which are defined,

respectively, by      †
0

,g t t i d t d t  

   and

     †
0

,g t t i d t d t  

    . In the frequency domain

the expressions for the Green’s functions  ,ˆ R Ag  and
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 ĝ  in the matrix representation spanned by  ,d d 

are

     
† 1ˆˆ ˆR A

d L R

g g I
i

 
 

        
(6)

and

       ( )ˆˆ ˆ ˆ ,R leads A
gg g g      (7)

where Î is a 2 2 unit matrix and
2

, , 0| |L R L Rt   is the self-energy due to the

coupling of QD to the leads in the standard wide-band
approximation in which the density of states of the

leads, 0 , are assumed to be independent of energy.

Moreover,  ˆ leads
g

 is calculated using

   ( )

,

ˆˆ 2 ,leads
g

L R
iI f 


 


   (8)

where    , ,L R L Rf      and  ... is the

standard Heaviside-theta function. The greater Green's
function could be obtained by the relation

       ˆ ˆ ˆ ˆA Rg g g g       .

For the qubit, we define its non-interacting Green's
functions by       , †

0
, ( ) ,R A

mn m nh t t i t t t t       ,

     †
0

,mn m nh t t i t t    and      †
0

,mn m nh t t i t t     .

In the frequency domain and in matrix representation
spanned by the basis  1 2 3, ,   , the expressions for

 ,ˆR Ah  and  ĥ  are given by

   

1

0
†

0

0
ˆ ˆ

0

R A

i i

h h i i i

i i

  
    

 

  
       
    



 (9)

and

     ˆ ˆ2 ,Rh iIm h f        (10)

where  is an infinitesimal positive constant and

   f     . The greater Green's function is also

obtained by the relation        ˆ ˆ ˆ ˆA Rh h h h       .

To determine the interacting Green's functions of the
QD and qubit we use the Dyson equations which give us
the Green’s functions as

     
11, , ,ˆ ˆˆ ,R A R A R A

gG g  
      

(11)

       ( )ˆ ˆ ˆˆ ˆ( ) ,R leads A
g gG G G         (12)

     
11

, , ,ˆˆ ˆR A R A R A
hH h  

      
(13)

and

       ˆ ˆ ˆˆ ,R A
hH H H      (14)

where Ĝ and Ĥ represent the interacting Green's

function of QD and qubit, respectively, and ˆ
g and ˆ

h
are their corresponding selfenergies which are given in
the Appendix.

Using the Green's functions of the system, various
physical observables of the system could be determined.
The total density of states of the QD is obtained by

   1 ˆ[ [ ]].RA Tr Im G 


  (15)

Moreover, the expectation values of dn and 3
could be obtained from

 ˆ
2d

i
n d Tr G 


     (16)

and

 3 12
ˆ2 .

2

d
H


 


   (17)

Furthermore, the average electric current through QD
in the steady-state could be calculated using

     ˆ ˆ[ [ 2 ]].
2

R
L L

e d
I Tr Im G G f


  


    (18)

We see that Eqs. (11) - (14) make a closed system of
equations which gives us the interacting Green’s
functions of QD- qubit system. However, there still
remain two parameters in these equations which must be

determined, the renormalized energy level and 0
which must be calculated self-consistently in turn by the
interacting Green’s functions using Eqs. (16) and (17)
for

dn and
z .

Results

We perform our calculations at zero-temperature and
take

L R    as the unit of energy with 1e c  

. Furthermore, we consider a symmetric bias voltage

between two metallic leads;
2
b

L R

V
    . At zero

bias, we check our results by comparing them with
NRG which are obtained using “NRG LJUBLJANA”[36]
package. Fig. 1 (a) shows local density of states (DOS)
of the QD in the particle-hole symmetric condition, i.e

0d  and
02  . The DOS exhibits central

resonance peaks along with two subsequent sideband
peaks with widths proportional to the  . The sidebands
have peaks around the energies

 2 2
0

1

2
       which could be obtained
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easily by calculating the single-particle excitation-
energies of the isolated QD-qubit system. Furthermore,
the DOS shows sharp dips exactly at    . The
occurrence of these sharp dips are due to large values of
the retarded self-energies of the QD at these points. In
comparison with NRG results, we see the overall form
of the density of states are in good agreement with NRG
although the heights of the exterior sideband peaks and
the widths of the central peaks are somehow differ from
NRG. In Fig.1(b) , we show the spectral densities of QD
in the p-h asymmetric situations. There are only one or
at most two peaks in the spectral densities. As in the p-h
symmetric case, in this case, the locations and heights of
the peaks in the DOS are relatively in good agreement
with NRG.

