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ABSTRACT

Colley’s matrix method for ranking college football teams is explained in detail,
with many examples and explicit derivations. The method is based on very simple
statistical principles, and uses only Div. I-A wins and losses as input — margin of
victory does not matter. The scheme adjusts effectively for strength of schedule, in a
way that is free of bias toward conference, tradition, or region. Comparison of rankings
produced by this method to those produced by the press polls shows that despite its
simplicity, the scheme produces common sense results.

Subject headings:methods: mathematical

1. Introduction

The problem of ranking college football teams has a long and intriguing history. For decades,
the national championship in college football, and/or the opportunity to play for that championship,
has been determined not by playoff, but by rankings. Until recently, those rankings had been
strictly the accumulated wisdom of opining press-writers and coaches. Embarrassment occurred
when, as in 1990, the principal polls disagreed, and selected different national champions.

A large part of the problem was the conference alignments of the bowl games, where champi-
onships were determined. Michigan, for instance, won a national championship in 1997 by playing
a team in the Rose Bowl that was not even in the top 5, because the Big 10 champ always played
the Pac-10 champ in the Rose Bowl, regardless of national ramifications.

In reaction to a growing demand for a more reliable national championship, the NCAA set up
in 1998 theBowl Championship Series(BCS), consisting of an alliance among the Sugar Bowl,
the Orange Bowl and the Fiesta Bowl, one of which wouldalwayspit the #1 and #2 teams in the
country against each other to play for the national title (unless one or more were a Big 10 or Pac-10
participant). The question was, how to guarantee best that the true #1 and #2 teams were selected...
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By the time of the formation of the BCS (and even long before) many had begun to ask the
question, can a machine rank the teams more correctly than the pollsters, with less bias than the
humans might have? With the advent of easily accessible computer power in the 1990’s, many
“computer polls” had emerged, and some even appeared in publications as esteemed as theNew
York Times, USA Today, and theSeattle Times. In fact, by 1998, many of these computer rankings
had matured to the point of some reliability and trustworthiness in the eyes of the public.

As such, the BCS included computer rankings as a part of the ranking that would ultimately
determine who played for the title each year. Several computer rankings would be averaged to-
gether, and that average would be averaged with the “human” polls (with some other factors) to
form the best possible ranking of the teams, and hence determine their eligibility to play in the
three BCS bowl games. The somewhat controversial method, despite some implausible circum-
stances, has worked brilliantly in producing 4 undisputed national champions. With the addition of
the Rose Bowl (and its Big 10/Pac-10 alliances) in 2000, the likelihood of a split title seems very
small.

Given the importance of the computer rankings in determining the national title game, one
must consider the simple question, “Are the computers getting it right?” Fans have doubted occa-
sionally when the computer rankings have seemed to favor local teams, disagreed with one another,
or simply disagreed with the party line bandied about by pundits.

Making matters worse is that many of the computer ranking systems have appeared to be
byzantine “black boxes,” with elaborate details and machinery, but insufficient description to be
reproduced. For instance, many of the computer methods have claimed to include a home/away
bonus, or “conference strength,” or a particular weight to opponent’s winning percentage, etc., but
without a complete, detailed description, we’re left just to trust that all that information is being
distilled in some correct way.

With no means of thoroughly understanding or verifying the computer rankings, fans have had
little reason to reconsider their doubts. A critical feature, therefore, of the Colley Matrix method
is that this paper formally definesexactlyhow the rankings are formed, and shows them to be
explicitly bias-free. Fans may check the results during the season to verify that the method is truly
without bias.

With luck, I will persuade the reader that the Colley Matrix method:
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1. has no bias toward conference, tradition, history, etc.,
(and, hence, has no pre-season poll),

2. is reproducible,
3. uses a minimum of assumptions,
4. uses noad hocadjustments,
5. nonetheless adjusts for strength of schedule,
6. ignores runaway scores, and
7. produces common sense results.

2. Wins and Losses Only—Keep it Simple

The most important and most fundamental question when designing a computer ranking sys-
tem is simply where to start. Usually, in science, one poses a hypothesis and checks it against
observation to determine its validity, but in the case of ranking college football teams, there really
is no observation—there is no ranking that is an absolute truth, against which to check.

As such, one must form the hypothesis (ranking method), and check it against other rankings
systems, such as the press polls, other computer rankings, and, perhaps even common sense, and
make sure it seems to be doing something right.

Despite the treachery of checking a scientific method against opinion, we proceed, first by
contemplating a methodology. The immediate question becomes what input data to use.

Scores are a good start. One may use score differentials, or score ratios, for instance. One
may even invent ways of collapsing runaway scores with mathematical functions like taking the
arc-tangent of score ratios, or subtracting the square roots of scores. I even experimented with a
histogram equalization method for collapsing runaway scores (which, by the way, produced fairly
sensible results).

