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This is a survey of a number of recent papers dealing with graphs from a geometric
perspective. The main theme of these studies is the relationship between graph properties
that are local in nature, and global graph parameters. Connections with the theory of
distributed computing are pointed out and many open problems are presented.

1. Introduction

How well can global properties of a graph be inferred from observations that are purely
local? This general question gives rise to numerous interesting problems that we want
to discuss here. Such a local-global approach is often taken in geometry, where it has a
long and successful history, but a systematic study of graphs from this perspective has
not begun until recently. Nevertheless, a number of older results in graph theory do fit
very nicely into this framework, as we later point out. Most of the specific problems fall

| in two categories. In the first, local structural information on the graph is collected and

then used to derive certain consequences for the graph as a whole. The other class of

* problems concerns consistency of local data. Namely, one asks to characterize those sets

of local data that may come from some graphs.

As the reader will soon see, the local-global paradigm leads to many questions in
which graphs are viewed as geometric objects, a point of view that we believe can greatly
benefit graph theory. Besides the geometric connection, ties also exist with the theory
of combinatorial algorithms. We suggest a specific test case for the heuristic notion that

| Polynomial-time algorithms are capable of examining only local phenomena. In distributed

‘omputing, locality of computation is an already recognized and studied notion, and some
tonnections with this discipline are pointed out as well.

2. Packing and covering with spheres and local-global averaging

Sletw < V(G) be a set of vertices in a graph G. If the vertices in W form a majority in

tvery ball of radius between 1 and r in G, does this imply that W has a large cardinality ?
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As an illustration, consider the following example with r = 1. In this graph, W is 4
clique of \/n vertices, Each vertex in W has a set of \/n — 1 neighbors not in W, each of
which has degree 1. It is a routine matter to check that this graph satisfies the assumption
for r = 1. It is also not hard to modify the construction for any fixed o < 1 so that
occupies a fraction > ¢ of any l-neighborhood, while [W| = O(y/n) (here « was 1/2).

Let us introduce some notation. The ball7L of radius k centered at x, denoted By (x)
consists of all vertices y whose distance from x does not exceed k, and its cardinah’ty

[Bi(x)| is denoted Br(x). Our question is how smal] [W| may be in terms of r and n, the
order of G.

average of f on every ball in G of
overall average of f?

eg, Rabinovich and Saks [23] who

radius between 1 and r. What can we conclude for the

This subject has been recently taken up by Linial, Pe]
show the following.

Theorem 2.1, (Local Averages) Lot f be a nonnegative function defined on the vertices of
an n-vertex graph G. Suppose that the average of f over every ball of radius r > ¢ >1in

G is at least u. Then, the average of f over all of V is at least e n=OW8n) Tho bound is
tight.

Consequently, if we let r be n for Some positive constant ¢, local averages do reflect
the true global behavior of f. Examples are given in [23] showing that smaller ' will
not do. It is natural to ask at this point what happens if we only know a lower bound
for the average of f over balls of radius r (and not for every r >t > 1). Examples are
given showing that only very weak conclusions can be drawn about the overall average
of f, however big r may be, Namely, it may be that the average of f is only O(n=1/3). 1t
is also worthwhile noting that the conclusions of the theorems remain unchanged even if
we make the assumption only for balls whose radius r > ¢ = 11s a power of 2.

The result for local averages is proved as a ¢

packing and about covering by spheres in geners:
and covering results wil] do for this purpose.

Theorem 2.2. (Covering by Spheres) For integers n > r,
can be covered by a collection of balls with radii in the ran
more than n®1/108") tipoc e bound is tight.
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It would be very interesting to understand how various properties of a graph affect the
efficiency of sphere packing and of covering by spheres. Also, it is not hard to extend
these results to general finite metric spaces. We still do not know, for example, what

- happens if the metric space is embedded in a d-dimensional Euclidean space or other
low-dimensional normed space. These questions lead us to our next subject.

| 21

' There is an appealing connection between this class of problems and the theory of
' maximal functions in analysis (e.g. [32]). This observation came up in discussions with
‘ Metanya Ben-Artzi.

|  Briefly, the connection is this: again let B,(x) denote the ball of radius r centered at
x € Rd, the d-dimensional Euclidean space. Let f be a real function on Rd, and let a,(x)
| be the average of f over B, (x). Define f*(x) as the supremum of a,(x) over all r > 0.
| The function [ is called the maximal function of f. Numerous results have been derived
| over the years concerning maximal functions. Informally speaking, among the most basic
| findings is that ‘f* is not much larger than f~.

