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Three power producing cycles have been so far known that include two isothermal processes, namely, Carnot, Stirling, and
Ericsson. It is well known that the efficiency of the Carnot cycle represented by 1 — T;/Ty is independent of its working fluid.
Using fundamental relationships between thermodynamic properties including Maxwell’s relationships, this paper shows in a
closed form that the Ericsson and the Stirling cycles also possess the Carnot efficiency irrespective of the nature of the working gas.

1. Introduction

A necessary step when teaching the second law in undergrad-
uate thermodynamics classes is to introduce the concept of
Carnot cycle, which was invented by Sadi Carnot, a French
physicist and military engineer, in 1824. Historically, Carnot
cycle has played a substantial role in further development
of the second law of thermodynamics by Rudolf Clausius, a
German physicist and mathematician, who in 1854 showed
analytically that using an ideal gas as the working medium,
the efficiency of the Carnot cycle is 1 — T,/T; [1], where T,
and T, denote the lowest and the highest temperatures of the
cycle, respectively. This result led him to invent “entropy”
in 1865, and to derive his well-known inequality; that is,
$(Q/T) < 0. Later on, these concepts were applied by several
other pioneers such as Trevor [2], Kenrick [3], Kleeman [4],
and Cantelo [5], to establish fundamental ideas. In these
works, the Carnot cycle was treated as the regime of fully
reversible, whereby satisfying $(Q/T) = 0.

Under the assumption of working substance behaving
as an ideal gas, the Carnot cycle is not the only one whose
efficiency becomes 1 — T1/T,. Ericsson and Stirling cycles
can also obtain the same efficiency [6]. These two cycles are
similar to the Carnot cycle in a sense that they include two
isothermal processes. However, the remaining two processes
in the Ericsson cycle are isobaric while in the Stirling cycle
they are isochoric. The T—S and P-V diagrams of these cycles

are depicted in Figure 1. As in Carnot cycle, the Ericsson and
the Stirling cycles would also satisfy §(Q/T) = 0 at the regime
of fully reversible.

Worthy of noting is that Stirling engine was invented
by a Scottish engineer, Robert Stirling, in 1816; eight years
before Carnot published his ideas in a 65-page book. In
1833, John Ericsson, an American Swedish-born inventor
and mechanical engineer, patented the first Ericsson cycle,
which is nowadays called Brayton cycle. The Ericsson cycle
that we know today, with its idealized T-S and P-V
diagrams shown in Figure 1, was invented in 1853. From a
historical point of view, these three cycles which undergo
isothermal compression and expansions processes, were
designed in the same era. Nonetheless, only Carnot cycle has
historically prevailed in the literature partly due to Benoit
Clapeyron’s efforts, another French engineer and physicist,
who brought Carnot cycle to light by describing it in a
graphical presentation in 1834, and mainly due to Clausius
who formulated the first law and the second law on the basis
of a Carnot cycle operating with an ideal gas.

As is well-known, the efficiency of Carnot engine is
independent of the nature of the working fluid. The easiest
proof is to refer to the corresponding T-S diagram in
Figure 1. The net entropy increase of the working fluid
during the isothermal expansion process is equal to the net
entropy decrease of the working medium in the isothermal
compression process. This implies that Qu/T3 = Qu/Ti
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FIGURE 1: Pressure-volume and temperature-entropy diagrams of Carnot, Stirling, and Ericsson cycles.

which leads to an efficiency of 1 — T1/T3. The question
which can be naturally asked is whether or not the other two
competing cycles would still have the efficiency 1 — T1/T3
when operating with a working fluid other than the ideal gas;
for instance with Van der Waals gas. This idea is followed
as the main task of the present note; to investigate the
efficiency of the idealized Stirling and Ericsson engines when
operating with an arbitrary working gas. The analysis will

be performed with the aid of the fundamental relationships
between thermodynamic properties. Our starting point will
be the following two well-established equations

dU = TdS — PdV, (1)

dH = TdS+ VdP. (2)
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These equations are the consequence of the first law; that
is, dU = 6Q — dW. We will also need the following two
relationships originally derived by Maxwell

Gv). - Gr). ®

S oV

(%), = (57), @
The above relationships can be found in any standard
thermodynamics textbook; for example, 7, 8].

2. Stirling Cycle Operating with an
Arbitrary Gas

The ideal Stirling cycle (see Figure 1) consists of the following
four processes: 1 — 2 isothermal compression which
includes removal of heat from the system; 2 — 3 isochoric
heat addition; 3 — 4 isothermal expansion with heat
addition to the system; 4 — 1 isochoric heat rejection. To
be able to precisely calculate the amount of heat transfer and
work in various processes of the Stirling engine, we need
to derive an equation for the internal energy U which can
be expressed as a function of temperature and volume; that
is, U = U(T,V). Taking into account the definition of the
specific heat at constant volume cy, the differential form of
the internal energy can be expressed as

U U U
AU = (a—T)Vdﬂ (a—V)TdV — cydT + (W)Tdv.

