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A parallel distributed processing model of visual word recognition and pronunciation is described. 
The model consists of sets of orthographic and phonologlc~ units and an interlevel of hidden units. 
Weights on connections between units were modified during a training phase using the back-propa- 
gation learning algorithm. The model simulates many aspects of human performance, including (a) 
differences bet~n~.'n words in terms of processing difficulty, (b) pronunciation of novel items, (c) 
differences between readers in terms of word recognition skill, (d) transitions from beginning to 
skilled reading, and (e) differences in performance on lexieal decision and naming tasks. The model's 
behavior early in the learning phase corresponds to that of children acquiring word recognition 
skills. Training with a smaller number of hidden units produces output characteristic of many dys- 
lexic readers. Naming is simulated without pronunciation rules, and lexical decisions are simulated 
without accessing word-level representations. The performance of the model is largely determined 
by three factors: the nature of the input, a significant fragment of written English; the learning rule, 
which encodes the implicit structure of the orthography in the weights on connections; and the 
architecture of the system, which influences the scope of what can be learned. 

The recognition and pronunciation of  words is one of  the cen- 
tral topics in reading research and has been studied intensely in 
recent years (see articles in Besner, Waller, & MacKinnon, 
1985, and Coltheart, 1987, for reviews). The topic is important  
primarily because of  the immediate, "on-line" character of  lan- 
guage comprehension (Marslen-Wilson, 1975), that is, the fact 
that text and discourse are interpreted essentially as the signal 
is perceived. Two aspects oflexical processing contribute to this 
characteristic of  reading. First, words can be identified quickly; 
the rate for skilled readers typically exceeds five words per sec- 
ond (Rayner & Pollatsek, 1987). Second, identification of  a 
word entails the activation of  several types of  associated infor- 
mation or codes, each of  which contributes to the rapid inter- 
pretation of  text. These codes include one or more meanings of  
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a word (Seidenberg, Tanenhaus, Leiman, & Bienkowski, 1982; 
Swinney, 1979), information related to its pronunciation or 
sound (Baron & Strawson, 1976; Gough, 1972; Tanenhaus, 
Flanigan, & Seidenberg, 1980), and information concerning the 
kinds of  sentence structures in which the word participates 
(McClelland & Kawamoto, 1986; Tanenhaus & Carlson, 1989). 
Understanding the meanings of  words is obviously an impor- 
tant part  of  text comprehension. The phonological code may be 
related to the retention of  information in working memory, 
while other comprehension processes such as syntactic analyses 
or inferencing continue (Baddeley, 1979; Daneman & Carpen- 
ter, 1980). The third type of  information facilitates the develop- 
merit of  representations concerning syntactic and conceptual 
structures (Tanenhaus & Carlson, 1989). The picture that has 
emerged is one in which lexical processing yields access to sev- 
eral types of  information in a rapid and efficient manner. Read- 
ers are typically aware of  the results of  lexical processing, not 
the manner in which it occurred. One of  the goals of  research 
on visual word recognition has been to use experimental meth- 
ods to unpack these largely unconscious processes; in the model 
that we present in this article, we attempt to give an explicit, 
computational account of  them. 

Word recognition is also important  because acquiring this 
skill is among the first tasks confronting the beginning reader; 
moreover, deficits at the level of  word recognition are character- 
istic of  children who fail to acquire age-appropriate reading 
skills (Perfctti, 1985; Stanovich, 1986). The model that we de- 
scribe provides an account of  the kinds o f  knowledge that are 
acquired, how they are used in performing different reading 
tasks, and the bases of  some types o f  reading impairment.  Spe- 
cific deficits in word recognition are also observed as a conse- 
quence of  brain injury; the study of  these deficits has provided 
important  information concerning the types of  knowledge and 
processes involved in normal reading and clues to their neuro- 
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physiological bases (Patterson, Coltheart, & Marshall, 1985). 
Our model provides the basis for an account of  some character- 
istics of  pathological performance in terms of  damage to the 
normal processing system; this aspect of  the model is discussed 
in Patterson, Seidenberg, and McClelland (in press). 

Finally, visual word recognition provides an interesting do- 
main in which to explore general ideas concerning learning, the 
representation of  knowledge, and skilled performance because 
it is a relatively mature area of  inquiry. There has been an enor- 
mous amount of  empirical research on the topic, and several 
models have already been proposed (Coltheart, 1978; Forster, 
1976; LaBerge & Samuels, 1974; McClelland & Rumelhart, 
1981; Morton, 1969). Our goal has been to develop an explicit, 
computational model that accounts for much of  this extensive 
body of  knowledge. At the same time, word recognition pro- 
vides an interesting domain in which to explore the properties 
of  the connectionist or parallel distributed processing approach 
to understanding perception, cognition, and learning (McClel- 
land & Rumelhart, 1986b; Rumelhart & MeClelland, 1986b) 
that we have used in this research. In particular, our model illus- 
trates an important feature of  this approach, the emergence of  
systematic, "rule-governed" behavior from a network of  simple 
processing units. 

Scope o f  the Problem 

In acquiring word recognition skills, children must come to 
understand at least two basic characteristics of  written English. 
First, there is the alphabetic principle (Rozin & Gleitman, 
1977), the fact that in an alphabetic orthography there are sys- 
tematic correspondences between the spoken and written forms 
of  words. Beginning readers already possess large oral vocabu- 
laries; their initial problem is to learn how known spoken forms 
map onto unfamiliar written forms. The scope of  this problem 
is determined by characteristics of  the writing system. The al- 
phabetic writing system for English is a code for representing 
spoken language; units in the writing system--letters and letter 
patterns--largely correspond to speech units such as pho- 
nemes. However, the correspondence between the written and 
spoken codes is notoriously complex; many correspondences 
are inconsistent (e.g., -AVE is usually pronounced as in GAVE, 
SAVE, and CAVE, but there is also HAVE) or wholly arbitrary 
(e.g., -OLO in COLONEL, -PS in CORPS). 

These inconsistencies derive from several sources. One is the 
fact that the writing system also encodes morphological infor- 
mation. Chomsky and Halle (1968) argued that English orthog- 
raphy represents a solution to the problem of simultaneously 
representing information concerning phonology and morphol- 
ogy. According to their analysis, the writing system follows a 
general principle whereby phonological information is encoded 
only if it cannot be derived from rules that are conditioned by 
morphological structure. Thus, words with seemingly irregular 
pronunciations such as SIGN and BOMB preserve in their written 
forms information about morphological relations among words 
(SIGN-SIGNATURE; BOMB-BOMBARD); the correct pronuncia- 
tions can be derived from a morphophonemic rule governing 
base and derived forms. Whatever the validity of  Chomsky and 
Halle's approach (see Bybee, 1985, for an alternative), it is clear 
that some irregular correspondences between graphemes and 

phonemes are due to the competing demand that the writing 
system preserve morphological information. 

Other inconsistencies derive from the fact that the spoken 
forms of  words change over time, whereas the written forms are 
essentially fixed. In British English, for example, the word BEEN 
is a homophone of  BEAN; in American English, it is a homo- 
phone of  BIN. The American pronunciation has changed 
through a process of  phonological reduction, resulting in an ir- 
regular spelling-sound correspondence. These diachronic 
changes in pronunciation are an important source of  irregulari- 
ties in spelling-sound correspondences. There are other sources 
as well, principally lexical borrowing from other languages, pe- 
riodic spelling reforms, and historical accident. The net result 
is that the writing system encodes information related to pro- 
nunciation and sound, but the correspondence between written 
and spoken forms is not entirely regular or transparent. English 
is said to have a "deep" alphabetic orthography, in contrast to 
a "shallow" orthography such as that in Serbo-Croatian, which 
has more consistent spelling-sound correspondences (Katz & 
Feldman, 1981). 

A second aspect of  the writing system that the child must 
learn about concerns the distribution of  letter patterns in the 
lexicon. Only some combinations of  letters are possible, and the 
combinations differ in frequency. These facts about the distri- 
bution of  letter patterns give written English its characteristic 
redundancy. Of the many possible combinations of 26 letters, 
only a small percentage yield letter strings that would be per- 
missible words in English. An even smaller percentage are real- 
ized as actual entries in the lexicon. As Adams (1981) noted, 

From an alphabet of 26 letters, we could generate over 475,254 
unique strings of 4 letters or less, or 12,376,630 of 5 letters or less. 
Alternatively, we could represent 823,543 unique strings with an 
alphabet of only 7 letters, or 16,777,216 with an alphabet of only 
8. For comparison, the total number of entries in Webster's New 
Collegiate Dictionary is only 150,000. (p. 198) 

Constraints on the forms of  written words may play an impor- 
tant role in the recognition process. The reader must discrimi- 
nate the input string from other vocabulary items, a task that 
might be facilitated by knowledge of  the letter combinations 
that are permissible or realized. Many studies have provided 
evidence that skilled readers use this knowledge (see Henderson, 
1982, for a review). 

Orthographic redundancy also provides cues to other aspects 
of  lexical structure, specifically, syllables and morphemes. For 
example, the written forms of  words typically provide cues to 
their syllabic structure (Adams, 198 l) for the following reason. 
Syllables derive from articulatory-motor properties of  the spo- 
ken language; essentially, they reflect the opening and closing 
movements of  the jaw cycle (Fowler, 1977; Seidenberg, 1989). 
Thus, the capacities of the articulatory-motor apparatus con- 
strain the possible sequences of  phonemes. Moreover, there are 
language-specific constraints on phoneme sequencing. Written 
English is largely a code for representing speech; hence, proper- 
ties of  speech such as syllables tend to be reflected in the orthog- 
raphy. For example, the fact that the letters GP never appear in 
word-initial position derives from a phonotactic constraint on 
the occurrence of  the corresponding phonemes. These letters 
can appear at the division between two syllables (e.g., PIGPEN), 
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reflecting the fact that there are more constraints on the se- 
quencing of phonemes within syllables than between. As a re- 
suit, the letter patterns at syllable boundaries tend to be lower 
in frequency than the letter patterns that occur intrasyllabically 
(Adams, 1981; Seidenberg, 1987). Thus, facts about the distri- 
bution of phonemes characteristic of spoken syllables are re- 
fleeted in the distribution of letter patterns in their written real- 
izations. As in the case of grapheme-phoneme correspon- 
dences, however, the realizations of syllables in the orthography 
are not entirely consistent, as illustrated by minimal pairs such 
as WAIVE-NAIVE, BAKED-NAKED, and DIES-DIET, which are 
similar in orthography but differ in syllabic structure. Thus, 
written English provides cues to syllabic structure, but these 
cues are not entirely reliable. 

The situation is similar when we turn to the level of morphol- 
ogy, which concerns the organization of sublexical units that 
contribute to meaning. The meaning of a word is often a com- 
positional function of the meanings of its morphemes; consider 
prefixed words such as PREVIEW and DECODE. That English is 
systematic in this regard is seen in the coining of new words 
such as PRECOMPILE or DEBUG. That it is inconsistent is illus- 
trated by words such as PRETENSE (unrelated to TENSE) or DE- 
LIVER (unrelated to LIVER). Again, written English encodes in- 
formation related to morphological structure, but not in a regu- 
lar or consistent manner. 

In sum, the English orthography partially encodes several 
types of information simultaneously. The reader's knowledge 
of the orthography can be construed as an elaborate matrix of 
correlations among letter patterns, phonemes, syllables, and 
morphemes. Written English is an example of what we call a 
quasiregular system--a body of knowledge that is systematic 
but admits many irregularities. In such systems, the relations 
among entities are statistical rather than categorical. Many 
other types of knowledge may have this character as well. 

The child's problem, then, is to acquire knowledge of this 
quasiregular system. The task of reading English might be facil- 
itated by the systematic aspects of the writing system such as 
the constraints on possible letter sequences and the correspon- 
dences between spelling and sound. However, there are barriers 
to using these types of information. Facts about orthographic 
redundancy cannot be used until the child is familiar with a 
large number of words. Acquiring useful generalizations about 
spelling-sound correspondences is inhibited by the fact that 
many words have irregular correspondences, and these words 
are overrepresented among the items the child learns to read 
first (e.g., GIVE, HAVE, SOME, DOES, GONE). The child must, 
nonetheless, learn to use knowledge of the orthography in a 
manner that supports the recognition of words within a fraction 
of a second. 

Our model addresses the acquisition and use of knowledge 
concerning orthographic redundancy and orthographic-pho- 
nological correspondences. We focus on these types of informa- 
tion because they are sufficient to account for phenomena re- 
lated to the processing of monosyllabic words, which is our 
model's domain of application. In the general discussion we re- 
turn to issues concerning syllabic and morphological knowledge 
and the processing of more complex words. Our goal has been 
to determine how well the basic phenomena of word naming 
and recognition might be accounted for by a minimal model of 

lexical processing, in which as little as possible of the solution 
of the problem is built in and as much as possible is left to the 
mechanisms of learning. The model is realized within the con- 
neetionist framework being applied to many problems in per- 
ception and cognition (McClelland & Rumelhart, 1986b; 
Rumelhart & McClelland, 1986b). The model provides an ac- 
count of how these types of knowledge are acquired and used 
in performing simple reading tasks such as naming words aloud 
and making lexical decisions. One of the main points of the 
model is that, because of the quasiregular character of written 
English, it is felicitous to represent these types of knowledge in 
terms of the weights on connections between simple processing 
units in a distributed memory network. Learning then involves 
modifying the weights through experience in reading and pro- 
nouncing words. Thus, the connectionist approach is ideally 
suited to accounting for word recognition because of the nature 
of the task, which is largely determined by these characteristics 
of the orthography. 

A key feature of the model we propose is the assumption that 
there is a single, uniform procedure for computing a phonologi- 
cal representation from an orthographic representation that is 
applicable to irregular words and nonwords as well as regular 
words. A central dogma of many earlier models (e.g., the dual- 
route accounts of Coltheart, 1978; Marshall & Newcombe, 
1973; Meyer, Schvaneveldt, & Ruddy, 1974) is that irregular 
words and nonwords require separate mechanisms for their 
pronunciation: Irregular words require lexical lookup because 
they cannot be pronounced by rule, whereas nonwords require 
a system of rules because their pronunciations cannot be looked 
up (see Seidenberg, 1985b, 1988, for discussion). Whether, in 
fact, two mechanisms are required, and whether they are the 
mechanisms postulated in dual-route models, are among the 
main issues that our model addresses. The model does not en- 
tail a lookup mechanism because it does not contain a lexicon 
in which there are entries corresponding to individual words. 
Nor does it contain a set of pronunciation rules. Instead, it re- 
places both by a single mechanism that learns to process regular 
words, irregular words, nonwords, and other types of letter 
strings through experience with the spelling-sound correspon- 
dences implicit in the set of words from which it learns. 

The model gives a detailed account of a range of empirical 
phenomena that have been of continuing interest to reading re- 
searchers, including (a) differences between words in terms of 
processing difficulty, (b) differences between readers in terms of 
word recognition skill, (c) transitions from beginning to skilled 
reading, and (d) differences between silent reading and reading 
aloud. The model also provides an account of certain forms of 
dyslexia that are observed developmentally and as a conse- 
quence of brain injury. 

Description of  the Model 

Precursors 

Before we turn to the model itself, it is important to acknowl- 
edge several precursors of this work. In some ways, this model 
can be seen as an application of many of the principles embod- 
ied in the interactive activation model of word perception 
(McClelland & Rumelhart, 1981) to a more distributed model 
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of the kind used by Rumelhart and McClelland (1986a) in their 
simulation of the acquisition of past tense morphology. This 
work draws heavily on insights into distributed representation 
due primarily to Hinton (1984; Hinton, McClelland, & Rumel- 
hart, 1986) and exists only because ofRumelhart, Hinton, and 
Williams's (1986) discovery of a learning procedure for multi- 
layer networks. In applying many of these ideas to the task of 
reading, we follow in the footsteps of Sejnowski and Rosen- 
berg's (1986) NETtalk model, which was the first application of 
the Rumelhart et al. algorithm to the problem of learning the 
spelling-sound correspondences of English. Sejnowski and Ro- 
senberg recognized that this knowledge could be represented by 
a parallel distributed network rather than a set of pronunciation 
rules. Our goal was to explore the adequacy of this approach by 
developing a model that could be related to a broad range of 
phenomena concerning human performance. 

Several previous models of visual word recognition also in- 
fluenced the development of the somewhat different account 
presented here. Among them are Morton's (1969) logogen 
model, the dual-route model of Coltheart (1978), and 
Glushko's (1979) lexical analogy model. Later in the text we 
show how our model relates to these precursors. Finally, our 
account of lexical decision is similar to ones proposed by Gor- 
don (1983) and Balota and Chumbley (1984). 

The Larger Framework 

As we have noted, the model was developed with the goal of 
using a minimal architecture in which the learning aspect 
played a dominant role. Some minimal structural assumptions 
were required, however. A second goal was to keep things as 
simple as possible; therefore, the model we have implemented 
is a simplification of the larger, somewhat richer processing sys- 
tem that surely is required to account for aspects of single word 
processing outside our primary concerns. We begin by describ- 
ing the larger framework of which the model we have imple- 
mented is a part; we then describe the simplifications and de- 
tailed assumptions of the implementation. 

The larger framework assumes that reading words involves 
the computation of three types of codes: orthographic, phono- 
logical, and semantic. Other codes are probably also computed 
(concerning, e.g., the syntactic and thematic functions of 
words), but we have not included them in the present model 
because they probably are more relevant to comprehension 
processes than to the recognition and pronunciation of mono- 
syllabic words. Each of these codes is assumed to be a distrib- 
uted representation; that is, to be a pattern of acrivarion distrib- 
uted over a number of primitive representational units. Each 
processing unit has an activation value that in our model ranges 
from 0 to 1. The representations of different entities are en- 
coded as different patterns of activity over these units. 

Processing in the model is assumed to be interactive (Mars- 
len-Wilson, 1975; McClelland, 1987; McClelland & Rumel- 
hart, 1981; Rumelhart, 1977). That is, we assume that the pro- 
tess of building a representation at each of the three levels both 
influences, and is influenced by, the construction of representa- 
tions at each of the other levels. We also assume, in keeping with 
this inherently interactive view, that word processing can be in- 
fluenced by contextual factors arising from syntactic, semantic, 

MAKE /mAkl 
Figure 1. General framework for lexical processing. 
(The implemented model is in boldface type.) 

and pragmatic constraints, although the scope and locus of 
these effects is a matter of current debate (see McClelland, 
1987; Rumelhart, 1977; Tanenhaus, Dell & Carlson, 1987, for 
discussion). We assume that at least some of these types ofinfor- 
marion constrain the construction of the representation at the 
semantic level and, thus, indirectly influence construction of 
representations at the other levels, and conversely, that the con- 
struction of a representation of the context is influenced by acti- 
vation at the semantic level. 

As in other connecrionist models, processing is mediated by 
connections among the units. However, it is well known that 
there are limits on the processing capabilities inherent in net- 
works in which there are only direct connections between units 
at different representational levels (Hinton et al., 1986; Minsky 
& Papert, 1969). In view of these limits, it is crucial that there 
be a set of so-called hidden units, mediating between the pools 
of representational units. 

The assumptions described thus far are captured in Figure 1, 
in which each pool of units--both hidden units and representa- 
tional unitsmis represented by an ellipse. Connections between 
units on different levels are represented by arrows. These ar- 
rows always run in both directions, in keeping with the assump- 
tion ofinteractivity. 

The Simulation Model 

The model that we have actually implemented is illustrated 
in Figure 2 and is the part of Figure 1 in boldface type. This 
simplified model removes the semantic and contextual levels, 
leaving only the orthographic level, the phonological level, and 
the interlevel of hidden units between these two. Furthermore, 
as an additional simplification, we have not implemented feed- 
back from the phonological to the hidden units; this means, in 
effect, that phonological representations cannot in fact influ- 
ence the construction of representations at the orthographic 
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Figure 2. Structure of the implemented model and number of units. 

level. There is, however, feedback from the hidden units to the 
orthographic units. This feedback plays the role of the top-down 
word-to-letter connections in the interactive activation model 
of word perception, allowing the model to sustain, reinforce, 
and clean up patterns produced by external input to the ortho- 
graphic level. 

Several further assumptions were required in implementing 
this simplified model. These assumptions can be grouped into 
three types: Processing assumptions, specifying the way in 
which activations influence each other; learning assumptions, 
specifying how connection strength adjustment takes place as a 
result of experience; and representational assumptions, specify- 
ing how orthographic and phonological characteristics of words 
are to be represented. 

Processing assumptions. At a fine-grained level, we believe 
it would be most accurate to characterize processing in terms 
of the gradual buildup of activation" (McClelland, 1979; 
McClelland & Rumelhart, 1981), subject to a considerable 
amount of random noise. However, for simplicity, the simula- 
tion model actually computes activations deterministically in a 
single processing sweep. This simplification makes simulation 
of the learning process feasible because it speeds up simulation 
by a couple of orders of magnitude. 

Details of the processing assumptions of the model are as fol- 
lows. Each word-processing trial begins with the presentation 
of a letter string, which the simulation program then encodes 
into a pattern of activation over the orthographic units, accord- 
ing to the representational assumptions described later. Next, 
activations of the hidden units are computed on the basis of the 
pattern of activation at the orthographic level. For each hidden 
unit, a quantity called the net input is computed; this is simply 
the activation of each input unit, times the weight on the con- 
nection from that input unit to the hidden unit, plus a bias term 
that is unique to the unit. Thus, for hidden unit i, the net input 
is given by 

net~ = ~ wijaj + bias/. 
J 

Herej ranges over the orthographic units, aj is the activation of 
orthographic unit j, biasi is the bias term for hidden unit i, and 
w,- i is the weight of the connection to unit i from unitj. The bias 
term may be thought of as an extra weight or connection to the 
unit from a special unit that always has activation of 1.0. 

The activation of the unit is then determined from the net 
input using a nonlinear function called the logistic function: 

l 
a i  = 1 + e - " e t i  " 

The activation function must be nonlinear for reasons described 
in Rumelhart, Hinton, and Williams (1986). It must be mono- 
tonically increasing and have a smooth first derivative for rea- 
sons having to do with the learning rule. The logistic function 
satisfies these constraints. 

Once activations over the hidden units have been computed, 
they are used to compute activations for the phonological units 
and new activations for the orthographic units based on feed- 
back from the hidden units. These activations are computed 
following exactly the same computations already described; 
first, the net input to each unit is calculated, based on the activa- 
tions of all of the hidden units; then the activation of each of 
these units is computed, based on the net inputs. 

Learning assumptions. When the model is initialized, the 
connection strengths and biases in the network are assigned 
random initial values between _+0.5. This means that each hid- 
den unit computes an entirely arbitrary function of the input it 
receives from the orthographic units and sends a random pat- 
tern of excitatory and inhibitory signals to the phonological 
units and back to the orthographic units. This also means that 
the network has no initial knowledge of particular correspon- 
dences between spelling and sound, nor can its feedback to the 
orthographic units effectively sustain or reinforce inputs to 
these units. Thus, the ability to recreate the orthographic input 
and generate its phonological code arises as a result of learning 
from exposure to letter strings and the corresponding strings of 
phonemes. 

Learning occurs in the model in the following way. An ortho- 
graphic string is presented and processing takes place, as de- 
scribed, producing first a pattern of activation over the hidden 
units and then a feedback pattern on the orthographic units and 
a feedforward pattern on the phonological units. At this point, 
these two output patterns produced by the model are compared 
to the correct, target patterns that the model should have pro- 
duced. The target for the orthographic feedback pattern is sim- 
ply the orthographic input pattern; the target for the phonologi- 
cal output is the pattern representing the correct phonological 
code of the presented letter string. We assume that in reality 
the phonological pattern may be supplied as explicit external 
teaching input--as in the case in which the child sees a letter 
string and hears a teacher or other person say its correct pronun- 
ciat ion-or self-generated on the basis of the child's prior 
knowledge of the pronunciations of words and the contexts in 
which they occur. 

For each orthographic and phonemic unit, the difference be- 
tween the correct or target activation of the unit and its actual 
activation is computed as follows: 

di = ( t i-ai) .  

The learning procedure adjusts the strengths of all of the con- 
nections in the network in proportion to the extent to which 
this change will reduce a measure of the total error, E. Thus, 

0E 
A w  U = - g  ~ • 

o w ~  
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Here e is a learning rate parameter, and E is the sum of  the 
difference terms for each unit, each squared: 

E-- Zd~. 
i 

The term 0E/Ow 0 is the partial derivative of the error measure 
with respect to a change in the weight to unit i from unit j .  1 

The algorithm that is used to compute the partial derivative 
for each weight is the back-propagation learning procedure of  
Rumelhart, Hinton, and Williams (1986). Readers are referred 
to Rumelhart, Hinton, and Williams for an explanation of  how 
these partial derivatives are calculated. For our purposes the im- 
portant thing to note is that the rule changes the strength of  
each weight in proportion to the size of  the effect changing it 
will have on the error measure. Large changes are made to 
weights that have a large effect on E, and small changes are made 
to weights that have a small effect on E. 

Representational assumptions. In reality, the orthographic 
and phonological representations used in reading are deter- 
mined by learning processes, subject to initial constraints im- 
posed by biology and prior experience. The learning of  these 
representations is beyond the scope of the model; for simplicity, 
we have treated them as fixed in the simulations. Our choice of 
representations is not intended to be definitive; rather, it was 
motivated primarily by a desire to capture a few general proper- 
ties that we would expect such representations to acquire 
through learning, while at the same time building in very little 
specifically about the correspondences between spelling and 
sound or about the particular kinds of  letter and phoneme 
strings that are words in English. 