} Our proof for Theorem 2.1 shows a significant similarity with the methods used in
|analysis to compare the p-norms of f* and f. Specifically, the most traditional proof
' technique involves some geometric covering arguments (Vitali’s Lemma), and a similar
| argument underlies some of our proofs as well. In analysis, such arguments lead to results
;of the form

i 1771l < Capllfll,

Connections with the theory of maximal functions

| where C; , grows exponentially with the dimension d. This bad dependency is unavoidable
| in this method, since the bounds in Vitali’s lemma do grow this way. More modern results
~{concerning maximal functions (e.g. [33]) manage to bypass this difficulty. It is conceivable
| that these methods may help settle our questions on low-dimensional finite metric spaces.
f It would also be interesting to see if similar ideas can be developed for other classes of
- graphs.

3. Locality in distributed systems

{

}I'The theory of distributed computing concerns a set of processors connected through a
“ommunication network. The network is depicted as a graph in whose vertices computers
201 processors reside. Communication takes place as messages are exchanged between
\Ieighboring vertices. The processors’ goal is to perform some computational task together.
;Let us restrict our attention to deterministic and synchronized networks — the simplest
“imong this class of computational models. In such an environment it is easy to see that
0 ¢ time units a processor can only learn about the situation at processors that are
Yithin distance at most ¢ from itself in the graph. This observation gives rise to numerous
{uestions of the local-global type. In studying such questions, some care has to be given
o Symmetry breaking. If processors ‘have no identity’ and cannot be told apart by other

Yrocessors, then almost nothing interesting can be done. We do not elaborate on this,
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Low-diameter decompositions of graphs

Perhaps the most fundamental difficulty in distributed processing, as compared with more
traditional computational models, is the absence of central control. It is very
have many processors perform i

electing a leader. We wil] not pursue this fascinating subject, ¢
ings of this approach. It creates a communication bottleneck around the
elected leader. It is also very sensitive to failures, or latency of the leader and its neighbors,
Moreover, if the graph underlying the communication network has
method is also very wasteful in terms of communication.

In view of the difficulties involved with such a ‘central government’ the next thing to
try is a set of cooperative ‘local authorities’. Namely, in the previous section we were
covering vertices by balls; now we consider decomposing the vertices, subject to a certain
upper bound on the diameter of each part. Let us introduce some notation: if I is a

decomposition of the vertices of graph G into subsets, V(G) = US:. The diameter of this
decomposition is defined as the maximum over al] diam(S;).

a large diameter, this

Remark 3.1. In defining the diameter, we may consider the graphs induced by the parts,
and compute distances within these graphs. Alternatively, we may consider distances

as inherited from the whole graph. Our Statements, slightly modified, hold for either
definition.

The graph induced by IT has one vertex per S;, with vertices I, j adjacent iff there is a
vertex in S; and one in S; that are adjacent in G. The goal is to find partitions IT with

small diameter and favorable properties for the induced graph. Linial and Saks [25] show
(see also [6, 71):

Theorem 3.2, 45 n-vertex graph has a decomposition of diameter r, where the induced
graph has chromatic number < x if both

logn
log ¥

logn
r=Q = and r = Q
log r
bounds are tight. A randomized distributed algorithm of

hold. Examples exist showing these
1og®W p yun time is provided to obtain such decompositions.

We briefly discuss some extreme examples for Theorem 3.2. It is easily seen that there
are two interesting ranges to this theorem:
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In this range, the tradeoff between r and y is given by:

logn
log r

The known extreme examples in this range are graphs corresponding to triangulations of
Euclidean spaces. For example, the graph whose vertices are all lattice points in log n/ logr
dimensions, with adjacency between Xy iff [x —y[. =1

logn

* loglogn

Q <Jogn>A
log x

Here trees and expander graphs provide extreme examples.

=1,

\

where the condition is

!

Remark 3.3. Notice that radius logn along with y = O(logn) are possible. Consequently,
if every ball or radius logn in G is k-colorable, %(G) = O(klogn). So, up to a logarithmic
factor, the coloring number can be inferred from radius logn views of G.

More on coloring from the local-global perspective will be said later.
So far we have considered only the chrom

atic number of the graph induced by a
decomposition. Other properties of this graph

are of interest as well. Let us point out
the analogy between these questions and notions from dimension theory in topology [19].
The following question is inspired by the notion of covering dimension of metric spaces.
Let IT : V(G) = US, be, again, a decomposition of the vertices of graph G. For a vertex
x, let y(x) be the number of S; in which x has a neighbor. A(IT) is defined as maxy (y(x)).