(5)

On the other hand, entropy S can be expressed as a function
of T and V, too, with a differential form as

0S 0S oS oP
ds = (a_T>vdT+ (a—v)TdV - (a_T>vdT+ (a—T)VdV'

(6)

Note that (3) is employed in (6). Substituting (6) into (1), we
get

U = T(g—;)vdT+ [T(%)V—P]dv. )

It can be implied from (5) and (7) that

dS
T(ﬁ>v — cydT. (8)
Hence, (7) and (6) can be rewritten as
oP
dU_chT+[T(a—T)V—p]dv, 9)
_ ELP)
ds = Lar+ (aT dv. (10)

Applying (9/T)(dU/QV) = (3/dV)(dU/AT) to (9) gives

aCV . aZP
(57), - T(aT) (1)

Integrating (11) at constant volume leads to a function for cy
that is only dependent on temperature.

The entropy change of the working gas during the
isochoric processes 2 — 3 and 4 — 1 can be evaluated
using (10)

3
$5-8 = J’ C?VdT =F\(T3) - Fi(T,) Fi(T) = C?VdT,
2

1
S1 -8 = L C?VdT = F|(T\) — Fi(T4) = F1(T>) — Fi(T3).
(12)

From (12) we conclude that

S3—82:S4—Sl or 51—82284—83 (13)
Applying the first law to the heat addition process 2 — 3
while taking into account (9), we get

Qs = Jj dUu = Ls cvdT 1)

= F,(T3) — F2(T»),

where F>(T) = [ cydT.
Likewise, the amount of heat rejection during process
4 — 1is determined as

Qu = F,(T1) — F2(T4) = Fo(T,) — F2(T3). (15)

Hence, the amount of heat addition during the isochoric
process 2 — 3 is the same as the amount of heat rejected
during the isochoric process 4 — 1. The amount of heat
removed during process 4 — 1 can be used to meet the heat
requirement of process 2 — 3.

In a similar manner, we can determine the entropy
change and the amount of heat addition/rejection during the
isothermal processes 3 — 4 and 1 — 2. Using (10) for the
isothermal processes, we have

4 op
Si—Ss = L (ﬁ)vdv,

, (16)
oP
s-si= ] (57),4v
From (13) and (16), we conclude that
40P 2 /0P
LG =[G e on

The heat addition/rejection during process 3 — 4/1 — 2
can be obtained by applying the first law

6Q =dU +PdV

—cpdT + [T(a—P) - P]dV+PdV
Vv

oT (18)

oP
- T(ﬁ)vd“
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Hence,
Qu=T Lz (g—l;)vdv, (19)
N

Recalling that the amount of heat addition in process 2 — 3
equals the amount of heat rejection in process 4 — 1, the
efficiency of the Stirling cycle is determined as follows:

Substituting (19) and (20) into (21) and taking into account
(17), we finally find

s =1-—. (22)

3. Ericsson Cycle Operating with an
Arbitrary Gas

The ideal Ericsson cycle (see Figure 1) includes the following
four processes: 1 — 2 isothermal compression which
includes removal of heat from the system; 2 — 3 isobaric
heat addition; 3 — 4 isothermal expansion and heat
addition to the system; 4 — 1 isobaric heat rejection. We
need to take the same procedure outlined in the preceding
section to determine the thermal efficiency of the Ericsson
cycle. However, in this section, we will employ the definition
of enthalpy for the analysis of the Ericsson cycle. For this
purpose, suppose that enthalpy H can be expressed as a
function of temperature and pressure; that is, H = H(T, P),
or in a differential form as

OH oH oH
dH:(aT) dT+<aP) dp = pdT+(aV) av.
(23)

We further suppose that entropy S can be expressed as a
function of T and P with a differential form as below in
which (4) is employed.

- () 01+(3) - (B - (R

Substituting (24) into (2) yields

dH - T(aa;) dT+[V T(3¥) ]dP (25)

From (23) and (25), we conclude that

3s
T<ﬁ)P — cpdT (26)

Hence,

dedeT+[V T(3¥> ]dP (27)
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Eliminating dH between (27) and (2) and rearranging the
resulting expression for S gives

_ deT _ (E)V)
as = T 5T dP. (28)
Applying (3/0T)(dH/0P) = (9/dP)(dH/JT) to (27) yields
) (2
(aP T T(8T2>P' 29)

Equation (29) implies that cp at an isobaric process is only
a function of temperature. So, the entropy change of the
working substance during the isobaric processes 2 — 3 and
4 — 1 can be evaluated using (28) as follows:

3
S3—=8 = %PdTZF3(T3)—F3(T2) F3(T) = %PdT,
2
1
S1—84 = ) %PdT = F3(T) — F3(T4) = F5(T>) — F3(T3).
(30)

It can be inferred from (3) that the entropy increase during
process 2 — 3 is equal to the entropy decrease in process
4 — 1. Hence,

Si— S =S — Ss. (31)

The amount of heat addition during isobaric process 2 — 3
can be obtained using the first law as follows.