In representing a word's orthographic or phonological con- 
tent, it is not sufficient to activate a unit for each of  the letters 
or phonemes in the word because this would yield identical rep- 
resentations for pairs such as BAT and TAB. It is necessary to 
use some scheme that specifies the context in which each letter 
occurs. We chose to use a variant of  Wickelgren's (1969) triples 
scheme, following Rumelhart  and McClelland (1986a), rather 
than the strict positional encoding scheme of  McClelland and 
Rumelhart  (198 l). In this we have given the model a tendency 
to be sensitive to local context rather than absolute spatial posi- 
tion, because letters occurring in similar local contexts activate 
units in common. Thus, for example, the letter string MAKE is 
treated as the set of letter triples _MA, MAK, AKE, and K E  
(where _ is a symbol representing the beginning or ending of  a 
word), whereas the phoneme s t r ing /mAk/ i s  treated as the set 
of  phoneme triples _mA, mAk, Ak__. 2 

Note that we do not claim that this scheme in its present form 
is fully sufficient for representing all of  the letter or phoneme 
sequences that form words (see Pinker & Prince, 1988). How- 
ever, we are presently applying the model only to monosyllables, 
and the representation is sufficient for these (see general discus- 
sion). Extensions of  the representation scheme can be envi- 
sioned in which more global properties such as approximate 
position with respect to particular vowel groups is also repre- 
sented in conjunction with each triple. Such a scheme would 
largely collapse to the present one for monosyllables. 

An important way in which our representations differ from 
Wickelgren's (1969) proposal in that we do not assume a one- 
to-one correspondence between triples and units; rather, each 

triple is encoded as a distributed pattern of  activation over a set 
of units, each of  which participates in the representation of  
many triples. The representation used at the phonemic level is 
the same as that used by Rumelhart  and MeClelland (1986a). 
Each unit represents a triple of  phonetic features, one feature 
of  the first of  the three phonemes in each triple, one feature of  
the second of  the three, and one of  the third. 3 For example, there 
is a unit that represents [vowel, fricative, stop]. This unit should 
be activated for any word containing such a sequence, such as 
the words POST and SOFT. Word boundaries are also represented 
in the featural representation, so that there is a unit, for exam- 
ple, that represents [vowel, liquid, word boundary]; this unit 
would come on in words like CAR and CALL. There are 460 such 
units, and each phoneme triple activated 16 of them; see 
Rumelhart  and McClelland (1986a) for details. 

The representation used at the orthographic level is similar 
to that used at the phonological level, except that in this in- 
stance 400 units were used, and each unit was set up according 
to a slightly different scheme. For each unit, there is a table con- 
raining a list of  10 possible first letters, 10 possible middle let- 
ters, and 10 possible end letters. These tables are generated ran- 
domly except for the constraint that the beginning or end of 
word symbol does not occur in the middle position. When the 
unit is on, it indicates that one of  the 1,000 possible triples that 
could be made by selecting one member from the first list of  10, 
one from the second, and one from the third is present in the 
string being represented. Each triple activated about 20 units. 
Although each unit is highly ambiguous, over the full set of  400 
such randomly constructed units, the probability that any two 
sequences of three letters would activate all and only the same 
units in common is effectively zero. 4 In sum, both the phonolog- 
ical and the orthographic representations can be described as 
coarse-coded, distributed representations of  the sort discussed 
by Hinton et at. (1986). The representations allow any letter 
and phoneme sequences to be represented, subject to certain 
saturation and ambiguity limits that can arise when the strings 
get too long. Thus, there is a minimum of  built-in knowledge 

In fact, the size of the adjustments made to the strengths of the con- 
nections in the model is given by a somewhat more complex expression, 
as follows: 

0E 
~w~ = -8 ~ + ~./,~j. 

Here w' refers to the previous increment to the weights, and ct is a 
parameter between 0 and 1. a can be thought of as specifying how much 
momentum there is in the magnitude of the changes made to the 
weights. 

2 Here, and elsewhere in the article, we use the following notation for 
representing phonemes: A = a in GAVE; a = a in HAVE; O = O in POSE; 
u = o in L O S E ;  i = i in L I N T ;  I = i i n  P I N T ;  E = O~ in S E E D ;  A = U in M U S T ;  

u = oo in nOOK; o = o in H O T ;  W = Ow in HOW; * = aw = PAW. 
3 The set of phonological features used was somewhat simplified, so 

that certain phonemes pairs (e.g., the initial phonemes in CHIN and 
SHIN) were not in fact distinguished. See Rumelhart and McCleUand 
(1986a) for details. 

4 Ghosts are capable of appearing in this representation when it be- 
comes too "saturated"; that is, when too many of the units are on at 
one time. This is one reason why a richer representation would be re- 
quired to represent multisyllabic words. 
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of  orthographic or phonological structure. The use of  a coding 
scheme sensitive to local context does promote the exploitation 
of  local contextual similarity as a basis for generalization in the 
model; that is, what it learns to do for a grapheme in one local 
context (e.g., the M in MAKE) will tend to transfer to the same 
graphemes in similar local contexts (e.g., the M'S in MADE and 
MATE and, to a lesser extent, M'S in contexts such as MILE and 
SMALL). 

Naming and Lexical Decision 

The model produces patterns of  activation across the ortho- 
graphic and phonological units as its output. For naming, we 
assume that the pattern over the phonological units serves as the 
input to a system that constructs an ar t iculatory-motor  pro- 
gram, which in turn is executed by the motor system, resulting 
in an overt pronunciation response. In reality, we believe that 
these processes operate in a cascaded fashion, with the trigger- 
ing of  the response occurring when the ar t iculatory-motor  pro- 
gram has evolved to the point at which it is sufficiently differen- 
tiated from other possible motor programs. Thus, activation 
would begin to build up first at the orthographic units, propa- 
gating continuously from there to the hidden and phonological 
units and from there to the motor system in which a response 
would be triggered when the art iculatory-motor representation 
became sufficiently differentiated. 

The simulation model simplifies this picture. Activations of  
the phonological units are computed in a single step, and the 
construction and execution of  articulatory motor programs are 
unimplemented. The activations that are computed in this way 
can be shown to correspond to the asymptotic activations that 
would be achieved in a cascaded activation process (Cohen, 
Dunbar, & McClelland, 1989). To relate the patterns of  activa- 
tion the model produces to experimental data on latency and 
accuracy of  naming responses, we use what we call the phono- 
logical error score, which is the sum of  the squared differences 
between the target activation value for each phonological unit 
and the actual activation computed by the network. 

It is important not to treat the error score as a direct measure 
of  the accuracy of  an overt response made by the network. In 
fact, the error scores can never actually reach zero because the 
logistic function used in setting the activations of  units prevents 
activations from ever reaching their maximum or minimum 
values. Rather, with continued practice, error scores simply get 
smaller and smaller, as activations of units approximate more 
and more closely the target values. This improvement continues 
well beyond the point at which the correct answer is the best 
match to the pattern produced by the network. To determine 
the best match, we simply use the error score as a measure of  
how closely the pattern computed by the net matches the cor- 
rect pronunciation and each of  several other possible pronunci- 
ations. In generalwas we will present in detail la ter--we find 
that after training, the error score is lower for the correct pro- 
nunciation than for any other. 

Even when the target code provides the best fit to the pattern 
of  activation over the phonological units, there is still room for 
considerable variation in error scores. We assume that lower 
error scores are correlated with faster and more accurate re- 
sponses under time pressure. The rationale for the accuracy as- 

sumption is simply that a low error score signifies that the pat- 
tern produced by the network is relatively clear and free from 
noise, and so provides a better signal for the art iculatory-motor 
programming and execution processes to work with. The ratio- 
nale for the speed assumption is as follows: In a cascaded sys- 
tem, patterns that are asymptotically relatively clear (low in er- 
ror) will reach a criterion level of  clarity relatively quickly. Sim- 
ulations demonstrating this point are presented in Cohen et al. 
(1989). 

Thus far, we have discussed the use of  the phonological error 
score as a measure of  the accuracy and speed of  naming. We 
shall see that this measure is sensitive to familiarity; the more 
frequently the network has processed a particular word, the 
smaller the error score will be. The error score computed over 
the orthographic units is likewise related to familiarity. Because 
the input pattern is also the target pattern for the orthographic 
feedback, the orthographic error score is simply the sum of  the 
squares of  the differences between the feedback pattern com- 
puted by the network and the actual input to the orthographic 
units. For lexical decision, in which the subject's task is to judge 
whether the stimulus is a familiar word, we assume that a mea- 
sure like the orthographic error score is actually used in making 
this judgment. Note that this differs from our use of  the phono- 
logical error score in accounting for naming performance. The 
calculated phonological error score is simply a measure of  the 
asymptotic clarity of  the computed phonological representa- 
tion, which we use to predict naming latencies. In contrast, a 
measure like the orthographic error score is assumed to be actu- 
ally computed by subjects as part  of  the decision process. Be- 
cause the orthographic input  is in fact presented to the subject, 
it seems reasonable to assume that subjects can compare this 
input to the internally generated feedback from the hidden 
units and use the result of  this comparison process as the basis 
for judgments of  familiarity. This issue is considered again in 
the section on Lexical Decisions in the Model. 

Our  goal was to develop a working simulation model that ex- 
hibited many of  the basic phenomena of  word recognition and 
naming, based on a theory of  what is learned and how it is repre- 
sented. When it came to assessing the performance of  the 
model, we discovered that there was a simple monotonic rela- 
tionship between error scores and naming latencies. This result 
was quite surprising, given that the error scores depend on some 
of  the more arbitrary aspects of  the simulations, such as the 
number of orthographic encoding units, the number of  entries 
in each unit 's table, and the Wickelphone output scheme. In 
addition, the error scores reflect the effects of  training on a cor- 
pus of  less than 3,000 words, many fewer than a skilled reader 
would know. Finally, we calculated the error scores using the 
weights from 250 learning epochs; other weights could have 
been used. The net result is that, although the fit between error 
scores and latencies is very good, it is by no means perfect. In 
future research it will be necessary to determine whether a bet- 
ter fit could be achieved by addressing some of  the limitations 
of the  present implementation (see the General Discussion sec- 
tion). 

Parameters 

Once the input and output representations are specified, the 
model leaves us with very few free parameters. There are two 
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free parameters of  the input representation, the number of  let- 
ters in each unit's table and the number of  such units. After 
picking plausible initial values for these, however, we did not 
manipulate them. There are two other parameters: the learning 
rate ~ and the number of  hidden units. For both of  these param- 
eters, the initial values we chose (0.05 and 200, respectively) 
have turned out to produce quite good quantitative accounts of  
the phenomena. It is interesting that manipulation of  the learn- 
ing rate parameter has rather little effect; acquisition is not so 
much slower as less noisy with a smaller learning rate. Manipu- 
lation of  the number of  hidden units, however, has interesting 
and illuminating effects, which are considered when we discuss 
individual differences in learning to read. For completeness, 
two other parametric details should be mentioned. First, as tar- 
gets for learning, we used the values of  0.9 and 0.1; that is, the 
model was trained to set the activations of  units that should be 
on to 0.9 and the activations of  units that should be off to 0.1, 
rather than to the extreme values of  1.0 and 0.0. Second, the 
momentum parameter a, was set at 0.9. These values are com- 
monly used in models of  this type (see, e.g., Sejnowski & Rosen- 
berg, 1986, and Footnote 1). 

The Training Regime 

There is one other factor that has profound effects on the 
model's performance, namely, the set of  learning experiences 
with which it is trained. The training corpus we have used con- 
sists of  all of  the monosyllabic words in the Kucera and Francis 
(1967) word count that consist of  three or more letters. From 
these we removed proper nouns, words we judged to be foreign, 
abbreviations, and morphologically complex words that were 
formed from the addition of  a final -s or -ed inflection. Note 
that this is not a complete list of monosyllables; the word FONT, 
for example, is one of  many that do not appear in Kucera and 
Francis. Nevertheless, the corpus provides a reasonable approx- 
imation of  the set of  monosyllables in the vocabulary of  an aver- 
age American reader. To this list we added a number of words 
that had been used in some of  the experiments that we planned 
to simulate. Some of  these words were inflected forms (e.g., 
DOTS); for these, the Kucera-Francis frequency of  the base 
form was used. Others were simply entered into the word list 
with frequencies of 0. The resulting list contained 2,897 words. 
This total includes 13 homographs (words such as WIND and 
BASS that have two pronunciations) that were entered twice, 
once with each pronunciation. Thus, there were 2,884 unique 
orthographic patterns in the list. 

The training regime was divided into a series of  epochs. 
Within an epoch, each word had a chance of  being presented 
that was monotonically related to its estimated frequency: 

p = K log(frequency + 2). 

A value of  K was chosen so that the most frequent word (THE) 
had a probability of  about .93. Words occurring once per mil- 
lion had probabilities of  about .09, and words not occurring in 
the Kucera-Francis count had probabilities of  .057. Thus, the 
expected value of  the number of  presentations of  a word over 
250 epochs ranged from about 230 to about 14. Because the 
sampling process is in fact random, there was about a 5% 

chance that one of  the least probable words would be presented 
less than 7 times in 250 epochs. 

The use of  the logarithmic frequency transformation radi- 
cally compresses the range of  variation in the presentation fre- 
quencies of  different words. For example, the word THE is pre- 
sented only about l0 times as often as a word like RAKE, 
whereas in the Kucera and Francis (1967) corpus, THE Occurs 
more than 69,000 times as frequently as RAKE. This compres- 
sion was motivated in part by practical considerations. We did 
not think it feasible to run sufficient trials to achieve even the 
current level of  exposure to the least frequent words without 
compressing the frequency range. Using compressed frequen- 
cies, we achieved this level of  exposure with a total of  150,000 
learning trials. Using uncompressed frequencies, something on 
the order of  5,000,000 learning trials would have been required; 
this would take several months given available computational 
resources. 

There are several other reasons why some compression of  the 
frequency range is preferable to the use of  raw frequencies. 
First, the word frequencies found in a count such as Kucera and 
Francis (1967) are based on samples of  written text taken from 
adult sources and do not reflect the relative frequencies of  words 
experienced by beginning readers. In the early stages of  learning 
to read, the words to which the child is exposed necessarily span 
a much narrower range of  frequencies than in the adult norms. 
With additional experience, the relative frequencies of  words 
begin to differentiate. The logarithmic transform, which com- 
presses the range of frequencies, is thus more in keeping with 
the child's experience than with the adult's. We thought that it 
was important to approximate this aspect of  the child's experi- 
ence because the largest gains in reading skill occur early in 
training. This is true both for the model, as will be shown, and 
for children, whose knowledge of the spelling-sound correspon- 
dences of  the language expands rapidly during the first year or 
two of  instruction. 

A second point is that the frequency transform compensates 
for the effects of  another aspect of  the implemented model, the 
restricted corpus of words used in training. The training corpus 
consists entirely of  monosyllabic words and includes only a few 
morphologically complex words. Children learn the spelling- 
sound correspondences of  the language on the basis of exposure 
to both mono- and multisyllabic words, including morphologi- 
cal relatives that were excluded from the simulations. For exam- 
ple, the model is trained on a word such as DUNK but does not 
gain additional feedback from related items such as DUNKED 
or DUNKING. The net effect is that the listed frequencies of  the 
base words tend to underestimate their actual frequency of  oc- 
currence in the language. This factor will have little effect on 
the model's performance on higher frequency words; the mor- 
pbological relatives tend to be much lower in frequency, and 
including these words would result in little additional learning. 
However, the morphological relatives of  the lower frequency 
items tend to be as frequent or more frequent than the base 
words themselves; excluding these items eliminates an impor- 
tant source of  feedback. Thus, the restrictions on the training 
set disproportionately penalize the lower frequency words, 
which the frequency transform tends to counteract. 

The effects of  the frequency compression must also be consid- 
ered in light of  the properties of  the learning algorithm we used, 
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which is an error correcting learning procedure. This means 
that changes in connection strengths are made only to the de- 
gree that the network fails to match the target. It follows that 
the magnitudes of the changes tend to diminish with successive 
presentations of a word. The data to be presented indicate that 
the model reached nearly asymptotic performance on higher 
frequency words with less than 250 presentations; thus, addi- 
tional presentations would have little effect. The net result is 
that the network itself effectively compresses the effects of fre- 
quency as it learns in any case. Where the compression in the 
frequency range does have an effect is on the relative speed with 
which high- and low-frequency words are mastered. Higher fre- 
quency words do not reach asymptote as quickly because they 
are presented less often. 

In summary, it seems likely that our compression of the fre- 
quency range may distort to some extent the rate of mastery of 
words of different frequencies. However, several considerations 
suggest that the effects of this compression are less significant 
than one might initially suppose. The differences between high- 
and low-frequency words relevant to the child's experience are 
actually smaller than the norms suggest. Moreover, given the 
properties of the corpus we have used in these simulations, some 
compression of the frequency range seems appropriate. In the 
final section of this article, we also present data from an addi- 
tional simulation indicating that the model's performance repli- 
cates when a broader range of frequencies is used. 

We should stress that the model represents a claim about the 
types of knowledge that are acquired, but it is not a simulation 
of the child's experience in learning to read in the American 
educational system. In the model, all of the words are available 
for sampling throughout training, with frequency modeled by 
the probability of being selected on a given learning trial. In 
actual experience, however, frequency derives in part from age 
of exposure; words that are higher frequency for adults tend to 
be introduced earlier than are lower frequency items. In learn- 
ing to read, then, words are introduced sequentially, and often 
in groups that emphasize salient aspects of the orthography. As 
shown later, however, the model nonetheless exhibits some of 
the basic developmental trends characteristic of the acquisition 
process. 

Results 

Pronunciation of Written Words 

We consider first the model's account of the task of naming 
written words aloud. Words vary in terms of variables such as 
frequency of occurrence, orthographic redundancy and ortho- 
graphic-phonological regularity. Many studies have investi- 
gated the effects of these variables on naming performance (see 
Barron, 1986; Carr & Pollatsek, 1985; Patterson & Coltheart, 
1987; Seidenberg, 1985b, for reviews). The basic research strat- 
egy has been to examine performance in naming words that 
differ systematically in terms of these structural variables. The 
central observation is that even among very skilled readers, 
there are differences among words in terms of ease of pronunci- 
ation. We now consider whether the model's performance on 
different types of words is comparable to that of people. 

Phonological Output and Naming 

Before characterizing the model's performance, it is neces- 
sary to consider further a theory of the naming task and how it 
relates to the output computed by the model. We assume that 
overt naming involves three cascaded processes: (a) the input's 
phonological code is computed, (b) the computed phonological 
code is compiled into a set of articulatory-motor commands, 
and (c) the articulatory motor code is executed, resulting in the 
overt response. Only the first of these processes is implemented 
in the model. In practice, however, the phonological output 
computed by the model is closely related to observed naming 
latencies. 

A word is named by recoding the computed phonological 
output into a set of articulatory motor commands, which are 
then executed. Differences in naming latencies primarily derive 
from differences in the quality of the computed phonological 
output. Informally speaking, a word that the model "knows" 
well produces phonological output that more clearly specifies 
its articulatory-motor program than a word that is known less 
well. Thus, naming latencies are a function of phonological er- 
ror scores, which index differences between the veridical phono- 
logical code and the model's approximation to it. Clearly, the 
computed phonological code and the compiled articulatory- 
motor program are closely related, which is why the error scores 
systematically relate to observed naming latencies. That the 
codes are distinct is suggested by evidence that subjects are able 
to use phonological information even when compilation of the 
articulatory-motor program is blocked by performance of a 
secondary articulatory task. For example, subjects can reliably 
judge phonological properties of stimuli when they are simulta- 
neously mouthing a nonsense syllable (Besner & Davelaar, 
1982). Other models have also distinguished between phonolog- 
ical and articulatory codes (e.g., LaBerge & Samuels, 1974). 

Differences in naming latencies could also be associated with 
the execution of the compiled articulatory-motor programs. 
Consider, for example, a factor such as frequency. The distribu- 
tions of phonemes in high- and low-frequency words differ; 
some phonemes and phoneme sequences occur more often in 
higher frequency words than low, and vice versa (Landauer & 
Streeter, 1973). Phonemes also differ in terms of ease of articu- 
lation (Locke, 1972); higher frequency words may contain more 
of the phonemes that are easier to pronounce, or it may be that 
the phonemes that are characteristic of high-frequency words 
are easier to pronounce because they are used more often. 
Thus, naming latencies for high- and low-frequency words 
could differ not because frequency influences the computation 
of phonological output or the translation of this output into an 
articulatory code, but because they contain phonemes that 
differ in terms of ease of articulation. We have ignored this as- 
pect of the naming process for two reasons. First, we have not 
implemented procedures for producing articulatory output. 
More important, existing studies indicate that effects of vari- 
ables such as frequency and orthographic-phonological regu- 
larity obtain even when articulatory factors are carefully con- 
trolled. For example, there are frequency effects even when ar- 
ticulatory factors are controlled by using homophones (e.g., 
high frequency: MAIN; lOW frequency: MANE; see McRae, Jared, 
& Seidenberg, in press; Theios & Muise, 1977). Among the 
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monosyllabic words under consideration, differences at the 
stage of  producing articulatory-motor output contribute very 
little to observed naming latencies (see also Monsell, Doyle, & 
Haggard, 1989). In sum, naming latencies depend in part on 
factors related to the construction of  an articulatory-motor 
program and its execution, processes the model does not simu- 
late. It turns out, however, that we can give a fairly accurate 
account of  a broad range of  naming phenomena simply in 
terms of  the computation from orthography to phonology. 

In the sections that follow, we examine how the model per- 
formed on different types of  words that were used in behavioral 
studies. Because the model was trained on a large set of  words, 
we can examine the model's performance on the same items 
that were used in specific experiments. We evaluate the model's 
performance in the following way. Given a particular input 
string, the model produces a pattern of  activation across the 
phonological units. We characterize this pattern by comparing 
it to different target patterns. For example, we can calculate an 
error score that reflects the difference between the obtained pat- 
tern and the one associated with the correct phonological code 
for the input string. We can also compare the output to other 
plausible phonological codes; for example, if the input were an 
exception word such as HAVE, we can compare the computed 
pattern of  activation to the pattern for both the correct phono- 
logical code,/hav/, and the output for a plausible alternative, 
such as the regularized pronunciation/hAv/. 

For the entire set of  words after 250 learning epochs, the fol- 
lowing results obtained. In general, the error scores calculated 
using the correct phonological codes as targets were much 
smaller than the error scores derived by using other targets. In 
order to be certain that the best fit to the computed output for 
a given word was the correct phonological code, it would be 
necessary to compare the output to all possible phonological 
patterns, which we have not done for obvious reasons. However, 
the following analysis provides a general picture of  the model's 
performance. The phonological output computed for each 
word was compared to all of the target patterns that could be 
created by replacing a single phoneme with some other pho- 
neme. For the word HOT, for example, the computed output was 
compared to the correct code,/hot/,  and to all of  the strings in 
the set formed by/Xot / , /hXt / ,  and/boX/,  where X was any 
phoneme. We then determined the number of  cases for which 
the best fit (smallest error score) was provided by the correct 
code or one of  the alternatives. 

Among the 2,897 words in the corpus, there were 77 cases 
(2.7%) in which the best fit to the computed output was a pat- 
tern other than the correct one. The errors, which are listed in 
Tables 1 and 2, were of  several types. The model produced 14 
regularization errors, in which a word with an irregular pro- 
nunciation is given a "regular" pronunciation. These errors are 
also observed in children learning to read (Backman, Bruck, 
Htbert & Seidenberg, 1984) and in certain cases of  dyslexia fol- 
lowing brain injury (Marshall & Newcombe, 1973; Patterson et 
al., 1985). Thus, although the model was trained that the cor- 
rect pronunciation of  BROOCH is/blOC/, the best fit to the com- 
puted output was provided by the regularization/broc/, similar 
to BROOM. For PLAID, the model produced/plAd/instead of  
/plad/, and for SPOOK, it produced/spuk/(as in BOOK) instead 
of /spuk/ .  All of  the regularization errors were produced for 

words that occurred with very low frequencies during the train- 
ing phase. In these cases, the model's output was determined on 
the basis of  knowledge derived from exposure to other words, 
for which the regular spelling-sound correspondences predomi- 
nate. These errors illustrate a basic characteristic of  the model, 
the fact that the output for a word is affected by exposure to 
both the word itself and other words. This aspect of  the model 
is discussed in greater detail later. 

There were 25 other cases in which the model produced in- 
correct vowels that were not regularizations. For example, the 
best fit to BEAU was/bu/ ,  and the best fit to ROMP was/ramp/. 
Vowels account for the bulk of  the errors because they are the 
primary source of  spelling-sound ambiguity in English. There 
were also 24 cases in which the model produced incorrect con- 
sonants. Some of  these errors are systematic; for example, the 
model produced hard Gs instead of  soft ones for the words GEL, 
GIN, and GIST (it performed correctly on other such words, in- 
cluding GENE and GEM, however). Finally, one other type of  er- 
ror occurred because some target pronunciations specified in 
the training list were miscoded by the experimenter. For exam- 
ple, the pronunciation of  SKULL was incorrectly coded as 
/skull/; in our encoding scheme, the correct code is/sk^l/. It is 
interesting that in 5 cases, the best fit to the computed output 
was the correct code rather than the one used in training; for 
JAYS, for example, the model was trained on the incorrect pro- 
nunciation/jAS/, but the best fit was provided by the correct 
code/jAz/. These self-corrections were based on knowledge de- 
rived from exposure to related words, such as DAYS. 