Problem 3.4. What is the least D — D(r,n), such that any n-vertex graph has a decompo-
sition IT of diameter < r with A(IT) < D?

Possibly, the tradeoff between D,r and n is the
Theorem 3.2.

same as the one for y,r and n in

32. Applications of low-diameter decompositions

Low diameter graph decompositions have found numerous applications in distributed
computing. We briefly sketch some of these. We begin with the Maximal Independent Set
(MIS) problem. (We mean inclusion-maximal. This problem is not to be confused with
the search for an independent set of largest cardinality, which is NP-complete.) There is,
of course, a most simple sequential algorithm, which at each step adds a new v
the MIS and eliminates all its neighbors from the graph. While such
algorithm solves the problem

ertex to
a naive sequential
in optimal time, finding efficient parallel algorithms for
this question is not nearly as obvious. An efficient parallel algorithm was first found by
Karp and Wigderson [20] with numerous improvements and r

amifications by others (e.g.
[, 27)). In fact, Luby’s algorithm [27] works also in the distributed model, but it does use
fandomization, however. One of the t

antalizing questions that remain in this area is:
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Problem 35, Is there

a dclerministic,
maximal independent set

(MIS) in a graph?
It has been observed in [4] th
decomposition graph n
colored) decomposition
colored 1.

at low-dj

IS available, we
Since each part has diameter
an elected leader, where both election
no edges between different parts of color 1,
performed in parallel without gf
eliminate thejr neighbors (
Using the terminology of
Proper choice of par

construct,
at most r,

Tecting each other.
also in other parts)
Theorem 3.2, 5 time boun
ameters may be made ()(logz n)
argument assumes g partition to be already available
distributed algorithms are known that find such de
(Theorem 3.2 and [3]). Problem 3.5 thus remains 0
Another problem for which low-dj

ing [5]. In this problem,
brocessor is assigned a number of (unit-cost)
perform one of jtg assigned jobs, as well
can also communijcate mess
and the contents of the mes
time is carly as possible. Moreover,
the time for completion should compare f
an optimal centra] controller having
Just local views at a certain processo
to guarantee g completion time that is only O(logn)
know]cdguble central controller. This result g shown
families of graphs in [2]. For further applications see [

ameter decompo
processors try to efficientl

ages to its neighbors, A p

sages it receives. An algorj

avorably wj

4. Distribute

The systematic study of locality

result concerned the time

required to 3-color an n-cycle
by Cole and Vishkin [1 1] does this in time O(log" n)
times one has to iterate the log function to come down
The first result in [22] says that this alg

Theorem 4.1, A distributed g4

Igorithm that properly
requires time Q(log" n)

colo
- The bound is tight.

It was later shown by Naor

[30] that the same st
algorithms,

distributed, polylog-time

ameter decompositions with
1ay help provide such an ga]

and construction t
SO these
» and we move

- Currently, howey
compositions in polylog:
pen.

y share their workload

Jobs to perform. In e:
as send some of jtg

the following strong (

a complete view of the situ
r). Using low-diameter de

d coloring angd related proble

in distributed processing w

- (Recall that log”

gorithm. Assuming such (
in parallel, apn MIS within e
an MIS for it can be
ake time O(r). Al
activities in different
Vertices selected so f
On to parts colored 2
d of O(ry) can be

. The difficulty is, of course, that t}

sitions help is distribute
ach step,

rocessor know
thm is sought
‘competitive’)

criterion is applied:
th the best th

at can be achieved by
ation at al] times (and not

compositions, [5]

manages
longer than

can be attained by a
to be almost optimal f
6, 7].

or certain

ms

as begun in [22]. Our first
of processors. A clever algorithm
n is the number of
from n to 1),

orithm is optimal.

rs the n-cycle with only 3 colors

atement also holds for randomized

algorithm to find a

a Iow-chromzltic

an already

So, there are
parts can be
ar for the MIS

1is
€L, only randomizeq
garithmic time

d job schedy-
S. Initially, each
a processor can
assigned jobs to neighbors. [t
S only its own history
where the completion

Assu
shows

Theorey

colors r,

ach part
constructed by

This ¢
COUI"SQ <
time con

Other

etc.
achieved, which by

Theorem
T and ry

This resy]
area is:

Problem 4
take time
an algoritt

vertex degi

This que,
in [22].