Next, we study the behavior of the system in the
presence of finite bias voltages. The electric current, I ,
and the differential conductance,

b

dI
G

dV
 , through the

QD versus bias voltage are shown in Figs. 2 (a) and (b)
where the system is assumed to be in the p-h symmetric
point. At zero bias voltage, the differential conductance

of the QD shows its maximum value, i.e
0

2
2

e
G G

h
  .

By increasing the bias voltage, the differential

conductance decreases until bV  , where a dip

appears in the differential conductance and then the
differential conductance shows a peak when the voltage
reaches twice the energy of the sideband peaks in the
spectral density, i.e  bV   .

In order to gain more insight about this behavior of I-
V curves, we show the density of states of the QD for
different voltage biases in Fig.3. For bias voltages with
values 0 2bV   , the sharp dips around central peak

divide into two dips with an equal distance of
2
bV



around    . Exactly at 2bV   , the two interior

divided-dips reach the origin and their effect is washed
out. As a result, we could expect that a dip should be
formed in the differential conductance curves at

bV   when the Fermi energy of the electrodes

encounters the interior sharp dips in the density of
states, at

2
bV


 

    
 

. Moreover, we see in Fig. 3

that the height of the central peak is reduced when the
bias voltage is increased which is responsible for the
negative differential conductance for bias voltages
around bV   .

Figure 1. Single spin spectral densities of the QD calculated by perturbation method(solid lines) and NRG method

(dashed lines) in zero bias voltages. For the cases (a) 0d  , 02 3    , , 6    and (b) 2d   ,
0

2
4

3
    ,

, 6    .
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Apart from p-h symmetric point, the electric current
through QD as a function of the gate voltage shows
bistability. In Fig. 4, we show the elctric current of the
QD as a function of the gate voltage. In order to
distinguish between the different stable solutions of the
system, we have swept the QD's gate voltage forward
and backward between values 0 to 2 , in the presence
of a constant bias voltage. We see that the electric
current through the QD in some ranges of the gate
voltage shows bistability. Such bistability behavior is
common features in the current characteristics of
molecular junctions with an attractive electron-electron
interaction [15]. Indeed, it has been shown recently [30]
that the capacitive interaction of a QD with a charge
qubit can induce an attractive interaction between the
two electrons in the QD which would be responsible for

the appearance of the bistability behavior in the system.

Discussion

We have used the method of non-equilibrium Green's
functions to study the effect of electron-electron
interactions between a QD and a charge qubit. To this
end, we employed the Majorana fermion representation
of Pauli operators to extract the Green's functions of the
system perturbatively to the second order of interaction
between the QD and the charge qubit. The effect of the
QD and charge qubit on each other is taken into account
by calculating the self-energies and Green's functions
self-consistently. We studied the spectral densities of
the QD in different parameter regimes and compared
our zero bias results with NRG results. We found that

Figure 2. (a) Electric current and (b) differential conductance of the QD as a function of bias voltage for 0 2  , 0d  .

Figure 3. QD's density of states in the presence of a finite bias voltage. 1.5   ,
0 2  , 0d  , 3   .
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this model system could show unitary linear electric
conductance in the particle-hole symmetric situations.
Moreover, we have shown that in some parameter
regimes the current through QD as a function of gate
voltage for fixed bias exhibits bistability behavior due to
the capacitive interaction with the qubit which could be
of interest in the nanoelectronic devices.
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Appendix: Selfenergies of QD and qubit subsystems

The QD's second order self-energies are[28]
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where
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For the qubit, the second order self-energies are

 
   
   

, ,
22 21

, , ,
12 11

0
ˆ 0 ,

0 0 0

R R

R R R
h

F F

F F

 
  

 

  

 
 

   
 
 

(A.5)
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The functions  ,R
  , in the above equations, are given by
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