3 3
Qs = L dH = L cpdT = Fy(T3) - Fy(T2),  (32)

where F4(T) = [ cpdT.
Likewise, the amount of heat rejection during isobaric
process 4 — 1 is determined as

Qu = F4(T1) — F4(Ty) = F4(T,) — F4(T3). (33)

It can be implied from (32) and (33) that Q.3 = —Qu;. So,
the amount of heat rejected during process 4 — 1 can be
bypassed to meet the heat requirement of process 2 — 3.

The change in entropy during the isothermal processes
3 — 4and 1 — 2 is evaluated with the aid of (28)

si=5=- [ (37)

(34)
oV
s-si= | (57),
A combination of (31) and (34) leads to
oV oV
L (ﬁ)}adp‘ (aT) dP‘ (35)

The heat addition/rejection during process 3 — 4/1 — 2
can be obtained by applying the first law

8Q = dH — VdP
av
:cPdT+[V T(aT) ]dP—VdP (36)
v
a T(av*) dp.
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Hence,

e )%
Qun=-T L (ﬁ)})dp’

%
Qss = —T3 L (a_T>de'

(37)

Finally, taking into account (35) the efficiency of the Ericsson
cycle is obtained as follows

ne=1- Qu _,_=h [} (@V/aT)pdP
Qs —T; J; (OV/AT)pdP G9)

4. Discussion

The important aspect of the results presented in this note
is that the Carnot cycle is not the only one which possesses
the highest efficiency among engines operating between the
same low- and high-temperature thermal reservoirs. Indeed,
the idealized Ericsson and Stirling engines are as efficient
as the Carnot engine. These results reveal that the class of
heat engines which undergo two isothermal processes has
the same efficiency irrespective of the nature of the working
substance. So, the Ericsson and the Stirling cycles would
deserve to be introduced in thermodynamics classrooms and
textbooks; especially considering their practical importance.
The Ericsson cycle is the limiting design of a gas turbine
engine operating on the basis of a Brayton cycle with multiple
intercooler and reheater, whereas the Stirling cycle is the ideal
design of a recuperating external combustion engine. Both
reversible and irreversible configurations of the Ericsson and
the Stirling engines have received tremendous attention in
the literature. Among many scholars researching in these
fields, the contribution of Organ [9, 10] who has been con-
tinuously working on Stirling engines is acknowledgeable.
Referring to the available historical evidences, one would
realize why the Carnot cycle, among the group of heat
engines with two isothermal processes, has prevailed in the
literature as the most efficient one. This is due to firstly Sadi
Carnot’s book in which he attempted to prove by means
of rational reasoning (in his era neither the first law nor
the second law had been fully realized and formulated) that
only his proposed engine would produce a maximum work
from a given amount of heat [11], even though his ideas
were remained unnoticed for a decade. On the other hand,
Clapeyron played a key role by representing the Carnot’s
cycle graphically in a P-V diagram such as shown in
Figure 1. More importantly, Carnot’s rationalized theorems
together with Clapeyron’s work allowed Clausius to further
advance borders of thermodynamics by formulating the first
and the second laws on the basis of the Carnot cycle.
Worthy of further discussion is performance of the
Ericsson and the Stirling engines when exchanging finite
time heat with given high and low temperature reservoirs.
In 1975 Curzon and Ahlborn [12] criticized that a Carnot
cycle undergoing infinitesimal processes would physically

result in zero power output. They proposed a model of
endoreversible Carnot cycle exchanging finite time heat
with thermal reservoirs, and showed that the efficiency at
maximum power operation obeys 7ca = 1 — (T1/ TH)O'S,
with T; and Ty representing the temperatures of thermal
reservoirs. Either of the Stirling cycle or the Ericsson cycle
could also operate with the above efficiency at maximum
power condition. The key part of the Curzon-Aholborn’s
demonstration is to employ Q12/Qss = T1/T5 (referring to
the nomenclature of Figure 1). As was shown in the present
note, the efficiency of the Stirling and the Ericsson cycles
obeys 1 — T, /Ts. Thus, it can be demonstrated with the same
methodology of Curzon-Aholborn [12] that the efficiency of
these cycles would be nca = 1 — (T1/ TH)O'5 at maximum
power operation.
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