Theorem 4.
colors, wher,

See also
fecently inve
locality,

Another 1
S¢t of a grapl
vice versa, T)
{0 construct g
Unknown: Lj

Conjecture 4,¢
Partition requi

The chromatic
behavior of sm




e algorithm to find a

with a low-chromatic
ming such (an already
MIS within each part
can be constructed by
e O(r). Also, there are
different parts can be
ed so far for the MIS
to parts colored 2 etc.
be achieved, which by
is, of course, that this
wever, only randomized
1 polylogarithmic time

distributed job schedul-
rkloads. Initially, each
h step, a processor can
d jobs to neighbors. It
’s only its own history
where the completion
¢’) criterion is applied:
at can be achieved by
n at all times (and not
»ositions, [5] manages
can be attained by a
it optimal for certain

jun in [22]. Our first
's. A clever algorithm
g" n is the number of

le with only 3 colors

1olds for randomized

497

Local-Global Phenomena in Graphs

Assuming 7 is even, how long does it take to 2-color
shows up,

an n-cycle? A huge difference
in comparison with the time complexity of 3-coloring.

Theorem 4.2. A distributed algorithm that properly
colors requires time Q(n). The bound is tight.

colors the n-cycle (n even) with only 2

This example captures a big difference in locality of 2 and 3-coloring of cycles. Of
course, a 2-coloring requires perfect global coordination, which results in an excessive
time complexity.

Other results from [22] are:

Theorem 4.3. Let T be the d-regular tree of radius r.
T and runs for time < 2r/3 requires at least Q(Vd)

Any algorithm that properly colors
colors.

This result can probably be improved to Q(d/logd). An intriguing open question in this
area is:

Problem 4.4. Consider distributed algorithms that properly color n-vertex graphs and

' take time log®Y n. What can be said about the least number of colors required by such

. an algorithm? Specifically,
© vertex degree of the graph?

Theorem 4.5. 4n O(log" n)-time

is it possible that A + 1 colors suffice, where A is the largest

This question is closely related to Problem 3.5 Some partial results have been provided
in [22].

algorithm exists to color any n-vertex graph G with 0(A?)

- colors, where A = A(G) is the largest vertex degree in G.

See also  [34] for some recent progress in this area. Naor and Stockmeyer [31] have

- recently investigated the limits of what can be computed with a constant diameter of

locality.
Another related problem is that of finding happy partitions. A partition of the vertex
set of a graph V = A(JB is called happy if every x € 4 has most of its neighbors in B and

' Vice versa. That such partitions always exist is easy to show, and a sequential algorithm
* [0 construct such partitions is easy to find. The distributed time complexity of this is still

]
i
5
/]
gy

i

|

|
g
g
5

behavior of small induced

' unknown: Linial and Saks conjecture (unpublished) as follows.

Conjecture 4.6. There are n-vertex graphs where
bartition requires time Q(y/n).

a distributed algorithm to Jind a happy

5. Coloring

The chromatic number of a graph is a good example of a global parameter where the

subgraphs seems to be a weak indicator of global properties.

18-2
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(But notice Remark 3.3.) Up to this point ‘local’ has always been taken in the sense of
distance. It is also interesting to examine assumptions about the behavior of (cardinality)
small sets of vertices. In this section we consider sets that are small in either diameter or
cardinality. One easy consequence of Theorem 3.2 is the following.

Theorem 5.1. If the subgraph spanned by every k vertices in G is 2-colorable. x(G) =
O(n®U/R). This bound is tight. Moreover, it is possible to find a proper coloring with this
number of colors in polynomial time.

Dealing with 2-colorabilty is usually much easier than with any larger coloring number.
Is there, perhaps, a similar result for graphs that are, say, locally 3-colorable? To simplify
our notation, we will only consider 3-colorability, leaving out the obvious extension to
more colors.

Problem 5.2. Let y(n, k) be the largest chromatic number of an n-vertex graph G if the
subgraph spanned by every k vertices in G is 3-colorable. Determine the behavior of
x(n, k).

It is not hard to see that
pl/2+o(l) 2(n, k) > n?/20+o().

where the o(1) terms tend to zero as k grows. The upper bound follows, e.g., from
Wigderson’s argument [35] mentioned below. The lower bound combines an argument
from [24] with a lower bound due to Gallai [15] on the least number of edges in
minimally non-3-colorable graphs. Note the difference compared with locally 2-colorable
graphs (Theorem 5.1).