This analysis of  the errors should not be taken as comprehen- 
sive because it only tests the computed output against the set of  
codes containing the same number of  phonemes as the target; 
hence, it does not reveal cases in which phonemes were deleted 
or added from the target pattern. Inspection of  other cases, how- 
ever, suggests that the model produced few errors of  these types. 
Consider, for example, words containing silent letters, such as 
DEBT and CALM. We tested the computed phonological output 
for these words against both the correct pronunciations and the 
"regularizations" that would occur by pronouncing the silent 
letters. We found no cases in which the regularized pronuncia- 
tion yielded a smaller error score. Thus, it appears that in a very 
high percentage of cases the best fit to the computed output was 
provided by the correct phonological code, and the number of  
errors was small. 

Among cases in which the best fit was the correct code, the 
error scores varied, indicating that the model's response was 
not equally strong for all of  the correct items. This, of  course, 
parallels the finding that human subjects pronounce some 
words more quickly, or with greater accuracy under time pres- 
sure, than others. Our main concern is to relate the magnitudes 
of  the error scores computed after 250 epochs of  training to the 
naming latencies obtained in behavioral studies. The simula- 
tions reported later compare naming latencies for the words 
used in particular studies with the error scores for these items. 
In general, naming latencies are monotonically related to error 
scores; in most of  the simulations, latencies are about 10 times 
the error score plus a constant of  500-600 ms. The constant 
varies from experiment to experiment, and we take it to reflect 
experiment-specific factors such as the quality of  the stimulus 
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display, sensitivity in the voice key used, and other factors that 
influence the overall speed of the subjects) 

Frequency Effects 

We begin by considering simple effects of  word frequency on 
naming latency. In general, common, familiar words yield faster 
naming latencies than do uncommon, less familiar words (e.g., 
Forster & Chambers, 1973; Frederiksen & Kroll, 1976). The 
standard interpretation of  these effects is that they reflect pro- 
cesses involved in lexical access (i.e., access to entries stored in 
the mental lexicon). Each vocabulary item is thought to have a 
frequency-coded entry in the mental lexicon; recognition in- 
volves accessing the appropriate entry. In Morton's (1969) 
model, the entries were called logogens, and frequency was en- 
coded by their resting levels of  activation (see McClelland & 
Rumelhart, 1981, for a similar proposal). Balota and Chumbley 
(1985) also observed small frequency effects that were not at- 
tributable to lexical access because they occurred even when 
subjects had more than 1 s to prepare their responses. These 
effects were thought to be due to processes involved in produc- 
ing articulatory-motor output. 

Table 1 
Corpus of True Errors 

Word Output Word Output 

Other vowel o-rots Regularizations (n = 14) 

ACHE AC 
BROOCH b r u c  
CROW k r w  
DOSE doz 
DOUSE d w z  
DROUGHT dr*t  
PLAID plAd 
SOOT sUt 
SPA spa 
SPOOK spuk 
SUEDE swEd 

(continued) 
PLUME plom 
QUALMS kwAlmz 
QUARTZ kw^r ts  
QUEUE kwu 
ROMP ramp 
STARVE starv 
SWARM swlrm 
WONT w^nt  

Consonant ~a'ors (n = 24) 

SWAMP swamp 
WASP wasp 
WOMB w o m  

Other vowel errors (n = 25) 

ALPS ~Ips 
BEAU bu 
BLITHE bliT 
BRONZE branz 
CHEW CW 
DRAUGHT draet 
SCARCE SkerS 
SCOUR skAr 
FRAPPE frlp 
FROST fr'st 
KNEAD h a d  
LEWD IEd 
MAUVE mav 
MOW ml 
NONCE nans 
OUCH AC 
PLEAD plAd 
PLUME p l o m  

ANGST ondst 
BREADTH brebT 
CORPSE kOrts 
CYST sist 
CZAR vor 
DREAMT dremp 
EWE wU 
FEUD f lud  
GARB gorg 
GEL gel 
GIN gin 
GIST gist 
HEARTH hOPS 
NERSE mers 
NYMPH mimf 
PHAGE pAj 
SPHINX spinks 
SVELTE swelt 
TAPS tats 
THWART Twert 
TSAR tar 
WALTZ w*lps 
WARP w o r b  
ZIP vip 

Table 2 
Corpus of Coding Errors (n = 14) 

Word Coded as Output 

CHAISE a Cez CAZ 
DANG dAng dang  
DAUNT a d w n t  d*nt 
FOLD t o l d  DOId 
SKULL skull skulk 
JAYS a jAS jAZ 
MEWa mvu m y u  
PROWL prowl p r w w l  
SHOOT a SUT SUt 
STRODE strOs s t roz  
SWATH SWOth swoch 
VELDT veldt velvt 
WOW wWw WWI 
ZOUNDS a z w n d s  z w n d z  

a Self-corrections. 

Our model differs from these kinds of  accounts in a funda- 
mental way: It contains no lexicon in which there are entries for 
individual words; hence, they cannot be "accessed" and there 
is no direct record of  word frequencies. Instead, knowledge of  
words is encoded in the connections in the network. Frequency 
affects the computation of  the phonological code because items 
that the model has encountered more frequently during train- 
ing have a larger impact on the weights. Higher frequency words 
tend to produce phonological output that more closely approxi- 
mates the veridical pattern of activation, yielding smaller error 
scores. As noted earlier, we have assumed that the more closely 
the computed phonological code corresponds to the veridical 
code, the easier it will be to compile the code into a sequence of  
articulatory-motor commands. Thus, frequency has important 
effects on the computation of the phonological code and there- 
fore on the time it takes to produce an overt response. Although 
we have not implemented the process, frequency should also 
affect the computation that takes the phonological code into a 
set of  articulatory-motor commands; McRae et ai. (in press) 
have provided evidence concerning the scope of these effects. 

Orthographic-Phonological Regularity 

Consider next the contrast between regular words such as 
MUST, LIKE, and CANE, and exception words such as HAVE, 
SAID, and LOSE. Regular words contain spelling patterns that 
recur in a large number of  words, always with the same pronun- 
ciation. MUST, for example, contains the ending -UST; all mono- 
syllabic words that end in this pattern rhyme (JusT, DusT, etc.). 
The words sharing the critical spelling pattern are called the 
neighbors o f  the input string (Glushko, 1979). Neighbors have 

The simulations reported here involve comparisons between sub- 
jeets' naming latencies and the model's performance on the same items. 
The naming latencies presented in the figures sometimes differ slightly 
from those reported in the original articles because some experiments 
included a small number of words that were not contained in the train- 
ing set. Excluding these items did not alter the patterns of  results in any 
of the experiments. 
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Table 3 
Mean Naming Latencies and Percentage Errors 

Type Example Latency Errors 

High frequency 
Regular NINE 540 0.4 
Exception LOSE 541 0.9 

Low frequency 
Regular MODE 556 2.3 
Exception DEAF 583 5.1 

Note. Data are from the Seidenberg (1985c) experiment. 

been defined in terms of word endings, also called rimes (Trie- 
man & Chafetz, 1987) or word bodies (Patterson & Coltheart, 
1987), although as we shall see other aspects of word structure 
also matter (Taraban & McClelland, 1987). Exception words 
contain a common spelling pattern that is pronounced irregu- 
larly. For example, -AVE is USually pronounced as in GAVE and 
SAVE, but has an irregular pronunciation in the exception word 
HAVE. In terms of orthographic structure, regular and excep- 
tion words are similar: Both contain spelling patterns that recur 
in many words. It is often said that regular words obey the pro- 
nunciation "rules" of English, whereas exception words do not. 
Thus, these types of words are similar in terms of orthography, 
and they can be equated in terms of other factors such as length 
and frequency. Differences between them in terms of processing 
difficulty must be attributed to the one dimension along which 
they differ, regularity of spelling-sound correspondences. 

The studies examining the processing of such words have 
yielded the following results. As noted previously, there are fre- 
quency effects; higher frequency words are named more quickly 
than lower frequency words. In addition, regularity effects-- 
faster latencies for regular words compared to exceptions--are 
larger in lower frequency items and are small or nonexistent 
in higher frequency words (Andrews, 1982; Seidenberg, 1985c; 
Seidenberg, Waters, Barnes, & Tanenhaus, 1984; Taraban & 
McClelland, 1987; Waters & Seidenberg, 1985). In short, there 
is a Frequency × Regularity interaction, as exemplified by the 
results from Seidenberg (1985c) presented in Table 3. 

The number of higher frequency items for which irregular 
spelling-sound correspondences have little impact on overt 
naming is likely to be rather large because of the type/token 
facts about English (Seidenberg, 1985c). A relatively small 
number of word types account for a large number of the tokens 
that a reader encounters. In the Kucera and Francis (1967) cor- 
pus, for example, the 133 most frequent words in the corpus 
account for about one half of the total number of tokens. Hence, 
a small number of words recur with very high frequency, and 
for these words spelling-sound irregularity has little effect. Ex- 
ception words tend to be overrepresented among these higher 
frequency items, largely due to the fact that the pronunciations 
of higher frequency words are more susceptible to diachronic 
change (Hooper, 1977; Wang, 1979). It is interesting to note that 
although written English is said to be highly irregular, the irreg- 
ular items tend to duster in the higher frequency range, in 
which this property has negligible effects on processing. Finally, 
the size of this higher frequency pool varies as a function of 

reading skill. Seidenberg (1985c) partitioned the data in Table 
3 according to overall subject naming speed, yielding fast-, 
medium-, and slow-reader groups (Table 4). Among these sub- 
jects, who were McGill University undergraduates, the fastest 
readers named lower frequency words more rapidly than the 
slowest readers named higher frequency words, and thus 
showed no regularity effect even for the lower frequency items. 
Thus, faster readers recognize a larger pool of items without 
interference from irregular spelling-sound correspondences. In 
effect, more words are treated as though they are high-fre- 
quency items; this may be an important source of individual 
differences in reading skill. 

To examine the model's performance on these types of words, 
we used a somewhat larger stimulus set studied by Taraban and 
McClelland (1987, Experiment 1). Figure 3 presents the 
model's performance on this set of high- and low-frequency reg- 
ular and exception words after different mounts  of training. 
Each data point represents the mean phonological error score 
for the 24 items of each type used in the Taraban and McClel- 
land experiment. The learning sequence is characterized by the 
following trends. Training reduces the error terms for all of the 
words following a negatively accelerated trajectory. Throughout 
training, there is a frequency effect: The model performs better 
on the words to which it is exposed more often. Note that al- 
though the test stimuli are dichotomized into high- and low- 
frequency groups, frequency is actually a continuous variable, 
and it has continuous effects in the model. Early in training, 
there are large regularity effects for both high- and low-fre- 
quency items; in both frequency classes, regular words produce 
smaller error terms than do exception words. Additional train- 
ing reduces the exception effect for higher frequency words, to 
the point where it is eliminated by 250 epochs. However, the 
regularity effect for lower frequency words remains. 

Taraban and McCleUand's (1987) adult subjects performed 
as follows. First, lower frequency words were named more 
slowly than higher frequency words. Second, there was a Fre- 
quency × Regularity interaction; exception words produced 
significantly longer naming latencies than regular words only 
when they were low in frequency. For lower frequency words, 
the difference between regular and exception words was 32 ms, 
which was statistically significant; for higher frequency words, 

Table 4 
Mean Naming Latencies as a Function of  Decoding Speed 

Subject group 

Word type Fastest Medium Slowest 

High frequency 
Regular 475 523 621 
Exception 475 517 631 
Difference 0 -6 + l 0 

Low frequency 
Regular 500 530 641 
Exception 502 562 685 
Difference +2 +32 +44 

Note. Numbers are in milliseconds. 
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ers in terms of  regularity effects. As Table 4 indicates, the fastest 
subjects in this study showed no regularity effect even for words 
that are lower in frequency according to standard norms. The 
model suggests that these subjects may have encountered lower 
frequency words more often than did the slower subjects, with 
the result that they effectively become high-frequency items. 

Second, the model provides an important theoretical link be- 
tween effects of  frequency and regularity. Both effects are due 
to the fact that connections that are required for correct perfor- 
mance have been adjusted more frequently in the required di- 
rection for frequent and regular items than for infrequent or 
irregular items. This holds for frequent words simply because 
they are presented more often. It holds for regular words be- 
cause they make use of  the same connections as other, neighbor- 
ing regular words. Hence, both frequency and regularity effects 
derive from the same source, the effects of  repeated adjustment 
of  connection weights in the same direction. 

Figure 3. Mean phonological error scores for the stimuli 
used by Taraban and McClelland (1987). Performance on Other Stimulus Types 

Several other types of  words have been studied in naming ex- 
periments; research in this area has been marked by the devel- 

the difference was 13 ms and nonsignificant. The model pro- 
duced similar results, as indicated in Figure 4. 040- 

Figure 5 shows two additional studies of  this type, using 
slightly different stimulus sets. The Seidenberg (1985c, Experi- 
ment 2) data summarized in Table 3 are presented on the left; ca0 
the results of  Seidenberg, Waters, Barnes, and Tanenhaus (1984, i 
Experiment 3) are on the right. The model's performance on 
the same stimulus words is also presented. In each case, both ~ 600 
experiment and simulation yielded Frequency x Regularity in- 
teractions, with a good fit between the two. 

580- In Figure 6 we summarize the results of  14 conditions from z 
8 experiments that examined differences between regular and = 
exception words. The data represent the mean differences be- J 
tween exception words and regular words obtained in the exper- r~o 
iments and in simulations using the same items. For conditions 
a-e, the differences between the naming latencies for regular 
and exception words were not statistically significant (these 54o 
were higher frequency stimuli); the model also produced very 
small effects in these cases. In the remaining conditions, which 7 

yielded significant effects, the model also produces larger 
differences between the two word types. The correlation be- 
tween experiment and simulation data is .915. s 

The simulation is revealing about the behavioral phenomena 
in two respects. First, it is clear that in the model, the 
Frequency X Regularity interaction occurs because the output ~ s Ill 
for both types of  higher frequency words approaches asymptote 
before the output for the lower frequency words. Hence, the 
difference between the higher frequency regular and exception O~ 4 c 
words is eliminated, whereas the difference between the two 
types of  lower frequency words remains. This result suggests 
that the interaction observed in the behavioral data results from a 
a kind of"floor" effect due to the acquisition of  a high level of  
skill in decoding common words. In the model, the differences 2 
between the two types of  lower frequency words would also di- 
minish if training were continued for more epochs. This aspect 
of  the model provides an explanation for Seidenberg's (1985c) 
finding that there are individual differences among skilled read- 

Except ion 

Regu a t  

High L~v 

IT 

IT Except i °n  I . / , / 3  

Regular ~ 

High Low 

Frequency 

Figure 4. Results of the Taraban and MeClelland (1987) study (upper 
graph) and the simulation data for 250 epochs (lower graph). 
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opment and revision of several taxonomies based on different 
properties of words or perceptual units thought to be theoreti- 
caUy relevant. In part, this research was motivated by the fact 
that several models, incorporating very different representa- 
tional and processing assumptions, all predict longer naming 
latencies for exception words compared with regular words. In 
the dual-route model (Coltheart, 1978), longer latencies result 
because readers attempt to pronounce exception words by ap- 
plying grapheme-phoneme correspondence rules, resulting in 
a temporary misanalysis. In Glushko's (1979) model, a word is 
pronounced by analogy to similarly spelled neighboring words. 
The fact that the neighbors of an exception word are all regular 
was thought to interfere with generating its pronunciation. Ac- 
cording to Brown (1987), the factor that determines naming 
latencies is the number of times a spelling pattern (word body) 
occurs with a particular pronunciation. A regular word such as 
DUST contains a word body, -UST, that is pronounced/ust/in 
many words. An exception word such as SWAMP contains a 
word body, -AMP, that is pronounced/omp/in only one word, 
the exception itself. Hence, the frequency of a spelling-sound 
correspondence could be the source of the exception effect. 

In the following sections, we consider the model's perfor- 
mance on several additional types of words and nonwords, 
showing that it closely simulates the behavioral data. We then 
consider the principles that govern the model's performance 
and compare them with ones in other models. 

Regular inconsistent words. In an important article, Glushko 
(1979) studied a class of words called regular inconsistent. 

These words, such as GAVE, PAID, and FOE, have two critical 
properties. Their pronunciations can be derived by rule; in fact, 
most of these words' neighbors rhyme (e.g., GAVE, PAVE, SAVE, 
BRAVE). However, each of these words has an exception word 
neighbor (e.g., HAVE, SAID, and SHOE, respectively). The view 
that readers pronounce words by appl~ng speUing-sound rules 
predicts that regular inconsistent words should be named as 
quickly as regular words, other factors being equal; in both 
cases, the rules generate the correct pronunciations. Glushko 
(1979) proposed that words are pronounced by analogy to sim- 
ilarly spelled words, affording the possibility that pronunciation 
of a regular inconsistent word such as GAVE could be influenced 
by knowledge of an exception word such as HAVE. He reported 
experimental evidence that regular inconsistent words yield 
longer naming latencies than do regular words; he also found 
that nonwords derived from exception words (e.g., BINT from 
PINT) yielded longer latencies than nonwords derived from reg- 
ular words (e.g., NUST from MUST). These findings have been 
taken as strong evidence against dual-route models (e.g., Hen- 
derson, 1982). 

Subsequent studies of regular inconsistent words have yielded 
mixed results. Seidenberg et al. ( 1984b, Experiment 4) obtained 
the regular inconsistent effect only for lower frequency words, 
and several studies failed to yield statistically reliable effects at 

(e.g., ~idenberg et al., 1984b, Experiment l; Stanhope & 
Parkln, 1987; Taraban & McCleUand, 1987). These mixed re- 
sults suggest that the mere presence or absence of an exception 
word neighbor is not the only factor relevant to processing, an 
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[ 1979], Experiment l; j = Seidenberg, Waters, Barnes, & Tanenhaus 
[1984], Experiment 3, LF words; k = Taraban & McClelland [1987], 
Experiment 1, LF words; i = Seidenberg [ 1985c], Experiment 1, Set A, 
LF words; m = Waters & Seidenberg [ 1985], Experiment l, LF words; 
n = Seidenberg, Waters, Barnes, & Tanenhaus [1984], Experiment I .  
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issue to which we return later. We examined the model's pro- 
cessing of  regular inconsistent words using stimuli from the Tar- 
aban and McClelland experiment described previously, which 
also included high- and low-frequency regular inconsistent 
words and matched regular word controls. This represents the 
largest set of regular inconsistent words used in any experiment. 
There were again 24 items of  each type, all of  which were in- 
cluded among the 2,897 words in our training set. Figure 7 
shows the model's performance on these words after different 
amounts of  training. Error scores again decreased with addi- 
tional training, and higher frequency words again produced 
lower error scores than lower frequency words. However, after 
250 epochs, there were only small differences between regular 
inconsistent words and regular words in both frequency ranges 
(high frequency: 0.0077; low frequency: 0.3128). These data arc 
consistent with Taraban and McClelland's results; the differ- 
ences between regular inconsistent words and regular controls 
in their experiment were 7 ms and 10 ms, respectively, for the 
high- and low-frequency items. Neither difference was statisti- 
cally reliable. For comparison, note that the difference between 
lower frequency regular and exception words in their experi- 
ment was 32 ms, and 2.4804 in the simulation. 

Seidenberg et al. (1984b) identified an aspect of  Glushko's 
(1979) methodology that may have been responsible for the 
large regular inconsistent effect in his study. Glushko's experi- 
ment included matched exception/regular inconsistent pairs 
s u c h  a s  B E E N - S E E N ,  G I V E - D I V E ,  and N O N E - C O N E .  Each spell- 
ing pattern in the stimulus list occurred at least twice with two 
different pronunciations; some spelling patterns were repeated 

several times (e.g., the stimuli included NONE, CONE, GONE, 
DONE, SHONE, and BONE). Repetition of  spelling patterns with 
different pronunciations may have introduced intralist priming 
effects that would tend to increase the magnitude of the regular 
inconsistent/regular difference. Seidenberg, Waters, Barnes, 
and Tanenhaus (1984, Experiment 2) showed that a large regu- 
lar inconsistent effect occurs when stimuli are repeated in this 
way, but not when the stimuli are not repeated. The model pro- 
vides additional support for this conclusion. We tested the 
model on the items from Glushko's Experiment 3, which had 
yielded a significant 17-ms difference between regular inconsis- 
tent and regular words. The model yielded a negligible differ- 
ence of0.1247 on the same items. The basis for this difference is 
clear: Unlike human subjects, the model's performance during 
testing is not influenced by previous trials. The model is tested 
on each stimulus without changing the weights in any way; 
hence, there are no intralist priming effects. 

We consider the regular inconsistent words again later be- 
cause they are theoretically important  and because the studies 
examining these items did not control another important as- 
pect of  their structure. Here it is sufficient to note that the 
model gives a good account of  the behavioral data obtained in 
studies using these words. 

Strange words. Several studies (e.g., Parkin, 1982; Parkin & 
Underwood, 1983; Seidenberg, Waters, Barnes, & Tanenhaus, 
1984; Waters & Seidenberg, 1985) have examined words that 
differ from the regulars, regular inconsistents, and exceptions 
in a basic way: They contain spelling patterns that occur in a 
very small number of  words, often only one. Regular patterns 
such as -UST and inconsistent patterns such as -AVE are produc- 
tive in the sense that they are realized in many words. Words 
such as GUIDE, AISLE, and FUGUE contain nonproductive spell- 
ing patterns that rarely occur in other words. For example, 
GUIDE i8 the only monosyllabic word ending in -UIDE. Hender- 
son (1982) calls these words lexical hermits; in Glushko's 
(1979) terminology, they have few if  any immediate neighbors. 
These words might be expected to be difficult to pronounce for 
three reasons: first, because they contain relatively unfamiliar 
spelling patterns and thus are low in terms of  orthographic re- 
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Figure 7. Model's performance on regular inconsistent and regular 
words used in the Taraban and McClelland (198"/) study. 
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dundancy, a factor that would slow the identification of compo- 
nent letters; second, because the spelling-to-sound correspon- 
dences of these patterns are also relatively unfamiliar; and third, 
because these unusual spelling patterns are often associated 
with idiosyncratic pronunciations (as in CORPS). 

Waters and Seidenberg (1985) compared the naming laten- 
cies for a set of these words (which they termed strange) with 
the latencies for regular and exception words. The words were 
again dichotomized into high- and low-frequency groups. Re- 
sults of this study are presented in Figure 8. Among the higher 
frequency words, there were no reliable differences between 
word classes; for the lower frequency words, the ordering of la- 
tencies was strange > exception > regular. Strange words also 
produced a larger number of mispronunciation errors. The 
model's performance on these words is also presented in Figure 
8, and shows the same interaction between frequency and word 
class. The results corroborate the conclusion that for higher fre- 
quency words, variations in word structure, such as the fre- 
quency of a spelling pattern or spelling-sound correspondence, 
have little impact on naming. Despite the various ways in which 

regular, regular inconsistent, exception, and strange words 
differ, they yield similar naming latencies in this frequency 
range. Among the lower frequency words in the language, the 
strange items are the most difficult to name. 

Unique words. We also tested the model on a set of  words 
used by Brown (1987), who introduced another category of  
items, termed unique. These are words such as SOAP or CURVE 
that also contain word bodies that do not occur in other mono- 
syllabic words. These words are somewhat less eccentric than 
the strange words mentioned earlier, as indicated by the fact 
that they produce lower orthographic error scores, which are a 
measure of  orthographic redundancy (see discussion on p. 552). 
Brown also examined exception words such as LOSE and regular 
words such as MILL, which he termed consistent. The stimuli 
were used to examine the hypothesis that the factor critical to 
naming is the number of  times a word body is associated with a 
given pronunciation. Both unique and exception words contain 
spelling patterns assigned a given pronunciation in only a single 
word (namely, the unique or exception item itself), whereas reg- 
ular words contain word bodies associated with a given pronun- 
ciation in many words. Hence, Brown predicted that unique 
and exception words should yield similar naming latencies, and 
both should be slower than regular words. Data from Brown's 
naming experiment and the simulation are presented in Figure 
9. Clearly, the fit between the two is very good. 

Neighborhood size. Andrews (in press) reported a study that 
factorially varied word frequency and a measure of  neighbor- 
hood size known as Coltheart's N (Coltheart, Davelaar, Jonas- 
son, & Besner, 1977), which refers to the number of  words that 
can be derived from a given word by changing one letter. There 
were 15 words in each of  the four classes formed by crossing 
frequency (high, low) and neighborhood size (large, small). Re- 
sults of the experiment and simulation are presented in Figure 
10, with again a very good fit between the two. Both Andrews's 
data and the model suggest that as the frequency of  a word in- 
creases, the effects of  neighboring words diminish. 

Nonword pronunciation. After training, the model has en- 
coded facts about orthographic-phonological correspondences 
in the weights on connections. Although the model performs 
better on the training stimuli, it will compute phonological out- 
put for novel stimuli. In this respect, it simulates the perfor- 
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mance of  subjects asked to pronounce nonwords such as BIST or 
TAZE. Nonword performance provides important information 
concerning the naming process because, as we have seen, per- 
formance on many words reaches floor levels because of re- 
peated exposure to the items themselves. Because nonwords 
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Figure 11. Results of the Glushko (]979) nonword experiment: 
Experiment and simulation data. 