However, even with considerable mathematical skulduggery, reliance on scores generates
some dependence on score margin that surfaces in the rankings at some level. Rightly or wrongly,
this dependence has induced teams to curry favor in computer rankings by running up the score
against lesser opponents. The situation had degraded to the point in 2001 that the BCS commit-
tee instructed its computer rankers either to eliminate score dependence altogether or limit score
margins to 21 in their codes.

This is a philosophy I applaud, because using wins and losses only
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1. eliminates any bias toward conference, history or tradition,
2. eliminates the need to invoke somead hocmeans of deflating runaway scores, and
3. eliminates any otherad hocadjustments, such as home/away tweaks.

By focusing on wins and losses only, we’re nearly halfway to accomplishing our goals set out
in the Introduction.

A very reasonable question may then be, why can’t one just use winning percentages, as do
the NFL, NBA, NHL and Major League, to determine standings? The answer is simply that in
all those cases, each team plays a very representative fraction of the entire league (more games,
fewer teams). In college football, with 117 teams and only 11 games each, there is no way for all
teams to play a remotely representative sample. The situation demands some attention to “strength
of schedule,” and it is herein that lies most of the complication and controversy with the college
football computer rankings.

The motivation of the Colley Matrix Method, is, therefore, to use something as closely akin to
winning percentage as possible, but that nonetheless corrects efficiently for strength of schedule.
The following sections describe exactly how this is accomplished.

3. The Basic Statistic — Laplace’s Method

Note to the reader:In the sections to follow, many mathematical equations will be presented.
Many derivations and examples will be based upon principles of probability, integral calculus, and
linear algebra. Readers comfortable with those subjects should have no problem with the level of
the material.

In forming a rating method based only on wins and losses, the most obvious thing to do is to
start with simple winning percentages, the choice of the NFL, NBA, NHL and Major League. But
simple winning percentages have some incumbent mathematical nuisances. If nothing else, the
fact that a team that hasn’t played yet has an undefined winning percentage is unsavory; also a 1-0
team has 100% vs. 0% for an 0-1 team: is the 1-0 team really infinitely better than the 0-1 team?

Therefore, instead of using simple winning percentage (nw/ntot, with obvious notation), I use
a method attributable to the famed mathematician Pierre-Simon Laplace, a method introduced to
me by my thesis advisor, Professor J. Richard Gott, III.

The adjustment to simple winning percentage is to add 1 in the numerator and 2 in the de-
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nominator to form a new statistic,

r =
1 + nw
2 + ntot

. (1)

All teams at the beginning of the season, when no games have been played, have an equal rating
of 1/2. After winning one game, a team has a2/3 rating, while a losing team has a1/3 rating, i.e.,
“twice as good,” much more sensible than 100% and 0%, or “infinitely better.”

The addition of the 1 and the 2 may seem arbitrary, but there is a precise reason for these
numbers; namely, we are equating the win/loss rating problem to the problem of locating a marker
on a craps table by trial and error shots of dice. What?

This craps table problem is precisely the one Laplace considered. Imagine a craps table (of
unit width) with a marker somewhere on it. We cannot see the marker, but when we cast a die, we
are told if our die landed to the left or right of the marker. Our task is to make a good guess as to
where that marker is, based on the results of our throws. The analogy to football is that we must
make a good guess as to a team’s true rating based on wins and losses.

At first, our best guess is that the marker is in the middle, atr = 1/2. Mathematically, we are
assuming a “flat” distribution, meaning that there is equal probability that the marker is anywhere
on the table, since we have no information otherwise—that is to say, a uniform Bayesian prior.
The average value within such a flat distribution (shown in Fig. 1 at top left) is1/2. Computing
that explicitly is called finding the expectation value (or weighted mean, or center of mass). If the
probability distribution function of ratinĝr is f(r̂), then in the case of no games played (no dice
thrown),f(r̂) = 1, and the expectation value ofr̂ is

r = 〈r̂〉 =

∫ r1
r0
r̂ · f(r̂)dr̂∫ r1

r0
f(r̂)dr̂

=

∫ 1

0
r̂dr̂∫ 1

0
dr̂

=
(r̂2/2)|10
r̂|10

= 1/2. (2)

Now, if the first die is cast to the left of the divider, the probability density that the marker is
at the left wall (̂r = 0) has to be zero — you can’t throw a die to the left of the left wall. From zero
at the left wall, the the probability density must increase to the right. That increase is just linear,
because the probability density is just the available space to the left of the marker where your die
could have landed; the farther you go to the right, the proportionally more available space there is
to the left (see Fig. 1, top right).

The analogy with football here is clear. If you’ve beaten one team, you cannot be the worst
team after one game, and the number of available teams to be worse than yours increases propor-
tionally to your goodness, your ratinĝr.