Besides the interest in the problem per se, it is related to approximating chromatic
numbers in polynomial time. That it is NP-hard to determine the chromatic number
has been known for a long time [16]. How well this quantity may be approximated is
still unknown, although considerable progress has been made. An early positive result
on approximating chromatic numbers is a polynomial-time algorithm by Wigderson [35],
which colors any n-vertex 3-colorable graph with O(y/n)-colors. Here is the argument: as
long as you can find a vertex x of degree > /n, allot two fresh colors for the neighbors of
x and discard them (they are two-colorable, since x(G) = 3). When the remaining graph
has all degrees < \/n, it can be \/n-colored by a greedy algorithm. Altogether, only O (/1)
colors are utilized.

Observe that the algorithm actually applies not only to 3-colorable graphs, but, in fact,
to every graph in which the neighborhood of every vertex is 2-colorable. Now, bounds on
Ramsey numbers naturally fit into the local-global framework. For example, the fact that

R(3,k) = k*>—t)

(see [17] for the sharpest known bounds) answers the following question: given that
the neighbors of any vertex in G form an anti-clique, what is the best lower boun'd Of;
the largest anti-clique in G (answer: n!/2=°()_ p particular, triangle-free graphs exist 0
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chromatic number Q(n'/2-°(). Byt in a triangle-free graph, the neighborhood of every
vertex is, in fact an independent set, so under the more general
algorithm is in fact optimal.

These arguments were further improved by A. Blum [9]
a 3-colorable graph with n3/#

assumptions, Wigderson’s

, who showed how to color
colors in polynomial time. Interestingly, Blum’s algorithm
(which is much more involved than that of [35]) also exploits only local (neighborhoods
of radius 2) properties of 3-colorable graphs. This leads us to ask some questions to
capture the heuristic claim that polynomial-time graph-coloring algorithms can only check
local properties. We first observe that the answer to Problem 5.2 yields a completely trivial
algorithm to tell 3-chromatic graphs from those not colorable in n° colors. We expect this
algorithm to be better than Blum’s in this respect.

Conjecture 5.3. Let G be an n-vertex graph in which every induced subgraph of order k is
3-colorable. Then, y(G) < n"*°W for some 3/8 >y >17/20, and where the o(1)
to zero with k — oo.

term tends

An exhaustive algorithm running in time 0 (n*) can obviously test this condition. It is

algorithm that
actually provides a n”*°() coloring.

If this conjecture fails, it may be possible to save it by adding an assumption such as that
the neighborhood of every vertex is 2-colorable, a condition that is
verifiable.

A more daring conjecture is:

again polynomial-time

Conjecture 54. If P = NP, then no polynomial time algorithm can color every 3-chromatic

n-vertex graph with fewer than n° colors for some 0 > 0.
There have been many new and exciting results on the difficulty of approximating
has been taken

' by Lund and Yanakakis [28], who establish a separation between coloring numbers n°
* and n* for some fixed 1 > ¢; > ¢2 > 0. A simpler proof has been provided recently by

Khanna, Linial and Safra [21], who also show that it is NP-hard to 5-color 3-colorable

. graphs. All this is, obviously, still a far cry from Conjecture 5.4, but some progress in this
\ direction is likely to occur in the foreseeable future.

o

samao

6. Sizes of neighborhoods

Perhaps the most obvious ‘local information about a graph is the degree sequence,
classically characterized by Erdds and Gallai [12]. Briefly, d; > ...d, > 0 is such a
Scquence iff (i) 3 d; is even and (ii) for all 1 < k < n it is the case that ¥ di <
k(k — 1) + 2. j»k min{k,d;}. The necessity of these conditions is easy to establish and the
thrust of the theorem is that they are also sufficient. Pursuing our local-global approach
We ask: what else can be said about the possible rate of growth of (balls in) a graph?
Recall that fiy(x) is the number of vertices y whose distance from x does not exceed
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k. In a connected n-vertex graph, one obtains n integer sequences, one for each vertex,
1= fo(x) < B, (X)... < Bu(x) = n. Following Erdés-Gallai’s result, it is appealing to ask:

Problem 6.1. Characterize those sets of n integer sequences of the type

I=px) <pi(x)... < Bn(x) =n

that are obtained from connected graphs.