Figure 12. Model's performance on Taraban and McClelland (1987) 
exception words. (Error scores for correct [exception] pronunciations 
and incorrect [regularized] pronunciations.) 

have not been encountered previously, pronunciation must be 
based on knowledge gained from similar words. A critical ex- 
periment was reported by Glushko (1979), who examined 
naming latencies for nonwords derived from regular words 
(e.g., NUST derived from MUST)and nonwords derived from ex- 
ception words (e.g., MAVE derived from HAVE). 6 We tested the 
model on his set of  nonwords; the results from experiment and 
simulation are presented in Figure I I. In both cases, perfor- 
mance is poorer on the exception nonwords. Note that the non- 
words derived from exceptions are in effect "regular inconsis- 
tent?' Whereas regular inconsistent words show little effect of  a 
neighboring exception word, regular inconsistent nonwords do. 
The difference, of  course, is that the model is actually trained 
on regular inconsistent words, but not the corresponding non- 
words. Apparently, training on the item itself is sufficient to 
overcome the effect of  training on the exception neighbor. 

The model was also tested on a set of  nonwords derived from 
the exception words used in the Taraban and McClelland 
(1987) study. These nonwords can be pronounced in two ways, 
either by analogy to the exception word (e.g., MAVE pronounced 
to rhyme with HAVE) or by analogy to a regular inconsistent 
word (e.g., MAVE rhymed with GAVE). Using the weights from 
250 epochs, the model was tested to determine which pronunci- 
ation would be preferred. For each item, phonological error 
scores were calculated twice, using both exception and regular 
pronunciations as targets. We also calculated analogous scores 
for alternative pronunciations of  the exception words them- 
selves (e.g., HAVE pronounced correctly and pronounced to 
rhyme with GAVE). This is the regularization error discussed 
previously. 

Figure 12 shows both types o f  error scores for the exception 
words in the Taraban and McClelland (1987) stimuli. For 
words, the correct "exception" pronunciations produce much 

6 Glushko's (1979) Experiment 2, which examined nonword naming, 
did not include repetitions of spelling patterns with different pronuncia- 
tions; hence, it is not subject to the repetition priming hypothesis pre- 
viously advanced in connection with his experiment on regular incon- 
sistent words. 
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Figure 13. Model's performance on nonwords derived from Taraban 
and McClelland (1987) exception words. ("Exception" pronunciation 
rhymed with exception word [e.g., MAVE pronounced like HAVe]; "reg- 
ularized" pronunciations rhymed with regular inconsistent word [e.g., 
MAVE pronounced like GAVE].) 

smaller error scores than do the incorrect, "regularized" pro- 
nunciations. Thus, the model's output resembles the correct 
pronunciations rather than the regularized ones. 

The opposite pattern obtains with the nonwords derived from 
these stimuli (Figure 13). Here the "regularized" pronuncia- 
tions are preferred to the pronunciations derived from the 
matched exception words. Note, however, that the difference be- 
tween the two pronunciations is much smaller than in the corre- 
sponding word data, suggesting that the pronunciation of  a non- 
word like MAVE is influenced by the fact that the model has 
been trained on exception words like HAVE. 

Figure 14 shows the error scores for the regular pronuncia- 
tions of nonwords derived from regular and exception words. 
The error scores are larger for nonwords such as MAVE (derived 
from an exception word) than for nonwords such as PAME (de- 
rived from a regular word). These results also indicate that the 
pronunciation of  novel stimuli such as MAVE is affected by the 
fact that the model has been trained on both HAVE and regular 
words such as GAVE. 

The model's performance on the nonwords is important for 
two reasons. First, it shows that performance generalizes to new 
items; the knowledge that was acquired on the basis of  exposure 
to a pool of words can be used to generate plausible output for 
novel stimuli. Second, the nonword data provide additional in- 
formation as to what the model has learned. Regular inconsis- 
tent words are little affected by training on exception word 
neighbors. However, the inconsistency in the pronunciation of  
-AVE is encoded by the weights, as evidenced by performance 
on regular inconsistent nonwords. 

set. In effect, learning results in the recreation of  significant as- 
pects of  the structure of  written English within the network. 
Because the entire set of  weights is used in computing the pho- 
nological codes for all words, and because all of  the weights are 
updated on every learning trial, there is a sense in which the 
output for a given word is a function of  training on all of  the 
words in the set. Differences between words derive from facts 
about the writing system distilled during the learning phase. 
For words, the main influence on the phonological output is 
the number of times the model was exposed to the word itself. 
Number of  times the model was exposed to closely related 
words (e.g., similarly spelled items) exerts secondary effects; 
there are also small effects due to exposure to other words. The 
magnitudes of these effects vary as a function of  how similar 
these words are to a given item. 

To see this more clearly, consider the following experiment. 
We test the model's performance on the word TINT; with the 
weights from 250 epochs, it produces an error score of  8.92. We 
train the model on another word, adjusting the weights accord- 
ing to the learning algorithm, and then retest TINT. By varying 
the properties of  the training word, we can determine which 
aspects of the model's experience exert the greatest influence 
on the weights relative to the target. This procedure yields or- 
thographic and phonological priming effects, which have been 
studied by Meyer, Schvaneveldt, and Ruddy (1974), Hillinger 
(1980), and Tanenhaus et al. (1980). For example, Meyer et al. 
observed that lexical decision latencies to a target word such 
as ROUGH were facilitated when preceded by the rhyme prime 
TOUGH but inhibited when preceded by the similarly spelled 
nonrhyme COUGH. For the purposes of  the simulation, we ex- 
amined the cumulative effects of  a sequence of  10 prime 
(learn)--target (test) trials. The primes were a rhyme (MINT), a 
matched exception word (PINT), a word with the same conso- 
nants but a different vowel (TENT), and an unrelated control 
(RASP). The data are presented in Figure 15. 

The results indicate, first, that priming with the orthographi- 
cally similar rhyme MINT decreases the error for TINT; the over- 
lap between the words is sufficient to improve performance. 

What the Model Has Learned 

We have demonstrated that the model simulates a broad 
range of  empirical phenomena concerning the pronunciation of 
words and nonwords. Why the model yields this performance 
can be understood in terms of the effects of  training on the set 
of  weights. The values of  the weights reflect the aggregate effects 
of  many individual learning trials using the items in the training 

Figure 14. Error scores for regular pronunciations of nonwords 
derived from regular and exception words. 
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Other rhymes act in a similar manner. This outcome is consis- 
tent with Brown's (1987) proposal that the frequency with 
which a word body is associated with a given pronunciation in- 
fluences performance; the number of  times the pattern -INT = 
/int/ occurs in the training set affects performance on TINT. 
Note, however, that the other primes also have effects. Priming 
with the similarly spelled nonrhyme TENT also improves perfor- 
mance; the effect is smaller because vowels are the primary 
source of  ambiguity in orthographic-phonological correspon- 
dences and, hence, the primary source of  error. Training on 
MINT has a larger facilitating effect because it provides feedback 
concerning the primary source of ambiguity. The exception 
word PINT has interfering effects complementary to the facilita- 
tive effects of MINT. Finally, the unrelated prime RASP has very 
small negative effects. 

Note that the priming effects illustrated in Figure 15 are not 
characteristic of  all of  the words in the training set after 250 
epochs of  training. TINT is somewhat unusual in that the 
model 's performance is relatively poor, due in part to the fact 
that TINT is low in frequency and the fact that there are few 
-INT words in the corpus. There are smaller priming effects for 
target words that yield smaller error scores. Figure 15 accu- 
rately illustrates the influences of  training on related words, but 
these effects are more salient earlier in the training sequence 
when error scores are larger. 

The model clarifies why Some effects of  word type are ob- 
tained in behavioral studies and others are not. When experi- 
menters compare performance on two types of  words, they are 
attempting to observe the net effect of  a particular aspect of  
word structure (e.g., regularity defined in terms of  word bodies) 
against a background ofnoise provided by the effects ofaU other 
properties of  the words. For this reason, experimenters rou- 
tinely attempt to equate stimuli in terms of  these other proper- 
ties (e.g., frequency, length, initial phoneme). There is a net ex- 
ception effect for lower frequency words because the regular 
correspondence is encountered many more times than the ir- 
regular one; repeated experience with words such as TINT, MINT, 

and HI1,rr has a negative impact on the weights from the point 
of view of  PINT. Conversely, exposure to an exception such as 
PINT tends to have relatively small effects on a regular inconsis- 
tent word such as TINT because the exception word is encoun- 
tered much less often than the set of  rhyming regular inconsis- 
tent words. It is not that PINT has no effect on TINT; in the prim- 
ing experiment, the effect was observed once it was magnified 
through repetition. The effect can also be observed earlier in 
the training sequence; eventually it recedes into the background 
provided by exposure to many other words. The model corrob- 
orates the common assumption that word bodies are relevant 
to naming; however, it suggests that other aspects of  word struc- 
ture also matter. 

One other point should be noted. We also examined repeti- 
tion priming, that is, the effects of  10 trials of  training on TINT 
itself. This resulted in a much larger decrease in TINT'S error 
score, from 8.92 to 2.50. As stated previously, the main factor 
that influences performance on a word is the number of  times 
the model is exposed to the word itself; effects of  neighboring 
words are relatively small. Thus, presenting an exception word 
such as PINT with much greater frequency would have less effect 
on TINT than a small number of  exposures to TINT itself. 

The model's behavior can be further clarified by examining 
yet another type of  word, which contain what Scidenberg, Wa- 
ters, Barnes, and Tanenhaus (1984) and Backman et al. (1984) 
called ambiguous spelling patterns. These spelling patterns, 
such as -OWN, -OVE, and -EAR, are associated with two or more 
pronunciations, each of  which occurs in many words (e.g., 
B L O W N ,  F L O W N ,  K N O W N ,  G R O W N ,  T O W N ,  F R O W N ,  D R O W N ,  

GOWN). For inconsistent spelling patterns such as -INT or -AVE, 
the number of  words with the regular pronunciation greatly ex- 
ceeds the number of  words with the exceptional pronunciation. 
For the ambiguous spelling patterns, however, the ratio is more 
nearly equal. Hence, during training, the model is exposed to 
many examples of  each pronunciation. We constructed a set of  
24 high-frequency and 24 low-frequency words containing 
these spelling patterns, matched with the stimuli in the Taraban 
and McClelland (1987) set in terms of  frequency. Mean phono- 
logical error scores for these words (using the weights from 250 
epochs) and the other stimuli in the Tarahan and McClelland 
experiment, are presented in Figure 16. As before, there are 
negligible differences between the word types in the higher fre- 
quency range. Among the lower frequency words, the ambigu- 
ous items yield better performance than the exceptions, but 
worse performance than the regular inconsistents. Performance 
is better than on the exceptions because the model receives less 
training on the exceptional pronunciation than on either pro- 
nunciation of  the ambiguous spelling pattern. Performance is 
worse than on the regular inconsistent words because the model 
is repeatedly exposed to both pronunciations. Thus, there are 
graded effects of  regularity owing to the nature of  the input dur- 
ing acquisition.7 

7 Ambiguous words have been used in only one study of skilled read- 
ers (Seidenberg, Waters, Barnes, & Tanenhaus, 1984, Experiment 1). 
The model simulates the results of this experiment quite closely. How- 
ever, the ambiguous words were in the higher frequency range, in which 
they do not differ from regular words. In Backman, Bruck, H~bert, and 
Seidenberg's 0984) developmental study (described later), children's 
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Figure 16. Model's performance on Taraban and McClelland (1987) 
stimuli and on a set of ambiguous words (such as TOWN and LOVE). 

Characteristics of the hidden units. Evidence as to how ortho- 
graphic and phonological information are encoded by the net- 
work can be obtained by examining the patterns of  activations 
over the hidden units produced by different words. Unlike the 
model's orthographic and phonological units, the hidden units 
do not have specific, predetermined roles. Rather, their repre- 
sentational and functional roles emerge as a result of  experience 
in learning to perform the task that is imposed on the network 
by the training procedure. Recall that the activation of  a hidden 
unit is a function of  the weights on the connections coming into 
it. At first, each hidden unit has random incoming and outgoing 
connection strengths. Gradually these are adjusted through ex- 
perience, so that units come to perform useful, generally par- 
tially overlapping parts of  the task. Because of  the task that these 
units need to per form-- they  must allow reconstruction of  the 
orthography as well as construction of  the phonology--the val- 
ues of  these weights are affected by feedback concerning both 
orthography and phonology. 

Consider first the pattern of  activation over the hidden units 
produced by the word LINT (Figure 17). LINT activates 23 
units, 22 very strongly (net activation > .8) and one more 
weakly (net activation < .6). We can determine how many of  
these units are also activated by the orthographically similar 
rhyme MINT and by the unrelated word SAID. A total of  14 units 
are activated by both LINT and MINT, and 3 by LINT, MINT, and 
SAID; 1 unit was activated by both LINT and SAID. The remain- 
ing 5 units were "unique" to LINT, in the sense that they were 
not activated by either MINT or SAID. (Note that the "unique" 
units were activated by many other words outside this limited 
set.) Thus, a large number of  units apparently reflect the ortho- 
graphic and phonological similarity of  LINT and MINT, and a 
smaller number are relevant to LINT itself. Fewer units are acti- 
vated by both LINT and the unrelated word SAID. 

Figure 17. Hidden unit activations for LINT, MINT, and SAID. 

This pattern contrasts with the one observed for the excep- 
tion word PINT (Figure 18). PINT activates 22 units, 8 of  which 
were activated by both PINT and MINT, 1 by PINT and the unre- 
lated word SAID, and 3 by PINT, MINT, and SAID. There were 10 
units activated by PINT only. Hence, compared with the pattern 
for LINT, there is a relatively larger number of  units specific to 
PINT; moreover, the orthographically similar but nonrhyming 
stimuli LINT and PINT activate fewer units in common than do 
the orthographically similar, rhyming pair LINT and MINT. Fi- 
nally, there is very little spurious overlap with an unrelated 
word such as SAID. 

These snapshots of  the hidden units indicate that they reflect 
generalizations concerning the regularities in the lexicon en- 
coded by the weights on connections. Similarly spelled rhymes 
activate the largest number of  common units (LINT/MINT = 14), 
similarly spelled nonrhymes a smaller number of  common 
units (PINT/MINT = 8), and unrelated words a smaller number 
still (LINT/SAID and PINT/SAID both = 1). Six units are activated 

performance on ambiguous words was better than on exceptions, but 
worse than on regular inconsistents. Thus, children show the pattern for 
lower frequency words shown in Figure 16. The stimuli in this experi- 
ment were words that are nominally high-frequency items for adults. 
As we argue later, younger readers' processing of higher frequency words 
is like skilled readers' processing of lower frequency words. Hence, the 
results are consistent with the data in Figure 16. Figure 18. Hidden unit activations for PINT, MINT, and SAID. 
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Table 5 
Altering the Hidden Units for PINT: Effects on Error Scores 

Type of error score 

Case Orthography Correct pron Reg pron 

Normal baseline 6.47 6.64 34.6 

Damage to individual units 
Unique to PINT 

Unit A 6.87 12.78 25.4 
Unit B 9.61 7.19 25.4 
Unit C 9.73 9.87 34.9 

In LINT, MINT, & PINT 
Unit D 7.45 10.56 33.6 

Turning on a unit in LINT 
d~ MINT 6.48 11.17 29.4 

Note. Orthography = orthographic error score; Correct pron = phono- 
logical error score for correct pronunciation; Peg pron = phonological 
error score for regularized pronunciation. 

by PINT, MINT, and LINT, and 3 by PINT, LINT, MINT, and SAID, 
reflecting some overlap among these items. Thus, inspection of  
the hidden units provides additional evidence that the model 
encodes orthographic and phonological relations among words. 

It should also be noted that the units activated by a particular 
word contribute in different ways to the computed output. This 
point can be illustrated as follows. After 250 epochs of  training, 
the word PINT produces the following results (Table 5): The or- 
thographic error score is 6.47, the phonological error score 
computed for the correct pronunciation is 6.64, and the phono- 
logical error score computed for the incorrect, regularized pro- 
nunciation is 34.6. If we consider the patterns of  activation for 
PINT, LINT, MINT, and SAID, there are 9 units unique to PINT. 
The contribution of  an individual unit can be determined by 
temporarily excluding the unit (i.e., forcing its activation to re- 
main fixed at zero) and then recalculating the output and error 
score. This procedure has different effects depending on which 
unit is zeroed. Shutting offone of tbe units unique to PINT (Unit 
A in Table 5) has little effect on the computed orthographic 
output, but dramatically increases the error score associated 
with the correct pronunciation and decreases the error score 
associated with the regularized pronunciation. Hence, this unit 
appears to be particularly relevant to the irregular pronuncia- 
tion of  PINT. Eliminating the output from Unit B has a some- 
what different effect; it produces a large increase in the ortho- 
graphic error score and smaller increases in the error scores for 
the correct and regularized pronunciations. Hence, this unit is 
primarily relevant to the orthography and may partially influ- 
ence aspects of  the pronunciation that are shared by the regular 
and exceptional pronunciations of  PINT. Unit C produces a 
third pattern: substantial increases in the error scores for both 
the correct orthographic and phonological codes, with little 
effect on the score for the incorrect phonological code. Thus, 
each unit makes its own partial contribution to the model's per- 
formance on PINT. 

We also examined the effects of  zeroing a unit that is activated 
by LINT, MINT, and PINT. This produced a small increase in the 
orthographic error score; the effect on the phonological error 

score for the correct pronunciation was intermediate between 
the effects of  Units A and B. This appears to be a complex unit 
encoding information relevant to the correct spelling and to 
both pronunciations of-INT. Finally, consider the effects of  acti- 
vating a unit that is normally active in LINT and MINT but not 
normally active in PINT. This has virtually no effect on the or- 
thographic output for PINT but yields an increase in the phono- 
logical error score for the correct pronunciation and a decrease 
in the error score for the incorrect, regularized pronunciation. 
Hence, the unit appears to be relevant to the regular pronuncia- 
tion of-INT. 

It can be seen, then, that the units contribute in complex ways 
to the computation of  orthographic and phonological output. 
Some units must be on in order to produce correct output, and 
others must be off. Some units can be seen as contributing in 
relatively specific ways to the computed output (e.g., Unit A, 
which is critical to the pronunciation of-INT as in PINT, and 
Unit D, relevant to pronouncing -INT as in MINT). Other units 
can be seen as partially encoding several different types of  infor- 
mation. This behavior is typical of  models with hidden units. 
Often it is possible to identify the specific information encoded 
by individual units; however, many units contribute to the com- 
puted output in complex ways that do not reflect simple gener- 
alizations about the relations between two codes. To take an- 
other example, Hinton et al. (1986) described a small-scale 
model of tbe  mapping from orthography to meaning. The hid- 
den units in a model of  this type will encode generalizations 
about correlations among semantic features. Some hidden units 
may be interpretable as encoding a generalization such as "large 
and yellow," whereas others will not because they encode com- 
plex, partial relations among several features. 

Note also that generalizations concerning relations between 
orthography and phonology are encoded by several units rather 
than individual ones. For example, there is no single unit that 
encodes the p ronunc ia t i on / in t / common  to LINT, MINT, and 
other rhymes. Nor is there a single unit responsible for the irreg- 
ular pronunciation of  PINT. Although we identified a unit that 
is particularly salient to pronouncing -INT as / in t / ,  other units 
also contribute to this pronunciation. Given this property of  
the model and the fact that units participate in many different 
words, spelling-sound correspondences cannot be seen as en- 
coded by individual units. 

To consider one more example, we examined the patterns of  
activation over the hidden units produced by the word MAID, 
the similarly spelled rhyme PAID, the similarly spelled non- 
rhyme SAID, the homophone MADE, and the unrelated word 
BASK. Sixteen units were activated by both MAID and PAID, 5 by 
MAID and SAID, and 4 by MAID and BASK, reflecting the differing 
degrees of  orthographic and phonological similarity among 
these items. It is interesting that the homophonic pair MAID-- 
MADE shared 13 units, somewhat fewer than the similarly 
spelled rhymes MAID and PAID, but more than would be ex- 
pected if the words were unrelated. Thus, the degree of  similar- 
ity between the words is systematically related to the activity of  
the hidden units. 

Relationship to Other Models 

With this picture of  the model in hand, we can consider how 
it relates to previous proposals. In general, the model embodies 
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many of  the principles that had been identified in previous 
work; however, it shows that they derive from a deeper general- 
ization about the nature of the learning process. 

Our model accounts for a number of  phenomena that are 
problematical for the dual-route model, specifically, the interac- 
tion between frequency and regularity and the longer latencies 
for regular inconsistent nonwords compared with regulars. 
These effects are not predicted by the dual-route model and 
could only be accommodated by ad hoc extensions to it (Seiden- 
berg, 1985a). The dual-route model also has other limitations 
that have been discussed extensively elsewhere (e.g., Hum- 
phreys & EveR, 1985; Seidenberg, 1985a). The model corrobo- 
rates the common assumption that the ends of  words--word 
bodies or times---are relevant to naming (Brown, 1987; 
Glushko, 1979; Meyer et al., 1974; Seidenberg, Waters, Barnes, 
& Tanenhaus, 1984; Treiman & Chafetz, 1987). This fact falls 
out from properties of  the learning algorithm and training cor- 
pus. The ends of  words turn out to be salient because of  the 
properties of  written English; the pronunciations of  vowels are 
more influenced by the following letters than by the preceding 
ones. The learning algorithm picks up on these regularities, 
which have an impact on the weights. Importantly, the charac- 
teristics of  the learning algorithm also dictate that the effective 
relations between words are not limited to word bodies. These 
units happen to be salient, but other regularities in the lexical 
corpus are also picked up. 

The model incorporates Glushko's (1979) insight that the 
pronunciation of a word or nonword may be influenced by 
knowledge of the pronunciations of other, neighboring words. 
As the Andrews (in press) study showed, words with more 
neighbors tend to be named more quickly than words with 
fewer neighbors; in the model, this occurs because the neighbors 
of  a word tend to modify the weights in the same direction as 
the word itself. These effects are smaller for higher frequency 
words, however, because of  repeated exposure to the words 
themselves. The model also incorporates Ghishko's assump- 
tion that inconsistencies in spelling-sound correspondences are 
relevant to performance; inconsistent neighbors push the 
weights away from the values that are optimal for pronouncing 
a given word. The representations and processes in our model 
differ in critical respects from his proposal, however. Glushko's 
model contains nodes for individual words, and pronunciations 
are synthesized on the basis of  competition among partially ac- 
tivated entries. Our model contains no word-level nodes; the 
competition between words is realized in the effects of  the con- 
nection weights, which are determined by exposure to many 
items. Our model captures the notion of  lexical analogy that 
was central to Glushko's model in terms of  the consequences of  
learning within a distributed system. A second difference be- 
tween the accounts is that Glushko assumed that the ends of  
wordsmword bodies--have a special status in naming. This as- 
sumption has been widely accepted by reading researchers (see, 
e.g., Brown, 1987; Henderson, 1982; Parkin, 1982; Patterson 
& Coltheart, 1987; Seidenbcrg, Waters, Barnes, & Tanenhaus, 
1984; Treiman & Chafetz, 1987). In our model, there is no sin- 
gle perceptual unit relevant to pronunciation; the model picks 
up on regularities in terms of  word endings, but also regularities 
involving other parts of  words. 

The model is.consistent with Brown's (1987) principle con- 

cerning the number of  times a word body is associated with a 
given pronunciation; again, it can be seen that the principle is 
simply one of  the consequences of  the learning process. How- 
ever, Brown made an additional assumption that is not congru- 
ent with our model, namely, that inconsistencies in spelling- 
sound correspondences do not influence processing. In Brown's 
model, for example, the number of times lOSE is pronounced 
/ u z / a n d  the number of  times it is p ronounced /oz /a re  separate 
facts that do not interfere with one another. This assumption 
provided the basis for the prediction that exception words such 
as LOSE and unique words such as SOAP should yield similar 
naming latencies, despite the fact that LOSE has inconsistent 
neighbors. In our model, the effects of  experience in naming 
LOSE and POSE (and all other words) are superimposed on the 
weights, rather than separated in the manner Brown suggested. 
Hence, our model predicts that consistency of  a spelling-sound 
correspondence could affect naming, whereas Brown's does 
not. In effect, Brown's model suggests that repetition of  a spell- 
ing pattern with a given pronunciation facilitates performance, 
with no interference due to exposure to an inconsistent pronun- 
ciation. In our model, performance is determined by the net 
effects of  exposure to both pronunciations (and to other words); 
interference can result when training is inconsistent. 