The statistical expectation value of the location of the marker (rating of your team) for the one
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left throw (one win) case is therefore

r =

∫ 1

0
r̂2dr̂∫ 1

0
r̂dr̂

=
(r̂3/3)|10
(r̂2/2)|10

= 2/3. (3)

If we throw another die to the left, we have not a linear behavior in probability, but parabolic,
since the probability densities simply multiply,

r =

∫ 1

0
r̂3dr̂∫ 1

0
r̂2dr̂

=
(r̂4/4)|10
(r̂3/3)|10

= 3/4, (4)

as shown at the bottom left in Fig. 1.

However, when a die is thrown to the right, we know that the probability at the right wall has
to go to zero, and a term growing linearly from right to left is introduced,(1− r̂) (in exact analogy
to the left-thrown die). Therefore, if we have thrown one die to the left and one to the right, we
have

r =

∫ 1

0
(1− r̂)r̂2dr̂∫ 1

0
(1− r̂)r̂dr̂

=
(r̂3/3− r̂4/4)|10
(r̂2/2− r̂3/3)|10

= 1/2, (5)

as shown at the bottom right in Fig. 1.

In general, fornw wins (left throws of the die) andn` losses (right throws of the die), the
formula is

r =

∫ 1

0
(1− r̂)n` r̂nw r̂dr̂∫ 1

0
(1− r̂)n` r̂nwdr̂

=
1 + nw

2 + n` + nw
, (6)

which recovers equation (1). It is an interesting exercise to check a few more examples.

4. Strength of Schedule

The simple statistic developed in the last section would suffice to produce a ranking if we
were confident that all teams had played a schedule of similar strength, or for instance a round-
robin tournament. While a round-robin with 117 teams would require 6786 games, Division I-A
teams play typically a tenth that, so there is absolutely no assurance that the quality of opponents
from team to team is close to the same. Contrast this with the NFL, or especially the Major League,
where each team plays a very healthy sample of the entire league during the regular season.

This problem is complicated by the addition of still more teams in the form of non-I-A op-
ponents. If one were to use those games as input, he would have to form ratings of all the I-AA
teams, which would require ratings of teams in still lesser divisions, since many I-AA teams play
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such opponents. Forming sensible ratings which relate Florida State to Emory & Henry is ex-
tremely difficult and is frankly beyond the scope of this method. The reason is that my method, in
its simplicity, relies on some interconnectedness between opponents, which simply does not exist
between a given NAIA squad and a given Division I-A squad—there’s barely enough interconnect-
edness among the I-A teams themselves! Most other computer rankings within the BCS system
do endeavor to compute such ratings, and in my opinion, do nearly as good a job as is possible
at making sense of such disparate and competitively disconnected teams. To preserve simplic-
ity and total objectivity (noad hocdivision adjustment, etc.), my rating system must ignore all
games against non-I-A opponents. Therefore,padding the schedule with I-AA teams contributes
absolutely nothing to a team’s rating.

We may then proceed with mathematical adjustments for strength of schedule within Division
I-A itself.

The number of wins in equation (1) may be divided intonw,i = (nw,i − n`,i)/2 + ntot,i/2

(which the reader can check). Recognizing that the second term may be written as
∑ntot,i 1/2

allows one to identify the sum as that of the ratings of teami’s opponents, if those opponents are
all random (r = 1/2) teams. Instead, then, of usingr = 1/2 for all opponents, we now use their
actual ratings, which gives an obvious correction tonw,i.

neffw,i = (nw,i − n`,i)/2 +

ntot,i∑
j=1

rij , (7)

whererij is the rating of thej th opponent of teami. The second term (the summation) in equation
(7) is the adjustment for strength of schedule.

Now, the rub. When the teams are not random, but ones which have played other teams,
which may or may not have played some teams in common with the first team, etc., how does one
possibly figure out simultaneously all therij ’s which are inputs to theri’s, which are themselves
rij ’s for otherri’s, etc.?

5. The Iterative Scheme

The most obvious way to solve such a problem is a technique called “iteration,” which is em-
ployed by several of the other computer ranking methods. The way it works is one first computes
the ratings, as if all the opponents were random (r = 1/2) teams, using equation (1). Next, each
team’s strength of schedule is computed according to its opponents’ ratings, using equation (7).
The ratings are re-computed with the new schedule strengths, and then strengths of schedule are
re-computed from the new ratings. With luck, the changes to the ratings get smaller and smaller
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with each step of these calculations, and after a time, when the changes are negligibly small for
any team’s rating (a part in a million, say), one calls the list of ratings, at that point, final.