This question, in full generality, is presently too difficult, and at this time one should
settle for less. Here are some illustrative special cases of this problem:

— Is it possible to characterize sets of n pairs f(x) < B2(x) that come from graphs?
One possible approach would be to get sufficient information on squares of graphs
and then resort to Erd6s—-Gallai. Note. however, that Motwani and Sudan [29] have
shown that it is NP-complete to decide whether a given graph is a square,

— In the context of the previous question, it is not hard to derive some necessary

conditions, e.g., that

20 =1 < Y81 — 172

X
with equality iff girth(G) > 5. This inequality suggests that there might exist some
comparison theorems between norms of the various vectors B = (Bi(x)|x € V).

— Obviously, for any fixed x, the sequence 1 = fy(x) < fi(x)... < Bn(x) = n is unre-
stricted. It may be possible to characterize pairs of such sequences, one for vertex x
and one for y. Such an analysis could start by considering for any i, j the number of
vertices z that are at distance ; from x and j from V.

— For which parameters is it possible that all x satisfy f1(x) = d + 1, while for every
i < clogn it is the case that Biv1(x) > (1 + 0)Pi(x)? This question is clearly related
to the existence of constant-degree expanders. Methods developed in that area may
prove helpful in studying growth rates of graphs in general.

— What is the largest girth of a d-regular n-vertex graph? Specifically, is it

(2—o(1))log n/log(d —1)?

This is also an instance of the general problem. We conjecture the answer to be
negative. The best current lower bound [26, 8] gives 4/3 instead of the 2.

A problem related to the last item in this list concerns the ratio between girth and
diameter. Consider the distance between two vertices that are antipodal in a shortest cycle.
This consideration shows that 2 - diameter(G) > girth(G). Equality holds for even cycles,
but what if all degrees are > 39 Examples are known with girth(G) = 2 - diameter(G),
where the numbers are small, e.g., the points-lines graph of a projective plane. We are not
aware of similar constructions with large girth, so we ask:

Problem 6.2. Consider graphs G with all degrees > 3. What are possible values t‘or.th:
pair (girth(G), diameter(G))? In particular, can their ratio be kept as close to 2 as we wish?

See [14] for a related classical work.
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Together with S. Hoori [18], we have recently obtained some results concerning the
existence of a ‘center of mass’ in both graphs and sets in Euclidean spaces. Namely, we
are looking for a vertex x where we can establish a tight lower bound on the numbers

Br(x) (k=1,2,..)).

7. Cliques

A number of people have investigated how well the clique number of a graph can be
inferred from local behavior. The earliest work we are aware of is by Erdés and Rogers
[13]. Recent work on the subject can be found in [10, 24] and the references therein.
The main question studied here can be stated in terms of computing, or estimating, the
quantities related to the following arrow relation. Say that a graph G has property (p, q)
if every set of p vertices in G contains a g-clique. We say that (p,q) — (f,n), if every
G of order > p having the (p, q)-property must satisfy (f,n) as well. The question then
is, for given p,q,n estimate the least f = f(p,q,n) for which (p,q) — (f,n). The exact
determination of f includes, as a special case, the exact evaluation of Ramsey numbers,

so it is more realistic to ask for estimates, or to settle for special cases. We use both the
. arrow notation and the function f to describe the results.

Bollobas and Hind [10] concentrate on the case of large p and small g, n. Among their
results are:

Theorem 7.1. For s >r > 3.
(n,r) — ((‘n"‘*"'H.S)

for some constant 1 > ¢ > 0. Also, for r > 3 and n large enough

(n,7) A (n!*+/?=2D—e + 1).

Linial and Rabinovich [24] consider fixed p, q and n tending to infinity. Their main result

breaks down into three cases, roughly according to whether p/q is smaller than, equal to
. or bigger than 2.

< Theorem 7.2.

— For p<2q—2 and all n,

=T

AEEE

5%

fp.q.n)=n+p—q.

— For p=2q —1 and all n > )22

n 1+2/(q—3)

NS S

+o(1) > f(p, q, ”) > ”H—]/(Sq~5)_

g

— For qll n > P=q,

(p,q) = (R(r,n) + p—1,n),

Where r = [J—Ll] R(r,n) is the Ramsey number and ¢ is an absolute constant. On the
other hand,

(p,gq) 7> (n'T=D/lo= 20l 1)




4

502 N. Linial

where T is a Turan number: the least number of edges in a p-vertex graph without a
g-anticlique.

All o(1) terms are for fixed p,q and growing n.
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