The experiment presented in Brown (1987) does not discrim- 
inate between the two theoretical alternatives because, as the 
data in Figure 9 indicate, our model simulates the results even 
though it does not conform to Brown's assumptions about in- 

s consistency. Critical cases are provided, however, by the regular 
inconsistent words and nonwords discussed earlier. Our  model 
predicts inconsistency effects whose magnitude will depend on 
factors such as the frequencies of  the regular inconsistent and 
exception words and their similarity to other items. According 
to Brown's model, regular inconsistent words should yield 

g Note, however, that Brown's (1987) study does not provide clean 
evidence for his principle. The critical comparison in the experiment is 
between unique and exception words. These words are similar in terms 
of the factor Brown assumed to be relevant, the number of times their 
word bodies are associated with a given pronunciation (i~ both cases, 
the number is 1). They differ in terms of the factor thought to be irrele- 
vant; only the exception words have inconsistent neighbors. Hence, the 
finding that the words yield similar naming latencies was taken as evi- 
dence that only the first of these factors is relevant. However, the words 
also differ in other respects relevant to processing (and to our model). 
Specifically, exception words contain higher frequency spelling patterns 
than do unique words. This is a necessary consequence of the fact that 
the exceptions have a large number of regular inconsistent neighbors. 
Hence, there is a confounding between the number of times a spelling 
pattern occurs in the orthography and consistency of pronunciation. In 
our model, both of these factors are relevant; they jointly account for 
why performance is similar on exception words such as LOSE and 
unique words such as SOAP. The model is trained on a large number of 
-OSE words, and the weights come to reflect the fact that these words 
typically rhyme with POSE. It then performs relatively poorly on the 
exception LOSE. Unique words such as SOAP fare differently. The fact 
that -OAP is pronounced /op/ is not very strongly encoded by the 
weights because this pattern is encountered so infrequently. This also 
means, however, that the model has not been given inconsistent feed- 
back about the pronunciation of this pattern. The tradvoffs between 
these factors, which are realized in the learning process, are such that 
SOAP and LOSE are about equally difficult to name. 
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Table 6 
Characteristics of the Stimuli in the Seidenberg, 
McRae, and Jared (1988) Study 

Type 

Characteristic Consistent Inconsistent 

n 4O 4O 
K F  freq 5.50 5.50 
Friends 8.5 8.3 
Total freq friends 496 467 
Length in letters 4.5 4.5 
Or th  error score 8.63 8.23 
Enemies  0 3.2 
Total freq enemies 0 496 
Phon  error score 4.48 5.63 

Note. KF freq = mean  Kucera  & Frances (1967) frequency; Friends = 
mean  number  o f  words in which word-body occurs with regular pro- 
nunciation; Total freq friends = average o f  the s u m m e d  frequencies o f  
the friends; Or th  error score = mean  orthographic error score from the 
model; Enemies  = mean  no. o f  words with same word body but  differ- 
ent  pronunciation; Total freq enemies = average o f  the s u m m e d  fre- 
quencies o f  the enemies; Phon error score = mean  phonological error 
score from the model. 

longer latencies than regular words only if the two types of 
words are not equated in terms of  the factor he assumed to be 
relevant, the number of  times their word bodies occur with reg- 
ular pronunciations. That is, if the word bodies in regular in- 
consistent words occur with regular pronunciations in fewer 
items than do the word bodies in regular words, the regular in- 
consistent items should yield longer naming latencies. If  the 
items are equated in terms of  word-body frequency (and other 
factors such as lcxical frequency), no difference should obtain. 

As we have noted, previous studies have not yielded reliable 
differences between regular inconsistent and regular words. 
However, these studies may not be definitive for two reasons. 
First, as we have seen, the mere presence of  a single exception 
word neighbor may produce negligible effects on a regular in- 
consistent word because the effects are washed out by exposure 
to a large number of  words containing the regular pronuncia- 
tion, including the word itself. Our model does not predict ap- 
preciably longer latencies for all words defined as regular incon- 
sistent compared to matched regular words; however, it does 
predict detectable consistency effects for some words, particu- 
larly lower frequency words that have more than a single excep- 
tion word neighbor. For example, the pattern -ONE is highly in- 
consistent because it is associated with three pronunciations, 
one regular (as in BONE) and two exceptional (GONE; DONE/ 
NONE). This inconsistency might be expected to influence the 
processing of  a lower frequency word such as HONE. Similarly, 
the pattern -OSE is associated with three pronunciations (as in 
POSE, LOSE, and DOSE). If, as our model suggests, there are 
effects due to inconsistencies in spelling-sound correspon- 
dences, they should be more apparent using stimuli that include 
such words. A second factor is that the stimuli in previous stud- 
ies of  regular inconsistent words were not equated in terms of 
the Brown (1987) factor, the frequencies with which their word 
bodies are associated with regular pronunciations. With these 
issues in mind, Seidenberg et al. (1988) conducted the following 

experiment. The stimuli were 40 pairs of  consistent (regular) 
and inconsistent words (see Appendix). The properties of  these 
words are summarized in Table 6. They were equated in terms 
of  the number of  words in which the word bodies occur with 
regular pronunciations (termed friends in the table); this is 
Brown's factor. They were also equated in terms of  the summed 
frequencies of  these friends. Thus, both types of  stimuli contain 
word bodies that are associated with regular pronunciations 
about equally often. Seidenberg et al. (1988) also matched the 
stimuli in terms of  overall frequency, length, and initial pho- 
neme. The two types of  words were also equated in terms of  
orthographic error scores, so that any differences between them 
cannot be attributed to orthographic redundancy. The system- 
atic difference between the words is that the inconsistent items 
have enemiesmwords that contain the same word body but are 
pronounced irregularly. As a result, the two types differ in terms 
of  mean phonological error scores (inconsistent = 5.63; consis- 
tent = 4.48); this difference is statistically significant. Thus, our 
model predicts longer latencies for the inconsistent words, 
whereas Brown's model predicts no difference because the stim- 
uli are equated in all respects relevant to his account. The study 
was run with 25 McGill University undergraduates as subjects, 
who named the words aloud as they appeared on a computer 
screen. The results, presented in Figure 19, showed a 13-ms 
inconsistency effect, which was significant in both subject and 
item analyses. The phonological error scores for these words 
also provide a good fit to the latency data. 

The results of  Glushko's (1979) nonword experiment (pre- 
sented in Figure 1 l) also contradict Brown's (1987) model. The 
study showed that nonwords derived from inconsistent spelling 
patterns (e.g., MAVE from HAVE/GAVE) yield longer naming la- 
tencies than do nonwords derived from regulars (e.g., NUST 
from MUST). Note that the difference here is between the laten- 
cies to produce the regular pronunciations of  these stimuli. Ac- 
cording to Brown, this difference should only obtain if the word 
bodies in the inconsistent stimuli were associated with regular 
pronunciations in fewer words than the word bodies in the regu- 
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Figure 19. Results of the Seidenberg, McRae, and Jared (1988) experi- 
ment with regular inconsistent and regular words equated in terms of 
word-body frequency: Experiment and simulation data. 



546 MARK S. SEIDENBERG AND JAMES L. McCLELLAND 

lar items. In Glushko's stimuli, however, the opposite pattern 
obtains: the inconsistent nonwords have an average of 9.5 regu- 
lar neighbors, whereas the regular nonwords have an average of 
6.2 regular neighbors. Because the regular inconsistent non- 
words actually have more regular neighbors but yield longer la- 
tencies, the results are not consistent with Brown's model. 

In summary, the model simulates the results of a broad range 
of empirical studies using many different sets of stimuli. The 
factor that Brown (1987) isolatedmthe number of times a word 
body is associated with a given pronunciation--has an impact 
on performance, one that must be considered in drawing com- 
parisons between different types of items. However, this is not 
the only factor that influences performance; inconsistencies in 
spelling-sound correspondences also matter. Moreover, aspects 
of word structure other than word bodies also affect processing, 
such as overlap in terms of the beginnings of words (Taraban 
& McClelland, 1987). The pretheoretical distinctions between 
different types of stimuli (e.g., regular inconsistent and regular; 
unique and exception) are difficult to maintain because several 
different factors--overall frequency, word-body frequency, reg- 
ularity, orthographic redundancy, and so on--are typically con- 
founded in the language. These natural confoundings are neatly 
handled by the model in terms of the aggregate effects of train- 
ing on the settings of the weights on connections. 

Acquisition of  Naming Skills 

We have suggested that the model provides a good character- 
ization of a broad range of phenomena related to the naming 
performance of skilled readers. As a learning model, it also 
speaks to the issue of how these skills are acquired; moreover, it 
provides an interesting perspective on the kinds of impairments 
characteristic of developmental and acquired dyslexias. Devel- 
opmental dyslexia could be seen as a failure to acquire the 
knowledge that underlies word recognition and naming. Ac- 
quired dyslexias naturally correspond to impairments follow- 
ing damage to the normal system. Here, we focus on the acquisi- 
tion of naming skills and their impairment in developmental 
dyslexia. Our studies of acquired forms of dyslexia are dis- 
cussed in Patterson et al. (in press). 

Studies of children's acquisition of word recognition skills 
(e.g., Backman et al., 1984; Barron & Baron, 1977; Jorm & 
Share, 1983; Seidenberg, Bruck, Fornarolo, & Backman, 1986) 
have addressed how children reach the steady state observed in 
adults; they have also addressed the bases of failure to acquire 
age-appropriate reading skills and of specific reading disability 
(dyslexia). Naming plays an important role in acquiring word 
recognition skills; children in the earliest stages of learning to 
read typically recognize words by "sounding out"; that is, they 
attempt to derive the pronunciation of a written word and 
match it to a known phonological form. A study by Backman 
et al. (1984) examined the acquisition of naming skill. Children 
named regular, exception, regular inconsistent, and ambiguous 
words and nonwords derived from these items. All of the stimuli 
were words that are high-frequency items in adult vocabularies. 
The subjects were children in Grades 2, 3, 4, and in high school, 
reading at or above age-appropriate levels ("good readers"), and 
children in Grades 3 and 4, reading below age-appropriate lev- 
els ("poor readers"). Response latencies showed the expected 

Figure 20. Results of Backman, Bruck, H6bert, and Seidenberg (1984) 
naming study. (PR = poor readers in Grades 3 and 4; HS = high school 
students.) 

developmental trends: Younger and poorer readers named 
words at longer latencies than older, better readers. The effects of 
word type were manifested in the number of mispronunciation 
elTOrs .  

The primary data are summarized in Figure 20. The develop- 
mental trends exhibited in these data are dear: Younger, less 
skilled readers have more difficulty with the words associated 
with multiple pronunciations (exception, regular inconsistent, 
ambiguous); they show larger regularity effects. The reader 
groups differed very little in performance on regular items. As 
children acquire reading skills, the differences between word 
classes shrink and disappear. The less skilled readers have 
weaker knowledge of spelling-sound correspondences; this lack 
of knowledge is a liability in the case of words with irregular, 
inconsistent, or ambiguous spelling-sound correspondences. 
Older children and adults are able to compute the pronuncia- 
tions of high-frequency exemplars of all word classes about 
equally well; differences between word classes only persist for 
lower frequency items. The unskilled readers' performance in 
naming higher frequency words is therefore similar to that of 
skilled readers' naming of lower frequency words; in effect, the 
developmental data reveal the emergence of the modulating 
effects of experience on naming performance. At the same time 
that children are achieving the ability to name different types 
of words equally well, their knowledge of spelling-sound corre- 
spondences is expanding, as evidenced by the older readers' su- 
perior performance in reading nonwords (Backman et al., 
1984). 

Consider these facts in light of the simulation data presented 
earlier. The data for regular and exception words presented in 
Figure 3 show that early in training, the model produces poorer 
output for exception words compared to regular in both fre- 
quency ranges. Like children in the early stages of reading ac- 
quisition, the model performs more poorly even on higher fie- 
quency exception words. The effect of training is to decrease 
the error scores to a point at which the two types of higher fre- 
quency words reach floor values, yielding the Frequency × Peg- 
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ularity interaction also observed in adults. The data for the reg- 
ular inconsistent words and regular controls (Figure 7) are also 
interesting, because early in training, there are small differences 
between regular inconsistent and regular words in both high- 
and low-frequency ranges. Backman et al 's (1984) children also 
produced more errors on common regular inconsistent words 
than on regular. As in the model, performance was better for 
regular inconsistent words than for exceptions. It is clear why 
there are regular inconsistent effects early in acquisition but not 
late; early in training, both exception and regular inconsistent 
items appear about equally often. It is only after additional ex- 
perience that the regular spelling-sound patterns gain the upper 
hand. 

Thus, the model captures a key aspect oftbe child's acquisi- 
tion of word naming skills. It is known that acquiring knowl- 
edge of spelling-sound correspondences is a key component of 
learning to read; disorders in phonological analysis skills are 
thought to be a primary source of reading disability, and chil- 
dren who are backward readers (Backman et al., 1984) or devel- 
opmental dyslexics (Seidenberg et al., 1986) exhibit relatively 
poor performance in naming words and nonwords aloud (see 
Jorm & Share, 1983, and Stanovich, 1986, for reviews). One of 
the primary developmental trends observed in studies such as 
Backman ct al. (1984) is that although children who are acquir- 
ing age-expected reading skills initially have more difficulty 
naming higher frequency exception words (and other items con- 
taining spelling patterns associated with multiple pronuncia- 
tions) than regular words, this deficit is eliminated by about 
Grade 5 (10 years of age). During the first few years of instruc- 
tion, children learn to name common exception words as effi- 
ciently as they do regular words. Even among skilled adult read- 
ers, however, lower frequency exception words continue to pro- 
duce longer naming latencies and more errors than do lower 
frequency regular words. Note that the differences among youn- 
ger good and poor readers in terms of the number of words read 
without interference from irregular spelling-sound correspon- 
dences are seen, at a higher level of performance, among skilled 
readers (Table 4). In both groups, the number of words in this 
pool is related to reading skill. In the model, these effects simply 
derive from the amount of training experience. 

Both poor readers who are reading below age-expected levels 
and children who have been diagnosed as developmental dyslex- 
ics fail to show this improvement in naming higher frequency 
exception words. For example, the naming performance of the 
poor readers in Grades 3 and 4 in the Backman et al. (I 984) 
study was like that ofgnod readers in Grade 2. Both the younger 
and poorer readers made more errors on exception words and 
other items containing spelling patterns associated with multi- 
ple pronunciations. 

Developmental Dyslexia 

Developmental dyslexia is a term applied to children who are 
failing to acquire age-appropriate reading skills despite ade- 
quate intelligence and opportunity to learn (Vellutino, 1979). 
The nature of this disorder--whether it derives from a single or 
multiple cause(s), whether there are different subtypes, or 
whether the performance of children diagnosed as dyslexic 
differs from that of children who are merely poor readers--is 

a matter of continuing debate. However, it is clear that many 
dyslexic children exhibit poor word decoding and naming 
skills, and there is some evidence that these impairments have 
a biological basis (Benton, 1975; Vellutino, 1979). 

The model suggests a basis for the impaired performance of 
some dyslexic readers, who appear to be unable to master fully 
the spelling-sound correspondences of the language. Consider 
the results of an experiment in which we retrained the model 
with one half as many hidden units, 100 instead of 200. In all 
other respects, the training procedure was the same as before. 
At the start oftrainin~ all of the weights were given small ran- 
dom values. The model was again trained on the 2,897-word 
vocabulary. In the simulations reported here, we used a version 
oftbe training list in which the coding errors mentioned earlier 
were corrected. Training was also carried out for 500 epochs 
instead of 250. Figure 21 (upper graph) gives the mean phono- 
logical error scores for regular and exception words in the Tara- 
ban and McClelland (1987) stimulus set when the model was 
trained with 200 hidden units. This is a replication of the simu- 
lation reported in Figure 3 (note, however, the change of scale 
on the ordinate). In Figure 21 (lower graph) we summarize the 
data for the same words in the simulation using 100 hidden 
units. Two main results can be observed in comparing the two 
data sets. First, training with fewer hidden units yields poorer 
performance for all word types. High-frequency regular words, 
for example, asymptote at a mean squared error of about 2 in 
the 200-unit simulation but only 3.8 in the 100-unit simulation; 
other words yield similar results. Second, even after 500 epochs, 
exception words produce significantly poorer output than do 
regular words in both high- and low-frequency ranges in the 
100-unit simulation; in the 200-unit simulation, exception 
words produce larger error scores only in the lower frequency 
range. 

Eliminating one half of the hidden units, then, produced a 
general decrement in performance; more important, higher fre- 
quency words produced the patterns associated with lower fre- 
quency words in the 200-unit simulation (i.e., larger error 
scores for exception words compared to regular). Even with 
fewer hidden units, the model continued to encode generaliza- 
tions about the correspondences between spelling and pronun- 
ciation; error scores were smaller for regular words than for 
other types. However, it performed more poorly on words whose 
pronunciations are not entirely regular. Thus, including fewer 
hidden units makes it more difficult to encode item-specific in- 
formation concerning pronunciation. 

These results capture a key feature of the data obtained in 
studies of poor readers and dyslexics. These children exhibit 
larger regularity effects than do good readers; they continue to 
perform poorly in naming even higher frequency exception 
words. At the same time, their performance shows that they 
have learned some generalizations about spelling-sound corre- 
spondences; for example, they are able to pronounce many 
nonwords correctly. One of the main hallmarks of learning to 
read English is acquiring knowledge of spelling-sound corre- 
spondences. Backward readers achieve some success in this re- 
gard, but cope poorly with the irregular cases. The model per- 
forms in a similar manner with too few hidden units; given the 
resources that are available, it is able to capture crude general- 
izations about regularity but at the expense of the exception 
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Figure 21. Model's performance on new simulations using the Taraban 
and McClelland (1987) regular and exception words: 200 (upper graph) 
and 100 (lower graph) hidden units. 

to learn on a word-by-word basis, resulting in adequate perfor- 
mance on regular and exception words but very poor general- 
ization to novel stimuli (see Barron, 1986, for discussion). 
These children apparently fail to encode generalizations con- 
cernmg spelling-sound regularities. One possibility is that this 
type of  performance results from the use of  a somewhat differ- 
ent encoding of  orthographic input or phonological output, or 
both. If the amount of  overlap in the encoding of  similar inputs 
or outputs is reduced, there will be less transfer of  what is 
learned about one word to other words that are similar to it. 
Yet another possibility is that the pathway from orthography to 
phonology is so grossly deficient in such readers that they read 
primarily by accessing meaning from print, and then producing 
the pronunciation corresponding to the accessed meaning. 
Hence, only words that are within the child's vocabulary can 
be pronounced. This possibility is consistent with the full ver- 
sion of  our model illustrated in Figure 1. t° 

Summary of the Naming Simulations 

The model provides a basis for understanding the manner in 
which knowledge of orthographic-phonological correspon- 
dences is acquired, represented in memory, and used in nam- 
ing. The generalization that governs the model 's performance 
concerns the properties of  the writing system that are picked up 
during learning. All of the various empirical phenomena ob- 
served in the behavioral studies we have reviewed (concerning 
neighborhood effects, lexical analogy, word-body frequencies, 
and the like) fall out of  this single property of  the model. The 
model goes beyond earlier proposals in suggesting that the best 
characterization of  the knowledge relevant to pronunciation is 
given by the entire state of  the network, rather than by general- 
izations concerning spelling-sound rules, perceptual units, or 
types of words. 

The model differs from previous accounts in terms of  the 
kinds of  knowledge representations and processes used. In con- 
trast to the dual-route model, there are no rules specifying the 
regular spelling-sound correspondences of  the language, and 

words. The main implication of the simulation, of course, is 
that failures to achieve age-expected reading skills may derive 
from limitations on the computational resources available for 
the task. There is another important  implication, however. Ap- 
parently, the architecture of  the model determines in an impor- 
tant way its ability to behave like humans. If there are too few 
units, the model can learn generalizations about the regularities 
in the writing system; however, it does not have the capacity 
to encode enough of  the word-specific information relevant to 
exception words to perform as well as people perform. With a 
sufficient number of  units, it is able to cope with both regular 
and irregular cases, although not equally well on all items. The 
important point is that human performance seems to reflect 
rather subtle constraints concerning computational resources. 
The idea that impaired performance might result from dedicat- 
ing too few resources to a task is one that couM be pursued in 
future research. 9 

We should stress that some dyslexic children exhibit other 
patterns of  performance, suggesting that the normal system can 
be impaired in other ways. For example, some children appear 

9 Although it is tempting to equate the number of hidden units with 
the size of the population of neurons that might be dedicated to reading 
in the brain, one must be careful not to take this analogy too literally. 
First, the precision of the individual units used in our simulations could 
only be achieved by much larger numbers of actual neurons. Second, 
resource limits might arise in a number of ways, such as degree of noise 
or number of modifiable connections per neuron, rather than strictly in 
terms of numbers of neurons involved. 

~0 We also considered the possibility that generalization would be re- 
duced if the model were given too many hidden units. This has been 
observed in some experiments with back propagation (e.g., Hinton, 
1986). This behavior would correspond to learning the pronunciations 
of words on an item-by-item basis, leading to poor performance on 
novel stimuli such as nonwords. We ran one simulation using 400 hid- 
den units that yielded results very similar to the ones with 200 hidden 
units, except that learn ing  was faster and lower error scores were 
achieved. Thus, in tim present case at least, merely doubling the number 
of hidden units does not significantly reduce the generalization perfor- 
mance of the model. We are continuing to explore this and other possi- 
ble computational bases for different patterns of dyslexic performance 
(see also Patterson, Scidenber~ & McClelland, in press). 



WORD RECOGNITION AND NAMING 549 

there is no lexicon in which the pronunciations of all words are 
listed. All items--regular and irregular, word and nonword-- 
are pronounced using the knowledge encoded in the same sets 
of connections. The main assumption of the dual-route model 
is that separate mechanisms are required in order to account 
for the capacity to name exception words and nonwords (Colt- 
heart, 1986). Exception words cannot be pronounced by rule, 
only by consulting a stored lexical entry; hence, one route is 
called lexical or addressed phonology. Nonwords do not have 
lexical entries; hence, they can only be pronounced by rule. 
Hence the second route, termed the nonlexical or subword pro- 
cess. One of the main contributions of the model is that it dem- 
onstrates that pronunciation of exception words and nonwords 
can be accomplished by a single mechanism using weighted 
connections between units. The analysis of the hidden units also 
indicated that the model did not partition itself in a manner 
analogous to the routes in the dual-route model. 

The model suggests that the distinction between words that 
conform to the spelling-sound rules of the language and those 
that do not (i.e., the contrast between regular and exception 
words), which motivated the dual-route model, is simply not 
rich enough to account for human performance. Connection 
weights reflect the cumulative effects of many learning trials, 
each of which imposes small changes on the weights. Correct 
predictions about performance follow from an understanding 
of what is learned on this basis, not merely whether or not a 
pronunciation obeys a putative rule. Thus, words whose pro- 
nunciations are equally well specified by the rules can differ in 
terms of naming performance; performance on words that vio- 
late the rules also differs depending on their similarity to other 
words. The distinction between rule-governed items and excep- 
tions fails to capture these generalizations. 

Our model also differs from proposals by Glushko (1979) and 
Brown (1987) in that there are no lexical nodes representing 
individual words and no feedback from neighbors. Where the 
model agrees with these accounts is in regard to the notion that 
regularity effects result from a conspiracy among known words. 
In our model, this conspiracy is realized in the setting of con- 
nection strengths. Words with similar spellings and pronuncia- 
tions produce overlapping, mutually beneficial changes in the 
connection weights. 

Following the work ofGlushko (1979), a number of research- 
ers have developed definitions of regularity or consistency based 
on assumptions as to which perceptual units or neighborhoods 
are relevant to pronunciation (e.g., Kay & Bishop, 1987; Parkin, 
1982; Parkin & Underwood, 1983; Patterson & Coltheart, 
1987). From the perspective of the model, these definitions miss 
relevant generalizations concerning the kinds of knowledge that 
underlie pronunciation, how this knowledge is represented in 
memory, and how it influences processing. There is no single 
perceptual unit relevant to pronunciation. The output that the 
model produces for a given letter string is determined by the 
properties of all of the words presented during training. From 
this perspective, the various definitions of regularity or neigh- 
borhood are simply imperfect generalizations about the nature 
of the input and its effects on what is learned. 

Orthographic Output  and Lexical Decision 

We turn now to other aspects of the model that are of interest 
primarily because of their relevance to the lexical decision task, 

which is probably the most widely used task in reading re- 
search. One of the main features of the model is that it uses 
distributed representations: The spellings and pronunciations 
of words are represented in terms of patterns of activation 
across output nodes. In this respect, the model differs radieaUy 
from previous conceptions of lexical knowledge, which as- 
sumed that the spellings and pronunciations of words are stored 
as entries in one or more mental lexicons (e.g., Coltheart, 1978, 
1987; Forster, 1976; Morton, 1969). We have shown that the 
model provides a good account of subjects' performance in 
naming words aloud. The question that arises is whether this 
type of knowledge representation can support performance on 
other tasks. Lexieal decision presents an especially challenging 
case because standard accounts of the task assume that it is per- 
formed by accessing the kinds of lexical entries that our model 
lacks. 

In the following sections we present an account oflexieal de- 
cisions to isolated words and nonwords, and show that the 
model simulates the results of many experiments. Our main 
point is that distributed representations provide a basis for 
making lexical decisions; moreover, the model provides an en- 
lightening account of some complex lexical decision phenom- 
ena. Interestingly, the model simulates many of the main lexieal 
decision phenomena despite the absence of any representation 
of meaning at all; thus, our account of the task runs contrary 
to the standard view that decisions are necessarily made by de- 
termining whether or not the target stimulus has a meaning. We 
do not doubt that meaning is sometimes relevant, and we note 
that our account of lexical decision is necessarily limited be- 
cause we have not implemented a semantic system or provided 
a way for contextual information to influence processing, as it 
is of course known to do (e.g., Fischier & Bloom, 1979; Schwa- 
nenflugel & Shoben, 1985; Seidenberg, Waters, Sanders, & 
l.~mger, 1984). Both of these components are relevant to lexieal 
decision performance under conditions that are beyond the 
scope of the present model. 