Here is a very simple example of the iterative technique, after only one week of play, where a
team that has played is either 0-1 against a 1-0 team, or vice versa. Before any iterations, the basic
Laplace statistic from equation (1) is computed for each team. LettingrW,0 be the initial rating of
a winning team, andrL,0 be the initial rating of the losing team, one finds that equation (1) initially
gives

Initial ratings
rW,0 = (1 + 1)/(2 + 1) = 2/3 ≈ 0.6667

rL,0 = (1 + 0)/(2 + 1) = 1/3 ≈ 0.3333.

(8)

The first adjustment for strength of schedule (there’s been only one game, so schedule strength
is just the rating of the one opponent) is made by computingneffw for each team, using equation
(7):

First Correction
neffw,W,1 = (1− 0)/2 + 1/3 = 5/6

neffw,L,1 = (0− 1)/2 + 2/3 = 1/6.

(9)

Because the 1-0 team beat a 0-1 team, worse than an average team, the 1-0 team is punished, and
given only5/6 of a win, whereas the losing team lost to a 1-0 team, better than an average team,
and is rewarded by suffering only5/6 of a loss. One can see how the method explicitly gives to
one team only by taking from another.

The next step is to re-compute the ratings, given the newneffw values. Plugging back into
equation (1) yields:

Ratings After First Iteration
rW,1 = (1 + 5/6)/(2 + 1) = 11/18 ≈ 0.6111

rL,1 = (1 + 1/6)/(2 + 1) = 7/18 ≈ 0.3889.

(10)

Let’s look at just one more iteration.

Second Correction
neffw,W,2 = (1− 0)/2 + 7/18 = 8/9

neffw,L,2 = (0− 1)/2 + 11/18 = 1/9.

(11)

Ratings After Second Iteration
rW,2 = (1 + 8/9)/(2 + 1) = 17/27 ≈ 0.6296

rL,2 = (1 + 1/9)/(2 + 1) = 10/27 ≈ 0.3704.

(12)

If one examines the ratings of the winning team after the zeroth, first and second iterations,
one finds that the valuesrW,{0,1,2} ≈ {0.6667, 0.6111, 0.6296}, show first a correction down, then
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a correction up, by a lesser amount. Corrections that alternate in sign, and shrink in magnitude
are hallmarks ofconvergence, meaning that with each iteration, the scheme is closer to finding a
final, consistent value. Table 1 shows how these numbers converge to a part in a million after 11
iterations.

In fact, one can demonstrate that the final ratings in this simple case are explicitly the sums of
converging series (compare to Table 1),

rL = 1
2

[
1− 1

3
+ 1

9
− 1

27
+ · · ·

]
= 1

2

∑∞
n=0 (−1/3)n

= 1
2
· 1

1+1/3
= 3

8
,

(13)

where the last line is the standard formula for the sum of a geometric series. In this simple case,
the iterative method converges rapidly and stably, as a classic alternating geometric series.

Also note that the results converge to an average rating of 1/2, which is the same average as if
there had been no game played at all; average rating has been conserved.

The ratings may converge nicely, but how can one know that these are theright answers?
Furthermore, is the method extensible to the prodigiously more complicated case of 117 teams
having played 11 or 12 games each?

6. The Colley Matrix Method

The previous section showed how an iterative correction for strength of schedule could pro-
vide consistent results that make intuitive sense for the simple one game case, but left us with the
question of how do we know that the result is really right?

Let us return, then, to the example of the two teams 1-0, and 0-1 after their first game. Refer-
ring to equations (1) and (7), we have

rW = 1+1/2+rL
2+1

rL = 1−1/2+rW
2+1

.
(14)

A simple rearrangement gives

3rW − rL = 3/2

−rW + 3rL = 1/2,
(15)

a simple two-variable linear system. Plugging in the results from the iterative technique (Table 1),
one discovers that indeedrW = 5/8 andrL = 3/8 work exactly.
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This exercise illustrates that linear methods can be used for two teams, but begs the question,
can the ratings of many teams, after many games, be computed by simple linear methods?

6.1. The Matrix Solution

Returning to equations (1) and (7), using the same definitions forri andrij , one finds that
equations (1) and (7) can be rearranged in the form:

(2 + ntot,i)ri −
ntot,i∑
j=1

rij = 1 + (nw,i − n`,i)/2, (16)

which is a system ofN linear equations withN variables.

It is convenient at this point to switch to matrix form by rewriting equation (16) as follows,

C~r = ~b, (17)

where~r is a column-vector of all the ratingsri, and~b is a column-vector of the right-hand-side of
equation (16):

bi = 1 + (nw,i − n`,i)/2. (18)

The matrixC is just slightly more complicated. Theith row of matrixC has as itsith entry2+ntot,i,
and a negative entry of the number of games played against each opponentj. In other words,

cii = 2 + ntot,i
cij = −nj,i,

(19)

wherenj,i is the number of times teami has played teamj.