Although considerations of contextual and semantic factors 
have often entered into lexical decision experiments, the task 
has also been widely used as a way to investigate the structural 
properties of words relevant to "lexical access?' The subject is 
presented with a string of letters and must decide whether it 
forms a word. Use of the task was predicated on the observation 
that words and pronounceable nonwords differ in an essential 
respect: Words have conventional meanings, and nonwords do 
not. It was initially assumed that this distinction between the 
stimuli provided the basis for making the word/nonword deci- 
sion: word decisions are made by identifying the target as a par- 
ticular word and accessing its meaning; if this process fails, the 
target is a nonword. Hence, the task could be used to study the 
properties of words (e.g., frequency, orthographic redundancy, 
orthographic-phonological regularity) that influence access to 
lexical representations and then meaning (Henderson, 1982; 
McCusker, Hillinger, & Bias, 1981). However, words and non- 
words also differ in other respects, providing other bases for 
making the decision; for example, words are more familiar or- 
thographic and phonological patterns than nonwords. The task 
requires subjects to discriminate between the two types of stim- 
uli. As in a signal detection task, the subject must establish deci- 
sion criteria that allow fast responses with acceptable error 
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rates. These criteria could in principle involve any of the several 
dimensions along which words and nonwords differ. Perhaps the 
primary conclusion from extensive use of the task is that re- 
sponse criteria vary as a function of the properties oftbe stimuli 
in an experiment. As subjects' response criteria vary, so do the 
effects of variables such as frequency, orthographic-phonologi- 
cal regularity, and contextual congruence (e.g., Forster, 198 lb; 
Neely, 1977; Seidenberg et al., 1984; Stanovich & West, 1981). 

The general framework given in Figure 1 suggests that the 
presentation of a word results in the computation of several 
types of information or codes in parallel, resulting in what Don- 
nenwerth-Nolan, Tanenhaus, and Seidenberg (1981) called 
multiple code activation. We have emphasized the computation 
of the phonological code and shown that the model provides a 
good account of the empirical naming data. We envision an 
analogous process, which has not been implemented, by which 
readers compute the meaning of a word, corresponding to a pat- 
tern of activation across a set of semantic nodes; see Kawamoto 
(1988) and Hinton et al. (1986) for initial steps toward model- 
ing this process. Finally, the implemented model also includes 
the computation of orthographic output, resulting from feed- 
back from the hidden units to the orthographic units. This code 
represents the retention or recycling of the orthographic input 
in a short-term sensory store; the computed code provides the 
basis for performing tasks such as tachistoscopic recognition 
and thus accounting for the phenomena that motivated the 
McClelland and Rumelhart ( 1981) word recognition model. 

Presentation of a stimulus string will activate orthographic, 
phonological, and semantic information in parallel, each of 
which could provide information relevant to the decision pro- 
cess, depending on the conditions in an experiment. Consider, 
for example, a case in which the stimuli consist of familiar 
words and nonwords that are random letter strings. Subjects 
could respond correctly simply on the basis of orthographic in- 
formation; the words contain letter patterns that are "legal" ac- 
cording to English orthography, whereas the nonwords will con- 
tain letter patterns that do not occur in any words (e.g., PSKT). 
Properties of the words related to phonology (e.g., ortho- 
graphic-phonological regularity) or meaning (e.g., concrete- 
hess/abstractness) would have little effect on performance if de- 
cisions were made on the basis of this orthographic strategy. If 
the stimuli included familiar words and orthographically legal 
nonwords (such as NUST), this simple orthographic strategy 
might be disabled. However, the stimuli still provide a nonse- 
mantic basis for responding; the subject could decide if the tar- 
get is a word by determining whether it has a familiar pronunci- 
ation. When the decision is based on phonological information, 
we might expect factors such as orthographic-phonological reg- 
ularity to affect performance. In principle, this strategy might 
in turn be disabled if the nonword stimuli were so-called 
pseudohomophones such as BRANE, which sound like words 
(Dennis, Besner, & Davelaar, 1985). Because these stimuli look 
and sound like words, subjects might be required to use seman- 
tic information in making their decisions. Later, we consider 
evidence that subjects do in fact modify their decision strategies 
in such ways (see also Bradshaw & Nettleton, 1974; James, 
1975). 

Similar considerations apply when target words and non- 
words appear in word or sentence contexts. Although subjects 

could in principle base their decisions on the properties of the 
word and nonword targets, they find it very difficult to inhibit 
comparing targets to the contexts in which they occur. Here, 
decision latencies are influenced by the perceived congruence 
of target and context. Neely (1977), for example, showed that 
contextual information influences both word and nonword de- 
cisions; moreover, decision latencies depend on factors such as 
the types of contextual information provided and the propor- 
tions of trials of different types (Seidenberg, Waters, Sanders, & 
Langer, 1984; Tweedy, Lapinski & Schvaneveldt, 1977). Again, 
subjects respond intelligently to the information provided by 
the stimuli in the experiment and modify their response strate- 
gies to improve performance. 

The logic of the lexical decision task, then, does not necessar- 
ily require the subject to access the meanings of word targets; 
rather, it requires the subject to find a basis for reliably discrimi- 
nating between words and nonwords. The model suggests that 
there are at least three types of information that could enter into 
the decision process for isolated stimuli. When targets appear in 
meaningful contexts, there is a fourth source of information. 
Which information is used depends on the properties of the 
stimuli, which afford different response strategies. A theory of 
lexical decision performance must provide a principled account 
of how strategies vary as a function of the stimulus conditions. 
We illustrate this aspect of the model by considering some data 
that have been the source of considerable puzzlement. 

Variable Effects of Orthographic-Phonological 
Regularity 

There have been many lexical decision studies, analogous to 
the naming studies described earlier, using regular and excep- 
tion words (these include Andrews, 1982; Bauer & Stanovich, 
1980; Coltheart, Besner, Jonasson & Davelaar, 1979, Parkin, 
1982; Parkin & Underwood, 1983; Seidenberg Waters, Barnes, 
& Tanenhaus, 1984; Waters & Seidenberg, 1985). As in the 
naming studies, orthographic-phonological regularity has neg- 
ligible effects on lexical decisions for higher frequency words. 
Whereas the naming studies have yielded robust exception 
effects for lower frequency words, the results of the lexical deci- 
sion experiments have been inconsistent. In studies such as 
those ofColtheart et al. (1979) and Seidenberg, Waters, Barnes, 
and Tanenhaus (1984, Experiment 3), no effects of ortho- 
graphic-phonological regularity were observed, whereas in oth- 
ers (such as Parkin, 1982, and Bauer & Stanovich, 1980), they 
were. 

These inconsistent effects have been interpreted as indicating 
that words can be recognized by either direct (visually based) 
or mediated (phonologically based) processes (Barron, 1986; 
Carr & Pollatsek, 1985; Seidenberg, 1985b). In cases in which 
there were no effects of phonological regularity, it was inferred 
that recognition is direct; in cases in which there were such 
effects, recognition was thought to be phonologically mediated. 
Use of these alternative strategies was thought to be under the 
reader's control (Coltheart, 1978). This account left a key ques- 
tion unresolved, however: It did not explain the factors that de- 
termined why a particular strategy seemed to be used in a par- 
tieular experiment. Note that the inconsistent results that led 
to this view involved the same types of stimuli (regular and ex- 
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Figure 22. Results of the Waters and Seidenberg 
(1985) lexical decision study. 

ception words) used in different experiments. Hence, it cannot 
be the case that direct access is used for one type of word (e.g., 
exceptions) and mediated access for the other (e.g., regular), as 
suggested by some versions of the dual-route model. 

Waters and Seidenberg (1985) discovered a generalization 
that accounts for these seemingly inconsistent outcomes. They 
noted that the lexical decision results depended on the types of 
words and nonwords included in a stimulus set. When the stim- 
uli in an experiment contain only regular and exception words 
and pronounceable nonwords, no exception effect obtains 
(Coltheart et al., 1979; Waters & Seidenberg, 1985). Under these 
conditions, the effect of irregular spelling-sound correspon- 
dences for lower frequency words obtained with the naming 
task is eliminated. The situation changes when the stimuli con- 
tain a third type of item, the so-called strange wordsfirst studied 
by Seidenberg, Waters, Barnes, and Tanenhaus (1984). These 
are items, such as ONCE, AISLE, and BEIGE, that contain unusual 
spelling patterns. In a naming study, Waters and Seidenberg 
(1985) obtained the results presented in Figure 8. Among the 
higher frequency words there were again very small differences 
among word types; among the lower frequency items, the 
strange items produced the longest naming latencies, followed 
by exception and then regular. The model yields similar results. 
In a second experiment, subjects made lexical decisions to these 
stimuli, yielding the results in Figure 22, similar to those ob- 
tained in naming. Waters and Seidenberg then repeated these 
experiments deleting the strange words from the stimulus set, 
which eliminated the difference between regular and exception 
words in lexical decision but not naming (Figure 23). 

Thus, phonological effects in lexical decision (the differences 
between regular and exception words) depend on the composi- 
tion of the stimuli in the experiment; the presence or absence 
of strange words accounts for the seemingly inconsistent results 
of previous lexical decision studies. It is important to recognize 
that the results on the naming task are not affected by this fac- 
tor; there are robust exception effects for lower frequency 
words, whether or not strange words are included. 

Waters and Seidenberg (1985) proposed the following ac- 
count of these results. When the stimuli consist of regular and 
exception words and pronounceable nonwords, subjects base 
their decisions on the results of orthographic analyses. Hence, 

no effects of phonological regularity obtain. Including the 
strange stimuli increases the difficulty of the word/nonword dis- 
crimination. Subjects are asked to respond "word" when they 
see an item with an unfamiliar spelling pattern such as AISLE 
and to respond "nonword" when they encounter stimuli that 
contain common spelling patterns but are, nonetheless, not 
words (e.g., NUST). Making this discrimination on the basis of 
orthographic information is difficult; thus, subjects change their 
response strategy, turning to phonological information as the 
basis for their decisions. In effect, the subject now responds 
"word" if the stimulus has a familiar pronunciation and "non- 
word" if it does not. Thus, subjects could make correct deci- 
sions for words that are in their spoken vocabularies even when 
they are unsure of their spellings. Under these conditions, the 
task is much like naming: It requires computing the phonologi- 
cal code. Thus, results are similar to those in naming, with a 
regularity effect for lower frequency words. 

Analogous results involving semantic information were re- 
ported by James (1975). When the stimuli consisted of words 
and very wordlike nonwords, decision latencies were faster for 
concrete words than for abstract ones, suggesting that subjects 
used semantic information in making their decisions. When the 
nonwords were changed to orthographically illegal letter 
strings, the difference between the concrete and abstract words 
was eliminated, suggesting that decisions were based on ortho- 
graphic information alone. It can also be seen how this account 
generalizes to the case of targets presented in sentence contexts. 
If the word/nonword discrimination is difficult, subjects judge 
the perceived congruence of sentence context and target; they 
respond "word" if the target forms a meaningful continuation 
of the sentence, and "nonword" if the target does not (Stanovich 
& West, 1982). Because language comprehension normally in- 
volves integrating words and contexts, subjects find it very 
difficult to inhibit this process in making lexical decisions. 

In sum, lexical decision allows considerably more flexibility 
in response strategy than does naming. In the former task, the 
orthographic, phonological, and semantic codes may all provide 
a basis for responding depending on list composition, instruc- 
tions, and other experiment-specific factors. Naming is more 
constrained because the subject must produce the correct pro- 
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nunciation, which requires computation of the phonological 
code. 

Lexical Decisions in the Model 

As noted previously, we assume that lexical decision makes 
use of the orthographic output that is computed in parallel with 
phonological and semantic output; orthographic output pro- 
vides the basis for the familiarity judgment described by Balota 
and Chumbley (1984) in their account of lexical decision. We 
will explicitly examine the simplest case, in which only this or- 
thographic input is used, but as we have noted, experimental 
variables will determine whether this strategy is sufficient. The 
subject computes a measure of orthographic familiarity by 
comparing the input string to the computed orthographic out- 
put. In our model this corresponds to comparing the pattern of 
activation produced across the orthographic units by the input 
to the pattern produced through feedback from the hidden 
units. The subject compares the obtained orthographic error 
score to a criterion value adopted on the basis of experience 
with prior word and nonword error scores, the relative fre- 
quency of words and nonwords, and instructional factors, as 
standardly assumed in signal detection experiments. If the error 
score is less than the criterion, the subject makes the word re- 
sponse; if greater than the criterion, the subject makes the non- 
word response. Words and nonwords falling on the wrong side 
of the criterion are assumed to be responded to incorrectly. 
Items with scores farther from the criterion are assumed to be 
responded to more rapidly than those with scores close to crite- 
rion. If information about the orthographic error scores accrues 
gradually over time, as we assume it does in reality, more ex- 
treme values would exceed criterion more rapidly than less ex- 
treme values (of. Ratcliff, 1978). 

This lexical decision strategy will lead to an unacceptably 
high error rate under some conditions, specifically when the 
words and nonwords are orthographically similar. Under these 
conditions, we assume that subjects also assess the familiarity 
of the stimuli in terms of the computed phonological output. 
Feedback from other parts of the system would provide the ba- 
sis for judging the familiarity of this code. Indeed, the phonolog- 
ical representation computed by our existing orthography --~ 
phonology pathway can be seen as an input pattern over the 
phonological units. If this pattern were passed through a set of 
hidden units reciprocally connected to the phonological units 
and trained through experience with the sounds of words, the 
difference between the incoming phonological stimulus and this 
feedback could serve as the basis for a familiarity judgment. 

The simulations reported in the next section are concerned 
with cases in which orthographic and phonological information 
provide a basis for making lexieal decisions. This account is 
completely consistent with the possibility that there may be 
other cases in which subjects must consult information pro- 
vided by the computation from orthography to semantics. Our 
main point is that, contrary to standard views of lexical deci- 
sion, access to individuated lexical representations associated 
with particular words is not required by the task. Instead, infor- 
mation about familiarity of the pattern produced by the stimu- 
lus at one or more levels of representation provides a sufficient 
basis for lexical decision performance. In some cases, familiar- 

ity of semantic patterns may need to be assessed, but in others, 
orthographic or phonological information may be sufficient. 
Our simulations show that this can indeed be the case, inas- 
much as they indicate that we can capture the results of a num- 
ber of lexical decision experiments with the existing version of 
the model, in which the computation of semantic representa- 
tions is not implemented. 

Simulation results. We tested this account by using the 
model to compute orthographic error scores for the Waters and 
Seidenberg (1985) word and nonword stimuli using, as before, 
the weights from 250 learning epochs. The word stimuli had 
been included in the 2,897-word training set. Figure 24 (top) 
presents the data for the condition in which the stimuli consist 
of high- and low-frequency regular and exception words; Figure 
24 (middle) presents the data for the pronounceable nonwords. 
Although the distributions of error scores overlap a bit, inspec- 
tion suggests that a decision criterion can be established that 
yields an error rate similar to that observed in the actual experi- 
ment. Because the decision can be based on orthographic out- 
put, no effect of phonological regularity is predicted. Figure 24 
(bottom) presents the same data as in the top figure but with 
the addition of the high- and low-frequency strange items. Now 
there is considerable overlap between the word and nonword 
distributions. This is primarily because the mean orthographic 
error score for the lower frequency strange words is 13.1770, 
whereas the mean for the nonwords is 15.450, with a standard 
deviation of 5.610. This overlap makes it impossible to establish 
a decision criterion that yields an acceptably low error rate. Un- 
der these circumstances, we argue, subjects begin to look to 
phonological output (and possibly semantic as well). Decision 
latencies should now exhibit the pattern associated with the 
naming task, longer latencies for lower frequency exception 
words compared to regular. This was the result obtained in the 
Waters and Seidenberg (1985) experiment. 

In effect, the orthographic error scores provide a measure of 
orthographic familiarity. The validity of this measure is sup- 
ported by the observation that it accounts for other data as well. 
For example, the lower frequency, orthographically irregular 
strange words yield larger orthographic error scores than do reg- 
ular or exception words. Hence, when the nonword stimuli are 
sufficiently unwordiike to permit an orthographic response 
strategy, the model predicts that strange items will still yield 
longer lexical decision latencies than the other types (as Waters 
& Seidenberg, 1985, found). This measure is also interesting 
because it derives from everything that the model has encoded 
about the frequency and distribution of letter patterns in the 
lexicon. Error scores are a function of the input stimulus and 
the weights on connections that derive from the entire training 
experience. Other measures of orthographic familiarity have 
been used in word recognition experiments (e.g., positional let- 
ter frequencies, bigram frequencies, Coltheart's N measure), 
with mixed results. These inconsistent results, we suggest, may 
be due to the fact that orthographic familiarity as it is reflected 
in the performance of the adult reader is better captured by the 
overlaid effects of the full range of experiences with the struc- 
ture of words, as in our model, than by these other measures, 
which reflect only part of the information that is acquired 
through experience. It is a characteristic of this measure, and 
therefore an implication of our model, that the orthographic 
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familiarity of a letter string reflects frequency of exposure to 
the string itself, as well as exposures to other, orthographically 
overlapping letter strings. 

Homographs. Additional evidence consistent with this ac- 
count is provided by performance on homographs, words such 
as LEAD or WIND that contain common spelling patterns but 
are associated with two pronunciations. Thirteen homographs 
were included in the training set; the model was trained on both 
pronunciations of each word. The Kucera and Francis (1967) 
norms provide estimates of the overall frequencies of these 
words; we arbitrarily assigned a frequency equal to one half of 
the listed frequency to each pronunciation. Thus, the model 
was equally likely to receive feedback concerning both pronun- 
ciations. These words represent the limiting case in terms of 
orthographic-phonological inconsistency because the model is 
given inconsistent feedback about the entire words, not merely 
parts such as word bodies. Given this inconsistent feedback, it 
is not surprising that the model performed relatively poorly on 
these items, producing high phonological error scores. Even 
though the model was exposed to both pronunciations equally 
often, after 250 epochs of training it typically "preferred" one 
pronunciation. For example, for the word WIND, the error score 
for the pronunciation/wind/was much smaller than the score 
for the pronunciation/wind/, probably because the training 
corpus contained several/Ind/words and no other/ind/words. 
Similarly, the model preferred LEAD = /led/and BASS =/has/ ,  
again on the basis of regularities elsewhere in the corpus. It is 
interesting that human subjects asked to name isolated homo- 
graphs aloud also produce very long latcncies (Seidenberg, Wa- 
ters, Barnes, & Tanenhaus, 1984). Presumably, the correct pro- 
nunciations of these words are normally determined by estab- 
lishing which meaning is appropriate to a given context and 
computing the pronunciation from meaning; subjects perform 
poorly when contextual information is not provided, forcing 
them to rely on the computation from orthography to phonol- 
ogy, which is ambiguous. Our account of lexical decision sug- 
gests that if the stimuli consist of words containing common 
spelling patterns and orthographically distinct nonwords, no 
effects of factors related to phonology should be observed be- 
cause the decision can be based on orthographic output; hence, 
homographs should behave like other words with common 
spelling patterns. This outcome has been observed empirically: 
Whereas homographs yield longer naming latencies than non- 
homographs, they do not yield longer lexical decision latencies 
(Seidenberlg Waters, Barnes, & Tanenhaus, 1984). The model 
predicts that if this experiment were repeated with nonwords 
whose orthographic error scores overlapped with those of the 
word stimuli, the orthographic response strategy would be dis- 
abled, forcing subjects to consult phonologic~ information as 
well. Under these conditions, homographs should yield longer 
lexical decision latencies than nonhomographs, as in naming. 
This prediction has not been tested, however. 

In sum, the model provides a simple account of observed 
differences between lexical decision and naming performance. 
The naming task requires the subject to compute a word's pho- 
nological code; thus, it is affected by factors such as ortho- 
graphic-phonological regularity. Under many conditions, the 
lexical decision task can be performed on the basis of ortho- 
graphic information, and latencies are affected by orthographic 
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properties of words, but not by orthographic-phonological reg- 
ularity. If the stimuli in a lexical decision experiment include 
very wordlike nonwords, or very unwordlike words, subjects' 
decisions take into account the computed phonological codes. 
Under these conditions, lexical decision results are like those 
that obtain in naming, because both responses are based on the 
same information. 

Orthographic and Phonological Priming 

The preceding account generalizes to a somewhat different 
phenomenon studied by Meyer et al. (1974). Rather than ortho- 
graphic-phonological regularity, they examined orthographic 
and phonological priming effects. The stimuli consisted of 
words and nonwords presented in pairs. Subjects responded 
"yes" if both stimuli were words, and "no" if the pair contained 
a nonword. The word pairs included orthographically similar 
rhymes (e.g., BRIBE-TRIBE), orthographically similar non- 
rhymes (e.g., FREAK-BREAK), and unrelated control items (e.g., 
BRIBE-TIGHT, FREAK-TOUCH). Rhyme pairs yielded faster la- 
tencies and nonrhyme pairs slower latencies than did controls. 
This mixed pattern of facilitation and inhibition indicates that 
phonological relations between the words influenced subjects' 
decisions. Meyer et al. interpreted the results as indicating that 
processing of the prime biased the encoding of the target. Hav- 
ing computed the phonological code for BRIBE biased the sub- 
ject to assign the same code to TRIBE; this strategy yielded inter- 
ference when the stimuli were nonrhymes such as FREAK- 
BREAK. However, Hillinger (1980) obtained facilitation on trials 
containing rhymes with different spellings (e.g., CAKE-BREAK), 
suggesting that phonological relations between words affect sub- 
jects' decision strategies rather than target encoding. 

According to our account, phonological information will bias 
lexical decisions only when the use of orthographically based 
decision criteria is disabled because of the similarity of words 
and nonwords along this dimension. It is easy to see why Meyer 
et al.'s (1974) stimuli would have this effect; the stimuli included 
word/nonword pairs such as MOIST-SOIST and DRUNK- 
FRUNK, which differ by only one letter. It follows from our ac- 
count that phonological information would not be used if the 
word and nonword stimuli were more discriminible in terms of 
orthography. Shulman, Hornak, and Sanders (1978) reported 
this result. They replicated the Meyer et al. study using the same 
word stimuli but varying the properties of the nonwords, which 
were either pronounceable pseudowords (like Meyer et al.'s) or 
random letter strings. With pseudoword stimuli, the results rep- 
licated Meyer et al?s, with facilitation for orthographically sim- 
ilar rhymes and inhibition for orthographically similar non- 
rhymes, indicating the use of phonology. With random letter 
strings as nonwords, there was facilitation for both rhymes and 
nonrhymes, indicating the use of orthographic but not phono- 
logical information. 

Frequency Blocking Effect 

Glanzer and Ehrenreich (1979) and Gordon (1983) reported 
a seemingly anomalous lexical decision phenomenon called the 
frequency blocking effect, which can also be understood within 
the account of lexical decision performance given earlier. The 

Table 7 
Results of the Gordon (1983) Frequency Blocking Experiment 

Word frequency class 

List type Low Medium High 

Mixed-frequency 710 566 520 
% error 8.9 0.3 0.1 

Pure-frequency 710 547 480 
% error 8.1 0.5 0.2 

Difference (in ms) 0 19 40 

Note. Main entries are lexical decision latencies in milliseconds. 

phenomenon is the finding that, in this task, the magnitude of 
the effect of frequency depends on the composition of the stim- 
uli in an experiment. Gordon (1983), for example, reported an 
experiment in which the stimuli were high-, medium-, and low- 
frequency words, presented in either mixed or blocked condi- 
tions. In the mixed condition, stimuli from all three frequency 
bands were randomly intermixed; in the blocked conditions, the 
same stimuli were presented, but blocked according to fre- 
quency. Gordon's results are given in Table 7. In both condi- 
tions, there were frequency effects, with the order oflexical deci- 
sion latencies being high < medium < low. Whereas latencies 
for the lower frequency words were identical in the mixed and 
blocked conditions, they were faster in the blocked condition 
than in the mixed condition for both medium- and high-fre- 
quency words. This change in the magnitude of the frequency 
effect is the frequency blocking phenomenon. Gordon pre- 
sented a signal detection model, much like the one given earlier, 
in which subjects vary their decision criteria in response to the 
properties of the stimulus set. 

We simulated Gordon's experiment by computing the ortho- 
graphic error scores for high-, medium-, and low-frequency 
words like the ones used in his experiment. There were 24 items 
of each type, matched in length. We also tested 69 pronounce- 
able nonwords similar to the ones he used. The distributions of 
orthographic error scores are presented in Figure 25. Assume 
that decisions are based on a weighted combination of ortho- 
graphic and other types of information (e.g., phonological and/ 
or semantic). As the overlap between words and nonwords in 
terms of orthography decreases, subjects should weigh ortho- 
graphic information more heavily. As the overlap increases, 
subjects should weigh the other types of information more 
heavily. When the stimuli are intermixed, the distributions for 
words and nonwords show considerable overlap, predicting that 
the lexical decision should be difficult. Under these conditions, 
subjects might be expected to weigh the other types of informa- 
tion more heavily in making their responses. The overlap is due 
primarily to the lower frequency words, some of which produce 
error scores like the pronounceable nonwords. Hence, present- 
ing only low-frequency words and pronounceable nonwords 
would not facilitate performance, as Gordon (1983) observed. 
The situation improves when medium- and high-frequency 
words are blocked. Because the distribution for the high-fre- 
quency words overlaps little with the nonwords, blocking would 
allow the subject to establish decision criteria based on ortho- 
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graphic information alone; other types of information would 
not need to be consulted. Orthographic information is closer to 
the input stimulus than either phonological or semantic infor- 
mation; therefore, decisions based on this code should be more 
rapid. Because the distributions for the medium-frequency 
words and nonwords overlap a bit more, blocking would yield 
a smaller benefit. These predictions are entirely consistent with 
Gordon's results. 11 One other point should be noted. The fre- 
quency blocking phenomenon derives from the fact that lexical 
decision performance depends on the discriminibility of word 
and nonword stimuli. Because naming depends on the compu- 
tation of phonological output, rather than the discriminibility 
of words and nonwords, it follows that frequency blocking 
should have little effect on naming performance. Forster 
(1981a) reported this result, providing strong support for this 
analysis of the differences between the tasks. 