The matrixC is defined as theColley Matrix . Solving equations (17)–(19) is the method
for rating the teams.In practice, the matrix equation is solved in double precision by Cholesky
decomposition and back-substitution (faster and more stable than Gauss-Jordan inversion, for in-
stance [e.g., Press et al. 1992]). The Cholesky method is available, because the matrices are not
only (obviously) symmetric and real, but are also positive definite, which will be discussed in the
next section.

6.2. Equivalence of the Matrix and Iterative Methods

The matrix method has been shown to agree with the iterative method in the simple one game
case. The question is whether the agreement extends to more complex situations. In a word, “yes,”
but why?
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There is no dazzingly elegant answer here. If the iterative scheme converges, then equations
(1) and (7) are more nearly mutually satisfied with every iteration; otherwise the ratings would have
to diverge at some point. When the ratings have converged, and iterating no longer introduces any
changes to the ratings, the equations themselves have become simultaneously satisfied—the con-
vergent ratings values have solved equations (1) and (7). Because those equations are identically
the same ones solved by the matrix method, the matrix and iterative solutions must be identical as
long as the iterative method remains convergent.

The question then becomes shifted to one of the convergence itself, which has been discussed
only by example to this point. The convergence is due principally ton+2 denominator in equation
(1). I shall not give a rigorous proof as toexactlywhy this is so, but rather motivate the idea in a
less rigorous way.

The initial ratings are the final ratings plus some error.

~r = ~ρ+ ~δ, (20)

where~ρ is the vector of the true (final) ratings, and~δ the vector of errors. Let us consider the simple
case where~δ has only one non-zero component, sayδ1 6= 0. Assuming a round-robin schedule
(the slowest to converge), the iterations would proceed as in Table 2. The convergence in Table 2 is
slow, with the errors decreasing by∼ n/(n+ 2) in each iteration. In practice, the college football
schedule is not round-robin outside of each conference, so the convergence factor is more like
∼ (n− 2)/(n+ 2) ≈ 10/14 ≈ 0.71, so convergence to a part in107 occurs in about 48 iterations.
In the 2000 season, for instance, the number of iterations required before median ratings correction
fell below107 was 60, so this very simple estimate is correct to 20% for a typical case.

Of course, in reality there are errors in more than one of the ratings, but, because the equations
are linear, the principle of superposition applies, and the above calculation changes very little.

While the preceding is no proof that the scheme is always convergent, the round-robin case is
the slowest to converge, and even in that case, we have shown that any error in a single rating does
vanish over time, and superposition extends that to errors in multiple ratings. In the sparser case of
an actual college football season the convergence can be slightly faster for some teams.

It should be noted that if it weren’t for the+2 in the denominator of equation (1), the conver-
gence would not occur, since, in the round-robin case, the error decrement would be by a factor of
∼ n/n = 1, so if this method were based strictly on winning percentages, rather than Laplace’s
formula, it would fail.

The iterative scheme produces convergent ratings, which upon convergence simultaneously
satisfy equations (1) and (7), which are exactly those that the matrix method solves; therefore, the
iterative and matrix solutions must be equivalent (and, in practice, are equivalent).
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6.3. Examples of the Colley Matrix Method

We now consider two examples to illustrate the matrix method in action. First, let us return
to our friend, the simple two team, one game case. There, we discovered that the ratings could be
determined from the linear system

3rW − rL = 3/2

−rW + 3rL = 1/2,
(21)

Rewriting this in matrix form, [
3 −1

−1 3

] [
rW
rL

]
=

[
3/2

1/2

]
(22)

we recognize thatrW andrL can be determined by simply inverting the matrix and multiplying by
the solution vector on the right hand side.[

3/8 1/8

1/8 3/8

] [
3/2

1/2

]
=

[
5/8

3/8

]
, (23)

verifying the iterative and linear solutions.

But let us now consider a more complex example, a five team field, teamsa–e. Their records
against each other are shown thus (the initial and final ratings are listed for reference, the latter of
which will be solved for forthwith):

initial final
team a b c d e record rating rating

a ◦ ◦ W L L 1-2 0.4 0.4130
b ◦ ◦ L ◦ W 1-1 0.5 0.5217
c L W ◦ W L 2-2 0.5 0.5000
d W ◦ L ◦ ◦ 1-1 0.5 0.4783
e W L W ◦ ◦ 2-1 0.6 0.5870.

The matrix equation, according to equations (17)–(19) is written
5 0 −1 −1 −1

0 4 −1 0 −1

−1 −1 6 −1 −1

−1 0 −1 4 0

−1 −1 −1 0 5




ra
rb
rc
rd
re

 =


1/2

1

1

1

3/2

 , (24)
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Solving the matrix equation yields sensible results:

~r = {19, 24, 23, 22, 27}/46 ≈ {0.413, 0.522, 0.500, 0.478, 0.587} (25)

As with the two team case, the ratings average to exactly 1/2 (23/46). Notice that teamb, having
played a 2-1 team and a 2-2 team, is rated higher than teamd, having played a 1-2 team and a
2-2 team, despite identical 1-1 records: an example of how strength of schedule comes into play.
Finally, there is consistency in that teamc has a rating of exactly 1/2, because that team is 2-2
against teams whose ratings average to exactly 1/2.