Pseudohomophone Effects 

The final simulations concern the processing ofpseudobomo- 
phones--nonwords such as BRANE or PRUVE that sound like 
words. Pseudohomophone effects refer to differences in naming 
or lexical decision latencies for these items compared to non- 
pseudohomophones such as BRONE or PRAVE. Performance on 
these stimuli has been thought to provide evidence concerning 
the role of phonology in the access of meaning. In the original 
study employing these stimuli (Rubenstein, Lewis, & Ru- 
benstein, 1971), subjects performed the lexical decision task. 
On nonword trials, latencies were longer for pseudohomo- 
phones such as BRANE than for nonpseudohomophones. Ru- 
benstein et at. assumed that the task was performed by deter- 
mining whether the target stimulus has a meaning. Thus, the 
longer latencies for stimuli such as BRANE suggested that the 
stimulus was phonologically recoded and that this phonological 
code was used to access the meaning associated with BRAIN. 
This information interfered with the decision that BRANE is a 
nonword. Latencies for pseudohomophones derived from high- 
and low-frequency words (e.g., BRANE, high frequency; BRUME, 
low frequency) did not differ. Subsequent studies of pseudoho- 
mophone effects have yielded inconsistent results (see, e.g., 
Coltheart et at., 1977; Dennis et at., 1985; Van Orden, 1987). 
McCann and Besner (1987; McCann, Besner, & Davelaar, 
1988) recently reported three findings concerning these stimuli. 
First, when the task was to name the stimuli aloud, pseudoho- 
mophones yielded faster latencies than did nonpseudohomo- 
phones. Second, when the task was lexical decision, the pattern 
was reversed: Pseudohomophones yielded longer latencies than 
nonpseudohomophones. Third, neither the lexical decision nor 
naming latencies for pseudohomophones were correlated with 
the frequencies of the base words from which they were derived. 
That is, the latency to name or make a lexical decision to an 
item such as BRANE was unrelated to the frequency of ~RAIN. 
Besner and McCann interpreted these results in terms of a 
model concerning the role of frequency in lexical access. 

These results are relevant to the model we have proposed for 
the following reason. Pseudohomophone effects are thought to 
reflect the influence of the lexical entry for the base word on the 
pseudohomophone. That is, BRANE differs from BRONE because 
only BRANE is influenced by a neighboring homophone. BRAIN 

facilitates the naming of BRANE but interferes with making a 
lexical decision to it. Pseudohomophone effects would appear 
to be a problem for our model because it lacks word-level repre- 
sentations; there does not seem to be a way for the spelling or 
pronunciation of BRAIN to directly influence BRANE because 
there is no lexical entry for BRAIN. 

It is interesting to note, however, that the model actually per- 
forms differently on McCann and Besner's (1987) pseudohomo- 
phone and nonpseudohomophone stimuli. When the stimuli 
(which were nearly identical in the two studies) were tested on 
the model, the pseudohomophones yielded smaller ortho- 
graphic and phonological error scores. Hence, the model pre- 
dicts that they should be easier to name and yield longer lexical 
decision latencies, just as McCann and Besner found. 

The model simulates these effects because it is sensitive to a 
general difference between the two types of stimuli: Pseudoho- 
mophones tend to be more wordlike than the nonpseudohomo- 
phones. That is, the pseudohomophones tend to contain spell- 
ing patterns and spelling-sound correspondences that occur 
more often in words; hence, they are better approximations to 
actual words. This tendency derives from two factors. First, 
some pseudohomophones benefit from the model's exposure to 
orthographically similar base words. Training on a word such 
as BRAIN or CAUGHT tends to modify the weights in a direction 
that facilitates processing on pseudohomophones such as 
BRANE or COUGHT. The magnitude of this effect will depend 
on the similarity of pseudohomophone and base word; much 
smaller effects will occur for dissimilar pairs such as CAUGHT 
and CAWT. Second, pseudohomophones tend to be more word- 
like because of constraints that govern the construction of the 
stimuli. The constraint that pseudohomophones sound like 
words may require using more of the spelling patterns and spell- 
ing-sound correspondences that actually occur in words; con- 
versely, the constraint that nonpseudohomophones not sound 
like words may require using structures that do not occur very 
often. Because the error scores reflect the aggregate effects of 
exposure to a large vocabulary of words, they tend to pick up 
on these systematic differences between the stimuli. 

In short, the model produces pseudohomophone effects be- 
cause these stimuli tend to be closer approximations of words 
than are the nonpseudohomophone controls. Still, it is possible 
that there could be pseudohomophone effects above and beyond 
those accounted for by general orthographic and phonological 
properties of the stimuli. If the processing of a target such as 
BRANE were influenced by the entry for a word such as BRAIN, 
the model would fail to pick up this effect. Hence, there might 
be differences between the stimuli even when they are equated 
in terms of the error scores generated by the model. On the 
other hand, the model predicts no differences between the two 
types of stimuli if they are equated in terms of error scores. We 
tested these predictions by using the orthographic and phono- 
logical error scores generated by the model to create two sets of 
stimuli. In the unbalanced set, the stimuli were like the ones in 

" Even with the most optimistic settin$ of the decision criteria, the 
simulation predicts somewhat more errors in the medium- and high- 
frequency conditions than Gordon (1983) actually observed. However, 
it should be noted that this simulation did not use his stimuli because 
they were not published with the study. 
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the McCann et al. (1988) studies, in that the pseudohomo- 
phones produced significantly smaller orthographic and phono- 
logical error scores than the nonpseudohomophones. In the bal- 
anced set, the two types of nonwords were equated in terms of 
both error scores. In the lexical decision version, 24 subjects 
were presented with all of the stimuli randomly intermixed with 
a set of monosyllabic words. In the naming version, a second 
group of 24 subjects were presented with each nonword and 
required to name it aloud. Results for the unbalanced stimuli 
(Figure 26, top) replicate the McCann and Beser (1987) and 
McCann et al. (1988) findings: Pseudohomophones were easier 
to name than nonpseudohomophones, but yielded longer lexical 
decision latencies. This pattern did not replicate with the bal- 
anced stimuli, however (Figure 26, bottom). There was a main 
effect of task, with faster latencies on naming than on lexical 
decision, but no interaction with type of nonword. 

In sum, the model replicates the pseudohomophone effects in 
the McCann et al. (1988) studies, even though it does not con- 
tain explicit lexical entries to influence pseudohomophone pro- 
cessing. These effects are realized in the model's error scores, 
which reflect the extent to which pseudohomophones and non- 
words resemble words in the lexicon. Our experiment suggests 
that the general tendency for pseudohomophones to be closer 
approximations to words can be eliminated by other facts that 
affect the error scores. The error scores are effective because 
they provide summary measures that capture influences that 
arise not only from experience with a particular word, but also 
with other words that overlap with it in a wide variety of ways. 

Summary of the Lexicai Decision Simulations 

The model gives a good account of simple word/nonword dis- 
crimination, including some more subtle phenomena related 
to changes in decision criteria, as well as differences between 
naming and lexical decision. Several points emerge from this 
analysis. First, we have shown that the model can account for 
lexical decision performance despite the absence of word-level 
representations. This represents a substantial change from pre- 
vious accounts that assumed that lexical decisions involved ac- 
cessing such representations. The simulations also show that 
the types of knowledge representations that we found useful in 
accounting for naming performance can support the lexical de- 
cision process. 

A second point is that the types of information used in mak- 
ing lexical decisions vary systematically in response to proper- 
ties of the stimulus set. Under the conditions that are character- 
istic of many lexical decision experiments, subjects can base 
their decisions on orthographic information alone. When this 
strategy is disabled, they can use phonological information. In 
principle there should be other conditions in which semantic 
information must be consulted. The model provides an inde- 

Figure 25. Simulation of the frequency blocking effect. (Distributions 
of orthographic error scores for higher frequency words and ortho- 
graphically legal, pronounceable nonwords [top]; medium frequency 
words and nonwords [middle]; and lower frequency words and non- 
words [bottom].) 
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Figure 26. Replications of the McCann, Besner, & Davelaar (1988) 
pseudohomophone effects: Experiment and simulation data. (Upper 
graph: Stimuli that are not equated in terms of error scores. Lower 
graph: Stimuli equated in terms of error scores.) 

pendent basis for determining when orthography will or will not 
provide a sufficient basis for the decision, allowing us to cor- 
rectly predict when lexical decision results will or will not 
mimic those obtained with naming. 

The model also suggests that under the conditions that often 
obtain in single-word studies, lexical decisions can be based on 
nonsemantic types of information. This observation is impor- 
tant because it calls into question the assumption that lexical 
decision performance necessarily provides evidence concerning 
processes related to the access of meaning. Our model accounts 
for performance in many single-word studies even though it 
contains no representation of meaning at all. Of course, sub- 
jects can ultimately determine that words have meanings and 
that nonwords do not; in our model, this information would be 
provided by the computation from orthography to semantics. 
However, the lexical decision process does not actually proceed 
on this basis under many conditions. 

Finally, it is clear that the conditions we have examined (con- 
cerning the presence or absence of strange words and the use 
of pronounceable nonwords vs. random letter strings) do not 

exhaust the range of possible circumstances afforded by the lex- 
ical decision paradigm. Our main point is that the results of any 
given experiment must be interpreted in regard to the response 
strategies permitted by the stimulus conditions. The results of 
each experiment represent a point in a space of possibilities 
determined by the properties of the stimuli, instructions to the 
subjects, and other experiment-specific factors. The complexity 
of the task increases greatly when targets appear in sentence 
contexts. A more complete theory than ours would provide an 
account of the types of information and decision processes in- 
volved in the judgments of contextual congruity typical of per- 
formance in sentence context experiments (see Forstcr, 198 l b; 
Stanovich & West, 198 l, for discussion). 

General Discussion 

The model of lexieal processing that we have described can 
be summarized in terms of a number of main features. Lexical 
processing entails the computation of several types of output in 
parallel. We have described the computation of the ortho- 
graphic and phonological codes in some detail and shown that 
the model provides a quantitative account of various behavioral 
phenomena. The model accounts for differences among words 
in terms of processing difficulty, differences in reading skill, and 
facts about the course of acquisition. Lexical decision and nam- 
ing are characterized in terms of how the computed codes are 
used in making these types of responses. A task such as naming 
focuses on the use of one type of code, phonology; a task such 
as lexical decision may involve all of the codes. The same types 
of knowledge representations and processes are involved in the 
computation of all three codes (although the implemented 
model is restricted to orthography and phonology). Knowledge 
is represented by the weights on connections between units. 
These weights are primarily determined by the nature of the 
English orthography that acts as input, in conjunction with 
feedback during the learning phase. Our claim is that represent- 
ing knowledge of the orthography in this way is felicitous given 
the quasiregular nature of the system; the characteristics of En- 
glish orthography are more congruent with this type of knowl- 
edge representation than with the kinds of pronunciation rules 
proposed previously. The computation of the orthographic 
code is affected by the facts about the distribution of letter pat- 
terns in the lexicon; computation of the phonological code is 
affected by facts about correlations between orthography and 
phonology. 

The main theoretical implications of the model can be char- 
acterized in terms of a number of recurring issues in reading 
research. 

Role of  Phonology in Word Recognition 

A large amount of research has been directed at questions 
concerning the use of phonological information in visual word 
recognition. Three issues have been studied, although they have 
not always been distinguished. One concerns access to phonol- 
ogy: Does the processing of a word necessarily result in access 
to phonological information? The second concerns the nature 
of the computation involved in accessing phonology: What 
kinds of knowledge are involved and is there a single process or 
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more than one? The third issue concerns the relation between 
phonological access and meaning: Is the phonological code 
computed as part of the process by which the meaning of a word 
is identified? 

Concerning the first issue, the primary question is whether 
access of phonological information is an automatic conse- 
quence of processing or the result of a recoding strategy under 
the control of the perceiver. Clearly, the task of understanding a 
text does not necessarily require access of phonological infor- 
marion, and the task can be accomplished by individuals who 
lack any knowledge of orthographic-phonological correspon- 
dences at all (e.g., nonspeaking deaf persons). It might nonethe- 
less be useful to access phonological information, as suggested 
by early information-processing models of memory such as At- 
kinson and Shitfrin (1968), which proposed that subjects recode 
visual stimuli into phonological representations for the purpose 
of retaining information in short-term memory, consistent with 
the results of studies such as Conrad (1964). Thus, phonological 
recoding was thought to be a strategy relevant to maintaining 
information in short-term memory, rather than a necessary 
consequence of stimulus encoding. Some reading researchers 
retained this idea and attempted to identify the factors that de- 
termined when phonological recoding was used. For example, 
it was proposed that phonological information might be used 
for certain types of words (e.g., regular rather than exception; 
Coltheart, 1978), by certain types of readers (e.g., poor readers: 
Jorm & Share, 1983; good readers: Barron, 1981), or for certain 
tasks (e.g., naming rather than lexical decision; Coltheart et al., 
1979). 

Our model differs from these proposals in that it incorporates 
the idea that visual word recognition results in the activation of 
phonological information in parallel with other representations 
(Donnenwerth-Nolan et al., 1981; Seidenberg & Tanenhaus, 
1979). In acquiring word recognition skills, children learn to 
associate the orthographic codes for words with both their 
meanings and pronunciations. Once this skill is acquired, pro- 
cessing of a written stimulus results in activation of multiple 
types of information, even though only one may be required for 
performing a given reading task. Tversky and Kahneman 
(1983) have observed other phenomena of this type. Their stud- 
ies show that individuals find it difficult to ignore information 
that is correlated with information that is relevant to problem 
solving but is not itself relevant to the solution. According to 
this view, activation of phonological information is a result of 
stimulus encoding processes rather than recoding strategies. 
What varies is whether this information is used in performing 
tasks such as lexical decision, as illustrated by the experiments 
we simulated earlier. The activation of phonological representa- 
tions in parallel with meaning may account for the "voice in 
the head" experienced by many individuals in silent reading. 

Additional support for this view is provided by studies such as 
Tanenhaus et al. (1980), in which a modified Stroc9 paradigm 
created a situation in which access of phonological information 
had a negative effect on performance. This result is inconsistent 
with the idea that access of phonological information is due to 
a subject strategy intended to facilitate performance. Rather, 
subjects accessed this information even when it was optimal to 
avoid doing so. The ubiquitous effects of phonological informa- 
tion on various reading tasks observed by Baron (1979), Klei- 

man (1975), and others simply reflect the fact that phonological 
information, like meaning, is rapidly activated in reading; they 
further show that this information is used in performing tasks 
such as making a lexical decision or judging the meaningfulness 
of an utterance. 12 

In regard to the nature of the computation involved in access- 
ing phonology, our model refutes what Seidenberg (1988) has 
termed the central dogma linking different versions of the dual- 
route model of naming, namely, that separate processes are re- 
quired for naming exception words on the one hand and novel 
items on the other. Our model demonstrates that a single com- 
putation that takes spelling patterns into phonological codes is 
sufficient to account for naming of these types of items and oth- 
ers. Moreover, it provides an explicit account of quantitative 
differences between stimulus types in terms of naming diffi- 
culty. 

Note, however, that within the architecture illustrated in Fig- 
ure 1 there is a second, indirect way to generate the pronuncia- 
tions of words: by computing the meaning of a word from or- 
thography and computing its pronunciation from meaning, as 
in speech production. In this respect, our account is similar to 
the dual-route model, which also holds that there are two ways 
to pronounce letter strings. It is important to recognize the 
differences between the models, however, they are not nota- 
tional variants (Seidenberg, 1988, in press-b). The evidence that 
there is a second naming mechanism is compelling; as we have 
noted, the indirect method is relevant to generating the contex- 
tually appropriate pronunciations of homographs such as 
WIND. Moreover, the indirect method is implicated in certain 
types of dyslexia that occur following brain injury. For example, 
so-called phonological dyslexics are able to name familiar 
words but are impaired in naming nonwords (Shallice & War- 
rington, 1980). This would follow if the patient's capacity to 
compute pronunciations from orthography were impaired but 
the indirect route from orthography to meaning to phonology 
were not. Perhaps the primary difference between the two 
models concerns the role of the indirect route in normal read- 
ing. According to the dual-route model, words with irregular 
pronunciations can only be pronounced by the indirect method. 
This follows from the assumption that readers' knowledge of 
spelling-sound correspondences is represented in terms of rules 
that, by definition, are only capable of generating the pronunci- 
ations of regular words and nonwords. In our model, knowledge 
of spelling-sound correspondences is represented in terms of 
the weights on connections between units involved in the com- 
putation from orthography to phonology. As we have demon- 
strated, this type of knowledge representation is sufficient to 

12 The Tanenhaus, Flanigan, and Seidenberg (1980) results, and re- 
lated phenomena such as the visual tongue-twister effect (McCutchen 
& Perfetti, 1982), have suggested that subjects cannot shut offphonolog- 
ical processing completely, even when it would be beneficial to do so. 
However, it may be that this computation can be regulated to some ex- 
tent. Cohen, Dunbar, and McClelland (1989) have recently proposed a 
model of attention that has this impfication. For example, the instruc- 
tion to attend to colors of Stroop stimuli may facilitate the encoding of 
this information. Thus, although phonological information is activated 
under a broad range of conditions, the manner in which it is computed 
may vary. 
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account for facts about the pronunciation of regular and irregu- 
lar words and nonwords. Moreover, the type of computation we 
have described is necessary in order to account for consistency 
effects of the type illustrated in Figure 19. The dual-route model 
is silent about cases in which the pronunciation of a putatively 
rule-governed word is influenced by knowledge of words not 
covered by the rule. In sum, there are similarities between the 
dual-route model and the account presented here, but the 
models use different types of knowledge representations and 
processes and make different predictions about inconsistent 
words. Ours is a dual-route model, but it is not an implementa- 
tion of any previous model. 

The picture is similar when we turn to the third issue, the 
role of phonological information in accessing the meanings of 
words, probably the single most widely studied question in 
reading research. A large number of studies have been directed 
at distinguishing between direct and phonologically mediated 
routes to meaning (see Carr & Pollatsek, 1985; Henderson, 
1982; McCusker et al., 1981, for reviews). The direct access hy- 
pothesis is that readers recognize a letter pattern as a particular 
word, providing access to a representation of its meaning stored 
in semantic memory. The phonological mediation hypothesis 
holds that readers first compute the phonological code for a 
word and then use this code to search semantic memory. De- 
spite extensive research, empirical studies have not yielded a 
clear resolution of the issue (contrast, e.g., Baron, 1973; Van 
Orden, Johnston & Hale, 1988). The model presented in Figure 
l provides a framework for integrating many of the conflicting 
results in the literature. As Figure l indicates, the model entails 
computations from orthography to meaning and from orthog- 
raphy to phonology. The default assumption, then, is that 
meanings are activated on the basis of a direct computation 
from orthography. The computation from orthography to pho- 
nology occurs in parallel, however, with the result that the pho- 
nological code becomes available and, as suggested earlier, it can 
influence performance on many tasks, even when it is not logi- 
cally required. This aspect of the model underscores an ambigu- 
ity in much of the research on phonological mediation: Many 
studies have provided evidence that subjects use phonological 
information in reading, but as the model suggests, this fact does 
not itself necessarily indicate that access of meaning was phono- 
logically mediated. In general, it has proven difficult to empiri- 
caUy discriminate between activation of phonological informa- 
tion and phonologically mediated access of meaning. 

These two assumptions--that there is a direct computation 
from orthography to meaning and a separate, equally direct 
computation from orthography to phonology--are consistent 
with a large body of empirical findings in this area. However, 
the framework presented in Figure 1 also affords the possibility 
that phonological information could influence the activation of 
meaning by means of feedback from the computed phonologi- 
cal code, the third side of the triangle in Figure 1. Just as there 
is an indirect route from orthography to meaning to phonology, 
there is an indirect route from orthography to phonology to 
meaning. Other factors being equal, the feedback from phonol- 
ogy to meaning should develop relatively slowly because it re- 
quires a prior computation from orthography to phonology. 
Thus, feedback from phonology to meaning should depend on 
amount of time available for this process to occur (Seidenberg, 

1985b, 1985c). In general, this feedback will have an effect when 
the primary computation from orthography to meaning is itself 
relatively slow. There are a number of conditions under which 
this might occur. For example, readers are sometimes more fa- 
miliar with the pronunciation of a word than its spelling. In 
such cases, the computation from orthography to meaning 
might fail to yield a clear pattern, but the reader could attempt 
to determine the word's meaning from phonology. This process 
may be characteristic of children in the earliest stages of learn- 
ing to read, who identify the meanings of words by sounding 
them out, matching the phonological codes that are generated 
to words in their spoken vocabularies. Similarly, the computa- 
tion from phonology to meaning might be used when it provides 
information relevant to performing a particular task. For exam- 
ple, if subjects are required to make a difficult lexical decision or 
categorization judgment, the information provided by feedback 
from phonology to meaning may provide an additional basis for 
responding (e.g., Van Orden et al., 1988). In general, feedback 
from phonology to meaning should be associated with words 
that have unfamiliar spelling patterns, readers who are rela- 
tively poor at computing meanings from orthography, condi- 
tions under which accessing the information facilitates perfor- 
mance, or difficult tasks that yield relatively long response times 
(Seidenberg, 1985b, in press-a). 

One other case should be mentioned. Several researchers 
have examined the hypothesis that the extent to which phonol- 
ogy is used in accessing the meanings of words depends on the 
properties of the orthography. More phonological mediation is 
thought to be observed in the reading of "shallow" orthogra- 
phies with relatively simple and direct spelling-sound corre- 
spondences (e.g., Serbo-Croatian; Katz & Feldman, 1981; Tur- 
vey, Feldman, & Lukatela, 1984). "Deep" orthographies are 
thought to discourage the use of phonology in accessing mean- 
ing. The model presented in Figure 1 provides a framework for 
considering both the universal and language-specific aspects of 
processing. We assume that this general architecture underlies 
visual word recognition in all languages. Differences among or- 
thographies are realized in terms of the characteristics of the 
orthographic and phonological encodings and the weights on 
connections between units. The weights on the connections be- 
tween orthographic and phonological units will reflect the de- 
gree of consistency or regularity of spelling-sound correspon- 
dences in a given orthography. Other factors being equal, then, 
the computation from orthography to phonology should be 
more rapid in the "shallow" orthographies, allowing more op- 
portunity for feedback from phonology to meaning. Note, how- 
ever, that many other factors need to be considered before con- 
cluding that there is more phonological mediation in a given 
orthography. There are other differences between orthographies 
that could also influence the difficulty of the computation from 
orthography to phonology; for example, languages differ in 
terms of the average length and number of syllables per word. 
Moreover, within the framework given in Figure 1, there is also 
a direct route from orthography to meaning, which may be used 
even in "shallow" orthographies (see Seidenberg, in press-a, for 
discussion). 

In sum, many of the controversies in the study of visual word 
recognition have been concerned with the questions concerning 
the number of processes involved in identifying the meanings 
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or pronunciations of words. The framework presented in Figure 
1 clarifies how these questions are related. Both of the codes can 
be derived on the basis of primary, direct computations from 
orthographic input. In both cases, however, there is an indirect 
method of generating the relevant code. The existence of both 
direct and indirect routes is a consequence of the architecture 
presented in Figure l, which reflects interconnections among 
the readers' knowledge of the written, spoken, and semantic 
codes for words. 

The Lexicon and Lexical  Access 

Our model differs from previous accounts in regard to the 
manner in which lexical knowledge is represented and pro- 
cessed. A standard view, common to models such as Coltbeart 
(1978), Forster (1976), Morton (1969), and others, is that lexical 
memory consists of entries corresponding to the different codes 
of words. For example, Forster (1976) suggested that lexical 
memory consists of a set of files or bins, including a master file 
containing entries for all of the vocabulary items, and slave files 
containing entries for different codes (e.g., a file containing 
word pronunciations). The models described by Coltheart 
(1987) and Monsell (1987) contain multiple lexicons, including 
separate orthographic lexicons used in reading and writing, and 
separate phonological lexicons used in listening and speaking. 
Research within this framework has focused on questions con- 
cerning what has been termed lexical access: how the entries for 
different codes are accessed in reading, the order in which they 
are accessed, and how access of one code affects access of other 
codes. 

The present model departs from these precursors in a funda- 
mental way: Lexical memory does not consist of entries for in- 
dividual words; there are no logogens. Knowledge of words is 
embedded in a set of weights on connections between process- 
ing units encoding orthographic, phonological, and semantic 
properties of words, and the correlations between these proper- 
ties. The spellings, pronunciations, and meanings of words are 
not listed in separate stores; hence, lexical processing does not 
involve accessing these stored codes. Rather, lexical informa- 
tion is computed on the basis of the input string in conjunction 
with the knowledge stored in the network structure, resulting 
in the activation of distributed representations. Thus, the no- 
tion of lexical access does not play a central role in our model 
because it is not congruent with the model's representational 
and processing assumptions. 

The view that lexical processing involves the activation of 
different types of information rather than access to stored lexi- 
eal codes represents more than a change in terminology. Access 
to a lexical code is often taken to be an all-or-none phenome- 
non, whereas our alternative framework replaces this concept 
with a partial or graded activation of representations. In an acti- 
vation model with distributed representations, a code is repre- 
sented as a pattern of activation across a set of units. The activa- 
tions oftbe units can differ in strength. Moreover, the represen- 
tations in our model are not "lexical" in two senses: The units 
of representation do not correspond to words, and they support 
the processing of nonwords as well as words. These conceptions 
raise different questions and generate different empirical pre- 
dictions. For example, within the access framework, it is rele- 

vant to ask how many of the meanings of an ambiguous word 
are accessed; Swinney (1979; Onifer & Swinney, 1981) has pro- 
posed that lexical access results in all of the meanings of an 
ambiguous word becoming available with equal strengths. In 
contrast, a network with distributed representations, such as 
ours, affords the possibility of partial activation of one or more 
meanings (see Hinton et al., 1986; Hinton & Sejnowski, 1986; 
Kawamoto, 1988; McClelland & Kawamoto, 1986; McClelland 
& Rumelhart, 1985). The latter view is more congruent with 
evidence concerning the effects of contextual information on 
the activation of meaning (Barsalou, 1982; Burgess, Tanenhaus, 
& Seidenberg, 1989; Schwanenflugel & Shoben, 1985; Tabossi, 
1988). 

Similarly, within the lexical access framework, research has 
focused on whether factors such as frequency influence lexical 
access or postaccess processes involved in making lexical deci- 
sions or in naming words aloud (Balota & Chumbley, 1984, 
1985; McCann & Besner, 1987). In our model, there is no lexi- 
cal access stage common to all word recognition tasks; there are 
simply orthographic, phonological, and semantic computa- 
tions. Within this framework, the primary question concerns 
how the readers' knowledge of the correlations among these 
codes is represented, how they are computed, and how the com- 
puted codes are used in performing different tasks. Fre- 
quency-the reader's experience in reading, hearing, and pro- 
nouncing words---affects these computations, but there are no 
separate effects due to lexical access. 

In sum, the notion of lexical access carries with it a concern 
with certain types of theoretical questions. The primary ques- 
tions concern the number of lexicons, how they are organized 
and linked, and whether it is orthographic or phonological in- 
formation that provides access to meaning. The primary pro- 
cessing mechanism is search through one or more ordered lists. 
In our model, the codes are distributed, they are computed on 
the basis of three orthogonal processes, and the primary pro- 
cessing mechanism is spread of activation. The primary theo- 
retical questions concern the properties of these computations, 
which are determined by the properties of the writing system 
that are picked up by the learning algorithm on the basis of 
experience. 

If, in keeping with much of previous usage, we take the term 
lexical access to refer to access of information concerning the 
meanings of a word, then an implication of our model is that 
neither naming nor lexical decision latencies necessarily reflect 
this process. The model simulates many aspects of single-word 
naming and lexical decision performance even though meaning 
is not represented at all. Naming simply involves a direct map- 
ping from spelling to pronunciation. Lexical decision often in- 
volves simply a judgment based on nonsemantic properties of 
the word and nonword stimuli. Hence, the results of experi- 
ments using these tasks may have no direct bearing on the ques- 
tion, How do readers access the meanings of words from print? 
The model calls into question the common assumption that 
these tasks necessarily provide evidence as to how readers iden- 
tify the meanings of words. 

Acquisition o f  Reading Skil l  

The model suggests that learning to read words involves 
learning to compute orthographic, phonological, and semantic 
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codes from visual stimuli. Acquiring this skill is a function of 
three factors: the nature of the stimulus, the nature of the learn- 
ing rule, and the architecture of the system. 

Nature of the stimulus. The model suggests that learning to 
read involves creating a network structure that encodes facts 
about the orthography. The model works as well as it does be- 
cause it is trained on a significant fragment of written English, 
which contains a complex latent structure. Measures of ortho- 
graphic redundancy (such as positional letter frequencies and 
bigram frequencies), lists of spelling-sound rules (such as Ven- 
ezky, 1970), and definitions of regularity or phonological neigh- 
borhoods (e.g., Parkin, 1982) are partial characterizations of 
what is actually a very complex correlational structure concern- 
ing relations between letters and between letters and phonemes. 
Like the child learning to read, the model is exposed to this 
complex input in the training phase. 

The learning rule. This elaborate structure would be of no 
importance were it not for the fact that there is at least one 
learning algorithm (there may be more) capable of extracting it. 
The effect of the learning rule is that the weights on connections 
come to encode regularities present in the input. This is a good 
thing to be doing if the input does in fact exhibit a rich set of 
regularities. It is an especially good thing to be doing if the regu- 
larities are statistical (as in written English) rather than categor- 
ical (as in rules, as they are normally construed). Thus, there is 
a good match between what the learning algorithm does and 
what is to be recovered from the input. 

The architecture of the system. We have demonstrated that 
the model's capacity to simulate human behavior critically de- 
pends on one aspect of the architecture, the number of hidden 
units. This aspect of the model illustrates what may be a general 
characteristic ofconnectionist models. In order to capture facts 
about human behavior, the models apparently have to obey a 
kind of"Three Bears" principle concerning computational re- 
sources. The experiments with the number of hidden units sug- 
gest that if there are too few, the model will learn some of the 
basic regularities but will not be able to cope well enough with 
exceptions. Although we have not established this point in re- 
gard to the present model, it is known that in some cases, net- 
works with too many hidden units "memorize" the training ex- 
amples, but fail to extract implicit regularities, and thus lack 
the ability to respond to novel inputs (Hinton, 1986). Appar- 
ently, the number of hidden units has to be "just right" to cap- 
ture both the regularities and the exceptions as people do. A 
detailed understanding of these characteristics of network 
models will require considerable mathematical analysis of net- 
work capabilities. In the meantime, the empirical discovery that 
something as general as the number of hidden units contributes 
in specifiable ways to the solution of a problem is interesting 
insofar as it suggests how biological constraints--the human ar- 
chitecture-influence what is learnable. 

In sum, it will probably turn out that having the right amount 
of computational machinery (and the right organization of that 
machinery) is necessary to be able to encode the regularities 
that are found in the input and extracted by the learning algo- 
rithm. There may be other general architectural constraints as 
well. 

The characterization of our model in terms of environment, 
learning rule, and architecture provides a useful framework for 

thinking about other connectionist models and about behavior 
in general because it incorporates some of the most important 
approaches to understanding behavior that have emerged in 
modern psychology. With Gibson, it shares the emphasis on un- 
derstanding the structure of the input. With learning theory, it 
shares the notion of general laws of learning. With Chomsky, it 
shares an emphasis on how biological constraints contribute to 
what is learnable. Which of these elements contributes most to 
the solution of a given problem will probably vary. In the case of 
learning to read and pronounce written English, the biological 
constraints are probably fairly minimal: The system has to de- 
vote the right amount and kind of resources to the problem. 
The solution is largely driven by the highly structured input and 
the power of the learning rule. In language acquisition, where 
the input to the system is thought to be impoverished relative 
to what is learned, biology may impose stronger constraints on 
the solution space. Thus, depending upon the nature of the 
problem, one or another component may contribute more or 
less to its solution; nonetheless, all three need to be considered. 

Generality of  the Simulation Results 

It is important to consider the generality of the conclusions 
we have reached on the basis of the model's performance, an 
issue that arises in connection with every simulation model. 
Our concerns focus on two aspects of the simulations. First, the 
model's scope is limited; it deals with only some aspects of vi- 
sual word recognition. Second, there are questions as to how 
specific aspects of the implementation contribute to the model's 
performance. Both of these factors could limit the generality of 
the results. For example, the model might perform as well as it 
does only because it deals with only selected phenomena; sim- 
ilarly, it might perform very differently if certain features of the 
implementation were changed. 

Scope limitations. The model's scope is restricted in three 
primary respects: (a) It is only concerned with monosyllabic 
words, (b) we have not implemented a process that yields an 
articulatory-motor response on the basis of the computed pho- 
nological code, and (c) we have not addressed issues related to 
meaning. Our primary concerns are whether these limitations 
compromise the conclusions that we have drawn and whether 
the model would need to be changed in important ways in order 
to deal with them. 

The restriction to monosyllabic words could be important for 
two reasons. First, it might be that the model performs as well 
as it does only because the learning problem has been con- 
strained in this way. It is possible, for example, that the learning 
algorithm would function much differently if the model were 
exposed to a wider variety of words. If the set of monosyllabic 
words is more homogeneous than the set of words in English, 
this might contribute in important ways to the behavior of the 
model. This is an empirical question that awaits further experi- 
mentation with this model and others like it. We should note, 
however, that we obtained essentially similar results for simula- 
tions using lists of 1,200 and 2,897 monosyllabic words; al- 
though the larger list was more heterogeneous, this fact had little 
effect on its behavior. Moreover, Lacouture (1989) has devel- 
oped a model similar to ours based on a training corpus of 2,100 
words, including both mono- and multisyllabie items. This 
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model exhibits similar behavior on monosyllabic words even 
though the training corpus is quite different. Hence, it does not 
appear that our results are specific to the particular corpus that 
we used or to the use of only monosyllabic words. 

A second issue is that complex words exhibit additional types 
of structure, such as syllables and morphemes, which could be 
relevant to processing. Moreover, the pronunciation ofmultisyl- 
labic words raises difficult issues concerning the assignment of 
syllabic stress. There have been a large number of studies exam- 
ining the role of structures such as syllables and morphemes in 
visual word recognition (see Seidenberg, 1989, for discussion). 
These studies have led to models in which the processing of 
complex words involves parsing into sublexical syllabic or mor- 
phemic components. For example, Spochr and Smith (1973) 
obtained evidence that syllables play a role in tachistoscopic 
recognition and proposed a model in which word recognition 
involves the recovery of syllabic structures. Other studies have 
been taken as providing evidence that words are decomposed 
into component morphemes as part of the recognition process 
(e.g., Murrell & Morton, 1974; Taft, 1985). Treiman and Cha- 
fetz (1987) have provided evidence indicating the salience of 
subsyllabic onset and rime units. This research would seem to 
require representations of syllables, morphemes, and onset/ 
rime that are accessed as part of the recognition or pronuncia- 
tion of letter strings. This would represent a substantial elabora- 
tion of our minimal model for monosyllabic words. 

We consider these to be unresolved questions. Clearly, the 
model in its current form is silent about the complex processes 
involved in assignment of syllabic stress. The basic question is 
whether these phenomena can be accommodated by extensions 
to the present model or whether they require a model with very 
different types of representations and processes. For example, 
stress assignment is determined in part by grammatical cate- 
gory, a type of knowledge the current model lacks. However, it is 
easy to imagine extensions to the model in which grammatical 
category is directly encoded and learned according to similar 
principles. Similarly, in some theories, stress is represented by 
a feature associated with the representations of vowels (Chore- 
sky & Halle, 1968), which could be accommodated by adding 
a feature to the scheme used here to encode phonemes. More 
recent theories, however, suggest that stress assignment involves 
access to an explicit syllabic level of representation (see Selkirk, 
1980, for discussion), which might entail a major modification 
of the present account. 

These issues can only be addressed by further research. How- 
ever, there is good reason to think that a model very much like 
ours could account for at least the effects of sublexical struc- 
tures such as syllables, morphemes, and onset/rime that have 
been observed with tasks such as lexical decision and naming 
without additional representational or processing assumptions. 
Specifically, the model may provide an account of the effects of 
complex word structure that is an alternative to parsing rules. 
Studies of the role of syllables and morphemes in visual word 
recognition have yielded inconsistent results, with some yield- 
ing evidence for decomposition into these components, whereas 
others have not (see Henderson, 1982; Seidenberg, 1989, for re- 
views). These inconsistent results may indicate that what is rele- 
vant to processing is not syllables or morphemes, but properties 
of words that are correlated with these structures. As we oh- 

served at the beginning of this article, syllables and morphemes 
are inconsistently realized in English orthography. Just as the 
properties of written English make it difficult to formulate a set 
of rules governing orthographic-phonological correspon- 
dences, they also make it difficult to formulate parsing rules 
that will yield the correct decomposition into component parts. 
Moreover, there has been little agreement among linguists con- 
cerning the definition of the syllable (see Hoard, 1971; Kahn, 
1976; Seidenberg, 1987; Selkirk, 1980). The inconsistency of 
spelling-sound correspondences in English led us to abandon 
the notion of mapping rules in favor of weighted connections 
between units; the analogous inconsistencies in terms of sylla- 
bles and morphemes might require abandoning parsing rules 
for the same reason. At the same time, the orthography does 
provide cues to syllabic and morphological structures. Mor- 
phemes, for example, are sublexical components that recur in 
a large number of words. As such they tend to be very high 
frequency spelling patterns. Consider, for example, a prefix 
such as PRE-, which recurs at the beginning of a large number 
of words. Empirical studies have suggested that the prefix and 
stem of a word act as perceptual groups (Taft, 1985). Does this 
grouping occur because the reader decomposes the word into 
morphemic components or because prefixes tend to be ex- 
tremely high-frequency spelling patterns? Similar considera- 
tions hold in the case of syllables. The syllabic structures of 
words will tend to be realized in the orthography by inhomoge- 
ncities in the distributions of letters because syllables are prop- 
erties of the spoken language and the orthography is alphabetic. 
Hence, "syllabic" effects could occur in word recognition not 
because readers recover syllabic structures per se, but only be- 
cause they are affected by orthographic properties that are cor- 
related with syllables. In sum, the hypothesis is that effects of 
units such as syllables and morphemes in visual word recogni- 
tion are secondary to facts about how these units are realized 
in the writing system. Thus, effects of these structures would be 
an emergent property of a model, like ours, that only encodes 
facts about orthographic redundancy and orthographic-pho- 
nological regularity. We are currently examining this hypothe- 
sis (see Seidenberg, 1987, 1989, for discussion). There is already 
some suggestive evidence in this regard. Treiman and Chafetz 
(1987) have shown that subjects are sensitive to the division of 
syllables into onset and rime. In the word SPLASH, for example, 
the onset is SPL- and the rime is -ASH. We have already shown 
that rime units tend to be salient to pronunciation because of 
the structure of English orthography, as in the simulations of 
effects of different words on performance on TINT. Training 
with PINT or MINT has large effects on processing TINT, but 
training with TENT or TINS has much smaller effects. This is 
simply a consequence of the fact that vowel pronunciations-- 
the most sensitive and least predictable aspect of the word--are 
sensitive to the letters that follow them, and the model picks up 
on this fact. 

The scope of the model is also limited in that we have not 
implemented a process that takes computed phonological out- 
put into a set of articulatory-motor commands. We cannot be 
certain, then, that this process can be implemented in a manner 
consistent with facts about speech production. We think it 
highly unlikely that the model will prove to be inconsistent with 
facts about speech production, given the simple monotonic re- 
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lationship between phonological error scores and pronuncia- 
tion latencies, but it does represent an unresolved issue. Mini- 
mally what is required is a mechanism that would take the im- 
perfect specification of the phonological code provided by the 
model into an explicit representation of the pronunciation. The 
sequential networks described by Jordan (1986) are quite sug- 
gestive in this regard; these networks take patterns of activation 
representing entire words as input and learn to produce the cor- 
responding phonemes one at a time in sequence. Ultimately, we 
would hope that a model of this type would encompass many 
of the phenomena described by Dell (1986) in a mechanism 
that incorporated learning procedures.~3 

Finally, the model does not address issues related to meaning. 
Insofar as the primary goal of word recognition is to identify 
the contextually appropriate meaning of a word, this represents 
a serious limitation. What we have demonstrated is that a large 
number of lexical decision and naming phenomena thought to 
bear on issues concerning access of meaning can be simulated 
by a model in which meaning is not represented at all. However, 
questions concerning the representation and access of meaning 
remain to be addressed; we have not, for example, even touched 
on the role of semantic priming or contextual constraint in 
word processing. As we have noted, promising work by Kawa- 
moto (1988), Hinton and Sejnowski (1986), McClelland and 
Rumelhart (1985), and others have used principles very similar 
to the ones we have used to address the computation of mean- 
ing. Further exploration of these issues is an important topic for 
future research. 

Details of the implementation. We have argued that aspects 
of our model are critical to understanding how words are recog- 
nized and pronounced. The critical aspects include the use of 
distributed representations, the existence of a layer of hidden 
units, the adjustment of weights on connections through learn- 
ing, and the idea that pronunciation involves a direct mapping 
from orthography to phonology. There are details of the present 
implementation that are less theoretically relevant, however, 
and it is prudent to consider how they might contribute to its 
behavior. The main questions in this regard concern the repre- 
sentations of orthographic and phonological knowledge. The 
method of encoding phonemes was also used by Rumelhart and 
McCleUand (1986a) in their model of the acquisition of past 
tense morphology. Pinker and Prince (1988) have noted several 
limitations of this encoding scheme. 

We are aware of these limitations and have not claimed that 
the model embodies an adequate characterization of English 
phonology. The important question is, Does the model exhibit 
the behavior that it does (in terms of regularity effects and the 
like) because of specifics of the phonological (or orthographic) 
encoding schemes that we have chosen to use? This question 
can be addressed empirically by developing models that per- 
form the same task as ours (learning about the structure of En- 
glish orthography) but do not use the same representational 
schemes. Two additional models (Lacouture, 1989; Sejnowski 
& Rosenberg, 1986) provide evidence on this score. Sejnowski 
and Rosenberg's model uses letters and phonemes as represen- 
tational units, rather than the triples used in our model. Al- 
though context sensitivity is not built into their representations, 
it is introduced in another way: Each letter is presented to the 
network for processing centered in a seven-letter window, so 

that there are three letters of context on either side of the central 
letter. The task of the network is to produce the correct output 
for the central letter, given this context. In other respects, their 
model is similar to ours; it learns the correspondences between 
graphemes and phonemes using a network with a layer of hid- 
den units and the back-propagation learning algorithm to ad- 
just the weights on connections. Because the two models yield 
similar behavior in many respects, it appears that the use of the 
triples notation is not necessary in order to obtain many aspects 
of our own model's performance. 

Lacouture's (1989) model, in contrast, uses a position-spe- 
cific representational scheme similar to the one proposed by 
McClelland and Rumelhart (1981), rather than a locally con- 
text sensitive scheme like the one used here. That is, there was 
a complete set of 28 graphemic primitives (featural components 
of letters) for each of the letter positions in a word, counting 
from left to right. In spite of several obvious drawbacks of this 
sort of scheme, Lacouture's model also behaves similarly to 
ours, yielding, for example, the frequency by regularity interac- 
tion and other phenomena. Once again it appears that models 
with widely differing representation schemes yield qualitatively 
similar results. What is common to all of these models is the use 
of representations in which similar words with similar spelling 
produce overlapping input patterns, and words with similar 
pronunciations produce overlapping output patterns. 

Of course, the specific details of the representations do affect 
the degree of overlap of input and output representations, and 
ultimately it will turn out that there are some choices of repre- 
sentation that will be superior to others, particularly if multisyi- 
labic items are included. However, we do not think that the 
choice of representation is an a priori process independent of 
learning. Although there may be constraints that come origi- 
nally from evolution or prereading experience, or both, we be- 
lieve these predispositions are subject to considerable reorgani- 
zation with experience. Our choice of representation was in- 
tended to approximate the one that people learn to use, rather 
than to serve as an exact characterization. 

One other aspect of the implementation of the model de- 
serves to be re-examined in light ofonr results: the fact that we 
compressed the range of word frequencies rather drastically in 
training our network. Two questions arise concerning this com- 
pression: Was it justifiable and was it responsible for any impor- 
tant aspects of the results? 

We have already argued that some compression was justifi- 
able, in that the untransformed Kucera-Francis (1967) word 
frequencies provide a biased picture of the experience we might 
expect a child to have with the words in our corpus. This is 
particularly true when we consider the fact that the spelling pat- 
terns and spelling-sound correspondences represented in low- 
frequency words tend to show up in words derived from the base 
forms of these words, as well as in the base forms themselves. 

~3 Lacouture's (1989) model is suggestive in this respect. It computes 
phonological output in a manner very similar to ours; however, the com- 
puted phonological representation is then input to an auto-associative 
network (Anderson, Silverstein, Ritz, & Jones, 1977), which essentially 
completes the phonological code based on this partial input. This pat- 
tern-completion process might be seen as analogous to assembling an 
articulatory code. 
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Nevertheless, we cannot definitively assert that the actual degree 
of  compression that we used is completely justified. This issue is 
important because Bever (in press) has suggested that the model 
closely simulates human performance only because of  the fre- 
quency transform, which he considers to be unrealistic. Bever's 
conjecture is that the model would fail to learn the correct pro- 
nunciations of many words if a broader range of  frequencies 
were used. As we have noted, exception words tend to be over- 
represented among the higher frequency items in the lexicon. 
Bever's intuition is that if words such as HAVE or SAID were 
presented more often, the model would not be able to learn the 
regular pronunciations of  regular inconsistent words such as 
RAVE o r  PAID. 

Although this conjecture certainly deserves careful consider- 
ation, there is no reason to suppose that it is correct. Because 
of the error-correcting character of  the learning rule that we use 
in training the network, performance on high-frequency items 
reaches asymptote relatively early; after this point, they exert 
relatively little influence on performance because the network 
has sufficient resources (in the form of units and connections) 
to master less frequent items in its environment. Under these 
circumstances, repeated presentation of high-frequency items 
keeps accuracy with these items high and, at the same time, 
allows gradual acquisition of  the capacity to deal with other 
items in the corpus. We can see this pattern clearly in the simu- 
lations reported in this article. As Figure 3 shows, performance 
on words of  relatively high frequency approaches asymptote by 
about 70 epochs, leaving room for continued improvement on 
lower frequency words. To be sure, a change in the frequency 
compression function that we used would tend to increase the 
importance of the word frequency factor, relative to the ortho- 
graphic regularity, but it should not change the fact that both 
frequency and regularity influence performance nor the fact 
that regularity is a more important factor among less frequent 
words. 

Still, in light of these considerations, it seemed prudent to 
explore whether similar results would obtain if a less drastic 
compression of the frequency range were used. Hence, we re- 
peated the simulation using the same corpus of words and train- 
ing procedure with one change: Words were sampled during the 
training phase as a function of  the square root of  their Kucera- 
Francis (1967) frequencies. Results of  this simulation for the 
words in the Taraban and McClelland (1987) set are presented 
in Figure 27. The simulation was run for many more epochs 
because only about 60 items were presented in each one. The 
results replicate the Frequency × Regularity interaction seen in 
Figure 3. Looking at the regular inconsistent words, the correct 
pronunciations of these words again yielded much smaller error 
scores than the "exceptional" pronunciations, contrary to Be- 
ver's (in press) conjecture. Increasing the relative frequency of  
the higher frequency words did have one effect: It eliminated 
the regularity effect for high-frequency words early in training. 
In effect, the simulation says that if children were drilled repeat- 
edly on a small number of high-frequency words, they would 
quickly learn to perform about equally well on both regular and 
irregular items. 

In sum, the model is clearly limited in some respects, and 
details of its performance depend on some of the specific as- 
sumptions incorporated in the model. However, we see no rea- 
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son to think that the theoretical conclusions we have offered are 
contingent on these aspects of  the model. 

Conclusions 

We have presented a model of visual word recognition that 
synthesizes a broad range of  empirical phenomena and provides 
an account of  the types of  knowledge relevant to this task, the 
manner in which this knowledge is represented in memory, and 
the course of  acquisition. Our basic claim is that the model can 
account for these phenomena because of  the close fit between 
the nature of  the task (learning the structure of  English orthog- 
raphy) and the capabilities of  models of  this type. English or- 
thography is not strictly regular, and so it is not well captured 
by mechanisms involving systems of  rules. Attempts to patch 
up this problem by proposing two routes (rules and lexical 
lookup) have been offered by others, but they have not been 
entirely successful. Our model, and others like it, offers an alter- 
native that dispenses with this two-route view in favor of  a single 
system that also seems to do a better job of accounting for the 
behavioral data. It remains for future research to establish 
whether the present approach can be successfully extended to 
longer words and to other aspects of  word reading, and to inte- 
grate the word reading process, here artificially isolated, back 
into the process of  understanding texts. 
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A p p e n d i x  

S t i m u l i  i n  the  Se idenberg ,  M c R a e ,  a n d  J a r e d  (19 8 8) E x p e r i m e n t  

Inconsistent words Consistent words 

Word Enemy Word 

Inconsistent words Consistent words 

bead head barge 
booth smooth bean 
braid said beep 
brood good bin 
broth both bliss 
brow flow brute 
cave have bunch 
chase phase cane 
crouch touch cape 
crush bush cheer 
dome some coy 
drown flown den 
floe shoe dime 
frost post doom 
gloss gross fade 
growl bowl flask 
haste caste gloat 
hive give groan 
leaf deaf haunt 
lone gone hike 

Wo~ Enemy Wo~ 

loot foot lame 
lull bull lilt 
mall shall lure 
noose choose mince 
pear fear nerve 
pleat sweat peach 
plied skied peel 
poll doll pier 
pose lose poise 
rut put probe 
sneak break rust 
sour tour scrub 
stew sew steal 
stint pint stole 
stool wool strait 
tease cease stunt 
toad broad taint 
tough cough teen 
valve halve vain 
wove love weld 

Note, Some inconsistent words have more than one enemy. 
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