7. Comments on the Colley Matrix Method

There has been discussion of the fact that the matrix method (and the iterative method) con-
serves an average ranking of 1/2. The reason I emphasize that point is that, as such, the ratings
herein require no renormalization. All teams started out with a rating of 1/2, and only by exchange
of rating points with other teams does one team’s rating change. The first subsection below shows
why the rating scheme explicitly conserves total ratings points. The subsection which follows es-
tablishes that the matrix in equation (17) is indeed positive definite, which allows for quick and
stable solution of the matrix equation. The last subsection shows that the matrixC is singular if
winning percentages are used in place of Laplace’s formula, and thus, the method cannot be used
with straight winning percentages.

7.1. Conservation of Average Rating

Why does the matrix solution always preserve the average rating of 1/2? We can tackle this
problem by examining the construction of the matrixC. From the definition of the matrixC in
equation (19), it follows that the matrix can be represented as:

C = 2I +

all games∑
k

Gk, (26)
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whereI is the identity matrix, andGk is a matrix operator added for each gamek. Gk always has
the form thatGk

ii = Gk
jj = 1, andGk

ij = Gk
ji = −1, with all other entries 0, like this:

Gk =



...
...

· · · 1 · · · −1 · · ·
...

...
· · · −1 · · · 1 · · ·

...
...


. (27)

Carrying out the multiplication~r ′ = Gk~r, we find that theith andj th entries in~r ′ areri − rj, and
rj−ri, respectively, while all other entries in~r ′ are obviously zeroes. The sum of all the~r ′ values,
is, therefore, zero, no matter what the values of~r. Hence,

N∑
i=1

(C~r )i =
N∑
i=1

(2I~r )i = 2
N∑
i=1

ri. (28)

What about the other side of equation (17),~b? The definition ofbi from equation (18) is
bi = 1 + (nw,i−n`,i)/2. It is easy to see that the total of thebi’s must beN , since each win by one
team must be offset by a loss by that team’s opponent, so that the total number of wins must equal
the total number of losses, and therefore,

∑
bi = N .

So, summing both sides of equation (17), we have∑
i (C~r )i =

∑
i bi

2
∑

i ri = N ;
(29)

⇒
∑
ri

N
=

1

2
, (30)

i.e., the average value ofr is exactly one-half.

7.2. The Colley Matrix is Positive Definite

In order to use Cholesky decomposition and back substitution to solve the matrix equation
(17), the matrixC must be positive definite, such that, for any non-trivial vector~v, this inequality
holds

~v T (C~v) > 0. (31)

Recalling our separation ofC into 2I +
∑

kG
k, and noting that matrix multiplication is distribu-

tive, (A+B)~v = A~v+B~v, we can examine the inequality piece-wise. Obviously the matrix2I is
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positive definite, which leaves theGk’s. In the subsection above, we discovered that the multipli-
cationG~r yielded zeroes in all entries, except theith andj th which containedri − rj andrj − ri,
respectively. The product~r T (C~r) is thus computed as

~r T (Gk~r ) = ri(ri − rj) + rj(rj − ri) = (ri − rj)2 ≥ 0. (32)

Since(ri − rj)2 ≥ 0, and~r T (2I~r ) > 0, the matrixC must be positive definite.

7.3. Singularity ofC for Straight Winning Percentages

We have seen that the iterative method would fail if straight winning percentages were used
(i.e. if one removed the+1 and+2 from the numerator and denominator in equation [1]). In per-
forming the same exercise with the matrix method, equation (19) would changeC into a singular
matrix!

For the one game case, the result is obvious.

C =

[
1 −1

−1 1

]
, (33)

obviously singular. In the general case, it’s easy to see from equation (19) that if one removes
the addend of 2 fromcii, the total of thecij ’s for any row or any column is zero. Therefore, in
performing the legal row operation of adding all the rows, one has produced a row of all zeros;
hence the matrix is singular. The matrix method, like the iterative method, cannot work with
simple winning percentages.

8. Performance

With the mathematics of the ranking method on a firm foundation, the next question is how
well does the method perform. Answering that question is difficult because we do not actually
know the “truth.” We simply do not know in any precise way how good Western Michigan is
relative to Hawaii; therefore there is really nothing to check our results against.

The best we can do is compare our results to the venerable press polls, just as a mutual sanity
check. Before I even begin, I should caution that the press polls are artificially correlated simply
because the coaches are well aware of the AP poll, and the press writers are well aware of the
Coaches’ poll. Nonetheless we shall proceed.

Table 3 compares the final Colley rankings against the final AP rankings for 1998–2002 and
against the Coaches’ Poll rankings for 1999–2002. The first thing to notice is that the national
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champion is agreed upon every year in all three ranking systems, which is ultimately the most im-
portant test for our purposes. Just scanning down the lists, the rankings are usually quite consistent
within a few places, with an occasional outlier.

To quantify the agreement, I have found it more useful to think in terms of ranking ratios,
or percentage differences, rather than simple arithmetic ranking differences. I have previously
used the median absolute difference as a figure of merit, but have concluded this statistic poorly
describes the behavior of the ranking comparisons. To show that, I have plotted in Fig. 2 the
arithmetic differences(top) and ratios(bottom)of my rankings vs. the press rankings for 1999–
2002 (all lumped together). In the plots, the histograms for the AP and Coaches’ rankings are
over-plotted (they’re very similar).

Throwing all six groups together (three years, AP, Coaches), one can compute the direct
average and variance of the distributions, which are listed as “avg” and “s” on the plots (yes,s is
the square-root of the variance, and has a

√
n/(n− 1) factor). The corresponding normal curve

is plotted as a dotted line. Another way of finding the mean and variance of a distribution is to fit
the integral of the normal curve—that’sP (x) for you calculator statisticians, or the error function
with

√
2’s in the right places for you math pedants—to the cumulative distribution. I have plotted

those resulting normal curves as solid lines at top and bottom. If a distribution is normal, these two
methods should be nearly identical. Obviously at top, the two curves are not so identical, but at
bottom things seem much better.

Of course there are dozens of formal ways to check “Gaussianity” of a distribution, but I don’t
want to belabor the point. I just want to illustrate that the ratios are much better behaved than the
arithmetic differences. What does this mean? It means that it’s much more accurate to say my
rankings disagree with the press rankings by a typical percentage, rather than by a typical number.

To compute that typical percentage, one may average the absolute differences of the logs of
the rankings, as such,

η = exp

(
1

25

25∑
i=1

| log jC(teami)− log i|

)
, (34)

wherei is the press ranking (either AP or coaches), andjC(teami) is the Colley ranking of that
team. It’s hard to come up with a good name for this statistic,η; perhaps “mean absolute ratio.”
Anyway, I list that statistic at the bottom of Table 3 for each of the 4 years of the BCS. The values
are typically about 1.25, which means that my rankings agree with the press rankings within about
25% in either direction, so you might have an error of 1 ranking place at around #5, but about 5
places by #20. Inspecting the columns of Table 3 shows this to be quite a good description of the
relative rankings.

Is that agoodagreement?
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Who knows, really? But to me (at least) the agreement is surprisingly good:

• The press polls started with a pre-season poll, with all the pre-conceived notions of history
and tradition such an endeavor demands, then week by week allowed their opinions and
judgments to migrate, being duly impressed or disappointed in the styles of winning and
losing by certain teams, being more concerned about recent games than earlier ones, perhaps
mentally weighting games seen on television as more important, perhaps having biases (good
or bad) toward local schools one sees more often...ad nauseam.

• My computer rankings started with nothing, literally no information, but then, given only
wins and losses, generated a ranking with pure algebra.

That two such processes produce even remotely consistent results is, frankly, remarkable to
me.

I hope in this section we can agree to have learned, despite a lack of “truth” data, comparison
of the press polls and my rankings shows both that the press and coaches must not be too loony,
and that the Colley Matrix system yields common sense results.

9. Conclusions

Colley’s Bias Free College Football Ranking Method, based on solution of the Colley Matrix,
has been developed with several salient features, desirable in any computer poll that claims to be
unbiased.

1. It has no bias toward conference, tradition, history, or prognostication.
2. It is reproducible; one can check the results.
3. It uses a minimum of assumptions.
4. It uses noad hocadjustments.
5. It nonetheless adjusts for strength of schedule.
6. It ignores runaway scores.
7. It produces common sense results that compare well to the press polls.

This information, the weekly poll updates, as well as useful college football links may be
found on the Internet home for Colley’s Rankings:

http://www.colleyrankings.com/ .

WNC would like to thank A. Peimbert and J. R. Gott for their contributions in many lively
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discussions on the subject of rankings. All programming for this method was done by WNC in
IDL, FORTRAN, C, C++, Perl and shell script in the Solaris Unix and Linux environments.
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Convergence of Ratings via Iteration

Iteration Winning Team’s Rating Losing Team’s Rating

0 0.666667 0.333333
1 0.611111 0.388889
2 0.629630 0.370370
3 0.623457 0.376543
4 0.625514 0.374486
5 0.624829 0.375171
6 0.625057 0.374943
7 0.624981 0.375019
8 0.625006 0.374994
9 0.624998 0.375002
10 0.625001 0.374999
11 0.625000 0.375000

Table 1: Convergence of ratings to final, stable values, after 11 iterations, for the simple two team,
one game case. The initial ratings are 2/3 for the winner and 1/3 for the loser, before any adjustment
for schedule strength. Moving down the table are successive adjustments for strength of schedule.
Because the winning team beat a below average (0-1) team, while the losing team lost to an above
average (1-0) team, the final ratings are lower for the winning team, and greater for the losing team
than were the initial ratings.
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Iterative Convergence of Ratings in a Round-Robin

iter. team 1 other teams

1. r → ρ+ δ1 r = ρ

neffw = νeffw neffw → νeffw + δ1

2. r = ρ r = ρ+ δ1/(2 + n)

neffw = νeffw + nδ1/(2 + n) neffw = νeffw + (n− 1)δ1/(2 + n)

3. r = ρ+ nδ1/(2 + n)2 r = ρ+ (n− 1)δ1/(2 + n)2

neffw = νeffw + n(n− 1)δ1/(2 + n)2 neffw = νeffw + [(n− 1)2 + n]δ1/(2 + n)2

4. r = ρ+ n(n− 1)δ1/(2 + n)3 r = ρ+ [(n− 1)2 + n]δ1/(2 + n)3

...
...

Table 2: Iterative convergence in a round-robin. Ratingsr and effective winsneffw are computed
from equations (1) and (7) in each iteration. Starting with the correct (final) values,ρ andνeffw , an
errorδ1 is added to team 1’s rating. Column 1 gives the propagation of that error in team 1 through
4 iterations; Column 2 does the same for all other teams (whose errors will be equivalent). As one
moves down the table, the errors shrink (slowly).



– 21 –

Comparison of Final Rankings with Press Polls

Colley Ranking for Teams with Given Press Rank
press 1998 1999 2000 2001 2002
rank AP AP Coaches AP Coaches AP Coaches AP Coaches

1 1 1 1 1 1 1 1 1 1
2 2 5 2 3 3 3 3 3 3
3 3 2 5 2 2 4 4 2 2
4 6 11 11 5 6 2 2 4 4
5 8 3 3 6 5 6 6 5 5
6 4 7 7 4 4 10 10 6 11
7 10 4 4 7 8 8 5 11 6
8 5 6 6 8 11 5 8 8 8
9 11 10 10 11 7 7 7 7 7
10 9 8 8 9 13 11 13 12 12
11 7 9 9 13 9 13 11 10 14
12 13 13 12 22 22 9 9 14 17
13 12 12 15 19 19 15 15 13 13
14 17 15 13 17 12 12 12 19 20
15 16 14 14 10 17 16 16 17 18
16 22 24 24 12 10 14 17 18 19
17 14 28 23 15 30 17 14 9 9
18 19 23 17 20 23 31 31 20 24
19 20 17 28 29 15 18 18 24 32
20 23 18 22 30 20 20 20 21 23
21 24 21 18 23 29 30 21 15 21
22 15 27 27 28 27 24 28 25 28
23 27 22 21 14 18 28 30 28 15
24 21 16 29 27 14 33 19 32 26
25 26 26 16 18 32 19 24 23 25

η

Colley vs. poll 1.224 1.309 1.281 1.287 1.331 1.262 1.232 1.200 1.253
AP vs. Coaches n/a 1.071 1.098 1.037 1.082

Table 3: Comparison of final rankings to AP Poll for 1998–2002, and to the Coaches’ Poll for
1999–2002. At bottom is a statisticη, described in the text. Essentially, it is the typical ratio of
the Colley ranking to the poll ranking, or vice versa, so that the larger of the two always in the
numerator, (specificallyη is the exponent of the mean of the absolute values of the logs of the
ratios), soη = 1.25 means the rankings would differ by typically one place at #4, and 5 places at
#20.
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Fig. 1.— Probability distribution functions for the Laplace dice problem, analogous to rating by
wins and losses. At top left is the initial condition{no dies thrown; no games played}. At top
right is {one die left; one game won}: the probability density must be zero at the left. At bottom
left is {two dies left; two games won}: the probability densities multiply. At bottom right is{one
die left, one die right; one game won, one game lost}: the probability density must be zero at the
left and at the right. The functions here have been normalized to have an integral of one, which is
irrelevant in section 3 of the text, because the normalizations explicitly divide out.
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Fig. 2.— Two different ways for comparing the Colley Rankings with the Press Polls.(at top)
Arithmetic differences,(Colley− press), between the final rankings for 1999–2002 for both the
AP and Coaches’ polls. Over-plotted are the normal curves from direct measurement of mean
(= avg) and standard deviation (= s), and from fitting for the mean (= µ) and standard deviation
(= σ). (at bottom)Same plots, but for ratios(Colley÷ press) in logarithmic space.


